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Abstract

The present paper proves critena for oscillation of the solutions of functional differential
equations of the type

() + A (= 1) + p(Of(x (1 — 7)) =0,

where A, 7> 0.

1. Introduction

The theory of oscillations has a wide range of applications to various areas of
chemistry, biochemistry, biology, etc. An extensive reference on these subjects is
given in [5], [7], [6]. Together with the classical models, there is an increasing
implementation of models with aftereffect governed by functional-differential
equations. This approach made possible the theoretical explanation of the 10-year
cycle of oscillation of the mammalian populations in Canada and Jakutija, as well

as of some other experimental phenomena [10], [3], [4].

The present paper sets down some oscillation criteria for the solutions of

functional differential equations of the type

XxO() + AxD(1 = 1) + p(DF(x(t = 1)) =0, n > 1
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where 7 > 0 is a constant delay and A > 0 is an arbitrary constant. An analogous
result for ordinary differential equations without delay is obtained in [1}, and for
equations with a retarded argument in [8].

2. Definitions

Suppose the following conditions (D) are fulfilled:

D1. The function f(x): R' > R' is continuous, uf(u)> 0 for u # 0 and
liminf,,, _ , |f(x)| > 0.

D2. The function p(t): - [0, + o) is continuous, where = [t, — T, + 00),
t, € R.

The alternative .# will be said to hold for equation (1) if for n even all of its
solutions oscillate, while for n odd, they either oscillate or tend to zero for
t > +o0.

Let the operator L be defined by the equality

(L)1) = ¥ (8) + Ag(r = 7) )
and let us denote by C* the space of functions y(¢): J— R! locally having
absolutely continuous derivatives of order up to k.

A function x(z) € €"~! is said to be a regular solution of equation (1) if it
satisfies (1) almost everywhere for ¢ > t,, and for each ¢ > ¢,

sup |x(s)|>0.
s€{1,+ 00)

A solution x(¢) of equation (1) is said to be oscillatory if it has a sequence of

zeros which tends to + oo.

3. The main theorem

LEMMA 1 ([2], p. 243). Let the following conditions be fulfilled:

1. The function (1) € C"~! has a constant sign together with its derivatives of
order up to n in the interval [t,, + c0).

2. For eacht > t, the following inequality is valid

V(DY) <0 (W()P(1) > 0).
Then there exists an integer I, 0 < | < n, such that | + n is odd (even) and for
t > 1, the inequalities

YY) >0,i=0,...,1
(1) ()W) 2 0,i=1+1,...,n;

i1 .
ly=(1)| < j’.—'!(z — 1) WD), j=0,.. 5 i=0,..., )
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take place. Moreover, if | + 0, then

n

O T gy (=0 0]

THEOREM 1. Let the following conditions be fulfilled.

1. Conditions (D) hold.

2. For each function Y(t) € C"~! such that 1Y (2)| > 0 for sufficiently large
values of t and liminf, , | [(LY)(t)| > O, the inequality

liminf 14 (1 = ) /(Ly)(1) | > 0

is valid.

3. There exists an absolutely continuous and non-decreasing function @(t):
I — (0, + o0) such that for each measurable and closed set E having the property
meas(E N [t,1 + 27)) > 1, t €T, the following relations hold:

L= p(0) /00 = )] dt = +oo, 3)
to  d
o wm e @

Then the alternative £ holds for equation (1).

PROOF. Let x(t) be a non-oscillatory solution of equation (1), the operator L
be defined by equation (2), and for the sake of definiteness suppose that x(¢) > 0
forte>r,red.

Let n be an even number. Then equation (1) implies that for ¢ > £, [(Lx)(¢)]
< 0 and by virtue of Lemma 1 there exists a point ¢, > / and an integer /,
1 <1 < n =1, such that for ¢ > ¢, the following inequalities hold:

(Lx)(D)[(Lx)()]P=0,i=0,...,1; (5)
DML D= 0,i=1+1,...,n; (6)
(L1 < 5= 1) 7 [(L)(0)] . ™

Multiplying both sides of equation (1) by the function
(t _ T)”_I
e()[(Lx)()]"™P
and taking into account that 1 — 7 > 0, one obtains
DI pOH( =)= @
e()[(Lx)()]"7? e()[(Lx)()] 7"
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Inequality (7) for i = 1, j = [ yields the following inequality for 7 > ¢,
(r=0) "7 (Lx)()]7P < 11(Lx)(2). (9)

On the other hand, there exists a point ¢, > ¢;, such thatfor ¢t > ¢,, t — 7 > 21,
holds. Hence, if ¢ > t,, inequalities (8) and (9) imply the inequality

LI (O = 1) =)
(p(t)[(LX)(t)]"_” o (1)(Lx)(2)

where ¢ > 0 is a constant.

Since [(Lx)(2)] = 0 and x(¢) is a regular solution, there exists a point #; > ¢,
such that (Lx)(¢) = ¢, > O for ¢t > t; and by virtue of Lemma 1 from [9], there
exists a closed and measurable set E with the property meas(E N [£,t + 27} > 7
for t > t5, such that x(¢ — 7) > ¢, > 0 for each 7 € E. On integrating inequality
(10) on the set EN[t;,t], t>t; and taking into account that for ¢ > ¢,
[(LxX)] < 0 and [(Lx)(¢)]“~P > 0, we obtain the inequality

e s"H(Lx)(s)]'" ds cp(s)(x(s — 7))(s - 'r)"_lds
./,3 (p(s)[(Lx)(s)](I_l) " fEnm 1 o(s)(Lx)(s)

<0, (10)

< 0.

(11)

Integrating the first integral in (11) by parts, we obtain

—I+ (n 1+1 (l+1)'
Z:I=({ 1(_1) [(L )( )] n—1{+1 '
(i +1)‘ _ _f, Z (-1)'s o (n = l1)’.
o (s)[(Lx)(s)] 2 (i + 1)

L5}

X [(Lx)()]d [ (9()[(Lx) ()] D) ]

ep(s)f(x(s — 7)) (s — 7)" 'ds
’ -/En[rg 1 @(s)[(Lx)(s)] (12)

(L))
e

From inequalities (5) and (6) and condition 2 of Theorem 1, we can draw the
conclusion that for 7 > ¢, all derivatives [(Lx)(2)]? of an even order will be
non-negative and monotonically decreasing, while all derivatives of an odd order
will be non-positive and monotonically increasing, and hence the sum participat-
ing in inequality (12) is non-negative.

For t > t; inequality (5) and condition 3 of Theorem 1 yield

d[(e((Lx)(]* )] <0
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Hence we can conclude that for ¢ > ¢, the first two summands in the right-hand
side of inequality (12) are non-negative and therefore the following inequality
holds:

ep()f(x(s —7))(s — )" 'ds <n-m( [(Lx)(s)]" ds
fsnm ) o(s)(Lx)(s) <( 1)'f,3 o(s)[(Lx)(s)]4 "

(13)

On the other hand (7) implies that for ¢ > ¢;, j = 1, i = 0, the inequality

[(Lx)()] V(e = 13) < [(Lx)()] P

holds. Furthermore, there exists a point ¢, > t,, such that for 7 > ¢, the inequal-
ity t — t; > $(¢ — 7) holds and hence
L] = vy < [(Lx) ()] (14)
Taking into account that the condition 2 of Theorem 1 implies that there exists
a point z; > t, and a constant c¢; > 0, such that for ¢ > r; we have

F(x(t = ) /(L)1) > e2/2.
Inequalities (13) and (14) then yield the inequality

€ p(s)(s-'r)n—l ( 1) f ds
2 Jeapga o (s) (s —7)o(s)’
Accomplishing a boundary transition in the above inequality, for t - + oo,
and taking into account inequality (4), we get

(55} (t=-n)""'p(t)ar <2n- 1)!/+°° dt -
2 JEA(g.+ ) (1) s (t=1)e(1)
which contradicts equality (3).
Let n be odd and assume that the equation has a non-oscillatory solution x(t).
Without any loss of generality, we can suppose that x(¢) >0 fort>1{, i €7.
Then, since for ¢ > ¢

(Lx)(1) <0, [(Lx)(1)]™ <

Lemma 1 implies that there exists a point ¢, > ¢ and an integer I, 0 </ <n,
! + n being odd, such that for ¢ > ¢, inequalities (5) and (6) hold, while if / # 0,
the inequality (7) holds.

If / > 2, then our reasoning goes on as in the case when » is even. In the case
/=0andlim,_ , (Lx)(t)=0wehavelim,_ , x(£)=0

Let/=0andlim,_ , (Lx)(t)=c,> 0.

Since lim, _, , (Lx)(t) = c¢,, then there exists a point 7, > ¢,, such that
(Lx)(t) 2 c4/2 for t > t,. By virtue of Lemma 1 from [9] there exists a measura-
ble and closed set E, E C [t,, + c0) with the property

meas(EN[t,t+21])>1,1>1,
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such that x(¢r — 7) > ¢5 > 0 fort € E. Hence there exists a constant ¢ > 0, such
that

,iélef(x(t - 1)) > ¢ (15)

Multiplying equation (1) by ¢"~! and integrating within the bounds from ¢, to
t > t,, we obtain

[ s ULx)()]Pds + [' 57 p(s) f(x(s = 7)) ds =0.  (16)

t L7}

Integrating the first integral in (16) n — 1 times by parts, we get
n—1]? n— N
s" T (Lx)()] O] = (= D2 [(Le) ()] 72+
Co (7)
s (= DL + [ 577 p(s)f(x(s = 7)) ds = 0.
0

Since [(Lx)(1)]! < 0, inequality (6) implies that all derivatives of (Lx)(t) of
even order are non-negative and hence inequalities (15) and (17) yield the
inequality

C‘Sfm, 5" P () ds < (L)) = (n = Dy (L) ()] 77

+ o+ (n = DULx)(1,).
The last inequality, after passing to the bound for t = + o0, gives the inequal-
ity

f 1" p(t)dr < +o0. (18)
EN[ty,+ )

Taking into account that ¢ — 7 < ¢ and ¢(¢) is a non-decreasing function, (18)
yields

I [(¢ =) p(2)/0(t = 7)) dt < +o0,
EN(t;,+ o0)

which contradicts equality (3).
Thus, Theorem 1 is proved.
4. An alternative theorem

Since condition 2 of Theorem 1 is difficult to verify, then we proceed to prove,
by means of an indirect criterion, the validity of the alternative .# for equation
(1) in the case when f(u) is differentiable.
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THEOREM 2. Let the following conditions be fulfilled:

1. Conditions (D) hold.

2. The function f € C'(R,RY) and f'(u) > 0, u € R'.

3. There exists a function ¢ € CY(T,RY), (t) > 0, ¢'(¢) > 0 for t € T, such
that for each closed measurable set E C J with the property meas(E N [t,t + 271])
> 7, t €7, the following relations hold

L_(:ng(:ﬂdt: + 0 (19)

e du e du
[ Fowrmy <t L, H@alw o) =T
(20)

Then, the alternative £ holds for equation (1).

PRrROOF. Let x(#) be a non-oscillatory solution of equation (1), supposing for the
sake of definiteness that x(¢) > 0 for ¢t > 7, { € 7, and that the operator L is
defined by equality (2). Then Lemma 1 implies that there exists a point ¢, > ¢ and
anumber /,0 < [ < n, [ + n odd, such that for ¢ > ¢ inequalities (5) and (6) hold,
while if / # 0, then inequality (7) also holds.

Let n be an even number. Then, since / > 1 by virtue of Lemma 1 from [9],
there exists a set E C.7, such that meas(EN[¢,t + 21> 7, t €7, and
x(t — 1) > ¢;> 0 for t € E. Besides, / > 1 and (7) implies that for ¢ > 1, the
following inequality holds:

[(Lx) (D] <t = 0)? (L), j= 0,1
If we choose a point ¢, > t,, such that for r > r, we have t — 7 > 21,, then the
last inequality implies the inequality

[(Lx)(O)] < 271 = ) = =) T (LX), 1> 1, (21)

There exists also a point ¢; > , and a constant Cg, such that

inf S0 = )/((Lx)(1) > e (22)

t€EN[ty,+ o0

Let us multiply equation (1) by the function (¢t — 7)" ™! /@(¢) f((Lx)(¢)) and
integrate from ¢, to t > 1. We get

[ p(s)(s = 1) f(x(s = 7)) ds _ 1 (s = )" [(Lx)(1)]" ds
5 @ (s)f((Lx)(s)) s e()f((Lx)(s)
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whence, integrating by parts the integral in the rigth-hand side and taking into
account equality (22), we have

(s=1)""p(s)ds _ (s =) [(Lx)()] P
CS/E{'\[:3 t]

?(s) (L) |,
BN Gt i (023100 ™
)
+ [ s =0 I d [ (9(0)1((L0) ().

(23)

Conditions 2 and 3 of Theorem 2 and (6) yield the result that

(L)) 5 0, d[(p() 7((Lx)(1))] <0,

and hence from (23) we obtain the inequality

(s — T)"'lp(S)ds = 1) (Lx)(x)] " P ds
csfm[tj 2 9(s) o *n 1)[13 ¢ (s)f((Lx)(s))

(24)
where ¢y > 0 is a constant. By integrating the right-hand side of (24) n — / times
by parts, we obtain

(s - ’r)"—lp(s)ds

CS'/;‘O[Q 1) <p(s)

o2 =D (L))
<P( )f((LX)(S))

<ct+t(n—-1

13

- [0 E (0 SR - ) 1) (0 1L

n—1-1 (n - 1)! 1 (S - 7)1_1[(Lx)(s)](')ds
DT, f, 276 (25)

Since (5) and (6) imply for s > t; the inequality

T Dy ()]0 <0

i=1

holds, then (21) and (25) yield

(=)o) _ e [(Lx)(s))'ds
A O R Cal) Mooy 725195 &
(26)
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Taylor’s theorem and the fact that [(Lx)(¢)]¢” < O for 7 > ¢, imply that there
exists a constant a > 1, such that (Lx)(t) < at"~! for ¢ > ¢;. Then conditions 2
and 3 of Theorem 2 and (5) imply the inequality

[' [(Lx)(s)]"ds ‘ d[(LX)(S)]
5 s ‘ (Lx)(s) |1

_ f a”i(Lx)(n) du
Loy f(au)ep(u
The last inequality and inequalities (20) and (26) yield the inequality

n—1
f (t=1)" "p(r)a < afw dul <o,
EN[t3,+ ) o(1) a~Y(Lx)(t3) [f(u)q)(u /n )]

which contradicts condition (19).

Let n be odd and let for the non-oscillatory solution x(¢) of (1) and the operator
L the same assumptions be made as in the case when the number # is even. If for
the numbers /, 0 < / < n, existing by virtue of Lemma 1, we have the condition
! > 2, then by the aid of reasoning analogous to that for the case when n is even,
we arrive at a contradiction. Therefore, / = 0 (n odd) and since (6) implies that
{(Lx)()])’ < O, then either lim,_, , ,(Lx)) =0, and hence lim,_, ,  x(z)=0
orlim, ., (Lx)(t)=c¢;; > 0.

Therefore, by virtue of Lemma 1 from [9], there exists a closed and measurable
set £ECZ, meas(EN[t,t +27]) =7, t > 1, such that x(+ — 1) > ¢}, > 0 for
t € E. We multiply equation (1) by "~ ! and, integrate on the interval from 7 to
t > [ to obtain

£ o =gy

Since (6) implies that for ¢ > { all denvauves of (Lx)(t) of even order are
non-positive and monotonically increasing, while those of odd order are non-
negative and monotonically decreasing, then the last inequality, after passing to
the limit £ = + oo, yields the inequality

f " p(t)dt < + 0
EN[i,+ )

=1y

+ c13/ s"'p(s)ds <0, ;3> 0.
N[i.r]

whence, since ¢'(1) > 0, ¢(¢) > 0, we obtain the validity of the inequality

f e () /e(0)] dt < + o0
EN[i,+ o0)

which contradicts (19).
Thus, Theorem 2 is proved.
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REeMARK. For n =1 the proofs of Theorems 1 and 2 can be considerably
simplified, since the integration by parts is omitted.

5. Necessity of equation (19)

We are going to show by a counterexample that equality (19) from condition 3
of Theorem 2 cannot be replaced by the weaker classical condition

ft+°° [(r = )" p(2) /(1)) dit = +oo. (27)
Consider the equation
x'(t+7/2)+ x'(¢t) + p(t)x*(t) = 0. (28)

where > 1t,>0 and p(¢)={2+ (¢t + 7)2)/[t%(t + 7)?(¢ ' + 1 — cost)’].
Here f(u) = u?, and let @(¢) = 1. After simple calculations one obtains

+o0 pg 2km+k1 2 2\.-2
f p()dt> Y (24 + 7))
t k=[rp]+1 " 2km =k
X(t+ 7)™ + 1 —cost) dt
+ 00
> Y AkT'\Qkw+ k74 @) ([2km + k7] + 1 - cosk™Y),

k=[] +1
which yields
+00
/ p(t)di = + .

o

On the other hand if

+ 00
E= U {tt=ty, n/4+ 2kn <t <3n/4 + 2kn},
k=[1]+1

then
[2+ (0 +m)Y] ar

-/Ep(t)dt s j;s (2t +m) (1P +1-1/V2)

< 4+ o0

which shows that p(t) satisfies the classical condiiton (27) but does not satisfy
(19).

It can be easily verified that equation (28) has a solution x(¢) = ¢t™! + 1 — cos.
Thus condition (19) is substantial.
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