
/. Austral. Math. Soc. Ser. B 28 (1986), 229-239
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Abstract

The present paper proves critena for oscillation of the solutions of functional differential
equations of the type

x{n)(t) + \xM(t - T)+p(t)((x(t - T ) ) = 0,

where A, T > 0.

1. Introduction

The theory of oscillations has a wide range of applications to various areas of
chemistry, biochemistry, biology, etc. An extensive reference on these subjects is
given in [5], [7], [6]. Together with the classical models, there is an increasing
implementation of models with aftereffect governed by functional-differential
equations. This approach made possible the theoretical explanation of the 10-year
cycle of oscillation of the mammalian populations in Canada and Jakutija, as well
as of some other experimental phenomena [10], [3], [4].

The present paper sets down some oscillation criteria for the solutions of
functional differential equations of the type

JC(">(0 + Xxla)(t - r)+p(t)f(x(t - T)) = 0, /i £ 1 (1)
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where T > 0 is a constant delay and A > 0 is an arbitrary constant. An analogous
result for ordinary differential equations without delay is obtained in [1], and for
equations with a retarded argument in [8].

2. Definitions

Suppose the following conditions (D) are fulfilled:
Dl. The function f(«): R1 -> R1 is continuous, ui(u) > 0 for u ¥= 0 and

t0 e R1

| |

D2. The function p{t): &~-> [0, + oo) is continuous, where fT= [t0 ~ r, + oo),

0

The alternative J§? will be said to hold for equation (1) if for n even all of its
solutions oscillate, while for n odd, they either oscillate or tend to zero for
/ —> + oo.

Let the operator L be defined by the equality
_(L*)(0 = * ( 0 + M ' - T ) (2)

and let us denote by Ck the space of functions ip(t): 3~^> R1 locally having
absolutely continuous derivatives of order up to k.

A function x(t) e C"~l is said to be a regular solution of equation (1) if it
satisfies (1) almost everywhere for t > t0, and for each t ^ t0,

sup \x(s)|> 0.

A solution x(t) of equation (1) is said to be oscillatory if it has a sequence of
zeros which tends to + oo.

3. The main theorem

LEMMA 1 ([2], p. 243). Let the following conditions be fulfilled:
1. The function \p(t) e C"~l has a constant sign together with its derivatives of

order up to n in the interval [t0, + oo).
2. For each t > t0, the following inequality is valid

Then there exists an integer I, 0 < / < n, such that I + n is odd (even) and for
t > t0, the inequalities

* ( r W > ( / ) > O . i - O , . . . , / ;
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take place. Moreover, if I =£ 0, then

= / + i '•{' > ) •,=/+i

THEOREM 1. Let the following conditions be fulfilled:
1. Conditions (D) hold.
2. For each function \p(t) e C""1 such that \4>(t)\ > 0 for sufficiently large

values of t and liminf,_+0O|(Li/')(0| > 0, the inequality

Uminf|f(^(/-T))/(L^)(/)|>0
/ - • +00

is valid.
3. There exists an absolutely continuous and non-decreasing function q>(t):

ST-+ (0, + oo) such that for each measurable and closed set E having the property
meas(£ C\[t,t + 2T]) > T , / e 5 , the following relations hold:

[(t - T)"~lp(t)/<p(t - T)] dt = +oo, (3)

C4o<+"' (4)

Then the alternative £P holds for equation (1).

PROOF. Let x(t) be a non-oscillatory solution of equation (1), the operator L
be defined by equation (2), and for the sake of definiteness suppose that x(t) > 0
for t > i, i G P.

Let n be an even number. Then equation (1) implies that for t > i, [(Lx)(t)](n)

< 0 and by virtue of Lemma 1 there exists a point tx > i and an integer /,
1 < / < / ! — 1, such that for t > tx the following inequalities hold:

/; (5)

l , . . . , - ; (6)

l]('-'>. (7)Y U ( l)

Multiplying both sides of equation (1) by the function

and taking into account that / — T > 0, one obtains

p(t)f(x(t - T))(/ - T ) - 1
 <

(0[(^)(0](|-|> " '
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Inequality (7) for / = 1, j = I yields the following inequality for /

On the other hand, there exists a point t2 > tv such that for t
holds. Hence, if / > t2, inequalities (8) and (9) imply the inequality

V(t)[(Lx)(t) '-l)

- r)){t -

<p(t)(Lx)(t) " '

(9)

where c > 0 is a constant.
Since [(Lx)(t)] > 0 and x(t) is a regular solution, there exists a point t3 ^ <2

such that (Lx)(t) > cl > 0 for t > /3 and by virtue of Lemma 1 from [9], there
exists a closed and measurable set E with the property meas(£ n [t, t + 2T]) > T
for r > /3, such that x(t — T) > c2 > 0 for each ? e £. On integrating inequality
(10) on the set E n [/3, r], / > t3 and taking into account that for t > t3,
[(Lx){t)](n) < 0 and [(Lx)(t)]('-l) > 0, we obtain the inequality

,
[h,,] <p(s)(Lx)(s)

Integrating the first integral in (11) by parts, we obtain

(11)

h ' +1) '

cp(s)f(x(s — r))(s - " ds

,3,r] <p(s)[(Lx)(s)] (12)

From inequalities (5) and (6) and condition 2 of Theorem 1, we can draw the
conclusion that for t > t3 all derivatives of an even order will be
non-negative and monotonically decreasing, while all derivatives of an odd order
will be non-positive and monotonically increasing, and hence the sum participat-
ing in inequality (12) is non-negative.

For t > t3 inequality (5) and condition 3 of Theorem 1 yield
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Hence we can conclude that for t > t3 the first two summands in the right-hand
side of inequality (12) are non-negative and therefore the following inequality
holds:

cp(s)f(x(s - T))(S - T)"~lds . _
<p(s)(Lx)(s) ^ {"4n[/j./]

(13)
On the other hand (7) implies that for t > /3, j = 1, i; = 0, the inequality

holds. Furthermore, there exists a point t4 > t3, such that for / 3* /4 the inequal-
ity t — t3 > \{t - T) holds and hence

\[(Lx)(t)Y'\t-r)^[(Lx)(t)Y'-l). (14)
Taking into account that the condition 2 of Theorem 1 implies that there exists

a point t5 > tA and a constant c3 > 0, such that for t > t5 we have

f(x(t - r))/(Lx)(t) > c3/2.
Inequahties (13) and (14) then yield the inequality

cc3 r p(s)(s - r)"'1 ds . , v [< ds
2 JEn[h,t] <p{s) Jti(s - T)<P{S)

Accomplishing a boundary transition in the above inequality, for t —* +oo,
and taking into account inequality (4), we get

(t-r)cp(t)

which contradicts equality (3).
Let n be odd and assume that the equation has a non-oscillatory solution x(t).

Without any loss of generality, we can suppose that x(t) > 0 for t ̂  t, I e ST.
Then, since for t > i

Lemma 1 implies that there exists a point t1 ̂  i and an integer /, 0 < / < n,
I + n being odd, such that for / > tx inequalities (5) and (6) hold, while if / ¥= 0,
the inequality (7) holds.

If / > 2, then our reasoning goes on as in the case when n is even. In the case
/ = 0 and lim,_ + 00(Lx)(0 = 0 we have lim,_ + oox(O = 0.

Let / = 0andlim,^ + M(Lx)(O = c4 > 0.
Since lim,_ +x,(Lx)(t) = c4, then there exists a point t2 > tt, such that

(Lx)(t) > c4/2 for t > t2. By virtue of Lemma 1 from [9] there exists a measura-
ble and closed set E, E c [t2, + oo) with the property

meas(£' n[t,t + 2T] ) > T, / > /2
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such that x(t — T) > c5 > 0 for t e E. Hence there exists a constant c6 > 0, such
that

M[f(x(t - T)) > c6. (15)

Multiplying equation (1) by tn~l and integrating within the bounds from t2 to
/ > t2, we obtain

rV-^LxXs)]*" '^ + /"'5n-V(^)/(^(j-T))* = 0. (16)
'2 J'l

Integrating the first integral in (16) n — 1 times by parts, we get

+ • • •

••• +(«-l)!(Lx)(*)|',2+ f's"-lp(s)f(x(s-T))ds = 0.

Since [(LxXf)]1 < 0, inequality (6) implies that all derivatives of (Lx)(t) of
even order are non-negative and hence inequalities (15) and (17) yield the
inequality

ce( s'"1p(s)ds < ?£"

The last inequality, after passing to the bound for t -* +00, gives the inequal-
ity

f f-^iOdt < +00. (18)

Taking into account that t — T < t and <p(t) is a non-decreasing function, (18)
yields

f [(t-r)p(t)Mt-T)]dt< +00,

which contradicts equality (3).
Thus, Theorem 1 is proved.

4. An alternative theorem

Since condition 2 of Theorem 1 is difficult to verify, then we proceed to prove,
by means of an indirect criterion, the validity of the alternative Jif for equation
(1) in the case when f(u) is differentiable.
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THEOREM 2. Let the following conditions be fulfilled:
1. Conditions (D) hold.
2. The function f G C^R1,!*1) andf'(u) > 0, u G R1.
3. There exists a function <p e C\V, R1), <p(0 > 0, <p'(0 > 0 for t &ST, such

that for each closed measurable set E QST with the property meas(£ n [t, t + 2T])
^ r . i e j ' , the following relations hold

9(0
°° du

< + c o > e > 0 -

(20)

Then, the alternative £C holds for equation (1).

PROOF. Let x(t) be a non-oscillatory solution of equation (1), supposing for the
sake of definiteness that x(t) > 0 for t > /, i G ̂ ", and that the operator L is
defined by equality (2). Then Lemma 1 implies that there exists a point tx > i and
a number /, 0 < / < n , / + « odd, such that for / > f inequalities (5) and (6) hold,
while if / =£ 0, then inequality (7) also holds.

Let « be an even number. Then, since / > 1 by virtue of Lemma 1 from [9],
there exists a set E c 3~, such that meas(£' n[t,t + 2T]) > T, / e y , and
x(r - T) > c7 > 0 for t G £. Besides, / > 1 and (7) implies that for t > t1 the
following inequality holds:

If we choose a point f2 > rl7 such that for t ^ r2 we have / - T > 2/1; then the
last inequality implies the inequality

[ (Lx) (0 ] ( O < 2 ' - ^ / - l)!(r - r)l-'[(Lx)(,)], , > t2. (21)

There exists also a point t3 > /2
 an t^ a constant C8, such that

inf f(x(t - T ) ) / / ( ( Z J C ) ( O ) > c8. (22)
t<=En[t3, + 00)

Let us multiply equation (1) by the function (t - T)n~l/<p(t)f((Lx)(t)) and
integrate from r3 to t > t3. We get

(j-Tr-'KLsxor*
<p(s)f((Lx)(s)) ih <p{s)f{{Lx)(s))
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whence, integrating by parts the integral in the rigth-hand side and taking into
account equality (22), we have

(s-ry-1p(s)ds (s - T)"-1

+ J'(s -r)'-l[(Lx)(s)Yn-l)d[(cp(s)f((Lx)(s))y1}.

(23)
Conditions 2 and 3 of Theorem 2 and (6) yield the result that

and hence from (23) we obtain the inequality

(s-r)"-lp(s)ds n (s - ry-l

<p(s)f((Lx)(s))

(24)
where c9 > 0 is a constant. By integrating the right-hand side of (24) n - I times
by parts, we obtain

t (s - T)"~lp(s)ds
JEn[r-s,i] VyS)

Since (5) and (6) imply for s > t3 the inequality
"-2 („ _ 9V

holds, then (21) and (25) yield

10 ( 1)la9(s)f((Lx)(s)
(26)
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Taylor's theorem and the fact that [(Lx)(t)](n) < 0 for / > t3 imply that there
exists a constant a > 1, such that (Lx)(t) ^ at"'1 for t > t3. Then conditions 2
and 3 of Theorem 2 and (5) imply the inequality

\(Lx)(s)Y<is . ,, dULxHs)}

'I a-\Lx)(l)

The last inequality and inequalities (20) and (26) yield the inequality

{t - T)"" 1 p(t) dt /•«> du

9(0 < a i
which contradicts condition (19).
Let « be odd and let for the non-oscillatory solution x(t) of (1) and the operator
L the same assumptions be made as in the case when the number n is even. If for
the numbers /, 0 < / < n, existing by virtue of Lemma 1, we have the condition
/ > 2, then by the aid of reasoning analogous to that for the case when n is even,
we arrive at a contradiction. Therefore, / = 0 (« odd) and since (6) implies that
[(Lx)(t)]' < 0, then either lim,_ + 0O(Zjc)(0 = °> a n d hence Iim,_ + O0x(/) = 0,
orUm,_ + oo(Lx)(r) = cn > 0.

Therefore, by virtue of Lemma 1 from [9], there exists a closed and measurable
set £ c j , meas(£ n [t, t + 2T]) > r, t > i, such that x(t - T) > c12 > 0 for
t e E. We multiply equation (1) by t"~l and, integrate on the interval from i to
( > ( to obtain

Since (6) implies that for / > i all derivatives of (Lx)(t) of even order are
non-positive and monotonically increasing, while those of odd order are non-
negative and monotonically decreasing, then the last inequality, after passing to
the limit t -* + oo, yields the inequality

f t"'lp(t)dt < +oo
' En[i,+ oo)

whence, since <p'(0 > 0, <p(t) > 0, we obtain the validity of the inequality

[t"'lp(t)Mt)] dt < +oo
JEn[i,+ o

which contradicts (19).
Thus, Theorem 2 is proved.
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R E M A R K . For n = 1 the proofs of Theorems 1 and 2 can be considerably

simplified, since the integration by parts is omitted.

5. Necessity of equation (19)

We are going to show by a counterexample that equality (19) from condition 3
of Theorem 2 cannot be replaced by the weaker classical condition

[(/ — T ) " p(t)/(p(t)\ dt = +oo. (27)

Consider the equation

x'(t + TT/2) + x'(t) + P(t)x3(t) = 0. (28)

where t > t0 > 0 and p(t) = [t2 + (t + ir)2]/[t2(t + <n)2(t-1 + I - cost)3].
Here f(u) = u3, and let <p(t) = 1. After simple calculations one obtains

+ 00

cost) dt
+ 00

4k-\2kv + k-1 + •n)'2([2kir + AT1]"1 + 1 - cosAr1),
I

which yields

f p{t)dt = +oo.

On the other hand if
+ 00

E = U {t\t > t0, w

then

r + oo
t \ t + n)2(rl + l - 1/V2)

which shows that p(t) satisfies the classical condiiton (27) but does not satisfy
(19).

It can be easily verified that equation (28) has a solution x(t) = t~l + 1 - cos t.
Thus condition (19) is substantial.
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