Bull. Aust. Math. Soc. 100 (2019), 458–469 doi:10.1017/S0004972719000595

ESTIMATES OF THE SECOND DERIVATIVE OF BOUNDED ANALYTIC FUNCTIONS

[GANGQIANG](https://orcid.org/0000-0003-2039-4310) CHEN

(Received 20 February 2019; accepted 6 March 2019; first published online 3 June 2019)

Abstract

Assume a point *z* lies in the open unit disk $\mathbb D$ of the complex plane $\mathbb C$ and *f* is an analytic selfmap of D fixing 0. Then Schwarz's lemma gives $|f(z)| \leq |z|$, and Dieudonné's lemma asserts that $|f'(z)| \le \min\{1, (1+|z|^2)/(4|z|(1-|z|^2))\}$. We prove a sharp upper bound for $|f''(z)|$ depending only on $|z|$.

2010 *Mathematics subject classification*: primary 30C80; secondary 30F45. *Keywords and phrases*: bounded analytic functions, Schwarz's lemma, Dieudonne's lemma. ´

1. Introduction

Let $\mathbb D$ be the open unit disk $\{z : |z| < 1\}$ in the complex plane $\mathbb C$. The set of all analytic self-maps of D is denoted by H, and its subspace H_0 consists of those $f \in H$ such that $f(0) = 0$. We recall some classical growth estimates for the functions in these spaces.

Schwarz's lemma asserts that $|f(z)| \le |z|$ for all $f \in H_0$ and $z \in \mathbb{D}$. Rogosinski [\[8\]](#page-10-0) gave the generalisation: if $f \in H_0$ and $f'(0)$ is fixed, then for $z \in D \setminus \{0\}$, the region of values of $f(z)$ is the closed disk { $\zeta \in \mathbb{C} : |\zeta - c| \leq r$ }, where

$$
c = \frac{zf'(0)(1-z^2)}{1-|z|^2|f'(0)|^2}, \quad r = |z|^2 \frac{1-|f'(0)|^2}{1-|z|^2|f'(0)|^2}
$$

Rivard [\[7\]](#page-10-1) gave another version of Rogosinski's lemma for $f \in H$, called the Rogosinski–Pick lemma. The Schwarz–Pick lemma states that

$$
|f'(z)| \le \frac{1 - |f(z)|^2}{1 - |z|^2}, \quad f \in \mathcal{H}, \ z \in \mathbb{D},
$$

and equality holds for some $z \in \mathbb{D}$ if and only if *f* is an automorphism of \mathbb{D} . The Schwarz–Pick lemma has a higher-order version. Ruscheweyh [\[9\]](#page-10-2) proved that, for $f \in \mathcal{H}$ and $n \in \mathbb{N}$,

$$
|f^{(n)}(z)| \le \frac{n!(1 - |f(z)|^2)}{(1 - |z|)^n (1 + |z|)}, \quad z \in \mathbb{D},\tag{1.1}
$$

and the inequality is sharp (see also $[1]$ and $[5]$).

c 2019 Australian Mathematical Publishing Association Inc.

The Schwarz–Pick lemma implies the sharp inequality $|f'(z_0)| \le 1/(1-|z_0|^2)$ for \mathcal{F}_d and $z_0 \in \mathbb{D}$. This inequality has upper bound depending only on $|z_0|$ and equality *f* ∈ *H* and *z*₀ ∈ **D**. This inequality has upper bound depending only on $|z_0|$, and equality occurs only for $f(z) = e^{i\theta} (z - z_0)/(1 - \overline{z_0}z)$, $\theta \in \mathbb{R}$. Szász [[10\]](#page-10-5) extended this inequality to odd-order derivatives of $f \in H$ and also obtained the following sharp upper bound to odd-order derivatives of $f \in H$ and also obtained the following sharp upper bound for $|f''|$ (see also [\[1\]](#page-10-3)):

$$
|f''(z_0)| \le \frac{(8+|z_0|^2)^2}{32(1-|z_0|^2)^2}, \quad f \in \mathcal{H}, \ z_0 \in \mathbb{D}.
$$

Equality occurs only for

$$
f(z) = e^{i\theta} \frac{u^2 + \frac{1}{2}z_0u - \frac{1}{8}z_0^2}{1 + \frac{1}{2}\overline{z}_0u - \frac{1}{8}\overline{z}_0^2u^2}, \quad u = \frac{z - z_0}{1 - \overline{z}_0z}, \ z \in \mathbb{D}, \ \theta \in \mathbb{R}.
$$

Dieudonné [[3\]](#page-10-6) proved the following estimate for the derivative of $f \in H_0$ depending only on |*z*|:

$$
|f'(z)| \le \begin{cases} 1 & \text{if } |z| \le \sqrt{2} - 1, \\ (1 + |z|^2)^2 & \text{if } |z| \le \sqrt{2} - 1, \end{cases}
$$
(1.2)

$$
(z) \le \begin{cases} \frac{(1+|z|^2)^2}{4|z|(1-|z|^2)} & \text{if } |z| > \sqrt{2} - 1. \end{cases}
$$
 (1.3)

Equality holds in [\(1.2\)](#page-1-0) for some z_0 with $r = |z_0|$ if and only if $f(z) = e^{i\theta} z$ for some real constant θ . Equality holds in [\(1.3\)](#page-1-1) for some z_0 with $r = |z_0|$ if and only if

$$
f(z) = e^{i\theta} z \frac{z - a}{1 - \overline{a}z},
$$

where $a = (3r^2 - 1)z_0/(r^2(1 + r^2))$ and $\theta \in \mathbb{R}$ is arbitrary. This result is known as Dieudonné's lemma and can be seen as Schwarz's lemma for f' Another version Dieudonné's lemma and can be seen as Schwarz's lemma for f'. Another version of Dieudonné's lemma for $f \in H$ called the Dieudonné–Pick lemma was proved by Kaptanoğlu $[4]$ $[4]$ (see also $[2, 7]$ $[2, 7]$ $[2, 7]$).

Our main result gives a sharp upper bound for the modulus of the second derivative of $f \in H_0$ and improves the upper bound given by Szasz [\[10\]](#page-10-5).

THEOREM 1.1. *If* $f \in H_0$ *, then*

$$
|f''(z)| \le \begin{cases} \frac{4}{1 - 9|z|^2 + (1 + 3|z|^2)^{3/2}} & |z| \le \frac{1 + \sqrt{3}}{4}, \\ 0 & (1.4) \end{cases}
$$

$$
\left| \frac{(1+8|z|^2)^2}{32|z|^3(1-|z|^2)^2} \right| \qquad |z| > \frac{1+\sqrt{3}}{4}.\tag{1.5}
$$

Equality holds in [\(1.4\)](#page-1-2) for some z_0 *with* $r = |z_0| \leq (1 + \frac{1}{2})$ √ 3)/⁴ *if and only if*

$$
f(z) = e^{i\theta} z \frac{z - a}{1 - \overline{a}z},
$$

where

$$
a = \frac{3}{1 + \sqrt{1 + 3r^2}} z_0, \quad \theta \in \mathbb{R}.
$$

 460 G. Chen [3]

Equality holds in [\(1.5\)](#page-1-3) for some z_0 *with r* = $|z_0|$ > (1 + √ 3)/⁴ *if and only if*

$$
f(z) = e^{i\theta} z \frac{z - a_1}{1 - \overline{a}_1 z} \cdot \frac{z - a_2}{1 - \overline{a}_2 z},
$$

where

$$
a_1 = \left(\frac{2r^2 - 1}{r^2} + \frac{2(1 - r^2)}{\sqrt{3}r^2}\right)z_0, \quad a_2 = \left(\frac{2r^2 - 1}{r^2} - \frac{2(1 - r^2)}{\sqrt{3}r^2}\right)z_0, \quad \theta \in \mathbb{R}.
$$

Remark 1.2. As *r* ↓ (1 + √ $3)/4,$

$$
a_1 \to 6(3\sqrt{3} - 5)z_0 = a_0
$$
 and $|a_2| \to 1$.

When $r = (1 +$ $\sqrt{3}$ /4, we obtain *a* = 6(3 $\sqrt{3}$ − 5)*z*₀ = *a*₀. Thus

$$
f(z) = e^{i\theta} z \frac{z - a_1}{1 - \overline{a}_1 z} \frac{z - a_2}{1 - \overline{a}_2 z} \rightarrow e^{i\gamma} z \frac{z - a_0}{1 - \overline{a}_0 z}
$$

for some $\gamma \in \mathbb{R}$ as $r \downarrow (1 + \sqrt{1 + \gamma})$ $3)/4.$

REMARK 1.3. The upper bound of $|f''(z_0)|$ is continuous but not real analytic. Note that $4/(1 - 9r^2 + (1 + 3r^2)^{3/2})$ is increasing with respect to *r* on $[0, (1 + (1 + 8r^2)^2)(32r^3(1 - r^2)^2)$ is increasing with respect to *r* on $((1 + \sqrt{3})/4,$ $(x^2 + (1 + 3r^2)^{3/2})$ is increasing with respect to r on $[0, (1 + \sqrt{3})/4]$ and $(r^3(1 - r^2)^2)$ is increasing with respect to r on $((1 + \sqrt{3})/4, 1)$ √ $(3)/4, 1$).

The remainder of this paper is organised as follows. In Section [2,](#page-2-0) we present some auxiliary results on the space \mathcal{H}_0 . Section [3](#page-8-0) consists of the proof of Theorem 1.

2. Auxiliary results on the space H_0

In this section, we state and prove some auxiliary results related to the space H_0 . These results are needed for the proof of Theorem [1.1.](#page-1-4) Before that we fix some notation. For $c \in \mathbb{C}$ and $\rho > 0$, the discs $\mathbb{D}(c, \rho)$ and $\mathbb{D}(c, \rho)$ are defined by

$$
\mathbb{D}(c,\rho) := \{ \zeta \in \mathbb{C} : |\zeta - c| < \rho \}
$$

and

$$
\overline{\mathbb{D}}(c,\rho) := \{ \zeta \in \mathbb{C} : |\zeta - c| \le \rho \}.
$$

For $n \in \mathbb{N}$, $\{z_j\}_{j=1}^n \subset \mathbb{D}$ and a point $\theta \in \mathbb{R}$, a Blaschke product of degree *n* with zeros $\{z_j\}$ takes the form

$$
B(z) = e^{i\theta} \prod_{j=1}^{n} \frac{z - z_j}{1 - \overline{z_j}z}, \quad z \in \mathbb{D}.
$$

For $f \in H$, Peschl [\[6\]](#page-10-9) defined the so-called Peschl's invariant derivatives $D_n f(z)$ by the Taylor series expansion

$$
\frac{f((z+z_0)/(1+\overline{z}_0 z)) - f(z_0)}{1 - \overline{f(z_0)}f((z+z_0)/(1+\overline{z}_0 z))} = \sum_{n=1}^{\infty} \frac{D_n f(z_0)}{n!} z^n, \quad z, z_0 \in \mathbb{D}.
$$

For example, precise forms of $D_n f(z)$, $n = 1, 2$, are given by

$$
D_1 f(z) = \frac{(1 - |z|^2) f'(z)}{1 - |f(z)|^2},
$$

\n
$$
D_2 f(z) = \frac{(1 - |z|^2)^2}{1 - |f(z)|^2} \Big[f''(z) - \frac{2\overline{z} f'(z)}{1 - |z|^2} + \frac{2\overline{f(z)} f'(z)^2}{1 - |f(z)|^2} \Big].
$$

In addition, we write

$$
T_a(z) = \frac{z+a}{1+\overline{a}z}, \quad z, a \in \mathbb{D},
$$

and define

$$
\Delta(z_0, w_0) = \overline{\mathbb{D}}\left(\frac{w_0}{z_0}, \frac{|z_0|^2 - |w_0|^2}{|z_0|(1 - |z_0|^2)}\right).
$$

With these preparations we are ready to state a classical theorem of Dieudonné $\lceil 3 \rceil$ which gives a description of the region of values of $f'(z_0)$.

LEMMA 2.1 [\[3\]](#page-10-6). *Suppose that* z_0 *and* w_0 *are points in* \mathbb{D} *with* $|w_0| < |z_0|$ *. If* $f \in H_0$ *satisfies* $f(z_0) = w_0$ *, then the region of values of* $f'(z_0)$ *is the closed disc* $\Delta(z_0, w_0)$ *.*
Further $f'(z_0) \in \partial \Delta(z_0, w_0)$ *if and only if* $f(z) = zT$ $(e^{i\theta}T - (z))$ *, where u₂* $w_0 = w$

Further, $f'(z_0) \in \partial \Delta(z_0, w_0)$ *if and only if* $f(z) = z T_{u_0}(e^{i\theta} T_{-z_0}(z))$ *, where* $u_0 = w_0/z_0$
d $\theta \in \mathbb{R}$ *and* $\theta \in \mathbb{R}$ *.*

Cho *et al.* [\[2\]](#page-10-8) gave a similar result to Lemma [2.1](#page-3-0) for the second derivative (see also [\[7\]](#page-10-1)). We refine their original version in an appropriate way. We also characterise *f* when $|f''(z_0) - c| = \rho$, where z_0 , *c*, and ρ are as in Lemma [2.2.](#page-3-1) This result may look technical but it is needed for the argument of Theorem 1.1. Before the statement of technical but it is needed for the argument of Theorem [1.1.](#page-1-4) Before the statement of Lemma [2.2,](#page-3-1) we define c and ρ by

$$
\begin{cases} c = c(z_0, w_0, w_1) = \frac{2(r^2 - s^2)\beta(1 - \overline{w}_0\beta)}{z_0^2(1 - r^2)^2}, \\ \rho = \rho(z_0, w_0, w_1) = \frac{2(r^2 - s^2)(1 - |\beta|^2)}{r(1 - r^2)^2}. \end{cases}
$$

LEMMA 2.2 [\[2\]](#page-10-8). *Suppose that* z_0 *and* w_0 *are points in* \mathbb{D} *with* $|w_0| = s < r = |z_0|$, $w_1 \in \Delta(z_0, w_0)$ *, and that* $f \in H_0$ *satisfies* $f(z_0) = w_0$ *and* $f'(z_0) = w_1$ *. Let* β *be given* by *by*

$$
w_1 = \frac{w_0}{z_0} + \frac{r^2 - s^2}{z_0(1 - r^2)} \beta, \quad \text{with } |\beta| \le 1.
$$

Set $u_0 = w_0/z_0$ *and* $v_0 = \overline{z_0^2} \beta / |z_0|^2$ *.*

- (1) *If* $|\beta| = 1$ *, then f*^{''}(*z*₀) = *c* and *f*(*z*) = $zT_{u_0}(e^{i\theta}T_{-z_0}(z))$ *, where* $\theta = \arg(\overline{z_0^2}\beta)$.
(2) *If* $|\theta| \le 1$ *then the mains of values of f*^{''}(*f*) *is the closed dise* $\overline{D}(e, \alpha)$ *)*
- (2) *If* $|\beta| < 1$ *, then the region of values of f''*(z_0) *is the closed disc* $\overline{D}(c, \rho)$ *. Further, f*^{''}(*z*₀) ∈ ∂ $\mathbb{D}(c, \rho)$ *if and only if* $f(z) = zT_{u_0}(T_{-z_0}(z)T_{v_0}(e^{i\theta}T_{-z_0}(z)))$ *, for some*
 $\theta \in \mathbb{R}$ When $\beta + 0$ f''(*z*₀) ∈ ∂ $\mathbb{D}(c, \rho)$ and arg f''(*z*₀) = arg c if and only if $\theta \in \mathbb{R}$ *. When* $\beta \neq 0$ *, f''*(*z*₀) $\in \partial \mathbb{D}(c, \rho)$ *and* arg $\int_a^b f'(z) dz = \arg c$ *if and only if* $f(z) = zT$ (*T* (*z*)*T* ($e^{i\theta}T$ (*z*))) where $\theta = \arg(\overline{z}^3 \beta(1 - \overline{w} \beta))$ $f(z) = zT_{u_0}(T_{-z_0}(z)T_{v_0}(e^{i\theta}T_{-z_0}(z)))$ *, where* $\theta = \arg(\bar{z}_0^3 \beta(1 - \bar{w}_0 \beta))$ *.*

 462 G. Chen [5]

Proof. Although the proof of the assertion that $f''(z_0) \in \overline{\mathbb{D}}(c, \rho)$ can be found in \overline{D} . Theorem 3.71 and \overline{D} . Corollary 4.21 we re-prove it here to present a full discussion [\[2,](#page-10-8) Theorem 3.7] and [\[7,](#page-10-1) Corollary 4.2], we re-prove it here to present a full discussion for the equality conditions and to show that $\mathbb{D}(c, \rho)$ is covered, which is not explicitly given in [\[2,](#page-10-8) [7\]](#page-10-1). Let $g(z) = f(z)/z$, so that $g \in H$. From [\[11,](#page-11-0) Theorem 2],

$$
|D_2g(z_0)| \le 2(1 - |D_1g(z_0)|),
$$

which is equivalent to

$$
|f''(z_0) - c| \le \rho. \tag{2.1}
$$

Here equality holds for some point z_0 if and only if $f(z) = zg(z)$, where g is a Blaschke product of degree 1 or 2 satisfying $g(z_0) = u_0$ and $g'(z_0) = (z_0w_1 - w_0)/z_0^2$.
(1) If $|\mathcal{B}| = 1$ then $f''(z_0) = c$ and $f(z) = zg(z)$ where g is an automog

(1) If $|\beta| = 1$, then $f''(z_0) = c$ and $f(z) = zg(z)$, where *g* is an automorphism of D is fying $g(z_0) = u_0$ and $g'(z_0) = (z_0w_1 - w_0)/z^2$. Applying this fact, we determine the satisfying $g(z_0) = u_0$ and $g'(z_0) = (z_0w_1 - w_0)/z_0^2$. Applying this fact, we determine the explicit form of σ . Set explicit form of *g*. Set

$$
h(z) = T_{-u_0} \circ g \circ T_{z_0}(z), \quad z \in \mathbb{D}.
$$

It is obvious that *h* is an automorphism of D depending on *g* and satisfying

$$
h(0) = 0
$$
 and $h'(0) = \frac{\overline{z_0}^2}{|z_0|^2} \beta$,

which means that $h(z) = e^{i\theta} z$ for $z \in \mathbb{D}$ and $\theta = \arg(\overline{z}_0^2 \beta)$. Now it is easy to check that

$$
g(z) = T_{u_0} \circ h \circ T_{-z_0}(z) = T_{u_0}(e^{i\theta}T_{-z_0}(z)) = e^{i\gamma} \frac{z - a}{1 - \overline{a}z},
$$

where

$$
\gamma = \arg(\overline{z}_0^2 \beta (1 - w_0 \overline{\beta})^2)
$$
 and $a = \frac{|z_0|^2 - w_0 \overline{\beta}}{\overline{z}_0 (1 - w_0 \overline{\beta})}$

This completes the proof of (1).

(2) Inequality [\(2.1\)](#page-4-0) means that $f''(z_0)$ lies in $\overline{\mathbb{D}}(c,\rho)$. To show that $\overline{\mathbb{D}}(c,\rho)$ is covered,
 $\alpha \in \overline{\mathbb{D}}$, $u_0 = w_0/z_0$ and $v_0 = \overline{z}^2 \beta/|z_0|^2$ and set $f(z) = zg(z)$, where let $\alpha \in \overline{\mathbb{D}}$, $u_0 = w_0/z_0$ and $v_0 = \overline{z_0^2} \beta / |z_0|^2$ and set $f(z) = zg(z)$, where

$$
g(z) = T_{u_0}(T_{-z_0}(z)T_{v_0}(\alpha T_{-z_0}(z))).
$$

Then $f(0) = 0$ and $f(z_0) = w_0$. Next we show that $f'(z_0) = w_1$. A calculation shows that $f'(z_0) = g(z_0) + z_0 g'(z_0)$. Note that

$$
T_{-u_0} \circ g(z) = T_{-z_0}(z) T_{v_0}(\alpha T_{-z_0}(z)).
$$

Differentiating both sides,

$$
(T_{-u_0})'(g(z))g'(z) = T'_{-z_0}(z)T_{v_0}(\alpha T_{-z_0}(z)) + T_{-z_0}(z)T'_{v_0}(\alpha T_{-z_0}(z))\alpha T'_{-z_0}(z)
$$
(2.2)

for all $z \in \mathbb{D}$. Substituting $z = z_0$ into this equation,

$$
(T_{-u_0})'(g(z_0))g'(z_0)=T'_{-z_0}(z_0)T_{v_0}(0),
$$

which gives

$$
g'(z_0) = \frac{(r^2 - s^2)\overline{z}_0^2 \beta}{(1 - r^2)r^4}.
$$

Consequently, *f* also satisfies

$$
f'(z_0) = \frac{w_0}{z_0} + \frac{|z_0|^2 - |w_0|^2}{z_0(1 - |z_0|^2)} \beta = w_1.
$$

Next we find the form of $f''(z_0)$. By a straightforward computation,

$$
f''(z_0) = 2g'(z_0) + z_0 g''(z_0).
$$
 (2.3)

Differentiating both sides of [\(2.2\)](#page-4-1),

$$
(T_{-u_0})''(g(z))(g'(z))^2 + (T_{-u_0})'(g(z))g''(z)
$$

= $T''_{-z_0}(z)T_{v_0}(\alpha T_{-z_0}(z)) + 2T'_{-z_0}(z)T'_{v_0}(\alpha T_{-z_0}(z))\alpha T'_{-z_0}(z)$
+ $T_{-z_0}(z) T''_{v_0}(\alpha T_{-z_0}(z))(\alpha T'_{-z_0}(z))^2 + T_{-z_0}(z)T'_{v_0}(\alpha T_{-z_0}(z))\alpha T''_{-z_0}(z),$

for $z \in \mathbb{D}$. Substituting $z = z_0$ into this equation,

$$
(T_{-u_0})''(g(z_0))(g'(z_0))^2 + (T_{-u_0})'(g(z_0))g''(z_0) = \frac{2\overline{z}_0^3}{(1-r^2)^2r^2}\beta + \frac{2(1-|\beta|^2)\alpha}{(1-r^2)^2}.
$$

Consequently,

$$
g''(z_0) = \frac{2(r^2 - s^2)}{r^2(1 - r^2)^2} \left(\frac{\overline{z}_0^3 \beta}{r^2} + \alpha (1 - |\beta|^2) - \frac{\overline{w}_0 r^2 \beta^2}{z_0^3} \right).
$$

Together with (2.3) , this gives

$$
f''(z_0) = \frac{2(r^2 - s^2)\beta(1 - \overline{w}_0\beta)}{z_0^2(1 - r^2)^2} + \frac{2z_0(r^2 - s^2)(1 - |\beta|^2)}{r^2(1 - r^2)^2}\alpha = c + \rho\frac{z_0\alpha}{r}.
$$

Since $\alpha \in \overline{\mathbb{D}}$ is arbitrary, it follows that the closed disc $\overline{\mathbb{D}}(c,\rho)$ is covered.

We know that $f''(z_0) \in \partial \mathbb{D}(c, \rho)$ if and only if $f(z) = zg(z)$, where *g* is a Blaschke oduct of degree 2 satisfying $g(z_0) = w_0/z_0$ and $g'(z_0) = (z_0w_1 - w_0)/z^2$. Applying this product of degree 2 satisfying $g(z_0) = w_0/z_0$ and $g'(z_0) = (z_0w_1 - w_0)/z_0^2$. Applying this fact we determine the precise form of g . Set fact, we determine the precise form of *g*. Set

$$
h(z) = \frac{T_{-u_0} \circ g \circ T_{z_0}(z)}{z}, \quad z \in \mathbb{D}.
$$

It is clear that *h* is an automorphism of D depending on *g* and satisfying

$$
h(0)=(T_{-u_0}\circ g\circ T_{z_0})'(0)=\frac{(1-|z_0|^2)g'(z_0)}{1-|u_0|^2}=\nu_0.
$$

Then $T_{-\nu_0} \circ h$ is an automorphism of D fixing 0, which means that $T_{-\nu_0} \circ h(z) = e^{i\theta} z$ for $z \in \mathbb{D}$ and $\theta \in \mathbb{R}$. Now it is easy to check that

$$
g(z) = T_{u_0}(T_{-z_0}(z)T_{v_0}(e^{i\theta}T_{-z_0}(z))), \quad z \in \mathbb{D}.
$$

 464 G. Chen [7]

Conversely, if $f(z) = zT_{u_0}(T_{-z_0}(z)T_{v_0}(e^{i\theta}T_{-z_0}(z)))$, where $\theta \in \mathbb{R}$, then

$$
f''(z_0) = c + \rho \frac{z_0}{r} e^{i\theta} \in \partial \mathbb{D}(c, \rho).
$$

Next, we prove the last assertion in this case. By basic geometry, we note that $f''(z_0) \in \partial \mathbb{D}(c, \rho)$ and arg $f''(z_0) = \arg c$ if and only if $f''(z_0) = tc$ for $t = 1 + \rho/|c|$.
Hence it will be sufficient to show that $f''(z_0) = tc$ for $t = 1 + \rho/|c|$ if and only if Hence it will be sufficient to show that $f''(z_0) = tc$ for $t = 1 + \rho/|c|$ if and only if $f(z) = zT(T(z)T(e^{i\theta T} - z)))$ where $\theta = \arg(\overline{z_0}^2 R(1 - \overline{w_0}R))$ $f(z) = zT_{u_0}(T_{-z_0}(z)T_{v_0}(e^{i\theta}T_{-z_0}(z)))$, where $\theta = \arg(\bar{z}_0^3 \beta (1 - \bar{w}_0 \beta))$.
If $f''(z_0) = tc$ for $t = 1 + o/|c|$ then

If $f''(z_0) = tc$ for $t = 1 + \rho/|c|$, then

$$
f(z) = zg(z) = zT_{u_0}(T_{-z_0}(z)T_{v_0}(e^{i\theta}T_{-z_0}(z))), \quad z \in \mathbb{D}.
$$

Next we determine the precise value of θ . A calculation shows that

$$
f''(z_0) = c + \rho \frac{z_0}{r} e^{i\theta}.
$$

Therefore, $f''(z_0) = tc$ implies that

$$
e^{i\theta} = \frac{r^3 \beta (1 - \overline{w}_0 \beta)}{z_0^3 |\beta| |1 - \overline{w}_0 \beta|}
$$

Conversely, if

$$
f(z) = zg(z) = zT_{u_0}(T_{-z_0}(z)T_{v_0}(e^{i\theta}T_{-z_0}(z))), \quad e^{i\theta} = \frac{r^3\beta(1-\overline{w}_0\beta)}{z_0^3|\beta||1-\overline{w}_0\beta|},
$$

then

$$
f''(z_0) = c + \rho \frac{z_0}{r} e^{i\theta} = c + \rho \frac{r^2 \beta (1 - \overline{w}_0 \beta)}{z_0^2 |\beta| |1 - \overline{w}_0 \beta|} = c + \frac{c}{|c|} \rho = tc.
$$

Hence (2) is proved. \square

Based on Lemma [2.2,](#page-3-1) we give a sharp upper bound for $|f''(z)|$ depending only on |z| and $|f(z)|$.

LEMMA 2.3. *Suppose that* z_0 *and* w_0 *are points in* $\mathbb D$ *with* $|w_0| = s < r = |z_0|$ *. If* $f \in H_0$ *satisfies* $f(z_0) = w_0$ *, then*

$$
|f''(z_0)| \le \begin{cases} \frac{2(1+s)(r^2 - s^2)}{r^2(1 - r^2)^2} & r - s \le \frac{1}{2}, \\ \frac{2(1+s)(r^2 - s^2)}{r^2(1 - r^2)^2} & r - s \le \frac{1}{2}, \end{cases}
$$
(2.4)

$$
\left(\frac{(x_0)^2}{2}\right) \left(\frac{(r+s)(4r^2-4rs+1)}{2r^2(1-r^2)^2}\right) \quad r-s>\frac{1}{2}.\tag{2.5}
$$

Equality holds in [\(2.4\)](#page-6-0) if and only if

$$
f(z) = e^{i\theta} z \frac{z - a}{1 - \overline{a}z},
$$

where

$$
\theta = \arg(-\bar{z}_0^2 w_0), \quad a = \frac{r^2 + s}{r^2(1 + s)} z_0.
$$

If $w_0 = 0$ *, then* $\theta \in \mathbb{R}$ *is arbitrary. Equality holds in* [\(2.5\)](#page-6-1) *if and only if*

$$
f(z) = e^{i\theta} z \frac{z - a_1}{1 - \overline{a}_1 z} \cdot \frac{z - a_2}{1 - \overline{a}_2 z},
$$

where

$$
\theta = \arg(-\overline{z}_0^3 w_0) \quad (and \ \theta \in \mathbb{R} \text{ is arbitrary when } w_0 = 0),
$$

\n
$$
a_1 = \frac{-1 + 3r^2 - 4rs + (1 - r^2) \sqrt{1 + 16rs}}{2r^2(1 - 2rs)} z_0,
$$

\n
$$
a_2 = \frac{-1 + 3r^2 - 4rs - (1 - r^2) \sqrt{1 + 16rs}}{2r^2(1 - 2rs)} z_0.
$$

PROOF. First we suppose that $w_0 \neq 0$. From Lemma [2.1,](#page-3-0)

$$
f'(z_0) = \frac{w_0}{z_0} + \frac{|z_0|^2 - |w_0|^2}{z_0(1 - |z_0|^2)} \beta, \quad |\beta| \le 1.
$$

Set $|\beta| = x$. From Lemma [2.2,](#page-3-1)

$$
|f''(z_0)| \le |c| + \rho = \frac{2(r^2 - s^2)}{r^2(1 - r^2)^2} (|\beta| |1 - \overline{w}_0 \beta| + r(1 - |\beta|^2))
$$

$$
\le \frac{2(r^2 - s^2)}{r^2(1 - r^2)^2} (|\beta| (1 + s|\beta|) + r(1 - |\beta|^2))
$$

$$
= \frac{2(r^2 - s^2) \Psi(x)}{r^2(1 - r^2)^2},
$$

where

$$
\Psi(x) = (s - r)x^{2} + x + r,
$$

and equality holds in the second last inequality if and only if $-\overline{w_0} \beta = s|\beta|$.
Observe that $\Psi(x)$ takes its maximum at $x = 1/(2(r - s))$ which is less

Observe that $\Psi(x)$ takes its maximum at $x = 1/(2(r - s))$, which is less than 1 if and only if $r - s > 1/2$. In this case, the sharp upper bound for $|f''(z_0)|$ is

$$
\frac{2(r^2 - s^2)\Psi(1/(2(r - s)))}{r^2(1 - r^2)^2} = \frac{(r + s)(4r^2 - 4rs + 1)}{2r^2(1 - r^2)^2}
$$

Moreover, from Lemma [2.2,](#page-3-1) the sharp upper bound for $|f''(z_0)|$ is obtained if and only if $f(z) = zT_{u_0}(T_{z_0}(z)T_{v_0}(e^{i\theta}T_{z_0}(z)))$, where $\theta = \arg(\overline{\overline{z_0}}\beta)$, $u_0 = w_0/z_0$ and $\beta = w_0/(2s(r - s))$. In other words, equality holds in (2.5) if and only if the form of f [−]*w*⁰/(2*s*(*^r* [−] *^s*)). In other words, equality holds in [\(2.5\)](#page-6-1) if and only if the form of *^f* is

$$
f(z) = e^{i\theta} z \frac{z - a_1}{1 - \overline{a}_1 z} \cdot \frac{z - a_2}{1 - \overline{a}_2 z},
$$

where

$$
\theta = \arg(-\overline{z}_0^3 w_0),
$$

\n
$$
a_1 = \frac{-1 + 3r^2 - 4rs + (1 - r^2) \sqrt{1 + 16rs}}{2r^2(1 - 2rs)}
$$

\n
$$
a_2 = \frac{-1 + 3r^2 - 4rs - (1 - r^2) \sqrt{1 + 16rs}}{2r^2(1 - 2rs)}
$$

\n
$$
z_0.
$$

If $w_0 = 0$, then $\theta \in \mathbb{R}$ is arbitrary.

466 G. Chen **G. Chen G. Chen G.** Chen **I**

For $r - s \leq 1/2$, $\Psi(x) \leq \Psi(1) = 1 + s$ in the interval $0 \leq x \leq 1$, so that

$$
|f''(z_0)| \le \frac{2(r^2-s^2)\Psi(1)}{r^2(1-r^2)^2} = \frac{2(1+s)(r^2-s^2)}{r^2(1-r^2)^2}.
$$

Equality holds in the above inequality if and only if $f(z) = zT_{u_0}(e^{i\theta}T_{-z_0}(z))$, where $u_0 = w_0/z_0$, $\theta = \arg(-\bar{z}_0^2 \beta)$ and $|\beta| = 1$. In other words, equality holds in [\(2.4\)](#page-6-0) if and only if f is a Blaschke product of degree 2 of the form only if *f* is a Blaschke product of degree 2 of the form

$$
f(z) = e^{i\theta} z \frac{z - a}{1 - \overline{a}z},
$$

where

$$
\theta = \arg(-\overline{z}_0^2 w_0), \quad a = \frac{r^2 + s}{r^2(1+s)} z_0.
$$

If $w_0 = 0$, then $\theta \in \mathbb{R}$ is arbitrary.

We close this section by noting that from Ruscheweyh's inequality [\(1.1\)](#page-0-0), for $f \in H$,

$$
|f''(z_0)| \le \frac{2(1-|w_0|^2)}{(1+|z_0|)^2(1-|z_0|)},
$$

where z_0 and w_0 are as in Lemma [2.3.](#page-6-2) Lemma [2.3](#page-6-2) offers a smaller bound for $|f''(z_0)|$ when $f \in H_0$.

3. Proof of Theorem [1.1](#page-1-4)

Fix $z_0 \in \mathbb{D}$ and take $f \in H_0$, $w_0 = f(z_0)$, $s = |w_0|$, $r = |z_0|$. If $r = 0$, then equality in [\(1.4\)](#page-1-2) holds if and only if

$$
f(z) = e^{i\theta} z^2, \quad \theta \in \mathbb{R}.
$$

Suppose that $r \neq 0$ and $s < r$. (If $s = r$, then $f(z) = e^{i\theta}z$ and $f''(z) = 0$.) From I emma 2.3 we consider the two cases for $r = s < 1/2$ and $r = s > 1/2$ Lemma [2.3,](#page-6-2) we consider the two cases for $r - s \leq 1/2$ and $r - s > 1/2$.

Case (i). For $r - s \leq 1/2$,

$$
|f''(z_0)| \le \frac{2(1+s)(r^2 - s^2)}{r^2(1 - r^2)^2} = \frac{2\varphi(s)}{r^2(1 - r^2)^2},
$$

where $\varphi(s) = -s^3 - s^2 + r^2 s + r^2$ and $s < r$. The values of *s* for which

$$
\varphi'(s) = -3s^2 - 2s + r^2 = 0
$$

are

$$
s_1 = \frac{-1 - \sqrt{1 + 3r^2}}{3}, \quad s_2 = \frac{-1 + \sqrt{1 + 3r^2}}{3}
$$

Note that $s_1 < 0$, while $s_2 < r$ is equivalent to $6r^2 + r > 0$. Thus, $\varphi(s)$ is increasing with respect to s on $[0, s_2]$ and is decreasing on $(s_2, r]$. In this case, if $r - s_2 < 1/2$, then respect to *s* on [0, *s*₂) and is decreasing on $(s_2, r]$. In this case, if $r - s_2 \le 1/2$, then $r < (1 + \sqrt{3})/4$ so that $r \le (1 + \sqrt{3})/4$, so that

$$
|f''(z_0)| \le \frac{2\varphi(s_2)}{r^2(1-r^2)^2} = \frac{4}{1-9r^2+(1+3r^2)^{3/2}}.
$$

In addition, if $r - s_2 > 1/2$, then $r > (1 +$ √ 3)/4. Hence $\varphi(s) \leq \varphi(r - 1/2)$ and

$$
|f''(z_0)| \le \frac{2\varphi(r-\frac{1}{2})}{r^2(1-r^2)^2} = \frac{(2r+1)(4r-1)}{4r^2(1-r^2)}
$$

Case (ii). For *^r* [−] *^s* > ¹/2,

$$
|f''(z_0)| \le \frac{(r+s)(4r^2 - 4rs + 1)}{2r^2(1 - r^2)^2} = \frac{\Phi(s)}{2r^2(1 - r^2)^2},
$$

where

$$
\Phi(s) = -4rs^2 + s + r + 4r^3.
$$

But $\Phi(s)$ reaches its maximum at $s = 1/(8r)$, which is less than *r* if and only if $r > \sqrt{2}/4$. In this case, if $r = 1/(8r) > 1/2$, then $r > (1 + \sqrt{3})/4$, so that the sharp $r > \sqrt{2}/4$. In this case, if $r - 1/(8r) > 1/2$, then $r > (1 + \sqrt{3})/4$, so that the sharp upper bound for $|f''(z_0)|$ is $\Phi(s)$ reaches its maximum at $s = 1/(8r)$, which is less upper bound for $|f''(z_0)|$ is

$$
\frac{\Phi(1/(8r))}{2r^2(1-r^2)^2} = \frac{(8r^2+1)^2}{32r^3(1-r^2)^2}.
$$

Moreover, if $1/(8r) \le r$ but $r - 1/(8r) \le 1/2$, then $1/2 < r \le (1 + \Phi(s) < \Phi(r - 1/2)$ and √ 3)/4. Hence $\Phi(s) < \Phi(r - 1/2)$ and

$$
|f''(z_0)| < \frac{(r+s)\Phi(r-\frac{1}{2})}{2r^2(1-r^2)^2} = \frac{(2r+1)(4r-1)}{4r^2(1-r^2)^2}.
$$

From cases (i) and (ii), noting that

$$
\frac{(2r+1)(4r-1)}{4r^2(1-r^2)} < \frac{(8r^2+1)^2}{32r^3(1-r^2)^2}, \quad \text{for } r > (1+\sqrt{3})/4,
$$

and

$$
\frac{(2r+1)(4r-1)}{4r^2(1-r^2)} < \frac{4}{1-9r^2+(1+3r^2)^{3/2}}, \quad \text{for } 1/2 \le r \le (1+\sqrt{3})/4,
$$

we see that inequalities (1.4) and (1.5) hold.

From Lemma [2.3,](#page-6-2) equality holds in [\(1.4\)](#page-1-2) at a point z_0 with $r = |z_0| \le (1 +$ √ From Lemma 2.3, equality holds in (1.4) at a point z_0 with $r = |z_0| \le (1 + \sqrt{3})/4$
if and only if $f(z) = zT_{u_0}(e^{i\theta}T_{-z_0}(z))$, where $u_0 = w_0/z_0$, $\theta = \arg(-\frac{z_0}{2\theta})$, $\beta = -w_0/s$
and $s = (-1 + \sqrt{1 + 3x^2})/3$. In other words and $s = (-1 + \sqrt{1 + 3r^2})/3$. In other words, equality holds in [\(1.4\)](#page-1-2) at a point z_0 with $r = |z_0| < (1 + \sqrt{3})/4$ if and only if f is of the form $r = |z_0| \le (1 + \sqrt{3})/4$ if and only if *f* is of the form

$$
f(z) = e^{i\theta} z \frac{z - a}{1 - \overline{a}z},
$$

where

$$
a = \frac{3}{1 + \sqrt{1 + 3r^2}} z_0, \quad \theta \in \mathbb{R}.
$$

For such an *f* , we compute

$$
|f''(z_0)| = \frac{2(1-|a^2|)}{(1-|a|r)^3} = \frac{4}{1-9r^2+(1+3r^2)^{3/2}}.
$$

Further, equality holds in [\(1.5\)](#page-1-3) at a point z_0 with $r = |z_0| > (1 + f(z)) = zT_u(T_u(z)T_u(e^{i\theta}T_u(z)))$ where $u_0 = w_0/z_0$, $v_0 = \overline{z}_0^2 B_u$ √ 3)/4 if and only
 $\theta = \arctan(\overline{\tau}^3 \beta)$ if $f(z) = zT_{u_0}(T_{-z_0}(z)T_{v_0}(e^{i\theta}T_{-z_0}(z)))$, where $u_0 = w_0/z_0$, $v_0 = \frac{z_0^2}{2} \beta/|z_0|^2$, $\theta = \arg(\frac{z_0^3}{2})$, $\beta = -w_0/(2s(r - s))$ and $s = 1/(8r)$. In other words, equality holds in (1.5) at a point $\beta = -w_0/(2s(r - s))$ and $s = 1/(8r)$. In other words, equality holds in [\(1.5\)](#page-1-3) at a point z_0 with $r = |z_0| > (1 + \sqrt{3})/4$ if and only if the form of f is $|z_0|$ with $r = |z_0| > (1 + \sqrt{3})/4$ if and only if the form of f is

$$
f(z) = e^{i\theta} z \frac{z - a_1}{1 - \overline{a}_1 z} \cdot \frac{z - a_2}{1 - \overline{a}_2 z},
$$

where

$$
a_1 = \frac{2 - \sqrt{3} + 2(\sqrt{3} - 1)r^2}{\sqrt{3}r^2}z_0, \quad a_2 = \frac{-(2 + \sqrt{3}) + 2(\sqrt{3} + 1)r^2}{\sqrt{3}r^2}z_0, \quad \theta \in \mathbb{R}.
$$

For such an *f* , we calculate

$$
|f''(z_0)| = \frac{(1+8r^2)^2}{32r^3(1-r^2)^2}.
$$

This completes the proof.

Acknowledgements

The author would like to thank Professor Toshiyuki Sugawa for his proposal for this topic and helpful comments. The author also thanks Professor Seong-A Kim for careful reading and valuable comments. The author is grateful to Dr Atte Reijonen and Professor Limei Wang for their helpful suggestions.

References

- [1] F. G. Avkhadiev and K.-J. Wirths, *Schwarz–Pick Type Inequalities* (Birkhauser, Basel, 2009). ¨
- [2] K. H. Cho, S.-A. Kim and T. Sugawa, 'On a multi-point Schwarz–Pick lemma', *Comput. Methods Funct. Theory* 12(2) (2012), 483–499.
- [3] J. Dieudonné, 'Recherches sur quelques problèmes relatifs aux polynômes et aux fonctions bornées d'une variable complexe', *Ann. Sci. Éc. Norm. Supér.* **48** (1931), 247–358.
- [4] H. T. Kaptanoğlu, 'Some refined Schwarz–Pick lemmas', *Michigan Math. J.* 50(3) (2002), 649–664.
- [5] S.-A. Kim and T. Sugawa, 'Invariant differential operators associated with a conformal metric', *Michigan Math. J.* 55(2) (2007), 459–479.
- [6] E. Peschl, 'Les invariants différentiels non holomorphes et leur rôle dans la théorie des fonctions', *Rend. Sem. Mat. Messina* 1 (1955), 100–108.
- [7] P. Rivard, 'Some applications of higher-order hyperbolic derivatives', *Complex Anal. Oper. Theory* 7(4) (2013), 1127–1156.
- [8] W. Rogosinski, 'Zum Schwarzschen Lemma', *Jahresber. Dtsch. Math.-Ver.* 44 (1934), 258–261.
- [9] St. Ruscheweyh, 'Two remarks on bounded analytic functions', *Serdica* 11(2) (1985), 200–202.
- [10] O. Szász, 'Ungleichheitsbeziehungen für die Ableitungen einer Potenzreihe, die eine im Einheitskreise beschränkte Funktion darstellt', *Math. Z.* 8(3–4) (1920), 303–309.

[12] Estimates of the second derivative of bounded analytic functions 469

[11] S. Yamashita, 'The Pick version of the Schwarz lemma and comparison of the Poincare densities', ´ *Ann. Acad. Sci. Fenn. Math.* 19(2) (1994), 291–322.

[GANGQIANG](https://orcid.org/0000-0003-2039-4310) CHEN, Graduate School of Information Sciences, Tohoku University, Aoba-ku, Sendai 980-8579, Japan e-mail: cgqmath@ims.is.tohoku.ac.jp