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Abstract. This paper determines the�-correspondence for the dual pairs(O(p; q);Sp(2n;R)) when
p + q = 2n + 1. As a consequence, there is a natural bijection between genuine irreducible rep-
resentations of the metaplectic group Mp(2n;R) and irreducible representations of SO(p; q) with
p+ q = 2n+ 1.

0. Introduction

Consider the dual pairs(O(p; q);Sp(2n;R)) with p+ q = 2n+ 1. LetfSp(2n;R)
be the metaplectic group, andeO(p; q) the det1=2 cover of O(p; q) (we will be more
precise in Section 1). For a nontrivial additive character ofR; the oscillator repre-
sentation!( ) yields a bijection�( ; p; q) between subsets of the irreducible rep-
resentations offSp(2n;R) and those ofeO(p; q) [5]. The representations offSp(2n;R)
which arise are all genuine, i.e. do not factor to the linear group Sp(2n;R). The main
result of this paper is an explicit description of this correspondence (Theorem 5.1).

Fix the discriminant� = (�1)q of the orthogonal space. An immediate corollary
of Theorem 5.1 is a bijection, depending on , between the set

fSp(2n;R)bgenuine

of (equivalence classes of) genuine irreducible admissible representations offSp(2n;R) and the union

[
p+q=2n+1
(�1)q=�

SO(p; q)b

of the irreducible admissible representations of the groups SO(p; q) (cf. Corol-
lary 6.2 for details). This result confirms, in the real case, part of a conjecture of
Kudla [8], which in turn is a generalization of a result of Waldspurger [22] in the
casen = 1.
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24 JEFFREY ADAMS AND DAN BARBASCH

The bijection is one of similarity, rather than of duality, in that it takes small
representations to small representations. For example it takes the trivial represen-
tations of SO(n + 1; n) and SO(n; n + 1) to the even halves of the oscillator
representations offSp(2n;R).

The metaplectic group is an example of a non-linear group, to which the machin-
ery of the L-group does not apply. On the other hand it is of great importance in the
theory of automorphic representations, so it is of interest to understand it in these
terms. With this in mind notions such as L-packet, stability, etc. may be defined forfSp(2n;R) by carrying over the corresponding notions from SO(p; q). Even in the
easiest examples it is clear that care must be taken in making such extensions. For
example the representations in an L-packet defined in this manner may fail to have
the same central character, a phenomenon which is forbidden for linear groups (and
also for the larger L-packets and Arthur-packets of [4]).

This bijection is natural in terms of the Langlands classification. The Cartan
subgroups of O(p; q) are isomorphic to those of Sp(2n;R), and very roughly
speaking the matching is given by the same characters. For example discrete
series representations having the ‘same’ Harish–Chandra parameter correspond.
This naturality is expressed in the commutative diagram of Proposition 6.1. The
correspondence of K-types on the space of joint harmonics also has nice properties;
each K-type forfSp(2n;R) is harmonic for precisely one choice ofp; q with given
discriminant. Furthermore lowest K-types in the sense of Vogan are always of
lowest degree in the sense of Howe [5].

These properties are special to the range in which the two groups are roughly
the same size. Similar properties also hold for the dual pairs(O(p; q);Sp(2n;R))
with p; q evenandp+q = 2n;2n+2 [11]. In fact our approach is quite close to that
of [11], with the additional complications arising from the presence of nontrivial
covering groups.

1. Preliminaries

In this section we describe facts about the double covers, dual pairs and generalities
about the metaplectic representation that we will need. The main reference for the
double covers and the metaplectic representation are [10] and [15]. The setup is
for any local fieldF; but we concentrate on the caseF = R: We omit the details of
many straightforward calculations.

For any positive integerm we equipW = R
2m with the usual symplectic

structure given byJ =
�

0
�Im

Im
0

�
, and standard basise1; : : : ; em; f1; : : : ; fm.

Then Sp(2m;R) is the isometry group of this form, and the metaplectic coverfSp(2m) is defined by the normalized cocyclec( ; ) of [15] or [10]. Thus

fSp(2m;R) = Sp(2m;R) � Z=2Z; (g; ")(g0; "0) = (gg0; ""0c(g; g0)):

If  is a nontrivial (unitary) additive character ofR; let !( ) be the Harish–
Chandra module of the oscillator representation offSp(2m;R); ([15], Section 4),
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GENUINE REPRESENTATIONS OF THE METAPLECTIC GROUP 25

([10], Part I). The character may be written a(x) = eiax; up to isomorphism
!( a) only depends on the image ofa in R

�=R�
2
.

LetV be a real 2n+1-dimensional vector space equipped with a non-degenerate
symmetric bilinear form( ; ) of signature(p; q), and basisv1; : : : ; vp; v

0
1; : : : ; v

0
q for

which the matrix of( ; ) is diag(Ip;�Iq). We let O(p; q) denote the isometry
group of( ; ). Now V 
W has a symplectic structure with standard basisv1 


e1; : : : ; v
0
q 
 fn: The natural map� : O(p; q)� Sp(2m;R) ! Sp(2m(2n+ 1);R)

makes(O(p; q);Sp(2n;R)) into a dual pair. We writep0 = [p=2] andq0 = [q=2]
for the ranks of O(p) and O(q):

The main result concerns the casem = n, but many secondary results hold with
little or no restriction.

LetgGL(m) be the two-fold cover of GL(m) defined by the cocyle

c(g; h) = (det(g);det(h))R

where(x; y)R is the Hilbert symbol [16] forR. It is convenient to leteO(p; q) be the
two-fold cover of O(p; q) defined byc(g; h) = (det(g);det(h))n

R
(p+ q = 2n+1).

This is split over SO(p; q) and splits over O(p; q) if and only if n is even. For later
use we leteO(p; q)[k] be the cover defined by cocyclec(g; h)k .

Now� lifts to a map~�: eO(p; q)�fSp(2n;R) ! fSp(2n(2n+1);R). In particular
for g 2 O(p; q),

~�(g; ") = (�(g); ") (1.1a)

and forg2Sp(2n;R)

~�(g; ") = (�(g); "2n+1�(g)) (1.1b)

for a certain map�: Sp(2n;R) ! �1.
The image offSp(2n;R) in fSp(2n(2n+1);R) is the inverse image of Sp(2n;R),

and the image of the center offSp(2n;R) is the center offSp(2n(2n+ 1);R). Our
choice of coveringeO(p; q) implies that the analogous statements hold for O(p; q).
It also has the advantage thatn odd andn even may be treated uniformly.

Given , let

�( )(x; ") := 
(x; 1
2 )"; (1.2a)

where


(a;  ) :=

(a )


( )
(1.2b)

is the Weil index [15]. We have
( a) = e(2i�=8)sgna and

�( a)(x; ") = sgn(a)e(2i�=8)(sgnx�1)": (1.2c)
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26 JEFFREY ADAMS AND DAN BARBASCH

This is a character of the( ; )R double cover ofR� ; and so we can compose�( )
with the determinant to get a character ofgGL(m): We denote the ensuing genuine
character by the same symbol,�( )(g; ") := �( )(det(g); "):

This satisfies

�( )(x; ") = sgn(x)�( )(x; "); �( )(x; ")2 = sgn(x): (1.2d)

If V is an orthogonal space of dimensionm and discriminant�; we let (cf. [7], 2.5)

�( ; V )(g; ") = 
(det(g); 1
2 )

�m(�;det(g))R"m: (1.2e)

In general, if eG is a double cover ofG and� is a representation ofeG; we say�
is of typek if �(") = "k for " in the kernel of the covering. With this convention
�( ; V )(g; ") is a character ofgGL(V ) of typem = dimV:

If the signature ofV is p; q with p+ q odd, then

�( ; V ) = �( )�p+q: (1.2f)

This is the formula we will use most of the time. By (d) this may be thought of as
sgn(det)(�p+q=2).

We fix a genuine character

�( )(g; ") =

(
" n even

�( )(det(g); ")�1 n odd
(1.2g)

of eO(p; q). The map� ! � 
 � defines a bijection between the irreducible repre-
sentations of O(p; q) and the irreducible genuine representations ofeO(p; q).

If  is fixed we drop it from the notation and write! = !( ), � = �( ),
�V = �( ; V ) and� = �( ).

Pulling !( ) back toeO(p; q) � fSp(2n;R) via ~� we obtain the representation
correspondence for this dual pair [5]. This is a correspondence between certain
irreducible Harish–Chandra modules.

By (1.1) the representations ofeO(p; q) andfSp(2n;R) in the image of the corre-
spondence are genuine, i.e. of type 1. If�; �0 are genuine irreducible representations
of fSp(2n;R) andeO(p; q) respectively which correspond, we write

�0 = �( ; p; q)(�); � = �( )(�0): (1.3)

If  is fixed we write�p;q = �( ; p; q) and� = �( ).
For an irreducible (admissible) representation� of a groupG; we denote by��

its contragredient. In particular, for� as in (1.2g), we have

��(g; ") = � 
 sgn(detg)n: (1.4a)
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GENUINE REPRESENTATIONS OF THE METAPLECTIC GROUP 27

Combined with the results on p. 91 of [12], we find the following expressions for
��: In caseG = fSp; let � = Ad�; where� = diag(Im;�Im) (this is an outer
automorphism ofG). Then

�� =

(
� 
 sgnn for G = eO(V );
� � �; for G = fSp(W ):

(1.4b)

From (1.2d) and the fact that!( ) ' !( )� we see

�( ; p; q)(�) = �( ; p; q)(��)
 sgnn: (1.4c)

LetV 0 denote the same space asV with formQ0 = �Q, of signature(q; p): Let
� be the tautological identification of O(V ) and O(V 0):Note that O(V 0) �= O(q; p);
and so we can identify representations of O(p; q) and O(q; p) by choosing such an
isomorphism; however the�-correspondences are different. The next lemma gives
the relationship between�p;q and�q;p:

LEMMA 1.5. For any irreducible representation� of fSp(2n;R),

�( ; p; q)(�) = �( ; q; p)(��):

Proof. The map Id
 � is an isomorphism betweenV 
 W and V 0 
 W

which interchangesQ � h ; i and�Q � h ; i: Let 	 be the ensuing isomorphism
Sp(V 
W )!Sp(V 0 
W ). The diagram

O(V )� Sp(W )
�
- Sp(V 
W )

O(V 0)
 Sp(W )

�
�

?

�0
- Sp(V 0 
W )

?

	

is commutative and!( ; V 
W ) = !( ; V 0
W ) �	. The lemma follows from
the formula for��: 2

Note that (1.4c) and the Lemma give

�( ; p; q)(�) = �( ; q; p)(�)
 sgnn: (1.6)

SupposeW1 andW2 are symplectic spaces. ThenW1 � W2 inherits a nat-
ural symplectic structure and there is a canonical mapfSp(W1) 
 fSp(W2) !fSp(W1�W2):We will use this map in the special casefSp(2m;R)� fSp(2m;R) !fSp(4m;R):Similarly there is a canonical mapeO(p; q)�eO(p0; q0)! eO(p+p0; q+q0).
LEMMA 1.7. Let!n;p;q be the oscillator representation offSp(2n(p + q);R) res-
tricted to the dual pair(fSp(2n); eO(p; q)).
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28 JEFFREY ADAMS AND DAN BARBASCH

(1) !n;p;q
!n;p;q ' !2n;p;q
sgnn as representations offSp(2n;R)�fSp(2n;R)�eO(p; q) with eO(p; q) acting diagonally on the left-hand side.
(2) !n;p;q 
 !n;p0;q0 ' !n;p+p0;q+q0 as representations offSp(2n;R)� eO(p; q)�eO(p0; q0), withfSp(2n;R) acting diagonally on the left-hand side.

Proof. There are obvious isomorphisms between the polynomial Fock spaces
!n;p;q in the statements. We need to check the equivariance. Assertion (1) forfSp(2n;R) � fSp(2n;R) and assertion (2) foreO(p; q) � eO(q; p) follow from the
explicit descriptions of the actions in [15] on the smooth models.

If (X;Y ) is a complete polarization ofW thengGL(X) acts onS(X) in the
oscillator representation by

!( )(g; ")(�)(x) = jdet(g)j�(1=2)�( )(g; ")�1�(g�1x):

Since the action ofeO(p; q) is via a homomorphism to~GL(X 
 V ); it acts in!n;p;q
by translation tensored with�. Assertion (1) foreO(p; q) follows immediately, the
twist if n is odd coming from�( )2 = sgn. The proof of assertion (2) is similar.2

The first part of the next Lemma is due to Rallis [14] and Przebinda [13]. The
second is the result obtained by applying the same technique in the other direction.
It says that the duality correspondence is a bijection when all O(p; q) with fixed
discriminant (andp+ q = 2n+ 1) are considered at once. Thus we are reduced to
proving occurence, and computing the correspondence explicitly.

LEMMA 1.8.

(1) Suppose� is a representation ofeO(p; q), and�( )(�) 6= 0. Then�( )(� 

sgn) = 0.

(2) Let� be a genuine representation offSp(2m;R), and suppose�( ; p; q)(�) 6=
0. Then�( )p0;q0(�) = 0 for all (p0; q0) 6= (p; q) with q0 � qmod(2).

Proof.Suppose both� and� 
 sgn are quotients of!n;p;q restricted toeO(p; q).
By Lemma 1.7(1) this implies�
�
sgn is a quotient of!( )2n;p;q
sgnn. Since
�� ' � 
 sgnn, and the trivial representation is a quotient of� 
 ��, this implies
that sgn is a quotient of!2n;p;q. However this is impossible since (cf. Proposition
2.1) the sgn K-type of O(p; q) does not occur in the space of joint harmonics when
paired with Sp(4n;R). This proves (1).

Now suppose� is a quotient of both!n;p;q and!n;p0;q0 restricted tofSp(2m;R).
By Lemmas 1.5(1) and 1.7(2) this implies that�
�� is a quotient of!n;p+q0;q+p0 .
As in the proof of (1) this implies that the trivial representation is a quotient of
!n;p+q0;q+p0 . This can also be ruled out by K-types. By [6], cf. ([11], I.4), the trivial
K-type forfSp(2m;R) occurs in this space only if O(p+q0; q+p0) is quasi-split, i.e.
p+ q0� q� p0 = 0;�1;�2. This together withp+ q = q+ p givesq = q0� 0;1,
and since the discriminants are equalq = q0. Thereforep = p0; q = q0, proving
(2). 2

comp4178.tex; 15/07/1998; 10:14; v.7; p.6

https://doi.org/10.1023/A:1000450504919 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000450504919


GENUINE REPRESENTATIONS OF THE METAPLECTIC GROUP 29

Groups will be denotedG;K; T; : : :, their Lie algebras byg0; k0; t0; : : : ; and their
complexified Lie algebras byg; k; t : : :. ForG reductive, a Cartan involution will
be denoted� with fixed pointsK; k0 andk respectively inG; g0 andg, andg =
k � p as usual. Forh a Cartan subalgebra ofg (always�-stable) we will denote
a system of roots by� = �(h; g) with positive system�+, and� = �(�+) =
1
2

P
� �. This notation will be extended in various standard ways, for example�c

denotes one-half the sum of the positive compact imaginary roots, and�(u) one-
half the sum of the roots of a (nilpotent) subalgebrau. For eG a covering group of a
groupG andH a subgroup ofG, eH will generally denote the inverse image ofH
in eG. This notation will occasionally conflict with the definition ofeO(p; q) earlier;
the meaning should be clear from the context. Unless otherwise statedG will
denote Sp(2n;R), eG will denotefSp(2m;R): These groups have maximal compact
subgroupsK andfK as chosen in Section 2. Similarly,G0 will denote O(p; q) with
correspondingeG0;K 0 andfK 0.

We now describe the semisimple orbits and Cartan subgroups for Sp(2n;R). We
begin by choosing representatives for the conjugacy classes of Cartan subgroups
as in [2].

For nonnegative integersm; r; s with 2m + r + s = n we define a Cartan
subgroupHm;r;s

Sp of Sp(2n;R) with Lie algebrahm;r;s
Sp0 . WriteW = R

2n = W1 �

W2�W3, whereW1 is spanned byfei; fi j1 6 i 6 2mg,W2 by fei; fi j2m+16
i < 2m + rg andW3 by fei; fj j2m + r + 1 6 i 6 ng. We identify Sp(Wi)
andsp(Wi) with their images in Sp(2n;R) andsp(2n;R). Forzi = xi + iyi 2 C ,
1 6 i 6 m let

h
m;0;0
Sp (z1; : : : ; zm) =

0
BBB@

X Y

X �Y

�Y �X

Y �X

1
CCCA 2 sp(W1) (1.9a)

whereX = diag(x1; : : : ; xm) andY = diag(y1; : : : ; ym). For�i 2 R (1 6 i 6 r)
we let

h
0;r;0
Sp (�1; : : : ; �r) =

 
X

�X

!
2 sp(W2) (1.9b)

with X = diag(�1; : : : ; �r), and forxi 2 R (1 6 i 6 s) let

h
0;0;s
Sp (x1; : : : ; xs) = diag(x1; : : : ; xs;�x1; : : : ;�xs) 2 sp(W3): (1.9c)

Taking the sum of these elements gives us an element

h
m;r;s
Sp (z1; : : : ; zm; �1; : : : ; �r; x1; : : : ; xs) 2 sp(2n;R) (1.9d)
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and this defines the Cartan subalgebrah
m;r;s
Sp0 of sp(2n;R), with complexification

h
m;r;s
Sp . The compact Cartan subalgebra ist0 = h

0;n;0
0 . Let

H
m;r;s
Sp ' (C �)m � (S1)r � (R�)s (1.9e)

be the Cartan subgroup of Sp(2n;R) with Lie algebrahm;r;s
Sp0 . These are represen-

tatives for the conjugacy classes of Cartan subgroups of Sp(2n;R). The compact
Cartan subgroup isT = H

0;n;0
Sp . Write the elements ofHm;r;s

Sp accordingly as

H
m;r;s
Sp (z1; : : : ; zm; u1; : : : ; ur; x1; : : : ; x2) (1.9f)

(zi 2 C
� ; ui 2 S

1; xi 2 R
�).

The Weyl group ofhm;r;s
Sp0 in sp(2n;R) is generated by all permutations offzig,

zi ! zi;�zi, all permutations off�ig, and all permutations and sign changes of
fxig. This describes the semisimple orbits. Note that two semisimple elements
h
m;r;s
Sp (z1; : : : ; ) andh

m;r;s
Sp (z01; : : : ; ) are in the same orbit if and only if they have

the same eigenvalues, and�1; : : : ; �r and�01; : : : ; �
0
r are the same up to permutation.

We writeH = TA with h = t� a, T = H \K andA = exp(a0) as usual. The
centralizer ofA is

M �= GL(1;R)s �GL(2;R)m � Sp(2r;R): (1.10a)

Let

M =gGL(1;R)s �gGL(2;R)m � fSp(2r;R) (1.10b)

with double covers of GL and Sp as at the beginning of this section. There is a
natural surjectionM �

fM .
Let eH (respectivelyH) be the inverse image ofH in fM (resp.M ). Then eH;H

are Cartan subgroups offM;M . Furthermore

H ' (fR� )s � (fS1)r � (C � � Z=2Z)m; (1.10c)

wherefR� is the two-fold cover ofR� defined by the Hilbert symbol, andfS1 is the
connected two-fold cover ofS1 given byz ! z2, jzj = 1.

We now turn to a description of the Cartan subgroups and semisimple orbits for
O(p; q). We follow [1].

Suppose 2m+s 6 min(p; q). WriteV = V1�V2�V3 whereV1 = spanfvi; v0j j1 6
i; j 6 2mg,V2 = spanfvi; v0j j2m+1 6 i; j 6 2m+sgandV3 = spanfvi; v0j j2m+
s < i 6 p;2m + s < j 6 qg. Then SO(Vi) is embedded naturally in SO(V )
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and we identify SO(Vi) andso(Vi) with their images in SO(V ) andso(V ). For
wj = xj + iyj 2 C let

h
m;0;0(w1; : : : ; wm) =

0
BBB@

Y X

�Y X

X �Y

X Y

1
CCCA 2 so(V1); (1.11a)

whereX = diag(x1; : : : ; xm); Y = diag(y1; : : : ; ym). Forcj 2 R; let

h
0;0;s(c1; : : : ; cs) =

 
X

X

!
2 so(V2); (1.11b)

whereX = diag(c1; : : : ; cs). Finally letr1 = [(p� 2m� s)=2], r2 = [(q � 2m�
s)=2], and for�i; �j 2 R let

h
0;r1+r2;0(�1; : : : ; �r1; �1; : : : ; �r2)

= diag(�̂1; : : : ; �̂r1; �̂1; : : : ; �̂r2) 2 so(V3) (1.11c)

with �̂ =
�

0
��

�
0

�
.

Taking the sum of these elements gives us an element

X = h
m;r;s
p;q (w1; : : : ; wm; �1; : : : ; �r1; �1; : : : ; �r2; c1; : : : ; cs)

2 so(p; q)
(1.11d)

and this defines a Cartan subalgebrah
m;r;s
p;q0 , with complexificationhm;r;s

p;q . Let

Hm;r;s
p;q ' (C �)m � (S1)r � (R�)s (1.11e)

be the Cartan subgroup of SO(p; q) with Lie algebrahm;r;s
p;q0 . This gives a set of

representatives of the conjugacy classes of Cartan subgroups of SO(p; q). The
compact Cartan subgroupT isH0;n;0

p;q . According to the decomposition (1.11e), we
write elements ofHm;r;s

p;q as

Hm;r;s
p;q (z1; : : : ; zm; u1; : : : ; ur1; v1; : : : ; vr2; x1; : : : ; xs) (1.11f)

with zi 2 C � ; ui; vi 2 S1; xi 2 R
� .

The Weyl group ofhm;r;s
p;q0 in o(p; q) is similar to the case of Sp. The only change

is that onu1; : : : ; ur1; v1; : : : ; vr2 it is of typeBr1�Br2 acting by permutation and
sign changes onfuig andfvig separately.

The corresponding Cartan subgroup of O(p; q) is isomorphic toHm;r;s
p;q � Z

whereZ is the center of O(p; q).

comp4178.tex; 15/07/1998; 10:14; v.7; p.9

https://doi.org/10.1023/A:1000450504919 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000450504919


32 JEFFREY ADAMS AND DAN BARBASCH

The centralizer ofA is

M 0 �= GL(1;R)s �GL(2;R)m �O(p0; q0) (1.12a)

with p0 = p� s� 2m; q0 = q � s� 2m. The inverse image ofM 0 in eO(p; q) is

fM 0 �= GL(1;R)s �GL(2;R)m � eO(p0; q0)[n]: (1.12b)

It follows from the preceding discussion that there is a bijection (depending on
the additive character ) between the regular semisimple adjoint orbits of Sp(2n;R)
and the union of the regular semisimple adjoint orbits of SO(p; q) with � = (�1)q

fixed. This is explained in more detail in [1], where it is described geometrically in
terms of the orbit correspondence; here we resort to a simple explicit description.

Fix  =  a with a > 0. Let

X = h
m;r;s
Sp (z1; : : : ; zm; u1; : : : ; ur1; v1; : : : ; vr2; x1; : : : ; xs) (1.13a)

be a regular semisimple element, withu1 > � � � > ur1 > 0 > v1 > � � � > vr2. Let
p = 2m+ r1+ s; q = 2m+ r2+ s+ 1 orp = 2m+ r1+ s+ 1; q = 2m+ r2+ s,
depending on�. Then the orbit ofX 2 sp(2n;R) corresponds to the orbit of
X 0 2 so(p; q), where

X 0 = h
m;r;s
p;q (z1; : : : ; zm; u1; : : : ; ur1;�vr2; : : : ;�v1; x1; : : : ; xs): (1.13b)

If  =  a witha < 0; then the same result holds, withu1; : : : ; ur1;�vr2; : : : ;�v1

replaced byv1; : : : ; vr2; �ur1; : : : ;�u1.
By the preceding description of the semisimple orbits the following result is

immediate. Letsp(2n;R)ss be the regular semisimple orbits ofsp(2n;R), and
so(p; q)ss similarly.

LEMMA 1.14. Fix  . There is a bijection between

sp(2n;R)ss

and
[

p+q=2n+1
(�1)q=�

o(p; q)ss :

We refer to this as theorbit correspondence.
We writeX 0 = O( )(X) if the orbits ofX andX 0 correspond as in Lemma

1.14. Dualizing, we obtain a correspondence� $ �0 = O( )(�) of regular
semisimple elements of the duals. Finally ifX 0 = O( )(X), let h; h0 be the
Cartan subalgebras centralizingX;X 0 respectively. The correspondence gives rise
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naturally to a correspondence of systems of positive roots, which we write�+ $

�
0+ = O( )(�+). As usual we drop from the notation if it is fixed.
It is evident that every Cartan subgroup of SO(p; q) is isomorphic to a Cartan

subgroup of Sp(2n;R). This correspondence preserves conjugacy classes, and is a
bijection on conjugacy classes if SO(p; q) is quasisplit. We use the correspondence
of semisimple orbits to choose these isomorphisms as follows.

Fix � = �1 and . Let (h0;�
+) be a pair consisting of a Cartan subalgebra

of sp(2n;R) and a system of positive roots. Let�: h0 ! h
0
0 � so(p; q) be an

isomorphism. By abuse of notation we write�(�+) for the natural system of
positive roots ofh00. More precisely, fixX 2 h so that� = f� j�(X) > 0g. Then
�(�+) = f�0 j�0(�(X)) > 0g.

PROPOSITION 1.15.Given(h0;�
+), there existp; q, and a pair(h00;�

0+) such
that �+0

= O(�+) and h
0
0 is isomorphic toh0. This determinesp; q uniquely

(subject to(�1)q = �). Furthermore the isomorphism�: h0 ! h
0
0 may be chosen

so that�(�+) = �
0+. This determines� up to conjugation bySp(2n;R) and

O(p; q).
Furthermore� lifts to an isomorphism�:H ! H 0 \ SO(p; q). Write H =

TA;M = CentG(A) as usual, and similarly forH 0. Then� extends to an isomor-
phism of theGL factors ofM andM 0 (cf. (1.10a)and(1.12a)).

2. Maximal compact subgroups and joint harmonics

We first considerG = Sp(2n;R), eG = fSp(2n;R). RecallW andJ as in Section 1.
Then

G := fg 2 GL(W ) j tgJg = Jg:

We choose the maximal compact subgroupK of G to be

K := fg 2 G j gJ = Jgg:

SinceJ2 = �Id; it defines a complex structure onW: Let WC ' C
n denote the

resulting complex space. ThenWC admits a positive definite symmetric Hermitian
form(v; w) = hJv;wi+ihv; wi. This gives an isomorphism ofK with the isometry
groupU(W C ; ( ; )): We define the determinant character ofK to be the pullback of
the determinant character of this unitary group by the explicit isomorphism chosen.

The inverse imagefK of K in eG is connected, and its representations may
be studied by passing to the Lie algebra. To be explicit,fK is isomorphic to the
det1=2 cover ofK, i.e. toK = f(g; z) j g 2 U(n); z 2 C

� ;det(g) = z2g: The
character� : (g; z) ! z of K satisfies�2(g) = det(g) and is denoted det1=2. We
choose an isomorphism, unique up to conjugation, offK with K so the character
of fK acting on the uniquefK-fixed line in !( ) goes to det1=2. (This line is
spanned by the Gaussian in the Schroedinger model, or the constants in the Fock
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model.) We fix the Cartan subgroupT of K as in (1.9), with the usual positive

system�(t; k). Then
cfKgenuineis parametrized by certain dominant weights�2 it�0;

in the usual coordinates� = (a1; : : : ; an) with a1 > a2 > � � � > an andai 2
Z+ 1

2. The distinguished character det1=2 corresponds to the weight(1
2; : : : ;

1
2).

This parametrization depends on .
Now considerG0 = O(p; q); eG0 = eO(p; q), with maximal compact subgroups

K 0 = O(p) � O(q), andfK 0. We fix the Cartan subgroupT of K 0 as in (1.11),
with the usual positive system. We identify an irreducible representations of O(p)
with its ‘highest weight’� = (�0; "). Here �0 = (a1; : : : ; ap0) 2 it�0 is the
usual highest weight of a finite dimensional representation of SO(p). We are
following [23], where" = 1 (resp." = �1) corresponds to the length of the
first column less than (resp. greater than) or equal top0. If p is odd, then�Id acts
by (�1)�ai+�bi" in this representation. Ifp is even andap0 6= 0 then" = �1
give the same representation; in all other cases they are distinct. Furthermore
(0;�1) is the one-dimensional representation sgn(g) = sgn(det(g)) = det(g), and
(a1; : : : ; ap0; ") 
 sgn= (a1; : : : ; ap0;�").

A similar discussion holds for O(q), and the irreducible finite dimensional
representations ofK 0 are parametrized by(a1; : : : ; ap0; ") 
 (b1; : : : ; bq0; �). The
irreducible genuine representations offK 0 are also parametrized in the same way,
by tensoring with the genuine character� offK 0 as in (1.2g). (Here� is the character
of eO(p; q) given by (1.2g), restricted tofK 0.)

The action offK�fK 0 on the space of joint harmonics gives a bijection between
certain irreducible representations offK andfK 0 [5]. If a fK-type� corresponds to
afK 0-type�0; we write�0 = H( ; p; q)(�) and� = H( )(�0). As usual we drop
 from the notation if it has been fixed.

The next result follows from [6], as in ([11], I.4) and ([3], Proposition 1.4).

PROPOSITION 2.1. (1)The correspondence on the space of joint harmonics is as
follows.

�0 = (a1; : : : ; ap0; 1)
 (b1; : : : ; bq0; 1)!H( )(�0)

= (a1; : : : ; ap0;�bq0; : : : ;�b1) +

�
p� q

2
; : : : ;

p� q

2

�

�0 = (a1; : : : ; ak;0; : : : ;0;�1)
 (b1; : : : ; b`;0; : : : ;0; 1)!H( )(�0)

= (a1; : : : ; ak;

p�2kz }| {
1; : : : ;1;0; : : : ;0;�b`; : : : ;�b1) +

�
p� q

2
; : : : ;

p� q

2

�

with p� k + ` 6 n,

�0 = (a1; : : : ; ak;0; : : : ;0; 1)
 (b1; : : : ; b`;0; : : : ;0;�1)!H( )(�0)
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= (a1; : : : ; ak;0; : : : ;0;

q�2`z }| {
�1; : : : ;�1;�b`; : : : ;�b1)

+

�
p� q

2
; : : : ;

p� q

2

�

with q + k � ` 6 n.
(2) Thep; q-degree of� = (a1; : : : ; an) is

Pn
i=1 jai � ((p� q)=2)j: The degree

of

�0 = (a1; : : : ; ak;0; : : : ;0;") 
 (b1; : : : ; b`;0; : : : ;0;�)

is equal to
P

i ai + ((1� ")=2)(p� 2k) +
P
bi + ((1� �)=2)(q � 2`).

Note that the dependence on is via the dependence of the parametrization offK 0-types on .
The images ofH( ; p; q) andH( ) are described by the next Proposition.

PROPOSITION 2.2. (1)Let� be any(genuine) fK-type forfSp(2n). Consider the
groupsO(p; q) with fixed discriminant. Then there is a unique choice ofp and q
such that� is p; q-harmonic.

(2) Let�0 = (a1; : : : ; ak;0; : : : ;0;") 
 (b1; : : : ; b`;0; : : : ;0;�) be a(genuine)fK 0-type for eO(p; q). Then�0 is in the space of joint harmonics if and only if
k + ((1� ")=2)(p� 2k) + `+ ((1� �)=2)(q � 2`) 6 n. This holds for precisely
one of�0 and�0 
 sgn.

Proof. Part (2) is an immediate consequence of Proposition 2.1, and we omit
the details. For part (1), we claim that we may write� uniquely in the form

(a1; : : : ; ar; �0; b1; : : : ; bs) (2.3a)

where

�0 = (r � s; : : : ; r � s) + (

xz }| {
1
2; : : : ;

1
2;

yz }| {
�1

2; : : : ;�
1
2) (2.3b)

with ar > r� s+ 1
2; r� s�

1
2 > b1, and at least one of these inequalities is strict.

The algorithm in Chapter 6 of [18] (see Section 6 for more detailed calculations)
attaches to� an element�G(�) 2 t

�
c : It is of the form

�G(�) = (�1; : : : ; �r;

tz }| {
0; : : : ;0; �1; : : : ; �s) (2.4)

with �1 > � � � > �r > 0 > �1 > � � � > �s: Thusr; s if they exist, are uniquely
determined. The same holds forx; y from the particular form of�: Running the
algorithm in reverse on the�’s as in (2.4), we see that every� must be of the form
(2.3a) with some choice of(x; y) (essentially Chapter 6 in [18]).
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Given this form,� corresponds to�0 in the space of joint harmonics for O(2r+
t+ 1;2s+ t), with

�0 = (a1� r + s� 1
2; : : : ; ar � r + s� 1

2;0; : : : ;0; 1)


(�bs + r � s+ 1
2; : : : ;�b1 + r � s+ 1

2;

jz }| {
1; : : : ;1;0; : : : ;0;");

where

(j; ") =

8>>><
>>>:
(y;+1) 0 6 y 6

�
t

2

�

(x;�1)
�
t+ 1

2

�
6 y 6 s

�
, 0 6 x 6

�
t

2

��
:

Similarly� corresponds to�0 in the space of joint harmonics for O(2r+t;2s+t+1),
with

�0 = (a1� r + s+ 1
2; : : : ; ar � r + s+ 1

2;

jz }| {
1; : : : ;1;0; : : : ;0;")


(�bs + r � s� 1
2; : : : ;�b1 + r � s� 1

2;0; : : : ;0;+1);

where

(j; ") =

8>>><
>>>:
(x;+1) 06 x 6

�
t

2

�

(y;�1)
�
t+ 1

2

�
6 x 6 s

�
, 0 6 y 6

�
t

2

��
:

Note that fort even andx = y = [t=2] the two cases agree, since for even ortho-
gonal groups(a1; : : : ;1;+1) �= (a1; : : : ;1;�1):

It remains to show� isp; q-harmonic for at most one choice ofqwith (�1)q = �.
Given�; to determine(p; q) it is enough to findp0: Assume� = 1; the other case
is similar. Suppose� is p; q-harmonic corresponding to a�0 as in Proposition 2.1.
Then in the expression� = (�1; : : : ; �n); we must have�p0 = (p� q)=2 if " = 1;
or�p0 = ((p� q)=2) + 1 if " = �1: This is the same as�p0 + (n+ 1� 2p0) =

3
2

or 5
2: But the sequenceri = �i+ (n+ 1� 2i) decreases monotonically by at least

2 each consecutive term, so there is at most onei such thatri = 5
2 or 3

2, never both.
If all ri > 5

2 thenp0 = n; if all ri < 1
2; thenp0 = 0: This proves (1). 2

Remark.This Proposition also follows naturally from the calculations in the
proof of Proposition 6.1. Namely if� and�0 correspond, then�G(�) and�G(�0)
correspond in a simple fashion, implying in addition thatr; s; t given by formula
(2.4) for �, and the(r0; s0; t0) coming from formula (6.6) coincide. Thusp =
2r + t+ 1 orp = 2r + t according to the parity of�:
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EXAMPLE 2.4. The example of small weights ([18], Definition 5.3.24) is impor-
tant. These are weights of the form

� = (

xz }| {
1
2; : : : ;

1
2;

yz }| {
�1

2; : : : ;�
1
2):

Then� is small,i.e.�0 = � and it corresponds to a�0 in the split group O(n+1; n)
as well as O(n; n+ 1). Specifically� corresponds to�0 for O(n+ 1; n) with

�0 = (0; : : : ;0; 1)
 (

rz }| {
1; : : : ;1;0; : : : ;0;")

with

(r; ") =

8>>><
>>>:
(y;1) 0 6 y 6

�
n

2

�

(x;�1)
�
n+ 1

2

�
6 y 6 n:

On the other hand it goes to�0 for O(n; n+ 1) with

�0 = (

rz }| {
1; : : : ;1;0; : : : ;0;")
 (0; : : : ;0; 1)

with

(r; ") =

8>>><
>>>:
(x;1) 0 6 x 6

�
n

2

�

(y;�1)
�
n+ 1

2

�
6 x 6 n:

3. Discrete series

A genuine discrete series representation� of fSp(2n) is determined by its Harish-
Chandra parameter�. In coordinates we write

� = (a1; : : : ; ak; b1; : : : ; b`) 2 it
�
0; (t as in 1:9)

with a1 > � � � > ak > 0> b1 > � � � > b`; ai; bj 2 Z+ 1
2 andai + bj 6= 0 for all

i; j. Then� has lowestK-type�+ �(�+)�2�c(�+) where�+ is the system for
which� is dominant.

The genuine limits of discrete series forfSp(2n;R) are obtained by allowing�
to be singular with respect to a set of simple noncompact roots. Explicitly these
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representations are parametrized by pairs(�+; �)where� is dominant with respect
to the roots in�+: In coordinates it is of the form

(

m1z }| {
a1 : : : ; a1;

m2z }| {
a2 : : : ; a2; : : : ;

mrz }| {
ar : : : ; ar;

nrz }| {
�ar : : : ;�ar; : : : ;

n2z }| {
�a2 : : : ;�a2;

n1z }| {
�a1 : : : ;�a1)

with ai 2 Z+ 1
2, a1 > � � � > ar > 0, andjmi � nij 6 1 for all i: The lowest

K-type of� has the same form as for discrete series,�+ �(�+)� 2�c(�+):
Similarly a discrete series representation of SO(p; q) is given by its Harish-

Chandra parameter� = (a1; : : : ; ap0; b1; : : : ; bq0) with ai; bj 2 Z+ 1
2 satisfying

a1 > � � � > ap0 > 0; b1 > � � � > bq0 > 0; ai 6= bj 8i; j. Assume for the moment
thatp is odd andq is even. The lowestK 0-type� = �+ �(�+) � 2�c(�+) is of
the form

� = (x1; : : : ; xk;0; : : : ;0;�1)
 (y1; : : : ; yq0;�1) xk; yj 2 Z> 0:

The second�1 has no effect sinceyq0 > 0. The two representations given by the
first�1 have the same restriction toS(O(p)�O(q)) since sgn
sgn of O(p)�O(q)
is trivial on this subgroup. Passing to O(p; q) we obtain the following Lemma.

LEMMA 3.1. The discrete series representations� of O(p; q) are parametrized by

� = (�0; ") = (a1; : : : ; ap1; b1; : : : ; bq0; ")

with a1 > � � � > ap0 > 0;b1 > � � � > bq0 > 0;ai; bj 2 Z+ 1
2, andai � bj 6= 0 for

all i; j. Here� is determined by its Harish-Chandra parameter�0 and its lowest
K 0-type� which is of the form

� =

8>>>><
>>>>:

(x1; : : : ; xp0;1)
 (y1; : : : ; y`;0; : : : ;0;") (xp0 > 0)

p even, q odd

(x1; : : : ; xk;0; : : : ;0;") 
 (y1; : : : ; yq0;+1) (yq0 > 0)

p odd, q even.

(3.2)

The genuine discrete series ofeO(p; q) are obtained by tensoring the discrete
series of O(p; q) with �, so we use the same parameters.

We will refer to � = (�0; ") as a Harish-Chandra parameter for O(p; q) oreO(p; q). The limits of discrete series are parametrized as forfSp(2n;R), by pairs
(�+; �) where�0 is�+-dominant and�0 of the form

(

m1z }| {
a1 : : : ; a1;

m2z }| {
a2 : : : ; a2; : : : ;

mrz }| {
ar : : : ; ar;

n1z }| {
a1 : : : ; a1;

n2z }| {
a2 : : : ; a2; : : : ;

nrz }| {
ar : : : ; ar)
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with ai 2 Z+ 1
2, a1 > � � � > ar > 0, andjmi � nij 6 1 for all i. Again� is of the

form (3.2).

THEOREM 3.3.Fix  and � = �1. (1) Let � be a genuine discrete series rep-
resentation offSp(2n) with Harish-Chandra parameter�. Choosep; q so that�
occurs in the orbit correspondence for the dual pair(Sp(2n;R);O(p; q)). Recall
(Lemma1.14)p; q is uniquely determined, subject to(�1)q = �.

Let �0 = O(�) be a corresponding element ofso(p; q)�. Then� occurs in
the representation correspondence witheO(p; q), and�p;q(�) is the discrete series
representation with Harish-Chandra parameter(�0;+1). Furthermore� does not
occur in the correspondence for any othereO(r; s) (with (�1)s = �).

If � is the lowestfK-type of�, then� is of lowestp; q-degree, andH(�) is the
lowestfK 0-type of�0.

Conversely every discrete series ofeO(p; q) with Harish-Chandra parameter
(�;+1) corresponds to a discrete series offSp(2n), and those of the form(�;�1)
do not occur in the correspondence.

(2) The same results as in(a) holds for limits of discrete series, where if� is
given by data(�+; �) then�p;q(�) is given by(O(�+); (O(�); 1)).

Explicitly (cf. 1.13) let =  a with a > 0, and suppose� = (a1; : : : ; ap0;

b1; : : : ; bq0)with a1 > � � � > ap0 > 0> b1 > � � � > bq0. Thenp = 2p0+1; q = 2q0

or p = 2p0; q = 2q0 + 1 and

�0 = ((a1; : : : ; ap0;�bq0; : : : ;�b1);+1):

Theorem 3.3 will be proved in Section 9.

Note.The minimalK-type of a discrete series representation or a limit of discrete
series is unique, and such a representation is determined by its minimalK-type.
This follows from [6] or in our case from the results of Section 6.

4. Standard modules

We use the version of the Langlands classification of [21], which is valid for
disconnected and non-linear groups of Harish-Chandra’s class. Throughout this
sectionG will denote O(p; q) (p = 2n+ 1) or Sp(2n;R), with maximal compact
subgroupK and covering groupseG andfK.

We first considerG = O(p; q). LetH = TA be a�-stable Cartan subgroup of
G. Recall from Section 1 thatH is isomorphic to

(C � )m � (S1)r � (R� )s �Z (4.1a)
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with 2m + s 6 min(p; q), Z the center of O(p; q). The centralizerM of A is
isomorphic to

GL(1;R)s �GL(2;R)m �O(p0; q0);

(p0 = p� s� 2m; q0 = q � s� 2m)
(4.1b)

and the inverse imagefM of M in eO(p; q) is isomorphic to

GL(1;R)s �GL(2;R)m � eO(p0; q0)[n]: (4.1c)

For inducing data onfM we take an irreducible representation� = �


� of fM .
Here� = �1
 � � � 
 �s is a product of characters,
 = 
1
 � � � 
 
m is a product
of relative limits of discrete series representations and� is a limit of discrete series
representation ofeO(p0; q0). The restriction of� to A is a multiple of a character
�; choose a parabolic subgroupeP = fMN so that Reh�; �i > 0 for all roots�
of a in n.

Thestandard modulefor eO(p; q) associated to this data is

X( eP ; �) = Ind
eO(p;q)eMN

(�) (4.1d)

(here and elsewhere we extend� to fMN trivially on N ). This has the same
type as does� . If (fM;�) also satisfy condition (F-2) of [21], which we make
explicit in Lemma 4.3, then this module has a unique irreducible quotient, and
every irreducible representation is obtained this way. The data(fM;�) are unique
up to conjugation byfK and will be calledinducing datafor �:

We next describe standard modules for genuine representations offSp(2n;R).
Recall from Section 1 that a Cartan subgroupH of Sp(2n;R) is isomorphic to

(C � )m � (S1)r � (R� )s (r + s+ 2m = n) (4.2a)

in which caseM is isomorphic to

GL(1;R)s �GL(2;R)m � Sp(2s;R): (4.2b)

Let

M =gGL(1;R)s �gGL(2;R)m � fSp(2s;R): (4.2c)

For inducing data we take� = � 
 
 
 � with � = �1 
 � � � 
 �s a product of
genuine characters,
 = 
1
� � �

m a product of genuine relative limits of discrete
series representations, and� a genuine limit discrete series representation. Then�

factors to a genuine representation� of fM; and every genuine representation� of
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fM comes from a unique suche�: ChoosingN satisfying the positivity condition as
above, the standard module associated to the data(M;�) or (fM;�) is

X( eP ; �) = Ind
eSp(2n;R)eMN

(�): (4.2d)

It has the same properties as in the case ofeO(p; q). We freely pass back and forth
between(M;�) and(fM;�) without further comment.

Condition (F-2) of [21] foreO(p; q) andfSp(2n;R) is made explicit as follows.
Fix a genuine character� of gGL(1), and write

�i(x; ") = jxj
�i sgn(x)�i �

(
1 eO(p; q)
�(x; ") fSp(2n;R):

(4.2e)

A limit of discrete series representation of GL(2;R) is parametrized by(k; �) with
k 2 N and� 2 C ; the lowestK-type of this representation has highest weight
k + 1 for O(2): The genuine limit of discrete series representations ofgGL(2;R)
are parametrized the same way by tensoring with�(det); this is independent of�
since for such a representation� 
 sgn' �.

LEMMA 4.3. LetG = eO(p; q) or fSp(2n;R) as before. The data(fM;�) satisfy
condition(F-2)of [21] if and only if

(1) For eachGL(2;R)-factor,� = 0 impliesk 2 Z,
(2) �i = ��j implies�i = �j .

In this case,X( eP ; �) has a unique irreducible quotient.

We will prove this in Section 7.
We also use character data for these groups as described in [21], which refers

to [18, 20]. Unexplained notation is as in [21].
A limit characterfor eG is a pair( eH; 
). Here eH is a Cartan subgroup ofeG, and


 is a triple

(	;�; 
) (4.4a)

consisting of a positive system	 for the imaginary roots ofh in g, a character
� of eH, and an element
 of h

�. These must satisfy two conditions. First of all
h�; 
 i > 0 for all � 2 	, andd� = 
 + �(	)� 2�c(	).

A limit character is calledfinal if in addition it satisfies the following two
conditions. First of all if� is a simple root of	 then

h�; 
 i = 0 implies� is non-compact: (4.4b)

Secondly if� is a real root ofh in g then

h�; 
 i = 0 implies�(m�) 6= "� (4.4c)
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for m� 2 H and"� = �1 as in [18, 8.3.11],i.e. � does not satisfy the parity
condition. We will make condition (4.4c) explicit and relate this data to inducing
data in Section 6.

Attached to a final limit character
 is a standard moduleX(
) which has an
irreducible quotientX(
), and thefK-conjugacy classes of final limit characters
thereby parametrize the admissible dual ofeG. The central character ofX(
) is the
restriction of� to the center ofG; in particularX(
) is genuine if and only if� is
genuine.

5. Main results

We consider the dual pairs(eO(p; q);fSp(2n;R)) with p+ q = 2n+ 1. Throughout
this section we fix� = �1, and a nontrivial additive character of R. Recall
(1.2) � = �( ) is a genuine character ofgGL(m;R) for anym. Also recall for
V an orthogonal space of signature(p; q), the genuine character�V = �( ; V )

of gGL(m;R) satisfies�V = �( )�p+q. We write �p;q = �( ; p; q) for the �-
correspondence as in (1.3).

THEOREM 5.1.Let � be a genuine irreducible representation offSp(2n), with
inducing data(cf. Section 4)

M =gGL(1;R)s �gGL(2;R)m � fSp(2r;R) � = �
 � 
 �:

By Theorem3.3, there existp0; q0 satisfyingp0+q0 = 2c+1 and(�1)s = �(�1)m;
such that� is in the domain of�p0;q0 . Let� = �p0;q0(�):

Let p = a + 2b + p0; q = a + 2b + q0. Thenp + q = 2n + 1; (�1)q = �,
�p;q(�) 6= 0 and� is in the domain of�p;q: The inducing data for�p;q(�) are given
by

fM 0 = GL(1;R)s �GL(2;R)m � eO(p0; q0)[n]
�0 = ���V 
 �

��V 
 �
0

In these formulas,���V means��1�V 
 � � � 
 �
�
k�V ; similarly for �, and�0 is

given by

�0 =

8><
>:
� a even,

�� a odd, n even,

���1 a odd, n odd.

Note. To define�0 in Theorem 5.1 we have identified the GL(1) and GL(2) factors
of M andM 0 as in Section 1.

We summarize some useful properties of this correspondence which follow
immediately from Theorem 5.1 and its proof.
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COROLLARY 5.2.

(1) Let� be a lowestfK-type of�. Then� is of lowestp; q-degree in�.
(2) p; q are the unique choice with(�1)q = � andHp;q(�) 6= 0.
(3) Let� be a minimalfK-type of�, and write the element�G(�) of t associated

to � by the Vogan algorithm(cf. Section6) as

�G(�) = (�1; : : : ; �r;

tz }| {
0; : : : ;0; �1; : : : ; �s)

with �1 > � � � > �r > 0 > �1 > � � � > �s. Thenp; q = 2r + t+ 1;2s+ t or
2r + t;2s+ t+ 1.

(4) �0 = Hp;q(�) is a lowestfK 0-type of�0. In particular �0 has multiplicity one
in �0 and the standard module of�0.

(5) Hp;q defines a bijection between the lowestfK-types of� and the lowestfK 0-
types of�0.

(6) A representation� offSp(2n;R) occurs in the correspondence for the dual pair
(Sp(2n;R);O(p; q)) if and only if some(equivalently every) minimalfK-type
� is p; q-harmonic.

(7) A representation�0 of eO(p; q) occurs in the correspondence if and only if some
(equivalently every) minimalfK 0-type is harmonic.

A comment is also in order due to our choice of coverings of orthogonal
groups (Section 1). The groupeO(p0; q0) in fM 0 is eO(p0; q0)[n], while � is defined oneO(p0; q0)[c]. Sincen� c � amod(2), there is an identification in the definition of
�0 if a is odd. Strictly speaking it should read�0 = (��)� (n even) or�0 = (��)��1

(n odd) where� is the genuine character 1
sgn of the trivial cover O(r; s)�Z=2Z
of O(r; s) (cf. 1.2).

Let SO(p; q)b be the admissible dual of SO(p; q), i.e. the set of equivalence
classes of irreducible admissible Harish-Chandra modules for SO(p; q), and letfSp(2n;R)bgenuinebe the genuine admissible dual offSp(2n;R).

COROLLARY 5.3.Fix � and . Then the representation correspondence gives a
bijection

fSp(2n;R)bgenuine
1�1
 ��!

[
p+q=2n+1
(�1)q=�

SO(p; q)b:

More precisely, if� is a genuine irreducible representation offSp(2n); let �00 =
�( ; p; q)(�) be the�-lift of � to eO(p; q) for the unique choice ofp; q for which
this is non-zero. Then�00 
 �

�1 factors to O(p; q), and let�0 be the restriction to
SO(p; q). Then�! �0 gives one direction of the bijection.

Conversely if�0 is an irreducible representation of SO(p; q), extend�0 to an
irreducible representation of O(p; q) (there are two such choices), and tensor with
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44 JEFFREY ADAMS AND DAN BARBASCH

�. Precisely one such choice of representation�00 is in the domain of�( ); let
� = �( )(�00).

6. Some calculations

In this section we do some calculations involvingK-types. The main results are
Propositions 6.1, 6.18, 6.21 and 6.29. Throughout this section we fix =  a with
a > 0 (cf. Section 1).

Let� be aK-type for a groupG. Proposition 5.3.3 of [18] produces an element
� 2 t

� wheret is a fundamental Cartan subalgebra ofg. We refer to this map as the
Vogan algorithm, and denote it�! V(�) = �.

PROPOSITION 6.1.Let� be afK-type forfSp(2n), and suppose� isp; q-harmonic.
Then the following diagram is commutative

Sp(2n) O(p; q)

�
H
- �0

�

V

?

O
- �0
?

V

A small but useful observation is that for the purposes of computation it is better
to compute the inverse ofV, i.e. the multi-valued map�!�. With this in mind we
summarize some standard theory [6, 18].

LetG be a reductive group with a compact Cartan subgroupTc. We usetc as a
fixed complex Cartan subalgebra ofg (an ‘abstract’ Cartan subalgebra in the sense
of [19]). Let �1; : : : ; �k be a set of strongly orthogonal non-compact roots oftc

in g. Associated to this set is aG-conjugacy class of Cartan subgroups ofG. We
chooseH in this conjugacy class, and writingH = TA as usual we may and do
assumet � tc, andt� � t

�
c .

The Cartan involution ofg carried back totc via a Cayley transform gives an
involution� of tc. Let
 = (�; �) 2 it�c;0� t

�
c satisfying�(�) = � and�(�) = ��.

Then the Cayley transform identifies� (resp.�) with an element ofit�0 (resp.a�),
and
 with an element ofh�.

Let � be an irreducible representation ofG with character data(H; 
) =
(	;�; 
) (cf. Section 4). Write
 = (�; �) with � 2 t

�
c , and letq = q(�) = l � u

be the�-stable parabolic subalgebra ofg defined by� ([18], Definition 5.2.1). The
normalizerL of q in G is quasi-split. The minimalK-types of� are of the form

� = �+ �(u \ p)� �(u \ k) + �L (6.2)

for some fineL \K-type�L.
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Proof of Proposition6.1. Let eG = fSp(2n;R); eG0 = eO(p; q), etc., with maximal
compact subgroups and compact Cartan subgroups chosen as in Section 2. Given
�, let� = X(
) be an irreducible representation with lowestfK-type�. Then
 =
(�; �)with � = V(�) 2 t

�
c . By the above discussion� = �+�(u\p)��(u\k)+�L.

To avoid covering groups we work on the Lie algebras whenever possible.
After conjugating byW (tc; g) we may write

� = (

x1z }| {
�1; : : : ; �1; : : : ;

xrz }| {
�r; : : : ; �r;

m0z }| {
0; : : : ;0;

yrz }| {
��r; : : : ;��r; : : : ;

y1z }| {
��1; : : : ;��1) (6.3)

with �1 > � � � > �r > 0;xi; yi > 0:
The finek \ l0-types�L for l0 '

Qr
i=1 u(xi; yi) � sp(2m0;R) are described as

follows. If xi 6= yi then�L is trivial on this factor. Ifxi = yi, then�L is trivial, or
has highest weight

�(

xiz }| {
1
2; : : : ;

1
2;

yiz }| {
1
2; : : : ;

1
2); (6.4a)

on this factor. Finally onsp(2m0;R); �L has highest weight of the form

(1; : : : ;1;0; : : : ;0) or (0; : : : ;0;�1; : : : ;�1) (6.4b)

or

(

uz }| {
1
2; : : : ;

1
2;

vz }| {
�1

2; : : : ;�
1
2): (6.4c)

In the case of a genuine representation� of fSp(2n;R); �L will have form (6.4c)
on this factor.

A straightforward computation now gives

� = (

x1z }| {
�1; : : : ; �1; : : : ;

xrz }| {
�r; : : : ; �r;

m1z }| {ex� ey + 1
2; : : : ; ex� ey + 1

2;

m2z }| {ex� ey � 1
2; : : : ; ex� ey � 1

2;

yrz }| {
�r; : : : ; �r; : : : ;

y1z }| {
�1; : : : ; �1): (6.5a)
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Here

exk = kX
i=1

xi; eyk = kX
i=1

yi;

�i = �i + (exi�1� eyi�1) +
1
2(xi � yi) +

1
2 +

"i

2
("i = 0;�1);

�i = ��i + (exi�1� eyi�1) +
1
2(xi � yi)�

1
2 +

"i

2
;

"i =

(
�1 xi = yi and �i 2 Z+ 1

2

0 otherwise;

(6.5b)

andm1 andm2 are any non-negative integers withm1 + m2 = m0. We setex = exr; ey = eyr.
We now let�0 = O(�), and do the corresponding calculation on the orthogonal

group. It follows from Proposition 2.2 that� isp; q-harmonic withp = 2x+m0+1,
q = 2y +m0 or p = 2x+m0, q = 2y +m0 + 1. We consider only the first case,
the second is similar.

From 1.13 we have

�0 = (

x1z }| {
�1; : : : ; �1; : : : ;

xrz }| {
�r; : : : ; �r;

m+0z }| {
0; : : : ;0;

y1z }| {
�1; : : : ; �1; : : : ;

yrz }| {
�r; : : : ; �r;

m�

0z }| {
0; : : : ;0) (6.6)

with m+
0 = [(m0 + 1)=2] andm�

0 = [m0=2].
As before withq0 = q

0(�0) = l
0 � u

0

�0 = �0 + �(u0 \ p
0)� �(u0 \ k

0) + �L0 : (6.7)

We assume first thatm0 is even, and compute

�0 = (

x1z }| {
�01; : : : ; �

0
1; : : : ;

xrz }| {
�0r; : : : ; �

0
r;

m1z }| {
0; : : : ;0)


(

x1z }| {
�01; : : : ; �

0
1; : : : ;

xrz }| {
�0r; : : : ; �

0
r;

m2z }| {
0; : : : ;0) + �L0 : (6.8a)

Here

�0i = �i �
p� q

2
+ (exi�1� eyi�1) +

1
2(xi � yi) +

1
2;

�0i = �i +
p� q

2
+ (eyi�1� exi�1) +

1
2(yi � xi) +

1
2:

(6.8b)
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Now l
0
0 '

Qr
i=1 u(xi; yi) � o(m0 + 1;m0), and on the unitary group factors fine

k
0 \ l

0
0-types are as in (6.4a). On O(m0+ 1;m0); the fineL0 \K 0 type�L0 is of the

form

(0; : : : ;0;�) 
 (

sz }| {
1; : : : ;1;0; : : : ;0;"): (6.9)

A similar statement holds foreO(m0 + 1;m0), upon tensoring with�.
It follows from Proposition 2.1 that if� is anyfK-type forfSp(2n;R) of the form

(6.2), then�0 = H(�) is of the form (6.7). In (6.7) we take�L0 to be the same as
�L on the unitary group factors, and on O(m0 + 1;m0) it is given by (6.9) with

(�; s; ") =

(
(+1;m2;+1) 0 6 2m2 6 m0

(+1;m1;�1) m0 < 2m2 6 2m0:

The other case(p = 2x + m0) is similar. This completes the proof of Proposi-
tion 6.1. 2

PROPOSITION 6.10. (a)Let� = X(
) be an irreducible genuine representation
of fSp(2n;R). Write
 = (�; �) and� as in (6.3), and letq = q(�) = l � u: Then
the lowestK-types ofX(
) are of the form

� = �+ �(u \ p)� �(u \ k) + �L

such that all the possible�L have the same restriction tosp(2m0;R): Thus�L is
trivial except onsp and on factorsu(xi; yi) of l0 with xi = yi and�i 2 Z+ 1

2.
(b) The analogous statement holds foreO(p; q):
Proof.This follows from the preceding discussion, and the following Lemma.

LEMMA 6.11. Let � be a genuine principal series representation offSp(2n;R)
or eO(n+ 1; n): Then� contains a unique fineK-type.

Proof. ForfSp(2n;R); letA = (fR�)n as in Section 1. We consider�as a character
of A. Write

� = jxj�i sgn(x)�i��1

on theith factor(�i 2 C ; �i = 0;1). Let n1 =
P

i �i, andn0 = n � n1. Then by
Frobenius reciprocity

(

n0z }| {
1
2; : : : ;

1
2;

n1z }| {
�1

2; : : : ;�
1
2)

is the unique fineK-type in the corresponding induced representation.
The proof foreO(p; q) is similar. We omit the details. This completes the proof

of Proposition 6.10. 2
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We now describe character data in more detail, and relate this to inducing data
(cf. Section 4). Let( eH; 
) be a limit character forG = fSp(2n;R): As in (6.3)
write

� = (

x1z }| {
�1; : : : ; �1; : : : ;

xrz }| {
�r; : : : ; �r;

m0z }| {
0; : : : ;0;

yrz }| {
��r; : : : ;��r; : : : ;

y1z }| {
��1; : : : ;��1); 2�i 2 Z: (6.12a)

and corresponding to this write

� = (�1
1; : : : ; �

x1
1 ; : : : ; �

1
r; : : : ; �

xr
r ; �1; : : : ; �m0;

�1
r ; : : : ; �

yr
r ; : : : ; �

1
1; : : : ; �

y1
1 ): (6.12b)

For anyi; (because we may conjugate by the stabilizer of� in K) we may assume
�
j
i = �

j
i for all j 6 min(xi; yi): For the parameter to be genuine, we also need

xi 6= yi ) �i 2 Z+
1
2, xi > yi ) �xii = 0, andyi > xi ) �

yi
i = 0:

For eachi let

`i =

(
xi = yi �i 2 Z;

jfj 6 min(xi; yi) j�
j
i 6= 0gj �i 2 Z+ 1

2;

x0i = xi � `i; y0i = yi � `i; ti = x0i + y0i:

(6.13a)

Then set

` =
X
i

`i; t =
X
i

ti: (6.13b)

LetH be the covering group ofH defined in Section 1, and letM; fM andM
be as in Section 4. In factH andM are determined by
: H is isomorphic to

g(R� )m0
� (C � )` � gU(1)t

andM is isomorphic to

gGL(1)m0 �gGL(2)` � fSp(2t;R):

(ThatH is so determined is due to the condition that
 satisfies condition (4.4b);
see the proof of Proposition 6.15.)

Now 
 determines a (relative) discrete series representation� of M , explicitly
described as follows. For eachi there arè i limits of (relative) discrete series
representations ofgGL(2), all with lowestK-type(2�i+1)�, and the center acting

by jdetj�
j

i .
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On fSp(2t;R) there is a limit of discrete series representation with Harish-
Chandra parameter

(

x01z }| {
�1; : : : ; �1; : : : ;

x0
rz }| {

�r; : : : ; �r;

y0
rz }| {

��r; : : : ;��r; : : : ;

y01z }| {
��1; : : : ;��1): (6.14a)

The positive imaginary roots on this factor are the corresponding restriction of	.
The character� of eH satisfiesd� = 
 + �(	)� 2�c(	). Thus� is determined

by 
 and	 except on the cover of theR� factors. We consider� as a character
of H, genuine on each factor for which the cover is non-trivial (so� factors to a
genuine character ofeH). Fori = 1; : : : ;m0 write� on the corresponding factor offR� as

�(x; ") = jxj�i sgn(x)�i�(x; ")�1: (6.14b)

PROPOSITION 6.15.( eH; 
) satisfies condition(4.4b)if and only if�i = ��j )
�i = �j .

Proof. Supposeh�; 
 i = 0. If � is a long root and
 is data for a genuine
representation, then�(m�) = �i, and (4.4b) is immediate for these roots. If� is
a short root on a factor ofC � then a straightforward calculation shows that (4.4b)
holds if and only if�i 2 Z. This is taken care of by our choice ofH: the short
real roots for which�(
) = 0 and�i 2 Z+ 1

2 are imaginary. If� is a short real
root on the factors ofR� then a similar calculation shows (4.4b) is equivalent to the
condition stated in the Proposition.

The preceding steps may be reversed to express character data in terms of
inducing data. 2

We turn next to an orthogonal group O(p; q) = O(2p0+1;2q0): Let
 be a limit
character, and write

� = (

x1z }| {
�1; : : : ; �1; : : : ;

xrz }| {
�r; : : : ; �r;

m+0z }| {
0; : : : ;0)


(

y1z }| {
�1; : : : ; �1; : : : ;

yrz }| {
�r; : : : ; �r;

m�

0z }| {
0; : : : ;0) (6.16a)

as in (6.6). Then write the real part of the parameter as

� = (�1
1; : : : ; �

x1
1 ; : : : ; �

1
r; : : : ; �

xr
r ; �1; : : : ; �m+0

)


(�1
1; : : : ; �

y1
1 ; : : : ; �

1
r ; : : : ; �

yr
r ; �m+0 +1; : : : ; �m+0 +m

�

0
): (6.16b)

The corresponding Cartan subgroupH of SO(p; q) is isomorphic to

(R� )m
+

0 +m
�

0 � (C � )` � U(1)t
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50 JEFFREY ADAMS AND DAN BARBASCH

wherè andt are defined as in the previous case (cf. (6.12c)). Again� is determined
by 
 except on the copies ofR� . Write�(x) = jxj�i sgn(x)�i on these terms.

LEMMA 6.17. 
 satisfies condition(4.4b)if and only if�i = ��j ) �i = �j .
Proof. If � is a short root thenm� = 1 and"� = �1 [18, 8.3.8 and 8.3.11]. The

first fact comes down to the isomorphism SO(2;1) ' PGL(2;R), and the second
from a straightforward calculation that the integersdi of [18, 8.3.9] are even. Thus
(4.4b) is automatic for these roots. The proof for the other roots is the same as for
the symplectic group. We omit the details. 2

This result extends in the obvious way to O(p; q) andeO(p; q).
PROPOSITION 6.18.Let eG = fSp(2n;R) or eO(p; q) and let

IndeGeMN
(�) (6.18a)

be a standard module foreG (cf. Section4). Let� be a minimalfK-type of(6.18),
and suppose� is p; q-harmonic. Let�M be the(unique) minimal gK\gM -type of
�. Thendegp;q(�) = degp;q(�M ), and�M is contained in the restriction of� togK\gM .

Proof. We first considereG = fSp(2n;R): Write V(�) = � as in (6.3),� as
in (6.5a), and other notation as in (6.5b). By the proof of Lemma 6.11 we have
m1 =

P
i �i with � written as in (6.13).

Thenp = 2ex+m0 + 1, q = 2ey +m0 or p = 2ex+m0, q = 2ey +m0 + 1. We
consider only the first case, the second is similar. Letz = (p� q)=2 = ex� ey + 1

2.
By Proposition 2.1, degp;q(�) =

P
i xij�i � zj+

P
i yij�i � zj+m2.

It is not hard to see that�i � z > 0 > �i � z. This implies the degree of� is
the sum of the following terms

=
X
i

`i(2�i + 1) (6.19a)

+
X
i

x0i(�i � z) (6.19b)

�
X
i

y0i(�i � z) (6.19c)

+m2 (6.19d)

On the other hand with� described preceding Proposition 6.15 we compute the
lowestgK\gM -type�M of �. We pull this back to the groupM . The degree of�M
is the sum of the degrees of the factors. With notation as in (6.13), on each of the
`i factors of typegGL(2); the degree of�M is 2�i + 1: This contributesX

i

`i(2�i + 1) (independent of"i) (6.20a)
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to the degree of�M :
On thefSp(2t;R) factor,� is a limit of discrete series representation with Harish-

Chandra parameter� given by (6.14a). Defineex0; ey0; �0i etc. by applying (6.5b).
Then�M on this factor is(2ex0 + 1;2ey0)-harmonic. Withz0 = (2ex0 + 1� 2ey0)=2;
we see that the degree of�M is the sum ofX

i

x0ij�
0
i � z

0j; (6.20b)

X
i

y0ij�
0
i � z

0j: (6.20c)

By (6.13a)x0i � y0i = xi � yi for all i. Therefore by (6.5),ex0i � ey0i = exi � eyi,
�0i = �i, and�0i = �i for all i. Also ex0 � ey0 = ex� ey and soz0 = z. It follows that
(6.20b) (resp. (c)) equals (6.16b) (resp. (c)).

Finally on eachgGL(1) factor, the degree is�i, which gives a contribution of

m2 (6.20d)

to the degree of�M : Comparing (6.16) to (6.20) we conclude that deg(�) =
deg(�M ). This calculation also shows that the highest weight of�M is the same as
the highest weight of� (independent of the choice of�), proving the last claim of
the Proposition in this case.

The proof for eO(p; q) is similar. We won’t use this fact, and so we leave the
details to the reader. 2

PROPOSITION 6.21.Let � be a lowestfK-type of an irreducible genuine repre-
sentation� of fSp(2n;R), and choosep; q so that� is p; q-harmonic. Then� is of
lowestp; q-degree in�, and in the standard module of�.

Proof.Obviously it is enough to prove the second claim. We use notation as in
the proof of Proposition 6.18. In particular write� = X(
), � as in (6.3) and� as in
(6.5a). Letp; q andz be as in the proof of Proposition 6.18, and write deg= degp;q.
For anyk-tuple write degz(x1; : : : ; xk) =

P
i jxi � zj. With ex; ey;m0 as in (6.5)

(computed for�), write anyfK-type
 as


 = (
+; 
0; 
�) = (a1; : : : ; aex; c1; : : : ; cm0; b~y; : : : ; b1): (6.22)

Then deg(
) = degz(
+) + degz(
0) + degz(
�). By (6.5a)� satisfies

�1; : : : ; �ex > z > �~y; : : : ; �1: (6.23)

The standard moduleX(
) may be realized as a derived functor module from the
parabolic subalgebraq = q(�) of g [18]. By the generalized Blattner formula ([18],
Theorem 6.3.12) the highest weight of anyfK-type�0 of � may be written

�0 = �+
X
�

m�� (m� > 0); (6.24)
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where the sum runs over the roots oftc in l andu \ p, and� is a lowestfK-type of
�. Furthermore if the sum is restricted to roots inl, then the resulting weight is the
highest weight of agK\gL-type in the corresponding principal series representation
XL(
) of eL.

In our coordinates these roots are those in the following table

"i � "j 1 6 i; j 6 ex; (6.25a)

�"i � "j ex+m0 < i; j 6 n; (6.25b)

�("i + "j) 1 6 i 6 ex; ex+m0 < j 6 n; (6.25c)

"i + "j ;2"i 1 6 i 6 ex < j 6 ex+m0; (6.25d)

�"i � "j ;�2"j ex < i 6 ex+m0 < j 6 n; (6.25e)

�"i � "j ;�2"j ex < i; j 6 ex+m0: (6.25f)

These roots also satisfy

h�; �i > 0; and if h�; �i > 0 then� is not of the form"i � "j :

LEMMA 6.26. If 
 is anyk-tuple satisfying(6.23), then

deg

0
@
 +X

a;b;c

m��

1
A > deg(
)

for anym� > 0. Here
P

a;b;c denotes a sum over roots of the form(6.25a,b,c).
Proof.Adding roots of the form"i+ "j and�"i� "j of type (6.25a–b) changes


 to a 
0 satisfying (6.23) and such that deg(
0) > deg(
); with equality if and
only if all m� = 0: So we may as well assume that no such roots occur. Then


 +
X
a;b;c

m��

= (: : : ; ai + ki + �i; : : : ; : : : ; c1; : : : ; cm0; : : : bj + `j + �j ; : : :)

where
P
ki =

P
lj and

P
�i =

P
�j = 0: ThenX

jai + �i + ki � zj+
X
jbj + �j + `j � zj

>

X
(ai � z + �i + ki) +

X
(z � bj � �j � `j)

=
X

(ai � z) +
X

(z � bj):

The claim follows. 2
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Lemma 6.26 applies to�+
P

d;e;f m��; and gives

deg(�0) > deg

0
@�+ X

d;e;f

m��

1
A : (6.27a)

The right-hand side of (6.27a) equals

degz

0
@
"
�+

X
d

m��

#
+

1
A+ degz

0
@
2
4�+ X

d;e;f

m��

3
5

0

1
A

+degz

 "
�+

X
e

m��

#
�

!
(6.27b)

> degz(�+) + degz

0
@
2
4�+ X

d;e;f

m��

3
5

0

1
A+X

d;e

m� + degz(��) (6.27c)

> degz(�+) + degz

0
@
2
4�+X

f

m��

3
5

0

1
A+ degz(��): (6.27d)

Here (d) follows from repeated applications of the inequality degz([
+�]0)+1 >
degz(
0) for any weight
 and� in (6.25d,e).

Separating the sum (6.24) into roots ofl andu \ p gives [� +
P

f m��]0 =

[� +
P

�2�(tc;l)m��]0, so by the discussion following (6.24) this is agK\gL-

type of a principal series representation offSp(2m0;R). This has (unique) lowestgK\gL-type

(

m1z }| {
1
2; : : : ;

1
2;

m2z }| {
�1

2; : : : ;�
1
2)

(cf. (6.5a)).

LEMMA 6.28. Let � be a minimal principal series representation offSp(2n;R),
containing the(unique) fineK-type

� = (

m1z }| {
1
2; : : : ;

1
2;

m2z }| {
�1

2; : : : ;�
1
2)

(cf. Lemma6.11). Then� is of lowestn+ 1; n-degree in�.
Proof.This follows easily from Frobenius reciprocity. We omit the details.2

Proposition 6.21 follows from (6.27d) and Lemma 6.28. 2
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54 JEFFREY ADAMS AND DAN BARBASCH

We only need part (1) of the next Proposition for the proof of the main results
in Section 5.

PROPOSITION 6.29.Let� be a lowestfK 0-type of an irreducible genuine repre-
sentation� of eO(p; q).
(1) If � is a discrete series representation then� is of lowest degree in�.
(2) For any�, assume� occurs in the space of joint harmonics. Then� is of lowest

degree in�.

Proof. We may safely ignore the covering groups, and for the remainder of this
section we letG = O(p; q) = O(2p0 + 1;2q0),K = O(p)�O(q), etc.

Let � be a discrete series representation ofG with Harish-Chandra parameter
� = (�0; ") (cf. Section 3) and lowestK-type�: Let�0 be anyK-type of�.

Suppose� is of the form

� = (a1; : : : ; ar;0; : : : ;0;") 
 (b1; : : : ; bq0; �) (6.30a)

for some 06 r 6 p0 (cf. Section 3). Write anyK-type 
 as
 = (
+; 
0; 
�)
with 
+ = (a1; : : : ; ar), 
� = (b1; : : : ; bq0; �) and
0 = (ar+1; : : : ; ap0; "). Then
deg(
) = deg0(
+)+deg(
0)+deg(
�) where the second and third terms are for
the groups O(p� 2r) and O(q) respectively.

It follows from the formula� = �0+�(u\ p)��(u\ p) that�0 may be written

�0 = (�1; : : : ; �r; p0� r �
1
2; : : : ;

3
2;

1
2;�1; : : : ; �q0): (6.30b)

By induction by stages ([18], Corollary 6.3.10) it follows that� may be realized
as a derived functor module forq = l � u with L ' U(1)q0+r �O(p� 2r), from
a one-dimensional representation�L of L. The O(p � 2r) component of�L is
the one-dimensional representation(0; : : : ;0;") realized on the spaceC " . By the
Blattner formula (6.24) it follows that

�0 = �+
X
�

m�� (6.31)

with � 2 u \ p.
The roots ofu \ p are (among those) of the form

�(ei � ej); ei + ej ; ej 1 6 i 6 r; p0 + 1 6 j 6 n (6.32a)

�"i + "j ; r + 1 6 i 6 p0; p0 + 1 6 j 6 n (6.32b)

As in (6.27a–c) it is immediate that

deg(�0) > deg

 
�+

X
b

m��

!
(6.33a)
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> deg(�+) + deg

0
@
"
�+

X
b

m��

#
0

1
A+ deg(��)

+
X
b

m�deg(��) (6.33b)

where the subscripts denote the roots of (6.32a,b). Noting that[�+
P

bm��]0 = �00;

it is enough to show

deg(�00) +
X
b

m� > deg(�0): (6.34)

This requires a refinement of the Blattner formula. We only consider the factor
O(p� 2r) of L. Let �; � 0 be the O(p� 2r) factor ofH0(u \ k; V�) andH0(u \ k;

V�0) respectively. These are the finite dimensionalL \K-modules with the same
highest weight as� and�0 respectively. It follows from [18, 6.3.12] (a sharpening
of (6.31)) that (withm =

P
bm�),

mult[� 0: � 
 Sm(u \ p)jO(p�2r)] > 0: (6.35)

Recall from Section 1 that we realized each representation of O(p � 2r) as the
highest weight factor in a representation ofU(p�2r). As a module for O(p�2r);
u \ p is isomorphic to a direct sum of copies of the standard module; thus it is a
module forU(p � 2r) as well. So we can decomposeSm(u \ p) with respect to
U(p� 2r) and then restrict to O(p� 2r):

It follows that the highest weight of any irreducible summand ofSm(u \ p), is
of the form

(c1; : : : ; cp�2r) with
X

ci = m; ci > 0 for all i;

when written as a weight forU(p� 2r):

LEMMA 6.36. Let �; � 0 be irreducible representations ofO(n), with � one-
dimensional. Let
 be an irreducible representation ofU(n) with highest weight
(c1; : : : ; cn), ci > 0. Suppose

mult[� 0: � 
 (
jO(n))] > 0:

Thendeg(� 0) +
Pn

i=1 ci > deg(�).
Proof. This is obvious if� is trivial, so assume� = sgn. Replacing� 0 with

� 0 
 sgn it is enough to show

mult[� 0: 
jO(n)] > 0) deg(� 0 
 sgn) +
X

ci > n: (6.37)
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Write � 0 = (a1; : : : ; ak;0; : : : ;0;"), so deg(� 0) =
P
ai + ((1� ")=2)(n � 2k).

If the multiplicity is greater than zero, then
 must contain a vector of weight
(d1; : : : ; dn) which is a highest weight vector for� 0: It follows that

di � dn+1�i = ai; i 6 k; (6.38a)

di � dn+1�i = 0; k + 1 6 i 6 [12n]; (6.38b)

di � dn+1�i �
1� "

2
mod(2); k + 1 6 i 6 [12n]; (6.38c)

d(n+1)=2 �
1� "

2
mod(2) if n is odd: (6.38d)

In addition, the relations
Pn

i=1 di =
Pn

i=1 ci anddi > 0 for all i; hold.
By (6.38a),di > ai > 1 for 16 i 6 k: Thus

kX
1

(ai + di) > 2k: (6.39)

If " = 1; then (6.37) becomes
Pk

1 ai +
Pn

1 di > 2k, which is immediate from
(6.38). Assume" = �1. We need to show

Pk
1(ai+di)+

Pn
k+1 di > n. By (6.38c)

and (6.38d), we getdi > 1 for k + 1 6 i 6 n� k: The assertion follows from this
together with (6.39). 2

This also completes the proof of Proposition 6.29(1). 2

Part (2) of the Proposition may be proved similarly, using an extensionion of
Lemma 6.36 to general� , and a version of Lemma 6.28 for O(p; q):Since we won’t
need it we omit the details, but we note that it is also an immediate consequence of
Theorem 5.1.

7. Occurence of the discrete series

In this section we prove that the entire genuine discrete series offSp(2n;R), and
half of the genuine discrete series ofeO(p; q), occur in the correspondence. We
assumep+ q = 2n+ 1 throughout, and fix . The arguments hold forp+ q = 2n
as well, recovering some of the results of [11]. We depart from our convention of
Section 1 and leteO(p; q) = O(p; q) if n is even, and we letfSp(2n;R) = Sp(2n;R)
when considering a dual pair(Sp(2n;R);O(p; q)) with p+ q even.

PROPOSITION 7.1. (1)Let � be a genuine discrete series representation offSp(2n;R). Then, for any� = �1, � occurs in the correspondence with someeO(p; q), (�1)q = �.
(2) Let� be a genuine discrete series representation ofeO(p; q). Then precisely

one of� and� 
 sgnoccurs in the correspondence withfSp(2n;R).
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This follows from a doubling of variables argument due to Kudla and Rallis.
The proof is divided into a series of Lemmas.

For an irreducible representation�offSp(2n;R) (resp.eO(p; q)), letRn;p;q denote
the maximal quotient of!n;p;q on whichfSp(2n;R) (resp.eO(p; q)) acts by a multiple
of � [5].

We embed Sp(2n;R) � Sp(2n;R) diagonally in Sp(4n;R): This induces a
natural mapfSp(2n;R)�fSp(2n;R)! fSp(4n;R): Similarly eO(p; q)� eO(q; p)maps
to eO(p+ q; p+ q).

LEMMA 7.2. (1) For any irreducible representation� of fSp(2n;R),

�p;q(�) 6= 0, HomeSp(2n;R)�eSp(2n;R)(R2n;p;q(11); � 
 �) 6= 0: (7.3a)

(2) For any irreducible representation� of eO(p; q),
�(�) 6= 0, HomeO(p;q)�eO(q;p)(Rn;p+q;q+p)(11); � 
 �) 6= 0: (7.3b)

Proof. We prove (1), the proof of (2) is similar. To conserve notation letG =fSp(2n;R), G0 = eO(p; q), and let!n be the oscillator representation for the dual
pair (G;G0). Then according to ([11], I.8),

HomG(!n; �) 6= 0, HomG�G0(!n; � 
 �
0) 6= 0 for some�0: (7.4a)

Thus if HomG(!n; �) 6= 0; then HomG�G�G0�G0(!n
!n; �
 �
 �
0
 �0) 6= 0:

Since�0 is a genuine representation ofeO(p; q), (�0)� ' �0
 sgnn. Therefore sgnn

is a quotient of�0 
 �0, which gives

HomG(!n; �) 6= 0) HomG�G��(G0)(!n 
 !n; � 
 � 
 sgnn) 6= 0; (7.4b)

where�(G0) is the diagonal subgroup ofG0 �G0. By Lemma 1.7 we may replace
!n 
 !n with !2n 
 sgnn: Thus the right-hand side of (7.4b) is equivalent to

HomG�G��(G0)(!2n; � 
 � 
 11) 6= 0

, HomG�G(R2n;p;q(11); � 
 �) 6= 0: (7.4c)

Thius proves one direction of the statement. On the other hand, if (7.4c) holds (i.e.
the right-hand side is nonzero), the same is true for (7.4b), and ignoring the�(G0)
action, we see that HomG�G(!n 
 !n; � 
 �) 6= 0. This is easily seen to imply
HomG(!n; �) 6= 0, proving the Lemma. 2

LetP =MN be the stabilizer of the Lagrangian subspaceL0 = he1; : : : ; e2ni,
and eP = fMN its inverse image infSp(4n;R). For � 2 Z=4Z we consider the
Harish-Chandra module of the induced representation

Ind
eSp(4n;R)eP (��): (7.5a)
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We are using normalized induction, so this representation is unitarily induced
and completely reducible. Similarly, forG0 = eO(p; q); we consider the induced
representation

Ind
eO(2n+1;2n+1)eP (�); (7.5b)

where the Levi component ofP =MN is isomorphic to GL(m); fM 'M�Z=2Z,
and� = 11
 sgn.

LEMMA 7.6. (1) For � = �1

Ind
eSp(2n;R)eP (��) '

M
p+q=2n+1
p�q=�

R2n;p;q(11):

(2)

Ind
eO(2n+1;2n+1)eP (�
 1) ' Rn;2n+1;2n+1(11)� (Rn;2n+1;2n+1(11)
 sgn):

Proof.Part (1) is proved in [9], and both (1) and (2) are in [24]. 2

LEMMA 7.7. (1) Let� be a genuine irreducible representation offSp(2n;R). Then
�p;q(�) 6= 0 for somep; q with (�1)q = � if and only if

HomeSp(2n;R)�eSp(2n;R)
[Ind

eSp(2n;R)eP (��); � 
 �] 6= 0;

for � = �(�1)n: (7.7a)

(2) For � an irreducible representation ofeO(p; q), �(�) 6= 0 or �(�
 sgn) 6= 0
if and only if

HomeO(p;q)�eO(q;p)[Ind
eO(2n+1;2n+1)eP (�); � 
 �] 6= 0: (7.7b)

Proof. This follows immediately from Lemmas 7.2 and 7.6.

LEMMA 7.8. Let � be the Harish-Chandra module of a genuine discrete series
representation offSp(2n;R) (resp. eO(p; q)). Then the space(7.7a) (resp. (b))is
non-zero.

Proof. The two cases are similar, so we treat onlyfSp(2n;R). Let X be the
variety of Lagrangian subspaces ofR

4n . ThenX ' fSp(2n;R)= eP : LetL2� I2n(�)
be theL2-induced version of (7.5a). This is realized onL2 sections of the induced
bundleB = fSp(4n;R) �eP (��) overX .

LetL = he1 + en+1; : : : ; en + e2n; f1 + fn+1; : : : ; fn + f2ni. Then the orbitO
ofL byG = Sp(2n;R)�Sp(2n;R) is open inX . LetH be the stabilizer ofL inG
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soO ' G=H. ThenH ' Sp(2n;R) is embedded inG ' Sp(2n;R) � Sp(2n;R)
via g! (g; �(g)) where� is the outer automorphism of Sp(2n;R) of 1.4. Let
Z ' Z=2Zbe the kernel of the covering mapfSp(2n;R)! Sp(2n;R). Passing to
the coverings we see that the map

O ' eG= eH!fSp(2n;R)=Z (7.9a)

given by(g; h; ") eH! (g�(h�1); ")Z is an isomorphism, and induces an isomor-
phism between the restriction ofB toO and

eG�Z � jZ : (7.9b)

Under this isomorphism the action ofeG onO becomes

(g; h; ") � (x; �)Z = (gx�(h�1); "�)Z

(g; h; x 2 Sp(2n;R)). Thus sections of the bundle (7.9b) are identified with
L2
�(
fSp(2n;R)), i.e. L2 functions onfSp(2n;R) transforming by� underZ, withfSp(2n;R) �fSp(2n;R) acting by conjugation twisted by� . Since� takes� to �� it

follows that the discrete spectrum of this space is precisely the sum of� 
 � where
� runs over the genuine discrete series representations offSp(2n;R).

Therefore there is a nonzero map

�:L2� I2n(�)
restriction

- L2
�(
fSp(2n;R))! � 
 �

intertwining the action offSp(2n;R) �fSp(2n;R), where the first map is restriction
of sections toO.

To complete the proof we need to replaceL2 � I2n(�) and� by their Harish-
Chandra modules. Let~K (resp.fK) be the maximal compact subgroup offSp(4n;R)
(resp.fSp(2n;R)). The restriction of the~K -finite functionsI2n(�) of L2 � I2n(�)

is a dense subspace of thefK � fK-finite functions onO. Therefore� restricted to
I2n(�) is nonzero. 2

Proof of Proposition7.1. Part (1), and the occurence of either� or � 
 sgn in
the correspondence in (2), is an immediate consequence of Lemma 7.8. The fact
that both� and� 
 sgn cannot occur in (2) was proved in Lemma 1.5. 2

8. Induction principle

In this section we turn to a more general setting and letV be an orthogonal space
of signature(p; q) andW be a symplectic space of dimension 2n, with no further
restrictions. Throughout this section we fix and let! be the corresponding
oscillator representation for the dual pair(O(V );Sp(W )).
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Suppose we are given a decomposition

W =W+
1 � � � � �W

+
r �W

0�W�
1 � � � � �W

�
r ; (8.1a)

where allW�
j are isotropic,W+

j andW�
j are in duality, andW 0 is a non-degenerate

symplectic space or 0. LetP = MN be the stabilizer in Sp(W ) of the flags
0 � W�

1 � W�
1 �W

�
2 � � � � � W� =

P
iW

�
i . Let eP = fMN be the inverse

image ofP in fSp(W ). There is a surjective map

M =gGL(W1)� � � � �gGL(Wr)� fSp(W 0) � fM: (8.1b)

Let

V = V +
1 � � � � � V

+
r � V

0� V �1 � � � � � V
�
r (8.1c)

be a decomposition ofV , and defineP 0 =M 0N 0 and eP 0 = fM 0N 0 in an analogous
manner as for the symplectic group. In this casefM 0 ' GL(V1)� � � � �GL(Vr)�eO(V 0):

Let !M denote the oscillator representation for(M;M 0). This is the prod-
uct of the oscillator representations for the dual pairs(GL(Wj);GL(Vj)) and
(Sp(W 0);O(V 0)). It gives a correspondence between representations ofM and

M 0 =gGL(V1)� � � � �gGL(Vr)� eO(V 0): (8.1d)

If one member of a dual pair is the trivial group, then we take the trivial represen-
tation for the oscillator representation for this pair.

Set� = �( ) and�V = �( ; V ) as in (1.2).

DEFINITION 8.2. ([7], 1.1.1). Fora; b 2 Z define the character�(a; b) ofgGL(1) by

�(a; b)(x; ") = �(xa; "a)�(xb; "b)�1

= 
(xa; 1
2 )
(x

b; 1
2 )

�1"a�b

=

8><
>:

1 a � b(2);

��1(x; ") a even,b odd;

�(x; ") a odd,b even:

For (g; ") 2gGL(m) let �(a; b)(g; ") = �(a; b)(det(g); ").
Note that�(a; b) is of typea+ b.
Let ki = dim(Vi), eki = Pi

j=1 kj; k = ekr, `i = dim(Wi), and ~̀i =
Pi

j=1 `j ,

` = ~̀
r.
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DEFINITION 8.3. Letm = p+ q, and define the character� of M by

� =

8<
:
jdetjn�(m=2)�~̀j+~kj+(1=2)`j�(1=2)kj+(1=2)�(kj; k)�(detk; "k)�V gGL(Wj);

1 fSp(W 0)

and�0 of M 0 by

�0 =

8><
>:
jdetj�n+(m=2)+~̀j�~kj�(1=2)`j+(1=2)kj�(1=2)�(`j; `)�(det`; "`) gGL(Vj);

�(det�`; ")(�1;det)`(n�`)
R

" eO(V 0):

THEOREM 8.4.: INDUCTION PRINCIPLE I.Let� be a representation ofM and
�0 a representation ofM 0. Suppose there is a non-zeroM �M 0 equivariant map

!M!� 
 �0: (8.5a)

Then there is a non-zeroeO(V )� fSp(W ) equivariant map

�:!! Ind
eSp(W )eP (��)
 Ind

eO(V )eP 0

(�0�0): (8.5b)

Here�� factors tofM , and extends toeP trivially onN , and�0�0 factors tofM 0 and
extends toeP 0 trivially on N 0.

Note.The covereO(V 0) of O(V 0) in (8.1d) (resp. (8.3)) iseO(V 0)[n � `] (resp.eO(V 0)[`]). Then�0�0 and the representation in (8.5b) are naturally representations
of the covers of O(V 0)[n] and O(V )[n].

Proof.The proof is essentially the same as the proofs of ([7], Theorem 2.5) and
([3], Corollary 3.21). It follows from Frobenius reciprocity and the following two
Lemmas.

LEMMA 8.5. In the setting of Theorem8.4, supposer = 1 so thatV = V + �

V 0 � V �, PV = MVNV is the stabilizer ofV �, MV ' GL(V +) � O(V 0), and
similarly for Sp(W ). Then there is a surjectivefMV � fMW equivariant map

! � !M�

where� is the following character of MV �MW .

� =

8>>>>><
>>>>>:

jdetj�n+(`=2)
(det`; 1
2 )"

` (g; ") 2gGL(V +);

jdetj�(m=2)+(k=2)
(detk; 1
2 )�V (g; ") 2gGL(W+);


(det`; 1
2 )(�1;det)n`

R
"` (g; ") 2 eO(V 0);

1 (g; ") 2 fSp(W 0):
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Proof.The proof is the same as the proof of ([3], Proposition 3.13). 2

LEMMA 8.6. Let (GL(V );GL(W )) be a dual pair. SupposeV = V1 � V2, and
let PV = MVNV be the stabilizer ofV1, so MV ' GL(V1) � GL(V2). Let
M =gGL(V1) �gGL(V2), and let eP = fMN be the inverse image ofP in gGL(V ).
Similarly letW = W1 � W2, etc. Let!M be the oscillator representation for
the dual pair(MV ;MW ). Setki = dim(Vi) and `i = dim(Wi). Then there is a
surjectiveeP � eP equivariant map! � !M�, where� is the following character

� =

8>>>>><
>>>>>:

jdetj�(1=2)`2�(`1; `) gGL(V1);

jdetj(1=2)`1�(`2; `) gGL(V2);

jdetj�(1=2)k2�(k1; k) gGL(W1);

jdetj(1=2)k1�(k2; k) gGL(W2):

Proof.See the proof of ([3], Proposition 3.13). We omit the details. 2

In the setting of Theorem 8.4, letK �M be a maximal compact subgroup ofM .
There is a surjective map fromK �M to the maximal compact subgroupgK\gM of fM .
TheK �M -type in the next result factors to, and is identified with, a representation

of gK\gM .

THEOREM 8.7.: INDUCTION PRINCIPLE II.In the setting of Theorem8.4,
suppose� is afK-type forfSp(2n;R), and� �M is aK �M -type forM satisfying the
following properties.

(1) �M is of minimal degree in�,
(2) deg(�) = deg(�M ), � contains�M in its restriction to gK\gM and is of

minimal degree and multiplicity one in

Ind
eO(V )eP (��);

(3) There exist characters� and�0 ofM andM 0, trivial on gK\gM and gK 0 \fgM 0

such that�� 
 �0�0 is also a quotient of!M , andInd
eSp(W)(W )eP (���) is irre-

ducible.

Then�
H(�) is in the image of�.
Proof.The proof is the same as the proof of [3], Proposition 3.25. 2

THEOREM 8.8.In the setting of Theorem8.4, assumedim(V +
i ) = dim(W+

i ) = ki
for all 1 6 i 6 r; so withk =

P
i ki,

M 'gGL(k1)� � � � �gGL(kr)� fSp(2n� 2k;R)

M
0
' GL(k1)� � � � �GL(kr)� eO(p� k; q � k):
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Let�i be any irreducible representation ofGL(ki), and suppose�0 corresponds to
�0 for the dual pair(O(p � k; q � k);Sp(2n � 2k;R)). Then there is a non-zero
map� from! to the tensor product of

Ind
eSp(2n;R)eP (�1
 � � � 
 �r 
 �0)

and

Ind
eO(p;q)eP (��1�V 
 � � � � �

�
r�V 
 �0�(n; k + n)):

Proof. The existence of� follows from Theorem 8.4 and the fact that for the
dual pair(GL(m);GL(m)) the correspondence is�!�
 (�1;det)m

R
for all �.2

Note.The oscillator representation for the dual pair GL(m);GL(m) may be nor-
malized so that the action of the dual pair factors to the linear groups. We are using
the unnormalized oscillator representation, which accounts for the term(�1;det)m

R
.

9. Proof of the main results

We prove the four results in Section 5, and Theorem 3.3. Throughout this section
we fix and� = �1.

The most natural way to prove Theorem 5.1 would be to prove it first for
the discrete series, and then in general using the induction principle (Section 8).
Unfortunately, the results in Section 7 are not sharp enough to compute the corre-
spondence of the discrete series.

Instead we proceed by induction onn. Given the result forfSp(2n� 2;R), the
induction principle computes the result for all representations but the discrete series
of fSp(2n;R) (and eO(p; q)). This implies that the representation correspondence
can only map discrete series to discrete series; since these are in the domain of
the correspondence, it remains to match up parameters. This is a relatively simple
matter using the results on harmonicK-types in Section 6.

Proof of Theorem5.1. n = 0. This is not quite empty, but an exercise in the
definitions and covering groups. Consider the dual pair(O(1;0);Sp(0;R)). The
group eO(1;0) ' Z=2Z is isomorphic to O(1;0) � Z=2Z, andfSp(0;R) ' Z=2Z.
This dual pair is mapped tofSp(0;R) ' Z=2Z, and the correspondence is obtained
by restricting the nontrivial character of this group to the dual pair. This takes the
nontrivial character offSp(0;R) to � = 11
 sgn ofeO(1;0). This is as predicted by
Theorem 3.3, and Theorem 5.1 is immediate. The case of O(0;1) is the same. This
completes the proof in this case.

Inductive step: Induced representations
Assume Theorems 3.3 and 5.1 forfSp(2n�2;R), and let� be a genuine irreducible
representation offSp(2n;R), which is not a discrete series or a limit of discrete
series.
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Let fM and� be inducing data for� as in Theorem 5.1. We chooseeP = fMN

to be of the form in Theorem 8.8 (cf. 8.1), and so� is the (unique) irreducible
quotient of the standard module

Ind
eSp(2n;R)eP (�): (9.1a)

By Theorem 8.8 there is a non-zero map� from ! to the tensor product of (9.1a)
and

Ind
eO(p;q)eP 0

(�0): (9.1b)

Herep0; q0; fM 0 and�0 are as in Theorem 5.1, the twist by� coming from�(n; k+n)
of Theorem 8.8.

Recall from (Section 4) that� is the unique irreducible constituent of (9.1a)
containing a minimalfK-type�, and similarly�0. It is enough to show

� is in the image of�: (9.2)

Let�
�00 be any irreducible quotient of the image of�: By [5] �00 containsH(�).
Write the standard module (9.1a) asX(
), with 
 = (�; �), and similarly (9.1b).
It is immediate from the calculations in Section 6 thatO(�) = �0 (cf. the proof
of Theorem 5.5 below). By Proposition 6.1,H(�) is a minimalfK 0-type of (9.1b),
and it follows that�00 = �0, as we needed to show.

To see (9.2) we apply Theorem 8.7. Let�M be the minimalgK\gM -type of�.
By Corollary 5.2 applied tofSp(2r;R) thefSp(2r;R) component of�M is p0; q0-
harmonic. By Proposition 6.21, and ([11], III.9) for the GL terms,�M is of lowest
p0; q0-degree in�, so condition (1) of Theorem 8.7 holds. By Proposition 6.18,
degp;q(�) = degp;q(�M ), and sincep� q = p0 � q0 this equals degp0;q0(�M ). Also

by Proposition 6.18, the restriction of� togK\gM contains�M . By Proposition 6.21,
� is of lowest degree in (9.1a), and also of multiplicity one (this is a general fact
about standard modules). This verifies (8.7)(2).

Take� to be a generic character ofM given by a power ofjdetj on each of
the GL terms, and let�0 = ��. Then�� 
 �0�0 is a quotient of!M (cf. the
proof of Theorem 8.8) and (9.1a) is irreducible by the usual argument. Thus (3) for
Theorem 8.7 holds, and applying the theorem we conclude (9.2).

Inductive step: Limits of discrete series
Let � be a genuine limit of discrete series representation offSp(2n;R) not in the
discrete series. Then� may be realized as the unique irreducible quotient of

Ind
eSp(2n;R)eP (�) (9.3a)
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containing the (unique) minimalfK-type�. HerefM 'gGL(2)`�fSp(2t;R) and� is
a discrete series representation offM . In the notation of (6.13),̀=

P
i min(xi; yi)

andt =
P

i jxi � yij. This follows from the discussion in Section 6. As for (9.1a),
by Theorem 8.8 there is a non-zero map from the tensor product of (9.3a) and

Ind
eO(p;q)eP 0

(�0); (9.3b)

where�0 is now a discrete series representation offM 0. The same argument applied
with (9.3a,b) in place of (9.1a,b) proves that the lowestfK andfK 0-types of (9.3a)
and (9.3b) correspond. Theorem 5.1 reduces to Theorem 3.3(2) in this case, and
holds from the calculations of Section 6.

Inductive step: Discrete series
Theorem 5.1 reduces to Theorem 3.3(1) in this case, so it is enough to prove
Theorem 3.3(1).

Proof of Theorem3.3(1). It is convenient to start on the orthogonal group. So
let �0 be in the discrete series representation ofeO(p; q). By Proposition 6.29 and
Proposition 2.1,�0 occurs in the representation correspondence, while�0 
 sgn
does not. The corresponding representation� of fSp(2n;R) is also in the discrete
series (the representation correspondence is the graph of a bijection,�0 is in the
domain and all but the discrete series in the range are accounted for).

Let�00 be the lowestfK 0-type of�0, and�0 the lowestfK-type of�. By Proposi-
tion 6.28(2),�00 is of lowest degree and occurs in the space of joint harmonics; let
� = H(�0). It is enough to show� = �0.

We calculate the length ofV(�), the element defined by the Vogan algorithm
applied to� (cf. Section 6). If� is the Harish-Chandra parameter of�, then
V(�0) = �, and (the Weyl group orbit of)� is the infinitesimal character. The
relation between infinitesimal characters is given by the orbit map which preserves
lengths (cf. Section 1), soj�j = j�0j, where�0 is the Harish-Chandra parameter for
�0. Therefore

jV(�0)j = j�j

= j�0j

= jV(�00)j

= jO(V(�00))j

= jV(H(�00))j by Proposition 6.1

= jV(�)j: (9.4)

Thus�0 and� are both lambda-lowestfK-types of� [18, Definition 5.4.1]. There-
fore [17, Lemma 8.8]� and�0 are both lowestfK-types, and therefore equal.
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This accounts for all genuine discrete series representations offSp(2n;R). This
completes the proof of Theorem 3.3(1) as well as Theorem 5.1. 2
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