
BULL. AUSTRAL. MATH. SOC. 34A99

VOL. 29 ( 1 9 8 4 ) , 377-387.

OSCILLATIONS IN LINEAR SYSTEMS OF
DIFFERENTIAL-DIFFERENCE EQUATIONS

K. GOPALSAMY

Sufficient conditions are derived for all bounded solutions of a

class of linear systems of differential difference equations to

be oscillatory.

1. Introduction

Oscillatory solutions of scalar ordinary differential equations with

and without deviating arguments have been vigorously investigated by

numerous authors. For a survey of results concerned with oscillations in

scalar differential equations we refer to Kartsatos [4]. However to the

best of the author's knowledge, oscillations in systems of (non-scalar)

differential equations with or without deviating arguments have not been

investigated in any detail and it appears that there is no published work

on such oscillatory systems. In the following we obtain a set of

sufficient conditions for all bounded solutions of a linear system of

differential-difference equations of first order to be oscillatory (defined

below) when the system has a single delay as well as several delays. We

shall first consider systems of the form

dx.(t) n
(1.1) * = £ a.jc.(t-i) , t > 0 , i = 1, 2, ..., n ,

at j=1 %o o

where a. . and T are real constants with T > 0 . If we denote the
1-3
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column vec to r {x (t), . . . , x (t)} by x{t) , then we can r e w r i t e ( l . l )

i n v e c t o r mat r ix n o t a t i o n as fol lows:

( 1 . 2 ) i. = Ax(t-T) , t > 0 ,

where A denotes the n x n matrix of constants

{a. ., i, 0 = 1, 2, . . . , n\ . If (1.2) is supplemented with ini t ia l

conditions of the form

(1.3) x{s) = $(s) = Wx(s), . . . , <?n(s)f , s € [-T, 0] ,

where $ : [-T, 0] -»• IK , $ is continuous then one can show that

solutions of (1.2)-(1.3) exist on [0, <*>) ; in fact we have, from

x{t) = $(0) + A I x{s-T)ds , t > 0
>0

rt-T
= $(0) + A x(T))dr)

' s-s

and hence

,t

>0

from which by Gronwall's inequality i t will follow that

n exp[p||t]

showing that solutions of (1.2)-(l.3) are of exponential order. Thus one

can use methods of Laplace transform for the study of equations of the form

(1.2).

Since the literature on oscillations of nonscalar systems of ordinary

or delay-differential equations is (almost) nonexistent, we will adopt the

following definition.

f
on [0, °°] is said to be oscillatory if and only if at least one component

D E F I N I T I O N . A n o n t r i v i a l v e c t o r x{t) = {x (t), . . . , xn{t)} d e f i n e d
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of x has arbitrarily large zeros on [0, °°) . The vector x is said to

stay away from the origin in IK asymptotically if and only if

lim inf ||x(i)|| = lim inf | x . ( t ) | > 0 .
*-*» i=l

We remark that the above definition of oscillatory solution vectors of

nonscalar systems is not the only possible generalisation of the

corresponding notion of scalar equations; however our definition of

oscillatory vectors reduces to that of the familiar scalar functions on

[0, °°) if the vector has trivially one component only.

2. Oscillatory solutions

Let X{\) denote the Laplace transform of a solution vector x{t) of

(1.1), (1.3) defined by

~X(\) = {x1

(2.1) X.U)
3

r
= X .

Jo J
(t)e~Xxdt .

I t will follow from elementary properties of Laplace transforms that

(2.2) X(\) = \\[-A -At-, -1 cp(O) + A
- T

/H(X)

where I denotes the n x n identity matrix and #(A) is defined by

(2.3) H{\) = det[\I-Ae~Xl] .

By the inversion theorem on Laplace transforms we have from (2.1)-(2 .3)

that any solution of ( l . l ) i s given by the in t eg ra l representa t ion ,

x(t) = Xt (s)ds

-x

/H(\) d\

where o is any real number greater than the real parts of roots of

H(\) = 0 ; the existence of such a real number a is well known (Hale

[3]). The integral in (2.1+) can be evaluated using residue calculus so
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that

(2.5)
\.t

0 ,

where t h e polynomial ( i n t ) v e c t o r p .(t) i s de termined by
3

(2.6) p .(£) = residue of -AnAC , , r , T . —ATI

e adj I \I-Ae J

at a root A. of #(A) = 0
3

The convergence of the series representation of the type in (2.5) has been

established by Banks and Manitius [J]. With these preparations we can now

formulate our first result.

THEOREM 2.1. Suppose that the matrix A of real coefficients a. .

(i , 3 = 1, 2, ..., n) in (l.l) is such that

(2.7) (i) det A * 0 3

(ii) the eigenvalues a, » ou, . . . , a (real or complex)

satisfy

(2.8) |a- |xe > 1 , j = 1, 2, . . . , n .
3

Then all bounded solutions of ( l . l ) are oscillatory.

Proof. Since solutions of ( l . l ) are representable as in (2.5), i t
wil l follow that a necessary and sufficient condition for a l l bounded
solutions of ( l . l ) to be oscillatory is that the characteristic equation
ff(A) = 0 has no real nonpositive root. Since ex , a , . . . , a are the

eigenvalues of A , we have immediately that

n
(2.9) = 0 = 0 .

Thus we are led to an investigation of the nature of the roots of

(2.10) A = a.e
3

-AT
, 3 = 1, 2, ..., n .

Suppose now that there exists a bounded nonosdilatory solution of (l.l);

that is there exists a real nonpositive root say A* such that
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(2.11) \* = a.e f o r s o m e 3 € { l , 2 , . . . , « } .
J

Since det A # 0 , a . ^ 0 (j = 1, 2 , . . . , n) , and hence X* # 0 ; thus
3

\* < 0 . It will then follow from (2.11) that

(2.12) 1 = T|ct.|(elX*lT/|A*|T) for j € {1, 2, ..., n}
J

> T|a . |e for some j € {l, 2, ..., w} .

But (2.12) contradicts (2.8) and hence (l.l) cannot have a bounded non-

oscillatory solution when (2.7)-(2.8) hold and the proof is complete.

Let us now consider a linear delay-differential system of the form

(2.13) & ^ = Bx(t) + AZ{t-i) , t > 0 ,

where A and B denote real constant n x n matrices with elements a..,

1-3
b.. (i, 3 = 1, 2, ..., n) respectively and x > 0 is a constant. We
'-•7

will adopt the following norms of vectors and matrices:

P(*)ll = I |x.(*)| ,
\\A\\ = max I \a \ , ||S|| = max £ \b \ .

3 i=l 3 3 i= l J

The measure y(S) of the matrix B i s defined by

which for the chosen norms reduces to

b.. + Y \b. .1= max

(For more de ta i l s of the measure of a matrix we refer to Vidyasagar [5 ] . )

THEOREM 2.2. Assume the following for the system (2 .13) :

(i) det A + 0 ,

(2.1U) (U) p(5) + }\A\\ t 0 ,
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(2.15) (Hi) (|M||Te)exp[-T|p(B)|] > 1 .

Then all bounded solutions of (2.13) corresponding to continuous initial

conditions on [-T, 0] are oscillatory on [0, °°) .

Proof. Let us rewrite (2.13) in component form so that

dx-(t) n n
(2.16) ~ ^ - - I b.f.U) + I aifj(t-.)

rp

and suppose that there ex i s t s a solution say y(t) = {y-.it), . . . , y (t)}

of (2.15) which i s bounded and nonoscil latory on [0, °°) . I t w i l l then

follow t h a t there ex i s t s a t* > 0 such tha t no component of y(t) has a

zero for t > t* + T and as a consequence we wi l l have

d\y.(t)\ n n
(2-IT) * < b | y U ) | + I \b . . | | j / . U ) | + I I a . . | | « . ( t - T ) |

for t > t* + 2T

and hence

(2.18) ^T1^ M(B)uU) + P||u(t-T) , £ > t* + 2T ,
at

n
where u(t) = Y, Ij/^*M and by the above preparation u(t) > 0 for

i=l t

t > t* + T . Consider now the scalar delay differential equation

(2.19) ^ T - = v(B)vit) + \\A\\v(t-T) , t > t* + 2x ,
at

with u(s) = w(s) , s € It*, t*+j] . It is an elementary exercise now to

show that

(2.20) u(t) < v(t) for t > t* + 2T .

We now claim that all bounded solutions of (2.19) are oscillatory on

[t*+2x, °°) ; suppose this is not the case; then the characteristic

equation associated with (2.19) given by

(2.21) X = u(fl) + P||e~XT

will have a real nonpositive root say X** . It will follow from (2.lU),

X** # 0 . Thus X** < 0 and hence we have from
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(2.22)

that

that i s ,

(2.23) 1

and the last inequality contradicts (2.15) and hence our claim regarding
the oscillatory nature of V on [0, °°) is valid; since V has
arbitrarily larger zeros, u will have arbitrari ly large zeros which means

n
that Y, li/-(*)| i-s oscillatory implying that y(t) is oscillatory; but

£=1

this is absurd since y is a nonoscillatory vector. Thus there cannot

exist a bounded nonoscillatory solution of (2.16) when the conditions of

the theorem hold and the proof is complete.

The following result deals with oscillations in linear systems of

equations with a multiplicity of delays.

THEOREM 2.3. Let a.., i.. (i, j = l, 2, ..., n) denote real
T'O 'I'd

constants such that a.. ± 0 , x.. > 0 (•£ = 1, 2, ... , n) and T . . > 0

( i , o = 1, 2, . . . , n , i / j ) and consider the system

> 0 •

if

(2 .25) .

(i) det 4 = det(a-•) # 0 j

a l l boimded solutions of (2.24) corresponding to continuous initial

conditions defined on [-x, 0] , x = max x. . are oscillatory on
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[0, ») .

Proof. The characteristic equation corresponding to (2.2U) is given

( 2 . 2 6 ) det \\I-a..e ^ = 0 .

Suppose (2.2U) has a bounded nonoscillatory solution. Then (2.26) has a

real nonpositive root say 6 such that

I
det 61-a..e

L %3
J\ = 0 .J

S i n c e de t (a • •) t 0 , 6 + 0 and hence 6 < 0 i s an e igenva lue of t h e

m a t r i x w i t h e n t r i e s a.. . exp{ -6x . .} (£, j = 1 , 2 , .. . , n) . By

G e r s h g o r i n ' s theorem ( F r a n k l i n [ 2 ] ) , 6 s a t i s f i e s

(2.27) 6-a. .e
-6T_... n -6T . .

- Y. \a- -\e a for some i € {l, 2, .. . , n) .
3=1 V°

It will then follow from

a.-e +8-a. .e

2 \a..\e1 ^^l
&-a. .e

-6T..

that

and hence

X,

3=1 V°
^̂ l

inf \l + ^ T..|a..|
|6|>0 i j=l tJ ^

- inf \ \a .. |T ..
|6|>0 1 *l ll

which leads to
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(2.28) 1+e T T . . | a . . | > \a,.\x,,e for some i € {1, 2, . . . , n} .

But (2.28) contradicts (2.25). Thus (2.2*0 cannot have a "bounded non-

oscillatory solution when the conditions of the theorem hold.

The following corollaries are of some interest by themselves.

COROLLARY 2.1. Suppose that the coefficient matrix A = [a . .) in

(l.l) has at least one real negative eigenvalue say g which is such that

(2.29) 0 < |B|xe 5 1 ;

then ( l . l ) has at least one bounded nonosdilatory solution.

Proof. The portion of the cha rac te r i s t i c equations of ( l . l ) (see

(2 .9) ; corresponding to 3 is given by

(2.30) X = 3e"X l

which is equivalent to y = |B|e where y = -X . It is easy to see that

there exist positive real numbers y such that y = \$\e when

|S|xe 5 1 and corresponding to such y , we will have a solution of (l.l)

in the form p {t)e where p (t) is a polynomial in t . A solution

of the form p (t)exp[-Xt] is not oscillatory since p can have only a

finite number of zeros and the proof is complete.

COROLLARY 2.2. Consider a linear nonhomogeneous system of

differential-difference equation of the form

(2.31) ^f- = Ax(t-T) + ~f(t) , t > 0 ,

where the matrix A and the constant x are as in Theorem 2 . 1 . Assume

that / : [0, °°) ->• F?1
 3 f is continuous on [0 , °°) and

I | | / ( i ) | |d i < <*> . Then every bounded solution of (2.31) corresponding to
J0

continuous initial conditions is oscillatory on [0 , °°) if such a solution

stays away from the origin in FT as t -*•«>.

Proof. Since | | / ( t ) | | -»• 0 as t •* °° , a l l the poles of the components
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of the Laplace transform of f can have only negative real parts; with

this observation, the remainder of the proof is as in that of Theorem 2.1

and we will omit the details.

3. Nonautonomous systems

The techniques of Laplace transform are not directly applicable in

general for the study of systems with variable coefficients. However one

can compare the nonautonomous system with a suitable autonomous system and

derive conclusions on the behaviour of the nonautonomous systems. We

briefly illustrate such a procedure in the following:

THEOREM 3.1. Let p.. : [0, «) •+ (-co, <*,) , p
I'd T-J

(i, j = 1 , 2, . . . , n) be bounded and continuous on [0, °°) . Let P(t)

denote the n x n matrix with elements p..(t) , i , j = 1, 2, . . . , n .

Suppose T is a positive constant. If

(3.1) |p*|T<2 > 1

where p* = sup \i(P(tty, y(«) denoting the matrix measure (defined
t>0

earlier) then all bounded solutions of the system

dx.(t) n
( 3 . 2 ) — | — = X P y , . ( * ) * - ( * - T ) , * > 0 ,

at J . = 1 to o

corresponding to continuous initial conditions are oscillatory on [0, ») .

Proof. Suppose there exists a solution say

y(t) = {y-i(i)> ••••> y (t)} of (3.2) which is bounded and nonoscillatory.

Then i t will follow that there exists a t* > 0 such that for

t > t * + T , n o component of y has a zero. In such a case we will have

jr I |v.(
at i = 1 i
jr I |v.(t)| < M(P(t)) I |M. U - T ) | for t > t* + 2x

a n d h e n c e

( 3 . 3 ) J+ - P*u(t-x) , u{t) = y | j / - ( * ) | > t > t * + 2 x .

A c o m p a r i s o n o f ( 3 . 3 ) w i t h an e q u a t i o n o f t h e form
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at

will lead to 0 < u{t) 5 v(t) for t > t* + 2T ; furthermore when (3.1)

holds by Theorem 2.1 (as a special scalar case), it will follow that u is

oscillatory and hence u is oscillatory which is a contradiction. Thus

(3-2) cannot have a bounded nonoscillatory solution when (3.1) holds and

the proof is complete.

We conclude with a remark that oscillations in nonlinear (nonscalar)

systems of differential-difference equations remains virtually an untouched

subject and there is an urgency to explore this subject matter due to its

potential applications in population dynamics.
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