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Abstract. This paper determines tifecorrespondence for the dual pai3(p, ¢), Sp(2n, R)) when

p+ q = 2n + 1. As a consequence, there is a natural bijection between genuine irreducible rep-
resentations of the metaplectic group (@p, R) and irreducible representations of §Qy) with
p+q=2n+1.

0. Introduction

Consider the dual paif®(p, q), Sp(2n, R)) with p + ¢ = 2n + 1. LetSp(2n, R)

be the metaplectic group, afip, ¢) the det/2 cover of p, q) (we will be more

precise in Section 1). Far a nontrivial additive character & the oscillator repre-

sentationw (1)) yields a bijectiorf (v, p, q) between subsets of the irreducible rep-

resentations c§p(2n, R) and those of)(p, q) [5]. The representations éfp(Zn, R)

which arise are all genuine, i.e. do not factor to the linear grod@S). The main

result of this paper is an explicit description of this correspondence (Theorem 5.1).
Fix the discriminand = («<1)? of the orthogonal space. An immediate corollary

of Theorem 5.1 is a bijection, depending®¥nbetween the set

fslezna ]R)aenuine

of (equivalence classes of) genuine irreducible admissible representations of
Sp(2n, R) and the union

U SQp.q)°

p+q=2n+1
(~Di=b

of the irreducible admissible representations of the group&SQ (cf. Corol-

lary 6.2 for details). This result confirms, in the real case, part of a conjecture of
Kudla [8], which in turn is a generalization of a result of Waldspurger [22] in the
casen = 1.
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The bijection is one of similarity, rather than of duality, in that it takes small
representations to small representations. For example it takes the trivial represen-
tations of SQn + 1,n) and S@n,n + 1) to the even halves of the oscillator
representations &p(2n, R).

The metaplectic group is an example of a non-linear group, to which the machin-
ery of the L-group does not apply. On the other hand it is of great importance in the
theory of automorphic representations, so it is of interest to understand it in these
terms. With this in mind notions such as L-packet, stability, etc. may be defined for
Sp(2n, R) by carrying over the corresponding notions from(gQ). Even in the
easiest examples it is clear that care must be taken in making such extensions. For
example the representations in an L-packet defined in this manner may fail to have
the same central character, a phenomenon which is forbidden for linear groups (and
also for the larger L-packets and Arthur-packets of [4]).

This bijection is natural in terms of the Langlands classification. The Cartan
subgroups of @, q) are isomorphic to those of &, R), and very roughly
speaking the matching is given by the same characters. For example discrete
series representations having the ‘same’ Harish—Chandra parameter correspond.
This naturality is expressed in the commutative diagram of Proposition 6.1. The
correspondence of K-types on the space of joint harmonics also has nice properties;
each K-type foiSp(2n, R) is harmonic for precisely one choice @fg with given
discriminant. Furthermore lowest K-types in the sense of Vogan are always of
lowest degree in the sense of Howe [5].

These properties are special to the range in which the two groups are roughly
the same size. Similar properties also hold for the dual g&i(s, ¢), Sp(2n, R))
with p, g everandp+q = 2n, 2n+2 [11]. In fact our approach is quite close to that
of [11], with the additional complications arising from the presence of nontrivial
covering groups.

1. Preliminaries

In this section we describe facts about the double covers, dual pairs and generalities
about the metaplectic representation that we will need. The main reference for the
double covers and the metaplectic representation are [10] and [15]. The setup is
for any local fieldF, but we concentrate on the cage- R. We omit the details of
many straightforward calculations.

For any positive integem we equip’ = R?™ with the usual symplectic

structure given byJ = (7%” 16"), and standard basis, ..., em, f1,. .., fm.

'I;hen Sp2m, R) is the isometry group of this form, and the metaplectic cover
Sp(2m) is defined by the normalized cocyelg, ) of [15] or [10]. Thus

Sp(2m, R) = Sp2m,R) x Z/2Z,  (g,¢)(¢',€') = (99',e¢'c(g,d')).
If ¢ is a nontrivial (unitary) additive character & let w(y) be the Harish—
Chandra module of the oscillator representatiospf2m, R), ([15], Section 4),
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([10], Part I). The charactap may be writteny, () = €%%; up to isomorphism
w(1,) only depends on the image @in R* /R*z.

LetV be areal 2+ 1-dimensional vector space equipped with a non-degenerate
symmetric bilinear fornt , ) of signature(p, ¢), and basisy, .. . , vy, vy, ..., vy for
which the matrix of(,) is diag,,<I,). We let Qp, ¢q) denote the isometry
group of (,). Now V ® W has a symplectic structure with standard basi®
e1,- -,y ® fn. The natural mape: O(p, q) x Sp(2m,R) — Sp(2m(2n + 1), R)
makes(O(p, q), Sp(2n, R)) into a dual pair. We writeo = [p/2] andqo = [¢/2]
for the ranks of @p) and Q).

The main result concerns the case= n, but many secondary results hold with
little or no restriction.

Let GL(m) be the two-fold cover of Glun) defined by the cocyle

c(g, h) = (detlg), deth))r

where(z, y)r is the Hilbert symbol [16] foR. It is convenient to Ief)(p, q) be the
two-fold cover of Qp, ¢) defined bye(g, h) = (det(g), deth))i (p+q = 2n+1).
This is split over SQp, q) and splits over @, q) if and only if n is even. For later
use we le©O(p, ¢)[k] be the cover defined by cocyaléy, h)*.

Now « lifts to a mapi: O(p, q) x Sp(2n, R) — Sp(2n(2n+1), R). In particular
forg € O(p, 9),

a(g,¢) = (a(g),¢) (1.1a)
and forg € Sp(2n, R)
a(g,e) = (alg), e" " A(g)) (1.1b)

for a certain map\: Sp(2n, R) — +1.

The image oBp(2n, R) in Sp(2n(2n + 1), R) is the inverse image of $pn, R),
and the image of the center 8f(2n, R) is the center oBp(2n(2n + 1), R). Our
choice of covering(p, ¢) implies that the analogous statements hold f¢p,@).
It also has the advantage thabdd and» even may be treated uniformly.

Givens, let
X(@)(z,€) = y(z, 39)e, (1.2a)
where
y(a,4p) : 1(&1}/’)) (1.2b)
is the Weil index [15]. We have(y, ) = e27/8)sana gnd
X(a)(z,€) = sgr(a) eZm/8(sone-1) (1.2¢)
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This is a character of thg, )r double cover oft*, and so we can composg))
with the determinant to get a characteﬁ(m). We denote the ensuing genuine
character by the same symbgl) (g, ¢) := x(¢)(det(g), ).

This satisfies

x(9)(w,€) = sgn(z)x () (z,€),  x()(@,¢)? = sgnz). (1.2d)

If V' is an orthogonal space of dimensienand discriminand, we let (cf. [7], 2.5)
X(1,V)(g,€) = v(det(g), 39) ™ (6, det(g))ne™. (1.2e)

In general, ifG is a double cover off andr is a representation cﬁ.‘, we sayr
is of typek if w(e) = * for ¢ in the kernel of the covering. With this convention
x(1b, V) (g, ) is a character oBL(V') of typem = dim V.

If the signature oV is p, ¢ with p + ¢ odd, then

X9, V) = x(4b) 7P (1.2f)

This is the formula we will use most of the time. By (d) this may be thought of as
sgn(dety»+4/2),
We fix a genuine character

€ n even

x(¢)(det(g),e)"* n odd (1.29)

§(P)(g.e) = {

of O(p, q). The mapr — = ® ¢ defines a bijection between the iLreducibIe repre-
sentations of @, ¢) and the irreducible genuine representation®gf, q).
If 4 is fixed we drop it from the notation and write = w(v), x = x(¢),

xv = x(, V) and¢ = (). .

Pulling w(+) back toO(p, q) x Sp(2n,R) via & we obtain the representation
correspondence for this dual pair [5]. This is a correspondence between certain
irreducible Harish—Chandra modules. o

By (1.1) the representations O p, ¢) andSp(2n, R) in the image of the corre-
spondence are genuine, i.e. of type &. ' are genuine irreducible representations

of Sp(2n, R) andO(p, q) respectively which correspond, we write

' =0(),p.q)(r),  m=0()(x"). (1.3)
If + is fixed we writed, , = 0(¢, p,q) andf = 6(z)).
For an irreducible (admissible) representatioof a groupG, we denote byr*
its contragredient. In particular, fgras in (1.2g), we have

£*(g,e) = £ ® sgn(detg)”. (1.43)
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Combined with the results on p. 91 of [12], we find the following expressions for
7. In caseG = Sp, let 7 = Adk, wherex = diadg1,,,<I,,) (this is an outer
automorphism o€7). Then

. r@sgrt for G =O(V),
™ = —
ToT, for G = SpW).

From (1.2d) and the fact that(v) ~ w())* we see

(4, p,q)(m) = 0(4h,p, q) (") @ sgrt'. (1.4c)

Let V' denote the same spacelasvith form Q' = <Q), of signatureq, p). Let
J be the tautological identification of(@) and Q V). Note that QV"') = O(q, p),
and so we can identify representations ¢p@) and Qq, p) by choosing such an
isomorphism; however th#-correspondences are different. The next lemma gives
the relationship betweef), , andd, ;.

(1.4b)

LEMMA 1.5. For any irreducible representation of SNp(Zn, R),

0(¢,p, q)(m) = 0(+, ¢, p)(7").

Proof. The map Id® « is an isomorphism betweeW @ W and V' @ W
which interchanges) - (,) and <@ - (,). Let U be the ensuing isomorphism
SpV @ W) — SpV' ® W). The diagram

O(V) x SPW) —=~ SpV @ W)
ORT g

O(V') ® SPW) 2+ SpV' @ W)

is commutative and (i, V@ W) = w(, V' ® W) o ¥. The lemma follows from
the formula forr*. 0

Note that (1.4c) and the Lemma give

0(4, p,q)(m) = 0(sh,q,p)(m) ® sgrf". (1.6)

Supposel; and W, are symplectic spaces. Thé#, © W> inherits a nat-
ural symplectic structure and there is a canonical B8gd¥1) ® Sp(W2) —
Sp(W1 & W>). We will use this map in the special ca8g(2m, R) x Sp(2m, R) —
Sp(4m, R). Similarly there is a canonical m&p(p, ) xO(p', ¢') — O(p+p', ¢+¢').

LEMMA 1.7. Letw, ,, be the oscillator representation &p(2n(p + ¢), R) res-
tricted to the dual paifSp(2n), O(p, q)).
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(1) Wnpg @ Wnpg = Wanp.q © ST as representations &p(2n, R) x Sp(2n, R)
O(p, q) with O(p, q) acting diagonally on the left-hand side.

(2) Wnpg @ Wnyp g ~ Wnpipgtg AS representations Bp(2n, R) x O(p, q) x
Oy, ¢'), with Sp(2n, R) acting diagonally on the left-hand side.

Proof. There are obvious isomorphisms between the polynomial Fock spaces
wnp,q IN the statements. We need to check the equivariance. Assertion (1) for
Sp(2n,R) x Sp(2n, R) and assertion (2) foO(p,q) x O(g,p) follow from the
explicit descriptions of the actions in [15] on the smooth models.

If (X,Y) is a complete polarization d¥ thenGL(X) acts onS(X) in the
oscillator representation by

w($)(g,)(@)(x) = |detg)| "D x(¥)(g. ) b9 a).

Since the action d(p, q) is via a homomorphismt6L(X ® V), it acts inwy .,

by translation tensored with Assertion (1) for@(p, q) follows immediately, the
twist if n is odd coming fromy(«/)? = sgn. The proof of assertion (2) is similar.

The first part of the next Lemma is due to Rallis [14] and Przebinda [13]. The
second is the result obtained by applying the same technique in the other direction.
It says that the duality correspondence is a bijection when @l € with fixed
discriminant (angh + g = 2n + 1) are considered at once. Thus we are reduced to
proving occurence, and computing the correspondence explicitly.

LEMMA 1.8.

(1) Supposer is a representation of)(p, q), and@(y)(m) # 0. Thenb(y)(m
sgn =

(2) Letw be a genuine representation®p(2m, R), and supposé(y, p, q)(7) #
0. Thenf (), o (m) = Ofor all (p',q") # (p, q) with¢' = g mod(2).

Proof. Suppose both andr  sgn are quotients of,, ,, , restricted ta(p, q).
By Lemma 1.7(1) this implies ® 7 ® sgn is a quotient ab(v) 2y, , @ sgr'. Since
™ ~ 7 ® sgrf’, and the trivial representation is a quotientrap 7*, this implies
that sgn is a quotient af,, , ,. However this is impossible since (cf. Proposition
2.1) the sgn K-type of @, ¢) does not occur in the space of joint harmonics when
paired with Sg4n, R). This proves (1).

Now supposer is a quotient of both, , ; andw, ,» , restricted tdSp(2m, R).
By Lemmas 1.5(1) and 1.7(2) this implies tha® 7* is a quotient ofv,, ;1 ¢/ ¢y’
As in the proof of (1) this implies that the trivial representation is a quotient of
Wn p+q' q+p' - THiS can also be ruled out by K-types. By [6], cf. ([11], I.4), the trivial
K-type for Sp(2m, R) occurs in this space only if @+ ¢', ¢+p') is quasi-split, i.e.
p+q <q<p = 0,41, +2. This together withh + ¢ = g + p givesqg = ¢’ £0, 1,
and since the discriminants are eqgak ¢'. Thereforep = p’,q = ¢/, proving
(2). O
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Groups will be denoted, K, T, .. ., their Lie algebras byy, ko, to, - . . , and their
complexified Lie algebras by, ¢, t. ... For G reductive, a Cartan involution will
be denoted with fixed pointsK, ¢y ande respectively inG, go andg, andg =

t @ p as usual. Fon a Cartan subalgebra @f(always#-stable) we will denote
a system of roots byA = A(h, g) with positive systemA™, andp = p(AT) =

% >, a. This notation will be extended in various standard ways, for example
denotes one-half the sum of the positive compact imaginary rootsp@nane-
half the sum of the roots of a (nilpotent) subalgelrBor G a covering group of a
groupG andH a subgroup ofs, H will generally denote the inverse image &t
in G. This notation will occasionally conflict with the definition @(p, q) earlier;
the meaning should be clear from the context. Unless otherwise stateitl
denote Sf2n, R), G will denoteSp(2m, R). These groups have maximal compact
subgroupg( andK as chosen in Section 2. Similarly/ will denote Q'p, ¢) with
corresponding”’, K’ andK".

We now describe the semisimple orbits and Cartan subgroups @ 3p . We
begin by choosing representatives for the conjugacy classes of Cartan subgroups
asin [2].

For nonnegative integers, r, s with 2m + r + s = n we define a Cartan
subgroupHg;"* of Sp(2n, R) with Lie algebrahgyy®. Write W = R** = W1 ®
Wo @ W3, wherer is spanned bye;, fi |1 <i < 2m} Wy by {e;, fi|2m+1<
i < 2m +r} andWs by {e;, fj|2m + r + 1 < i < n}. We identify SQW)
andsp(W;) with their images in S@n, R) andsp(2n,R). Forz; = z; + iy; € C,
1<t <mlet

X Y

m,0,0 X &Y

bap (21, 2m) = . e € sp(Wy) (1.9a)

Y &X
whereX = diag(z1,...,z,) andY = diagyi,...,ym). Foro; e R (1 <i < r)
we let

hg,’; °4,...,6,) = ((:)X X> € sp(W2) (1.9b)

with X = diag#f,...,0,), andforz; e R (1 < i < s) let

0,0,s

hsp” (T1,...,75) = diagzy, ..., s, €11, ..., €75) € sp(W3). (1.9¢)

Taking the sum of these elements gives us an element

m,r,s

hSp (215« s Zmy 01, .., Or, 21, ..., Ts) € 5p(2n, R) (2.9d)
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and this defines the Cartan subalgellr@%,s of sp(2n, R), with complexification
hg};’“. The compact Cartan subalgebragis= hg,n,ol Let

HI™ o~ (€)™ x (SY) x (R*)? (1.9€)

be the Cartan subgroup of @m, R) with Lie algebrahg;y°. These are represen-
tatives for the conjugacy classes of Cartan subgroups @@:SR). The compact

m,r,s

Cartan subgroup i# = Hg’p’f’o. Write the elements al/g;"* accordingly as
Hg;’r’s(zl,...,zm,ul,...,ur,xl,...,xz) (1.9f)

(zi € Cu; € Sl,xi € R*).
The Weyl group ofg;y” in sp(2n, R) is generated by all permutations of; },
zi — Zi, <%, all permutations of 6;}, and all permutations and sign changes of
{z;}. This describes the semisimple orbits. Note that two semisimple elements
h’S"F;’"’s(zl, ceey) andh’s”p”"’s(z’l, ...,) are in the same orbit if and only if they have
the same eigenvalues, afyd. . ., 6, andé, . . ., 0. are the same up to permutation.
We write H = TAwithh =t@a, T = HN K andA = exp(ag) as usual. The

centralizer ofA is

M = GL(1,R)® x GL(2,R)™ x Sp(2r, R). (1.10a)
Let

M = GL(LR)® x GL(2,R)™ x Sp(2r, R) (1.10b)

with double covers of GL and Sp as at the beginning of this section. There is a
natural surjectiod — M.

Let H (respectivelyH) be the inverse image @f in M (resp.M). ThenH, H
are Cartan subgroups ﬁNI, M. Furthermore

T ~ (B)* x (S1)" x (C* x z/22)™, (1.10c)

whereR* is the two-fold cover oft* defined by the Hilbert symbol, argt is the
connected two-fold cover i given byz — 22, |2| = 1.

We now turn to a description of the Cartan subgroups and semisimple orbits for
O(p, q). We follow [1].

Suppose@i+s < min(p, q). WriteV = Vi@ VodVawherel; = spaqv;, v;- |1<
i,j < 2m}, V2 = spar{v;, vj | 2m+1 < 4, j < 2m+s}andVs = sparfv;, vj | 2m+
s <i<p2m+s < j < q}. Then SQV;) is embedded naturally in SO)
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and we identify SQV;) andso(V;) with their images in SQO/) andso(V'). For
w; = x; +iy; € Clet

Y X

m.0.0 &Y X

it e, W) = , 1.11a

5™ 00w, ) v oy | €% (111a)
X Y

whereX = diagz1,...,zm),Y =diadys,...,ym). Forc; € R, let

605 (cq, ..., cs) = (X X) € s0(Va), (1.11b)

whereX = diag(cy, . .., cs). Finally letr; = [(p ©2m <s)/2], r; = [(¢ ©2m &
s5)/2), and forf;, ¢; € R let

hO,T1+7'270(91’ - ,91“17 ¢17 ERR) ¢T2)

= diagf1,...,0r,, b1, .., dr,) € 50(Va) (1.11c)
with 6 = ( 0 g)
Taking the sum of these elements gives us an element
- hmrs(wla"' 7wmaola"' 707‘17¢17"' 7¢T27017"' 705) (111d)
€ so(p,q)

and this defines a Cartan subalgeﬂjﬁ% with complexificatiorpy’,"*. Let

Hywh® o~ (C°)™ x (SH™ x (R*)? (1.11e)
be the Cartan subgroup of $0¢) with Lie algebran,*°. This gives a set of
representatives of the conjugacy classes of Cartan subgroups(p;‘q$Or he
compact Cartan subgrodpis H°7” 0, According to the decomposition (1.11e), we
write elements of{)."* as

m,r,s
Hy ol (205 vy Zmy Uy e v vy Upys ULy e v vy Upgy Ty - oo 5 ) (2.111)

with z; € C*, u;,v; € S1, z; € R*.

The Weyl group of,mqgs in o(p, q) is similar to the case of Sp. The only change
isthatonuy, ..., u,,v1,...,v, itis of typeB,, x B,, acting by permutation and
sign changes o{mi} and{vi} separately.

The corresponding Cartan subgroup ofpQy) is isomorphic toH,";"* x Z
whereZ is the center of @, q).
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The centralizer ofd is
M' = GL(LR)* x GL(2,R)™ x O(p', ¢') (1.12a)
with p’ = p &5 ©2m, ¢ = ¢ s <2m. The inverse image af/’ in O(p, ¢) is
M' = GL(LR)® x GL(2,R)™ x O(p', ¢')[n]. (1.12b)

It follows from the preceding discussion that there is a bijection (depending on
the additive charactef) between the regular semisimple adjoint orbits d2apR)
and the union of the regular semisimple adjoint orbits of 5@) with § = (<1)9
fixed. This is explained in more detail in [1], where it is described geometrically in
terms of the orbit correspondence; here we resort to a simple explicit description.
Fix ¢ = 1, with a > 0. Let

m,r,s
X = bgp (Z2y o vy Zmy Uy - e vy Upys ULy e e vy Upyy Ty v vy L) (1.13a)

be a regular semisimple element, with> --- > u,, > 0> vy > --- > v,,. Let
p=2m+ri+s,q=2m+rr+s+1lorp=2m+ri+s+1,q=2m+rr+s,
depending ony. Then the orbit ofX € sp(2n,R) corresponds to the orbit of
X' € s0(p, q), where

X' = Dpra " (205 s Zmy Uy e ooy Upyy Sy v, UL, T, -, @), (1.13b)
If ¢ =1, witha < 0,thenthe same resultholds, wiily . . . , u,,, vy, ..., Sv1
replaced by, . .., v, Sy, ..., Sug.

By the preceding description of the semisimple orbits the following result is
immediate. Letsp(2n,R) s be the regular semisimple orbits e§(2n,R), and
s0(p, q)ss Similarly.

LEMMA 1.14. Fix . There is a bijection between
sp(2n, R) s
and

U o@a)ss-

p+q=2n+1
(~Di=b

We refer to this as therbit correspondence

We write X’ = O(v)(X) if the orbits of X and X’ correspond as in Lemma
1.14. Dualizing, we obtain a correspondence— X = O()(A) of regular
semisimple elements of the duals. FinallyXf = O(v)(X), let b, b’ be the
Cartan subalgebras centraliziAg X’ respectively. The correspondence gives rise
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naturally to a correspondence of systems of positive roots, which we Avfites
A"t = O()(AT). As usual we drog from the notation if it is fixed.

It is evident that every Cartan subgroup of (@) is isomorphic to a Cartan
subgroup of Sf2n, R). This correspondence preserves conjugacy classes, and is a
bijection on conjugacy classes if $6)q) is quasisplit. We use the correspondence
of semisimple orbits to choose these isomorphisms as follows.

Fix § = +1 andt. Let (hp, A™) be a pair consisting of a Cartan subalgebra
of sp(2n,R) and a system of positive roots. Léthg — hy C so(p,q) be an
isomorphism. By abuse of notation we wrigg A™) for the natural system of
positive roots ofy;. More precisely, fixX € h so thatA = {a| a(X) > 0}. Then
$(AT) = {o | o/ (¢(X)) > O}.

PROPOSITION 1.15Given (ho, A™), there exisp, ¢, and a pair(hp, A'*) such
that A*" = O(A™T) and ) is isomorphic toho. This determineg, ¢ uniquely
(subject to(«<1)? = ¢). Furthermore the isomorphiset ho — hy may be chosen
so that(A*) = A'*. This determines) up to conjugation bySp(2n, R) and
O(p,q).

(Fur)thermore¢ lifts to an isomorphismp: H — H' N SQ(p, q). Write H =
TA, M = Cent;(A) as usual, and similarly foff’. Then¢ extends to an isomor-
phism of theGL factors of M and M’ (cf. (1.10a)and(1.12a)).

2. Maximal compact subgroups and joint harmonics

We first conside? = Sp(2n, R), G = Sp(2n, R). RecallW and.J as in Section 1.
Then

G:={geGLW)|'gJg=J}.
We choose the maximal compact subgrdapf G to be
K ={g€G|gJ=Jg}

SinceJ? = «ld, it defines a complex structure o#l. Let W ~ C" denote the
resulting complex space. Théi: admits a positive definite symmetric Hermitian
form (v, w) = (Jv,w)+i(v,w). This gives anisomorphism &f with the isometry
groupU (Wg, (,)). We define the determinant characterdto be the pullback of
the determinant character of this unitary group by the explicitisomorphism chosen.
The inverse |magé( of K in G is connected, and its representations may
be studied by passing to the Lie algebra. To be explIc”U,s isomorphic to the
det/? cover of K, i.e. to K = {(g,2) |g € U(n),z € C*,detlg) = 2%}. The
characterr: (¢, z) — z of K satisfiesr?(g) = def(g) and is denoted d&?. We
choose an isomorphism, unique up to conjugatlorKoi’\/lth K so the character
of K acting on the uniqueék-fixed line in w(y) goes to dét2. (This line is
spanned by the Gaussian in the Schroedinger model, or the constants in the Fock
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model.) We fix the Cartan subgrodp of K as in (1.9), with the usual positive

systemA(t, £). Thenk, genuinelS parametrized by certain dominant weights ity;
in the usual coordinates = (a1,...,a,) With ay > a2 > -+ > a, anda; €
Z + 1. The distinguished character 4étcorresponds to the weighd, ..., 3).
This parametrization depends ¢gn

Now considerG’ = O(p, q), G' = O(p, q), with maximal compact subgroups
K' = O(p) x O(q), andK'. We fix the Cartan subgroup of K’ as in (1.11),
with the usual positive system. We identify an irreducible representationggf O
with its ‘highest weight' A\ = (Xo;¢). Here Ao = (a1,...,ap,) € itj is the
usual highest weight of a finite dimensional representation ofpONe are
following [23], wheree = 1 (resp.e = «<1) corresponds to the length of the
first column less than (resp. greater than) or equabtdf p is odd, then=ld acts
by (&1)>%+*bic in this representation. I is even andu,, # 0 thene = +1
give the same representation; in all other cases they are distinct. Furthermore
(0;1) is the one-dimensional representation(ggr= sgrnidetg)) = def(g), and

(a1,...,ap,€) ® SAN= (a1, ..., apy; <£).
A similar discussion holds for @), and the irreducible finite dimensional
representations ok’ are parametrized bgay, . .., ap,;e) ® (b1, ..., bg;m). The

irreducible genuine representationsfof are also parametrized in the same way,
by tensoring with the genuine charactef K'asin (1.29). (Heré is the character
of O(p, q) given by (1.29), restricted t&”.)

The action ofK x K’ on the space of joint harmonics gives a bijection between
certain irreducible representationsﬁfandf’ [5]. Ifa f—type,u corresponds to
aK'-typey, we write i’ = H (v, p, q) (1) andp = H () (1'). As usual we drop
1) from the notation if it has been fixed.

The next result follows from [6], as in ([11], I.4) and ([3], Proposition 1.4).

PROPOSITION 2.1. (IThe correspondence on the space of joint harmonics is as
follows

/1', = (ala <o Opgs 1) ® (bla cee 7bq0; 1) - ’H(zﬁ)(,u')

P <q pﬁq)
5

= (al,...,apo,ﬁbqo,...,{:)bl)—{— (

= (a1,...,a;,0,...,0;1) ® (by,...,bp,0,...,0;1) — H(¥) (1)
p—2k

——
— (a1, yap L. 1,0,...,0, by, ..., Sb1) + (pj’q,...,p§q)

withp &k + £ < n,

/1,, = (al,...,ak,o,...,o;l)®(bl,...,bg,0,...,0;<:>1) —>H(1/))(Ml)
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-2
/—qH
:(a]_,...,ak,o,...,0,<:>1,...,<:>1,<=>bg,...,<:>b1)
P <=q P <=q
(e ren)

with g + k <4 < n.
(2) Thep, g-degree ofu = (a1, ..., a,) IS Y i1 |a; ((p q)/2)|. The degree

of
p = (ay,...,a;,0,...,0;¢) ® (by,...,bs,0,...,0;n)

isequal toy"; a; + (L <¢)/2)(p ©2k) + Y b; + (1 &n)/2)(q 20).
__Note that the dependence gris via the dependence of the parametrization of
K'-types ony.

The images of{ (1, p, q) andH (v) are described by the next Proposition.

PROPOSITION 2.2. (1)etx be any(genuing K-type forSp(2n). Consider the
groupsO(p, q) with fixed discriminant. Then there is a unique choice @ind ¢
such thafu is p, g-harmonic

(2) Lety' = (a1,...,ax,0,...,0;¢) ® (b1,...,bp,0,...,0;n) be a(genuing
f’-type for O(p,q). Theny' is in the space of joint harmonics if and only if
k+ ((1e¢e)/2)(p<2k)+ L+ ((1<n)/2)(q ©2¢) < n. This holds for precisely
one ofy/ andy’ ® sgn.

Proof. Part (2) is an immediate consequence of Proposition 2.1, and we omit
the details. For part (1), we claim that we may wyiteniquely in the form

(al,...,ar,,uo, b1, ... ,bs) (23&)

where

y
1 - 1
po=(res,...,r&s) +(5,...,5,95,...,

Nl
L

) (2.3b)

witha, > r s+ %, r<&s @% > by, and at least one of these inequalities is strict.
The algorithm in Chapter 6 of [18] (see Section 6 for more detailed calculations)
attaches tg an elemenf\% (i) € t:. Itis of the form

t

AG( . —N—
1) = (a0, 0,0, 1, .., By) (2.4)

withay > - > a >0> (61 > --- > Gs. Thusr, s if they exist, are uniquely
determined. The same holds feyy from the particular form of:. Running the
algorithm in reverse on thi's as in (2.4), we see that evesymust be of the form
(2.3a) with some choice df, y) (essentially Chapter 6 in [18]).

comp4178.tex; 15/07/1998; 10:14; v.7; p.13

https://doi.org/10.1023/A:1000450504919 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000450504919

36 JEFFREY ADAMS AND DAN BARBASCH

Given this formy corresponds tg’ in the space of joint harmonics for(@- +
t+ 1,25+ t), with

po= (a1<:>r+s<:>%,...,ar<:>r+s<:>%,0,...,0;l)

J
1 114 2 :
R(ebs+res+5,...,eh+res+35,1...,1,0,...,0;¢),
where

t

(j,g) =

t+1 t
o) [ <ves (w0secl]).
2 2
Similarly i corresponds tp’ in the space of joint harmonics for@-+t¢, 2s+¢+1),
with
J
r_ 1 17 .
p o= (arer+s+35,...,a.9r+s+3,1,...,1,0,...,0¢)
(b +r sl e +resel0...,0,+]),
where

(y, 1) [T} <r<s (@Ogyg ED

Note that fort even andr = y = [t/2] the two cases agree, since for even ortho-
gonal groupgas,...,1;4+1) = (a1,...,1;<1).

It remains to show is p, g-harmonic for at most one choicegith (<1)7 = 6.
Givend, to determing(p, q) it is enough to finghg. Assumesd = 1, the other case
is similar. Supposg is p, g-harmonic corresponding to;d as in Proposition 2.1.
Thenin the expressign = (1, . . ., ttn), We must have,, = (p<q)/2ife =1,
or f1p, = ((p q)/2) + 1if ¢ = 1. This is the same a8,, + (n + 1 <2pg) = 3
or g’ But the sequence = p; + (n + 1<2i) decreases monotonically by at least
2 each consecutive term, so there is at mosti@ueh that; = % or % never both.
If all ; > 3 thenpo = n, if all r; < 3, thenpg = 0. This proves (1). 0

Remark.This Proposition also follows naturally from the calculations in the
proof of Proposition 6.1. Namely ji andy’ correspond, thea® (1) and A% ()
correspond in a simple fashion, implying in addition that, ¢ given by formula
(2.4) for u, and the(r', s’,t') coming from formula (6.6) coincide. Thys =
2r +t+ 1orp = 2r + t according to the parity af.
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EXAMPLE 2.4. The example of small weights ([18], Definition 5.3.24) is impor-
tant. These are weights of the form

xr
—— ——
el el
IARCTRER SOV E

Nl
Nl

p=

’. )

Theny is small,i.e. o = p and it corresponds tozd in the split group Qn + 1, n)
as well as Qn,n + 1). Specificallyu corresponds ta' for O(n + 1, n) with

1
(33,<:>1) [n;— :|\y<n

On the other hand it goes td for O(n, n + 1) with

W =(1,...,1,0,...,0¢e®(0,...,01

(z,1) 0<z< [%]

(re) = n+1
(y,<1) [ 2} T <

3. Discrete series

A genuine discrete series representattoof §p(2n) is determined by its Harish-
Chandra parametey. In coordinates we write

A= (ay,...,ak,b1,...,bp) €ity, (tasinl9)
witha; > -+ >ap >0> by > -+ > by, a;,b; € Z+ 3 anda; + b; # 0 for all
i, j. Thenr has lowesK -type\ + p(A™) 2p.(A1) whereA™ is the system for
which X is dominant.

The genuine limits of discrete series p(2n, R) are obtained by allowing
to be singular with respect to a set of simple noncompact roots. Explicitly these
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representations are parametrized by palkrs, \) where) is dominant with respect
to the roots inA ™. In coordinates it is of the form

my m2 mr ny

e e e e —_—— ———
(@1...,07,02...,02, .., Qp ooy Oy Sy oo, Sy ey
n2 ni

A A

Say. .., Sa,<a1 ... ,Sa1)

with a; € Z + % ay > --- > a, > 0, and|m; <n;| < 1 for all i. The lowest
K-type ofr has the same form as for discrete seres, p(AT) <2p.(AT).

Similarly a discrete series representation of(£Q) is given by its Harish-
Chandra parameteX = (aq, ..., apy, b1,...,bg) With a;,b; € Z + % satisfying
ap > - > ap, > 0,01 > -+ > by, > 0, a; # bj Vi, j. Assume for the moment
thatp is odd andy is even. The lowesk'-typeu = A + p(AT) ©2p.(AT) is of
the form

n = (,’L‘l,...,xk,o,...,o;ﬂ:].)®(y1,...,yqo;:tl) T, Yj €Z>0.

The secondt1 has no effect sincg,, > 0. The two representations given by the
first+1 have the same restriction$§O(p) x O(q)) since sgre sgn of Op) x O(q)
is trivial on this subgroup. Passing tdq©0q) we obtain the following Lemma.

LEMMA 3.1. The discrete series representationsf O(p, ¢) are parametrized by
A= (Agje) = (a1,...,ap,,b1,...,bgy; €)

Withay >+ > ay, > 0;by > -+ > by, > 0;a;, bj € Z + 3, anda; <b; # 0 for
all 7, 5. Herer is determined by its Harish-Chandra paramedgrand its lowest
K'-typeu which is of the form

(1, %py, 1) @ (y1,---,¥6,0,...,0;8)  (zp, > 0)
p evenq odd
(z1,...,2£,0,...,0;6) ® (Y1, -, Ygor +1)  (ygo > 0)

podd g even.

The genuine discrete series 6(;7, q) are obtained by tensoring the discrete
series of @p, ¢) with £, so we use the same parameters.
We will refer to A = (Xo;¢) as a Harish-Chandra parameter fofpQy) or

O(p, q). The limits of discrete series are parametrized asSfin, R), by pairs
(AT, X) where)g is AT-dominant and\g of the form
m1 mp

—N— —
(al...,al,az...,az,...,
my ni n2 nr

—N— —— ———
A ooy Qpy @] e Q1,02 oy Ay e e ey G e ey ()
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witha; € Z + % ay > --- > a, > 0,andlm; <n;| < 1foralli. Againyu is of the
form (3.2).

THEOREM 3.3.Fix 1 andd = £1. (1) Let 7 be a genuine discrete series rep-
resentation ofSp(2n) with Harish-Chandra parametex. Choosep, ¢ so that
occurs in the orbit correspondence for the dual pgdp(2n, R), O(p, ¢)). Recall
(Lemmal.14)p, q is uniquely determined, subjectte:1)? = 4.

Let \' = O()\) be a corresponding element &f(p, ¢)*. Thenr occurs in
the representation correspondence wdtp, ¢), andé, ,(r) is the discrete series
representation with Harish-Chandra parameter; +1). Furthermorer does not
occur in the correspondence for any ot@fr, s) (with (<1)* = 6).

If 11 is the lowestK -type ofr, theny is of lowestp, g-degree, and(p) is the
lowestK'-type ofr’. N

Conversely every discrete series@fp, q) with Harish-Chandra parameter
(x;4+1) corresponds to a discrete series®fi(2n), and those of the forrfx; <)
do not occur in the correspondence

(2) The same results as (@) holds for limits of discrete series, whererifis
given by datg A, ) then6, ,(r) is given by(O(A™), (O(X); 1)).

Explicitly (cf. 1.13) lety) = 1), with @ > 0, and suppos@ = (aq, ..., ap,,
by, ..., bg) Withay > -+ > ap, > 0> b1 > --- > by,. Thenp = 2po+1,q = 2qo
orp = 2po,q = 2go+ 1 and

>‘, = ((a’la' c 7apoa<:>bqoa s 7<:>b1)1+1)

Theorem 3.3 will be proved in Section 9.

Note.The minimal K -type of a discrete series representation or a limit of discrete
series is unigue, and such a representation is determined by its miRirtygle.
This follows from [6] or in our case from the results of Section 6.

4, Standard modules

We use the version of the Langlands classification of [21], which is valid for
disconnected and non-linear groups of Harish-Chandra’s class. Throughout this
sectionG will denote Qp, q) (p = 2n +1)or S 2n, R), with maximal compact

subgroupK and covering group& and K.
We first considelG = O(p, q). Let H = T'A be af-stable Cartan subgroup of
G. Recall from Section 1 thalf is isomorphic to

(C)™ x (SY)T x (R)® x 2 (4.1a)
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with 2m + s < min(p, q), Z the center of Qp,q). The centralizetM of A is
isomorphic to

GL(LR)* x GL(2,R)™ x O(p',¢),

(4.1b)
(p' =pese22m, ¢ =q&sS2m)

and the inverse imagk/ of M in O(p, ¢) is isomorphic to
GL(1,R)* x GL(2,R)™ x O(p', ¢')[n]. (4.1c)

For inducing data o/ we take an irreducible representation- 5@y ® 7 of M.
Herep = 51 ® - - - ® (s is a product of characterg,= v1 ® - - - ® y,,, is a product
of relative limits of discrete series representationsargda limit of discrete series
representation o®(p’, ¢'). The restriction ofr to A is a multiple of a character
v; choose a parabolic subgrodp= MN so that Réx,v) > 0 for all rootsa
of ainn. N

Thestandard moduléor O(p, q) associated to this data is

- S,

X(P,0) =Ind2??(5) (4.1d)
(here and elsewhere we extendto MN trivially on N). This has the same
type as does. If (H, o) also satisfy condition (F-2) of [21], which we make
explicit in Lemma4.3, then this module has a unique irreducible quotient, and
every irreducible representation is obtained this way. The atas) are unique
up to conjugation bff and will be callednducing datafor .

We next describe standard modules for genuine representati(iﬁx:bf, R).

Recall from Section 1 that a Cartan subgrdiipf Sp(2n, R) is isomorphic to

(C)™ x (SY)" x (R*)®  (r+s+2m =n) (4.2a)
in which caseV is isomorphic to

GL(L R)* x GL(2,R)"™ x Sp(2s, R). (4.2b)
Let

M =GL(1L,R)® x GL(2,R)™ x Sp(2s, R). (4.2c)
For inducing datawe také = f ® vy ® 7 with 6 = 81 ® --- ® B, a product of
genuine characters,= 71 ®- - -®+,,, a product of genuine relative limits of discrete

series representations, an@ genuine limit discrete series representation. Then
factors to a genuine representationf M, and every genuine representationf
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M comes from a unique such ChoosingV satisfying the positivity condition as
above, the standard module associated to the(ddtar) or (M, o) is

~ | Sp2nR)
X(P,o) = IndMN (o). (4.2d)

It has the same properties as in the casé(@f, q). We freely pass back and forth
between M, 7) and(M, o) without further comment.

Condition (F-2) of [21] forO(p, ¢) andSp(2n, R) is made explicit as follows.
Fix a genuine charactgrof GL(1), and write

O(p, q)

Sp(2n, R). (4.2¢)

Bi(z,e) = |z sgr(z)” - { :
x(z,€)

A limit of discrete series representation of @ R) is parametrized byk, 1) with

k € Nandu € C; the lowestK-type of this representation has highest weight
k 4+ 1 for O(2). The genuine limit of discrete series representation§lof2, R)

are parametrized the same way by tensoring witthe?); this is independent of
since for such a representatiom® sgn~ .

LEMMA 4.3. Let G = O(p,q) or Sp(2n, R) as before. The datéM, o) satisfy
condition(F-2) of [21] if and only if

(1) For eachGL(2, R)-factor, u = O impliesk € Z,

(2) v; = £v; implieséd; = 0;.

In this case,X(ﬁ, o) has a unique irreducible quotient

We will prove this in Section7.

We also use character data for these groups as described in [21], which refers
to [18, 20]. Unexplained notation is as in [21]. N

A limit characterfor G is a pair(H, v). HereH is a Cartan subgroup ¢, and
v is atriple

(\I/,F,ﬁ) (44a)

consisting of a positive system for the imaginary roots of in g, a character
I’ of H, and an elemeny of h*. These must satisfy two conditions. First of all
(a,7) > 0foralla € ¥, anddl’ =7 + p(¥) <2p. (V).

A limit character is calledinal if in addition it satisfies the following two
conditions. First of all ifx is a simple root oft then

(o,57) = 0 impliesa is hon-compact (4.4b)
Secondly ifa is a real root ofy in g then

(a,7) = 0 impliesT'(my,) # €q (4.4c)
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for m, € H ande, = +1 as in [18, 8.3.11])i.e. a does not satisfy the parity
condition. We will make condition (4.4c) explicit and relate this data to inducing
data in Section 6.

Attached to a final limit character is a standard modul& (y) which has an
irreducible quotientx (), and thef—conjugacy classes of final limit characters
thereby parametrize the admissible dualiofThe central character df (v) is the
restriction ofT" to the center of7; in particularX () is genuine if and only if" is
genuine.

5. Main results

We consider the dual pai(é(p, q), SNp(Zn, R)) with p + ¢ = 2n + 1. Throughout
this section we fix) = £1, and a nontrivial additive charactér of R. Recall
(1.2) x = x(v) is a genuine character G@L(m, R) for any m. Also recall for
V" an orthogonal space of signatyre ¢), the genuine charactery = x(¢,V)
of GL(m, R) satisfiesyy = (1) P+9. We write 0pq = 0(¢,p,q) for the 6-
correspondence as in (1.3).

THEOREM 5.1.Let 7 be a genuine irreducible representation $(2n), with
inducing data(cf. Section 4)

M =GL(LR)® x GL(2,R)™ x Sp2r,R) c=a®BT.

By Theoren3.3 there exisp’, ¢’ satisfyingy’ + ¢’ = 2c+1land(&1)% = §(<1)™,
such thatr is in the domain o,y . Letn = 6,y (7).

Letp =a+2b+p,qg =a+2b+¢. Thenp+q = 2n + 1,(&1)7 = 4,
0p,q(m) # 0andn is in the domain of, ,. The inducing data foé, ,(7) are given
by

M’ = GL(1,®)* x GL(2,R)™ x O(p', ¢')[n]
o =a*xy @ fxv @7

In these formulase™*xy meansajxy @ --- ® o) xv, similarly for 3, andn’ is
given by

n a even
n' =< nx a odd n even
nx* aodd nodd
Note To defines’ in Theorem 5.1 we have identified the @l and GL(2) factors
of M andM' as in Section 1.

We summarize some useful properties of this correspondence which follow
immediately from Theorem 5.1 and its proof.
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COROLLARY 5.2.

(1) Lety be a lowest- -type ofr. Theny is of lowesip, ¢g-degree inmr.

(2) p, q are the unique choice with=1)? = § andH,, 4(p) # 0.

(3) Lety be a minimal?f—type ofr, and write the element“ (1) of t associated
to 1. by the Vogan algorithncf. Sectior6) as

t
——
M) =(\1,...,04,0,...,0,81,...,05)

withar > >0, >0>061> - > 08,. Thenp,g=2r+t+ 1, 2s+tor
2r+t,2s+t+ 1. o

(4) p' = Hpq(p) is a lowestK'-type ofz’. In particular 1 has multiplicity one
in 7’ and the standard module of. N -

(5) H,,4 defines a bijection between the lowésttypes ofr and the lowesf'-
types ofr’. .

(6) Arepresentatiom of Sp(2n, R) occursin the correspondence for the dual pair
(Sp(2n, R), O(p, q)) if and only if somégequivalently everfyminimal E—type
1 1S p, g-harmonic

(7) A representation’ ofé(p, q) occurs in the correspondence if and only if some
(equivalently ever)yminimalf’-type is harmonic

A comment is also in order due to our choice of coverings of orthogonal
groups (Section 1). The gro@(p’, ¢') in M" is O(p', ¢')[n], while ; is defined on
O(p', ¢')[¢]. Sincen <¢ = amod(2), there is an identification in the definition of
n' if ais odd. Strictly speaking it should regtl= (nx)¢ (n even) om’ = (n&)x 1
(n odd) where is the genuine characterzlsgn of the trivial cover Q- s) x Z /27
of O(r, s) (cf. 1.2).

Let SQp, q)~ be the admissible dual of @ ¢), i.e. the set of equivalence
classes of irreducible admissible Harish-Chandra modules fdp.3Q and let

SpP(2n, R) genuine be the genuine admissible dual$fi(2n, R).

COROLLARY 5.3.Fix § and+. Then the representation correspondence gives a
bijection

fSTXZn, ]R)aenuine<_]<-:‘7¢"}>—> U SQp, q)".

p+g=2n+1
(~Di=

More precisely, ifr is a genuine irreducible representatiorﬁﬁt%), let g =
0(¢, p,q)(m) be thed-lift of = to é(p, q) for the unique choice a#, ¢ for which
this is non-zero. Then), ® ¢ 1 factors to p, q), and letr’ be the restriction to
SQ(p, q). Thent — «' gives one direction of the bijection.

Conversely ifr’ is an irreducible representation of §0q), extendr’ to an
irreducible representation of(@, ¢) (there are two such choices), and tensor with
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¢. Precisely one such choice of representatigris in the domain o®(v); let

™ = 0(¢) (mp).

6. Some calculations

In this section we do some calculations involviAgtypes. The main results are
Propositions 6.1, 6.18, 6.21 and 6.29. Throughout this section we#ix), with
a > 0 (cf. Section 1).

Let i, be aK-type for a groupz. Proposition 5.3.3 of [18] produces an element
A € t* wheretis a fundamental Cartan subalgebra 0iVe refer to this map as the
Vogan algorithm, and denotejit— V(1) = .

PROPOSITION 6.1Lety be aK -type forSp(2n), and supposg is p, g-harmonic.
Then the following diagram is commutative

Sp(2n) O(p, q)

A small but useful observation is that for the purposes of computation it is better
to compute the inverse 1, i.e.the multi-valued map. — . With this in mind we
summarize some standard theory [6, 18].

Let G be a reductive group with a compact Cartan subgfBupVe uset, as a
fixed complex Cartan subalgebragafan ‘abstract’ Cartan subalgebra in the sense
of [19]). Let ag, ..., ay be a set of strongly orthogonal non-compact roots. of
in g. Associated to this set is@-conjugacy class of Cartan subgroupghfWwe
chooseH in this conjugacy class, and writinf = T'A as usual we may and do
assume C t., andt* C t;.

The Cartan involution of carried back ta. via a Cayley transform gives an
involutiono of t.. Lety = (A, v) € it} 5 x t; satisfyingo () = Aando(v) = <v.
Then the Cayley transform identifies(resp.~) with an element oft; (resp.a*),
and¥y with an element of*.

Let 7 be an irreducible representation 6f with character datdH,~y) =
(T, T,7) (cf. Section4). Writey = (A\,v) with A € t}, and letq = q(A\) = (D u
be thed-stable parabolic subalgebragélefined by\ ([18], Definition 5.2.1). The
normalizerL of q in G is quasi-split. The minimak’-types ofr are of the form

p=A+pnp) cpunt)+pu, (6.2)

for some finel, N K-type ..
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Proof of Propositiors.1. LetG = Sp(2n, R), G’ = O(p, ¢), etc, with maximal
compact subgroups and compact Cartan subgroups chosen as in Section 2. Given
1, letw = X () be an irreducible representation with lowésttype 1. Theny =
(A, v)with A = V(i) € t:. By the above discussign= A+ p(uNp)<p(une)+pur,.

To avoid covering groups we work on the Lie algebras whenever possible.

After conjugating byW (t., g) we may write

T1 Ty mo
P A A

A=06..0sA s Am s A0, ..., 0,
Yr %

A

le

S S VPR O (6.3)
with Ay > - >\ > 0;z;,y; > 0.
The finet N lp-typesur, for o ~ [17_; u(z;, y;) X sp(2mo, R) are described as

follows. If z; # y; thenyy, is trivial on this factor. Ifz; = y;, thenuy, is trivial, or
has highest weight

L3110, (6.4a)

(1,...,1,0,...,0) or (0,...,0,1,...,<1) (6.4b)

or

f—L/_’L
=] (6.4c)

Nl
Nl

(

g ey

In the case of a genuine representatioaf §p(2n, R), pr will have form (6.4c)
on this factor.
A straightforward computation now gives

T3 Ty ) e .
u o= (al,.T.,al,...,ar,.i,ar,fﬁgj—k%,...,%@gj—i—%,
e yr v1
Fojel,. . F7eied By BB P). (6.5a)
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Here

k k
Tp = szagk = Zyza
=1 =1
1

a; =N+ (Ti—1S0i-1) + %(QSZ Syi) + 5+ 5_21 (e; =0,+£1),
_ (6.5b)
Bi =&\ + (Fim1 ©Ti-1) + 3(2 ©y) &3+ EZ’
+1 z;, =y andAiEZ+%
E;, =
' 0 otherwise

andmy andm, are any non-negative integers withy + mo> = mg. We set
T = Iy, g = 377"

We now let\’ = O()), and do the corresponding calculation on the orthogonal
group. Itfollows from Proposition 2.2 thatis p, g-harmonic withp = 2z +m+1,
q =2y + moorp =2+ mog, q =2y + mo+ 1. We consider only the first case,
the second is similar.

From 1.13 we have

Tl Tr m;"
o N -~ N 1f—H.
D VIS VS WS W '
1 yr my
~ N ~ N ——
Mo Aoy A A0, .., 0) (6.6)

with mg = [(mo + 1)/2] andmg = [mo/2].
As before withg’ = ¢'(\) = @

p=X+p np') ep NE) + . (6.7)

We assume first thatg is even, and compute

z1 Tr my

- -\ ~ % —_——
o= (ad,...,ah,...,al,...,al,0,...,0)
1 Tr mp
/ A / “ar A P~
B, By B 80,2, 0) + . (6.8a)
Here
b=q ~ -
of =N e (Fii1 ©Pic1) + 3(zi ©yi) + 3,
b g (6.8b)
Bi=Xi+ — T HiaeTig) + 5y ©x) + 3.
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Now If ~ [Tj—q u(xi, yi) ® o(mo + 1,mp), and on the unitary group factors fine
¥ N(p-types are as in (6.4a). On@o + 1, mg), the fineL’ N K’ typey;, is of the
form

©,...,0;0)®(1,...,1,0,...,0:¢). (6.9)

A similar statement holds faD(m + 1, mq), upon tensoring wit.

It follows from Proposition 2.1 that if is anyf—type for§p(2n, R) of the form
(6.2), thenu’ = #H(u) is of the form (6.7). In (6.7) we take; to be the same as
w1, on the unitary group factors, and or{#@y + 1, my) it is given by (6.9) with

G.0.0) — { (FLm 1) 0< 2ma <o
T (+1, m1, <:>1) mo < 2mo < 2mg.

The other casép = 2z + my) is similar. This completes the proof of Proposi-
tion6.1. O

PROPOSITION 6.10. (d)etr = X (y) be an irreducible genuine representation
of Sp(2n,R). Writey = (\,v) and X as in(6.3), and letq = q(A\) = [ ® u. Then
the lowestK -types ofX () are of the form

p=A+punp) punt)+pu.

such that all the possiblg;, have the same restriction tp(2mo, R). Thusuy, is
trivial except onsp and on factors:(x;, y;) of [p with z; = y; andX; € Z + %

(b) The analogous statement holds é@’p, q).

Proof. This follows from the preceding discussion, and the following Lemma.

LEMMA 6.11. Let 7 be a genuine principal series representationévx(Zn,R)
or O(n + 1,n). Thenr contains a unique fin& -type

Proof ForSp(2n, R), letA = (R*)" asin Section 1. We considEis a character
of A. Write

T = |z sgn(z)”x "
on theith factor(v; € C,0; = 0,1). Letns = >, d;, andng = n <ns. Then by
Frobenius reciprocity
no ny

f—Hfl_H
,<:>z,...,

Nl

Nl
L

( )

is the unique fines -type in the corresponding induced representation.
The proof forO(p, q) is similar. We omit the details. This completes the proof
of Proposition 6.10. O

g ey
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We now describe character data in more detail, and relate this to inducing data
(cf. Section4). Let(H,~) be a limit character fot7 = Sp(2n,R). As in (6.3)

write
T Ty mo
% - % N —N—
A= (A1, A, A, A, 0,000,
yr Yt
SAry ey Sy, AL ..., EN1), 2N € Z. (6.12a)

and corresponding to this write

_ 1 T 1 x
v = (ag,...,00" .. 0. 00V, Uy,

B B, B B, (6.12b)

For anyi, (because we may conjugate by the stabilizex of K) we may assume
B! = ol for all j < min(z;,y;). For the parameter to be genuine, we also need
i #yi=> N E€EL+ 3,7, >y = o =0,andy; >z, = g =0.

i

For each let
’ _{fbizyi Ai € 7,
" LG < min(zi,y) o] #0Y A€z + 3, (6.13a)
=z el, yi=yiel, ti=zi+y;
Then set
L=, t=> t (6.13b)

Let H be the covering group dff defined in Section 1, and lét, M andM
be as in Section 4. In fadf andM are determined by: H is isomorphic to

—~ mg —t

(R) " x (C) x U(1)
andM is isomorphic to
GL(1)™ x GL(2)! x Sp(2t, R).

(That H is so determined is due to the condition thagatisfies condition (4.4b);
see the proof of Proposition 6.15.)

Now v determines a (relative) discrete series representatimin}/, explicitly
described as follows. For eacghthere are/; limits of (relative) discrete series
representations @L(2), all with lowestK -type (2); + 1)x, and the center acting

by |def.
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On Sp(2t,R) there is a limit of discrete series representation with Harish-
Chandra parameter

! i 7 '
z Ty Yr h
A

A A

-~ ~ ~ ~ ——f
ALy e AL e Ar e A, Sy, A, B, S, (6.14a)

The positive imaginary roots on this factor are the corresponding restrictién of

The charactel’ of H satisfiesiI' =75 + p(V) <2p.(¥). Thusl is determined
by 7 and ¥ except on the cover of the* factors. We considel’ as a character
of H, genuine on each factor for which the cover is non-trivial (sfactors to a
genuine character d@f). Fori = 1,...,mo write I on the corresponding factor of
R* as

[(z,e) = |z|" sgn(z)” x(z,) . (6.14b)

PROPOSITION 6.15(ﬁ,7) satisfies conditioif4.4b)if and only ifv; = +v; =
8 =0;.

Préof. Suppos€(a,7) = 0. If a is a long root andy is data for a genuine
representation, theli(m,) = +i, and (4.4b) is immediate for these rootsalfs
a short root on a factor af* then a straightforward calculation shows that (4.4b)
holds if and only if\; € Z. This is taken care of by our choice &f: the short
real roots for whichu(y) = 0 and\; € Z + % are imaginary. lfo is a short real
root on the factors ak* then a similar calculation shows (4.4b) is equivalent to the
condition stated in the Proposition.

The preceding steps may be reversed to express character data in terms of
inducing data. O

We turn next to an orthogonal groug®q) = O(2po+ 1, 2¢p). Lety be a limit
character, and write

z1 Zr My
A y A N N —
A= 0 e 0,.0)

Y1 Yr L
- - ~ A —_——
ALy s ALy ey Apy ey A, 0,000, 0) (6.16a)
as in (6.6). Then write the real part of the parameter as
v = (a},...,afl,...,a%,...,af",t/l,...,t/m;r)
1 1 .
QBry-- B By, BY ’Vm3r+l""’ym5r+m0’)' (6.16b)

The corresponding Cartan subgralipof SO(p, ¢) is isomorphic to

(]R*)ngrma % ((C* )Z % U(l)t
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where/ andt are defined as in the previous case (cf. (6.12c¢)). AD@&rdetermined
by 7 except on the copies & . Write T'(z) = |=|* sgr{z)% on these terms.

LEMMA 6.17. y satisfies conditioi@.4b)if and only ifv; = +v; = 6; = 0;.

Proof. If « is a shortrootthem, = 1 ands, = <1 [18, 8.3.8and 8.3.11]. The
first fact comes down to the isomorphism @01) ~ PGL(2, R), and the second
from a straightforward calculation that the integérsf [18, 8.3.9] are even. Thus
(4.4b) is automatic for these roots. The proof for the other roots is the same as for
the symplectic group. We omit the details. O

This result extends in the obvious way t@Qg) and(~)(p, q).
PROPOSITION 6.18LetG = Sp(2n, R) or O(p, ¢) and let
a
IndMN(U) (6.18a)

be a standard module fa# (cf. Sectior). Lety be a minimalK -type of(6.18),
and suppose is p, g-harmonic. Letu,, be the(uniqug minimal KN M-type of
o. Thendeg, (1) = deg, ,(un), and iy is contained in the restriction gf to

KNnM.

Proof We first consideld = Sp(2n, R). Write V(i) = A as in (6.3),x as
in (6.5a), and other notation as in (6.5b). By the proof of Lemma 6.11 we have
mq = »_,; 0; with " written as in (6.13).

Thenp = 2% + mo+ 1,q = 2y + mo Ofr p = 2% + mo, ¢ = 2§ + mo + 1. We
consider only the first case, the second is similar.det(p <q)/2 =7 <7 + %

By Proposition 2.1, deg, (1) = 3=, wilas & 2| + 3, il B € 2| + ma2.

It is not hard to see that; <z > 0 > §; =. This implies the degree ¢f is
the sum of the following terms

=Y ti(2x +1) (6.19a)
+ Z 7i(a; &2) (6.19b)
&Y 46 52) (6.19¢)
o (6.19d)

On the other hand with described preceding Proposition 6.15 we compute the
lowestK N M-type s of o. We pull this back to the groupl. The degree ofi,,
is the sum of the degrees of the factors. With notation as in (6.13), on each of the
¢; factors of typeGL(2), the degree ofi; is 2)\; + 1. This contributes

> 4(2\; +1) (independent of;) (6.20a)
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to the degree of;;,.

OntheSp(2¢, R) factor,o is a limit of discrete series representation with Harish-
Chandra parameter given by (6.14a). Definé’, ¢, o, etc. by applying (6.5b).
Thenpuys on this factor i52z" + 1, 27')-harmonic. Withy' = (27’ + 1 <27) /2,
we see that the degree of; is the sum of

Zxﬂag &7, (6.20b)

> yilB <. (6.20c)

By (6.13a)z; <y. = z; <y; for all i. Therefore by (6.5)F; <! = z; <y,
af = oy, andgl = g; for alli. Also &’ <y’ = <y and soz’ = 2. It follows that
(6.20Db) (resp. (c)) equals (6.16b) (resp. (c)).

Finally on eaclGL(1) factor, the degree i&, which gives a contribution of

ma (6.20d)

to the degree ofz,,. Comparing (6.16) to (6.20) we conclude that ¢eg=
ded ). This calculation also shows that the highest weight gfis the same as
the highest weight ofi (independent of the choice g, proving the last claim of
the Proposition in this case.

The proof forO(p, q) is similar. We won't use this fact, and so we leave the
details to the reader. |

PROPOSITION 6.21Let . be a Iowesﬁ-type of an irreducible genuine repre-
sentationr of Sp(2n, R), and choose, ¢ so thaty is p, g-harmonic. Then is of
lowestp, g-degree inr, and in the standard module of

Proof. Obviously it is enough to prove the second claim. We use notation as in
the proof of Proposition 6.18. In particular write= X (), Aasin (6.3) angi asin
(6.5a). Letp, g andz be as in the proof of Proposition 6.18, and write gedeg, .
For anyk-tuple write deg(z1,...,zx) = >; |z; ©z|. With Z,7, mo as in (6.5)
(computed fo), write anyf -typey as

Y= (74—370,7—) = (a'la s 035 Cy v o5 Cmgy bg]a s abl)' (622)
Then degy) = deg,(v+) + deg,(yo) + deg,(y—). By (6.5a)u satisfies
al,...,c%;z;ﬁg,...,ﬁl. (6.23)

The standard modul& () may be realized as a derived functor module from the
parabolic subalgebra= q()) of g [18]. By}be generalized Blattner formula ([18],

Theorem 6.3.12) the highest weight of akiytype i/ of = may be written

/1', =+ Zmaa (mq = 0), (6.24)
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where the sum runs over the rootstpin [ andu N p, andy is a Iowesﬁ-type of
w. Furthermore if the sum is restricted to roots,ithen the resulting weight is the
highest weight of m-type in the corresponding principal series representation
X, (’y) of L.

In our coordinates these roots are those in the following table

eite; 1<4,j<7z, (6.25a)
seite; T+Hmo<i,j<n, (6.25b)
t(ei+e) 1<i<# T+mo<j<n, (6.25¢)
gi+¢€,26 1<1<T<j<T+mo, (6.25d)
e &ej, 26 T<i<T+mpo<j<n, (6.25e€)
te, e, £2; z<1i,5 <T+mo. (6.25f)

These roots also satisfy

(a, A) > 0, and if («r, A\) > 0 thena is not of the forme; <¢;.

LEMMA 6.26. If v is anyk-tuple satisfyind6.23) then
deg (7 + Z maa) > ded~)
a,b,c

for anym, > 0. Here}_, , . denotes a sum over roots of the fof@i25a,b,c).
Proof. Adding roots of the forna; 4 ¢; and«s; <«; of type (6.25a—b) changes

v to a' satisfying (6.23) and such that deg) > ded~), with equality if and

only if all m, = 0. So we may as well assume that no such roots occur. Then

’y—l—Zmaa

a,b,c
=(.,0i+ki+a,...,... 0. Cmgy - b B
whered " k; = Y [; and)_o; = > 3; = 0. Then
Z|ai+ai+ki<:>z|+Z|bj+ﬂj+€j(:)z|
> (ai ezt o+ k) + Y (2 b &8 <))
= Z(ai &2) +Z(z &bj).

The claim follows. O
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Lemma 6.26 applies to + >, . s mac, and gives

dedy’) > deg (u +) maoz) . (6.27a)

d7e’f

The right-hand side of (6.27a) equals

(] )

+deg, ( 1+ Zmaa] ) (6.27b)

u—i—Zmaa
d

u—i—Zmaa] )

die,f

> deg, (1) + deg, ( =Y maa} ) +> mqg +deg(u-) (6.27c)
0

d7e’f d’e

> deg, (1) + deg, ( u—i—Zmaa ) +deg,(u-). (6.27d)
L f

0

Here (d) follows from repeated applications of the inequality,deg+ o) + 1 >
deg, (o) for any weighty and« in (6.25d,e).
Separating the sum (6.24) into rootsiaindu N p gives|u + >- maajo =

[t + T aea(e.) Mac]o, SO by the discussion following (6.24) this iskn L-
type of a principal series representationSTﬂZmo, R). This has (unique) lowest

KN L-type
mq mo
—f— ——
(%a"'a%a@%a"'?@%)
(cf. (6.5).

LEMMA 6.28. Let = be a minimal principal series representation $f(2n, R),
containing theluniqug fine K -type

my m2
—f———

1
5,

NI

Nl
L

)

(cf. Lemm&6.11) Theny is of lowesin + 1, n-degree inr.
Proof. This follows easily from Frobenius reciprocity. We omit the details:

p=

g ey

Proposition 6.21 follows from (6.27d) and Lemma 6.28. O
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We only need part (1) of the next Proposition for the proof of the main results
in Section 5.

PROPOSITION 6.29.et i be a Iowesﬁ’-type of an irreducible genuine repre-
sentationr of O(p, q).

(1) If 7 is a discrete series representation theis of lowest degree if.
(2) For anyr, assume occurs in the space of joint harmonics. Theis of lowest
degree inr.

Proof. We may safely ignore the covering groups, and for the remainder of this
section we letG = O(p, q) = O(2po + 1, 2qp), K = O(p) x O(q), etc.

Let = be a discrete series representatiorzofvith Harish-Chandra parameter
A = (Xo; €) (cf. Section 3) and lowedk -type . Let i’ be anyK -type of .

Suppose: is of the form

p=1(a,...,ar,0,...,0;6) ® (b1,...,bg; M) (6.30a)

for some 0< r < po (cf. Section 3). Write anyK-typey asy = (v+,7%0,7-)
with v4 = (a1,...,ar), 7= = (b1,...,bg;n) @andyo = (ar41,.--,ap,;€). Then
dedqy) = degy(v+) + ded~o) + dedy_) where the second and third terms are for
the groups Qv <2r) and Qq) respectively.

It follows from the formulay = Ao+ p(uNp) ©p(uNp) thathg may be written

>\0 = (al,... , Oy, PO =T @%, s %,%;ﬁl,... ,ﬁqo). (630b)

By induction by stages ([18], Corollary 6.3.10) it follows thamay be realized
as a derived functor module fer= [ & u with L ~ U(1)%*" x O(p <2r), from
a one-dimensional representatiop of L. The Qp < 2r) component ofry, is
the one-dimensional representati@). . ., 0;¢) realized on the space. . By the
Blattner formula (6.24) it follows that

po=p+d meo (6.31)
[0
with a € unyp.
The roots ofi N p are (among those) of the form
+(e; ©ej),ei+eje; 1<i<r, po+1l<j<n (6.32a)
*e; + g5, r+1<i<py, po+1<i<n (6.32h)

As in (6.27a—cC) it is immediate that

deqy') > deg (u + Zmaa> (6.33a)
b
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u—i—Zmaa

> dedu4) + deg(
b

> + deguu-)

0

+) modegp) (6.33b)
b

where the subscripts denote the roots of (6.32a,b). Notinfthdt, m,ajo = up,
it is enough to show

degip) + 3 ma > degjo). (6.34)
b

This requires a refinement of the Blattner formula. We only consider the factor
O(p &2r) of L. Letr, 7' be the Qp «<2r) factor of HO(uN¢,V,,) andHO(u Ne,

V) respectively. These are the finite dimensiobal K-modules with the same
highest weight ag andy’ respectively. It follows from [18, 6.3.12] (a sharpening
of (6.31)) that (withm = >, m,),

mult[7": 7 ® S™(wN p)lop-2r)] > 0. (6.35)

Recall from Section 1 that we realized each representation(pf&2r) as the
highest weight factor in a representatiorit(ip <2r). As a module for Qp <2r),
u N p is isomorphic to a direct sum of copies of the standard module; thus it is a
module forU(p < 2r) as well. So we can decompoSé’(u N p) with respect to
U(p <2r) and then restrict to @ <2r).

It follows that the highest weight of any irreducible summand®f{u N p), is
of the form

(c1,... ,Cp_zr) with Z c; =m, ¢; > 0foralli,

when written as a weight fdv (p <2r).

LEMMA 6.36. Let 7, 7" be irreducible representations d@(n), with 7 one-
dimensional. Lety be an irreducible representation &f(n) with highest weight
(c1,...,¢n), ¢ > 0. Suppose
mult{7": 7 ® (ylom))] > 0.
Thended ') + i1 ¢; > degT).
Proof. This is obvious ifr is trivial, so assume = sgn. Replacing’ with
7' ® sgn it is enough to show

mult[7": v|o(my] > 0= dedr’ ® sgn) + Z ¢ = n. (6.37)
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Write 7/ = (aq,...,ax,0,...,0;¢), so dedr’) = > a; + ((1 <¢€)/2)(n <2k).
If the multiplicity is greater than zero, thep must contain a vector of weight
(da, . ..,d,) which is a highest weight vector faf. It follows that

di &dpt1-i =a;, 1<k, (6.382)
di &dni1; =0, k+1<i<[3n)], (6.38b)
di =dpy1-; = 1oe mod(2), k+1<i< [%n], (6.38c)
dins1)/2 = 19€ hod(2) if nis odd (6.38d)

In addition, the relation¥_!" ; d; = 31 1 ¢; andd; > 0 for all 7, hold.
By (6.38a)d; > a; > 1for1<i < k. Thus

k
> (a; +d;) > 2k. (6.39)
1

If ¢ = 1, then (6.37) becomes.¥ a; + 37 d; > 2k, which is immediate from
(6.38). Assume = «1. We need to show'7 (a; +d;) + > 1,1 d; > n. By (6.38c)
and (6.38d), we gel; > 1 fork + 1 <7 < n <k. The assertion follows from this
together with (6.39). O

This also completes the proof of Proposition 6.29(1). O

Part (2) of the Proposition may be proved similarly, using an extensionion of
Lemma 6.36 to general and a version of Lemma 6.28 fo(f2 ¢). Since we won't
need it we omit the details, but we note that it is also an immediate consequence of
Theorem 5.1.

7. Occurence of the discrete series

In this section we prove that the entire genuine discrete seriSNs(ﬁh, R), and

half of the genuine discrete series ©fp, ¢), occur in the correspondence. We
assume + g = 2n + 1 throughout, and fix). The arguments hold for+ ¢ = 2n

as well, recovering some of the results of [11]. We depart from our convention of
Section 1 and le®(p, ¢) = O(p, q) if n is even, and we [eBp(2n, R) = Sp(2n, R)

when considering a dual pdiBp(2n, R), O(p, ¢)) with p + ¢ even.

PROPOSITION 7.1. (1 et = be a genuine discrete series representation of
Sp(2n,R). Then, for anyd = +1, = occurs in the correspondence with some

O(p, q), (&1)7 = 4. ~
(2) Letm be a genuine discrete series representatio®@f, ¢). Then precisely

one ofr andr ® sgnoccurs in the correspondence wiip(2n, R).
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This follows from a doubling of variables argument due to Kudla and Rallis.
The proof is divided into a series of Lemmas. _
Foranirreducible representatieof Sp(2n, R) (resp.O(p, q)), letR,, , , denote

the maximal quotient ab,, , , on whichSNp(Zn, R) (respf)(p, q)) acts by a multiple
of « [5].

We embed S{Pn,R) x Sp(2n,R) diagonally in Sp4n,R). This induces a
nat~ural maBp(2n, R) x Sp(2n, R) — Sp(4n, R). Similarly O(p, ¢) x O(q, p) maps
toO(p +¢,p +q).

LEMMA 7.2. (1) For any irreducible representation of SNp(Zn, R),
Opq(m) #0 & Homgp(ZTL’R)ngmR)(RZn,p,q(]l), T m) #0. (7.3a)
(2) For any irreducible representatiom of é(p, q),

0(m) #0 & Homa(p,q)xa(q,p) (Rn,p+q,q+p)(]1)a Tm) # 0. (7.3b)

__ Proof. We prove (1), the proof of (2) is similar. To conserve notationdet
Sp(2n, R), G' = O(p, q), and letw,, be the oscillator representation for the dual
pair (G, G"). Then according to ([11], 1.8),

Homg (wn, ) # 0 < Homgyx g (wn, 7@ ') # 0 for somen’. (7.4a)

Thus if Homy (wy,, ) # 0, then Hom:; x cx < (Wp Qup,T@TRT @7') #0.
Sincer’ is a genuine representation©fp, q), (7')* ~ ' ® sgri'. Therefore sgh
is a quotient oft’ ® 7/, which gives

Homg (wy, m) # 0 = HOMgxaxa(er) (wn ® wp, ™ @ ™ @ sgrf’) # 0, (7.4b)

whereA(G’) is the diagonal subgroup 6f' x G'. By Lemma 1.7 we may replace
wn, ® wy, With wo, ® sgrit. Thus the right-hand side of (7.4b) is equivalent to

HoMgaxa(ary(wan, T®@ T ® 1) # 0
& Homg g (Ron pg(1L), m @ m) # 0. (7.4¢)

Thius proves one direction of the statement. On the other hand, if (7.4c¢) helds (
the right-hand side is nonzero), the same is true for (7.4b), and ignoriny(the
action, we see that Hom ¢ (w, ® wp, ™ ® ) # 0. This is easily seen to imply
Homg (wy,, m) # 0, proving the Lemma. O

Let P = M N be the stabilizer of the Lagrangian subspage= (e1, ..., e2,),
andP = MN its inverse image irSp(4n, R). For « € Z /47 we consider the
Harish-Chandra module of the induced representation

|ndf;”(4"’R>(Xa). (7.5a)
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We are using normalized induction, so this representation is unitarily induced

and completely reducible. Similarly, f@&’ = O(p, q), we consider the induced
representation

Ind%(2n+l,2n+l) (X), (75b)
where the Levi componentdf = M N is isomorphic to Glm), M ~ M x 7Z./22,
andy = 1L ® sgn.

LEMMA 7.6. (1) For oo = +1
a0 = @D Ranpg(L).
pt+g=2n+1

p—q=c

(@)

|nd%(2n+l’2n+l) (x®1) ~ Ry 2nt120+1(1) @ (Ry2n+1,20+1(1) ® SQN).

Proof.Part (1) is proved in [9], and both (1) and (2) are in [24]. O

LEMMA7.7. (1) Letw be a genuine irreducible representation§|b(2n, R). Then
0p.q(m) # O for somep, ¢ with (<1)?7 = ¢ if and only if

S~[(2n,R) @
HomSNp(Zn,R)Xgp(Zn,R)[Indﬁ (x*),m® 7T] # 0,
for a =d(<1)". (7.7a)
(2) For = an irreducible representation @(p, ¢), 0(r) # 0 or (x ® sgn) # 0
if and only if
O(2n+1,2n+1)
Homg |, S0 NG5 (x), @] #0. (7.7b)

Proof. This follows immediately from Lemmas 7.2 and 7.6.

LEMMA 7.8. Let 7 be the Harish-Chandra module of a genuine discrete series
representation oBp(2n, R) (resp.O(p, q)). Then the spac€r.7a) (resp. (b))s
non-zero -

Proof. The two cases are similar, so we treat o8ig(2n, R). Let X be the
variety of Lagrangian subspacesiff:. ThenX ~ Sp(2n,R)/P. Let L2 & Io, (cx)
be theLz-in(lgced version of (7.5a). This is realized bAsections of the induced
bundleB = Sp(4n,R) x5 (x“) overX.

LetL = <€1 +ept1y ..., 60 1 €E2p, fl + fn_|_1, ce ,fn + f2n> Then the orbitD
of L by G = Sp(2n, R) x Sp(2n, R) is open inX. Let H be the stabilizer of. in G
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soO ~ G/H. ThenH ~ Sp(2n,R) is embedded itz ~ Sp(2n,R) x Sp(2n, R)
via g — (g,7(g)) wherer is the outer automorphism of &n,R) of 1.4. Let
7 ~ 7./27 be the kernel of the covering m&p(2n, R) — Sp(2n, R). Passing to
the coverings we see that the map

O~ G/H —Sp2n,R)/Z (7.9a)

given by(g, h,e)H — (g7(h 1), ) Z is an isomorphism, and induces an isomor-
phism between the restriction 8fto O and

G ¥z x|z (7.9b)
Under this isomorphism the action 6fon © becomes

(9:he) - (2,0)Z = (gar(h 1), e0)Z
(9, h,z € Sp(2n, R)). Thus sections of the bundle (7.9b) are identified with
ij(Sp(Zn,]R)N), i.e. L? functions onSp(2n, R) transforming byy underZ, with
Sp(2n, R) x Sp(2n, R) acting by conjugation twisted by. Sincer takesr to 7* it
follows that the discrete spectrum of this space is precisely the sur@afwhere

7 runs over the genuine discrete series representatidg@fi, R).
Therefore there is a nonzero map

restriction

¢ L? 1o, (a)

.
L (Sp(2n,R)) = 7@ 7

intertwining the action o8p(2n, R) x Sp(2n, R), where the first map is restriction
of sections ta).

To complete the proof we need to replaceé< I, (o) andr by their Harish-
Chandra modules. L&t (respff) be the maximal compact subgrourfﬁ(4n, R)
(resp.Sp(2n, R)). The restriction of thé&-finite functionsly, () of L2 < I, (c)
is a dense subspace of thex K-finite functions on®. Thereforep restricted to
I, (e) is nonzero. O

Proof of Proposition7.1. Part (1), and the occurence of eitheor  ® sgn in
the correspondence in (2), is an immediate consequence of Lemma 7.8. The fact
that bothr andr ® sgn cannot occur in (2) was proved in Lemma 1.5. O

8. Induction principle

In this section we turn to a more general setting andI&e an orthogonal space
of signature(p, ¢) andW be a symplectic space of dimensiam, 2vith no further
restrictions. Throughout this section we fjx and letw be the corresponding
oscillator representation for the dual pe@(V'), Sp(W)).
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Suppose we are given a decomposition
W=w/e oW oeWlew, o --0oW,, (8.1a)

where aIIWji are isotropichJr andW ;" are in duality, and’ Ois anon-degenerate
symplectic space or 0. LeP = M N be the stabilizer in V) of the flags
OCcW, cWy ®@W, C---C W~ =3Y,W,.LetP = MN be the inverse
image of P in Sp(W). There is a surjective map

M =GL(W1) x --- x GL(W,) x SpW®) —» M. (8.1b)
Let
V=Vie -eoVieVieV, e---aV, (8.1c)

be a decomposition df, and defing”’ = M’N’ andP’ = M'N" in an analogous
manner as for the symplectic group. In this cadge~ GL(V1) x - -+ x GL(V}.) x
o(V9).

Let wy; denote the oscillator representation fde/, M'). This is the prod-
uct of the oscillator representations for the dual pa&d (W;),GL(V;)) and

(SpW?),0(V9)). It gives a correspondence between representatiohs and
M'=GL(V1) x --- x GL(V;) x O(V9). (8.1d)

If one member of a dual pair is the trivial group, then we take the trivial represen-
tation for the oscillator representation for this pair.

Sety = x(v) andyy = x(¢, V) asin (1.2).
DEFINITION 8.2. ([7], 1.1.1). Fora,b € Z define the charactef(a,b) of

GL(1) by
C(a'a b)(m,e) = X(xaaga)X(xbagb)il
= 'Y(xav% )V(xba% )7150‘71’
1 a = b(2),

=< x Y(z,¢) aevenpodd
x(z,€) a odd,b even

For (g,¢) € GL(m) let((a, b)(g,¢) = ((a, b)(detg), &).
Note that{(a, b) is of typea + b.

Letk; = dim(V;), k; = Yoy kj, k = ky, £ = dim(W;), andf; = Y0_y 45,

0=1,.
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DEFINITION 8.3. Letm = p + ¢, and define the charactgf M by

. |det|n7(m/2)ff~j +hj+(1/2)6;— (1/2)k; HA/2¢ (ky, k) x(det, e)xy  GL(W)),
1 Spw?o)

and¢’ of M/ by
|det =+ (m/2) 4 —ki= (/2 +(1/2)k =112 ¢ (1 0)x(det, %) GL(V)),
y(det™, ¢)(«1, detX" 9 OVO).

THEOREM 8.4.: INDUCTION PRINCIPLE ILeto be a representation aff and

o' arepresentation oM '. Suppose there is a non-ze¥6 x M’ equivariant map

wy—=o®o. (8.5a)

Then there is a non-zef@(V) x Sp(W) equivariant map
b w — |nd?’;(W> (06) ® |ndl‘§fv> (0'€). (8.5b)

Hereo¢ factors toM, and extends t@ trivially on N, ando’¢’ factors toM’ and
extends td”’ trivially on N'.

Note. The coverO(V'°) of O(V'°) in (8.1d) (resp. (8.3)) i(V°)[n /] (resp.
O(V9)[¢)). Thenos'¢" and the representation in (8.5b) are naturally representations
of the covers of @V °)[n] and QV)[n].

Proof. The proof is essentially the same as the proofs of ([7], Theorem 2.5) and
([3], Corollary 3.21). It follows from Frobenius reciprocity and the following two
Lemmas.

LEMMA 8.5. In the setting of Theore®.4, suppose = 1 so thatV = V' &
VO® V™, Py = My Ny is the stabilizer o/ —, My ~ GL(V*) x O(V?), and
similarly for Sp(W). Then there is a surjectivily x My equivariant map

W = WpV

wherev is the following characteroM - x Myy.

def "+ (det, 1yp)e’ (9,€) € GL(VT),
| idet-0n/2w2 et ) (9,0) € GLOW ),

v(det, 3¢) (<1, detie! (g,¢) € O(VY),

1 (9,€) € SPWO)
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Proof. The proof is the same as the proof of ([3], Proposition 3.13). O

LEMMA 8.6. Let (GL(V'), GL(WW)) be a dual pair. Supposg = V; @ V>, and
let P, = My Ny be the stabilizer oﬂ/l, S0 My ~ GL(V7) x GL(VZ) Let
M = GL(V1) x GL(V»), and letP = M N be the inverse image &t in GL(V').
Similarly letW = W1 & W), etc. Letw),; be the oscillator representation for
the dual pair(My-, My ). Setk; = dim(V;) and/¢; = dim(W;). Then there is a
surjectiveP x P equivariant mapy — wysv, Wherev is the following character

|det~(/2f2¢ (01, 0)  GL(
det™/24¢(62,0)  GL(
|det~(Y/2k2¢ (kq, k) GL(
|det(/2k1¢ (ky, k) GL(

Proof. See the proof of ([3], Proposition 3.13). We omit the details. O

In the setting of Theorem 8.4, 1é€ ;; be a maximal compact subgroupM
There is a surjective map frofd ;; to the maximal compact subgroégn M of M.
The K j;-type in the next result factors to, and is identified with, a representation

of KNM.

THEOREM 8.7.: INDUCTION PRINCIPLE ILIn the setting of Theorer8.4,

suppose: is a K-type forSp(2n, R), andy; is a K j;-type for M satisfying the

following properties

(1) par is of minimal degree i, -

(2) dedp) = dedpar), i containsuys in its restriction to KN M and is of
minimal degree and multiplicity one in

ind2") (ga),

(3) There exist characters anda’ of M andM /, trivial on KN M and K’ N M’

such thaiva ® o'’ is also a quotient of,,, and Ind}sgp(w)(w) (céa) is irre-
ducible
Thenu ® H(p) is in the image ob.
Proof. The proof is the same as the proof of [3], Proposition 3.25. O

THEOREM 8.8Inthe setting of Theoref4, assumeim(V;") = dim(W;") = k;
forall 1 <i < r;sowithk =3, k;,

M ~ GL(k1) x --- x GL(k,) x Sp(2n <2k, R)
M ~ GL(k1) x - - x GL(ky) x O(p <k, g k).
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Leto; be any irreducible representation GiL(%;), and supposey corresponds to
7o for the dual pair(O(p <k, ¢ k), Sp(2n <2k, R)). Then there is a non-zero
map® fromw to the tensor product of

g6 0.0, 6 00)

and

|nd%(p’q)(UIXV ® - X o xv @ 1o¢(n, k +n)).

Proof. The existence of follows from Theorem 8.4 and the fact that for the
dual pair(GL(m), GL(m)) the correspondenceis— 7 ® (<1, ded g’ for all 7. O

Note.The oscillator representation for the dual pair(@l), GL(m) may be nor-
malized so that the action of the dual pair factors to the linear groups. We are using
the unnormalized oscillator representation, which accounts for the tetnaet) ;.

9. Proof of the main results

We prove the four results in Section 5, and Theorem 3.3. Throughout this section
we fix ) andé = £1.

The most natural way to prove Theorem 5.1 would be to prove it first for
the discrete series, and then in general using the induction principle (Section 8).
Unfortunately, the results in Section 7 are not sharp enough to compute the corre-
spondence of the discrete series. -

Instead we proceed by induction enGiven the result foSp(2n <2, R), the
induction principle computes the result for all representations but the discrete series
of Sp(2n,R) (andO(p, ¢)). This implies that the representation correspondence
can only map discrete series to discrete series; since these are in the domain of
the correspondence, it remains to match up parameters. This is a relatively simple
matter using the results on harmoriGtypes in Section 6.

Proof of Theorenb.1. n = 0. This is not quite empty, but an exercise in the
definitions and covering groups. Consider the dual pair1, 0), Sp(O, R)). The
groupO(1,0) ~ 7 /27 is isomorphic to @1,0) x Z /27, andSp(0,R) ~ 7 /27.

This dual pair is mapped t§p(0, R) ~ Z /27, and the correspondence is obtained
by restricting the nontrivial character of this group to the dual pair. This takes the
nontrivial character o8p(0, R) to ¢ = 1L ® sgn ofO(1, 0). This is as predicted by
Theorem 3.3, and Theorem 5.1 is immediate. The casé®flQis the same. This
completes the proof in this case.

Inductive step: Induced representations

Assume Theorems 3.3 and 5.1 8p(2n <2, R), and letr be a genuine irreducible
representation ofSp(2n, R), which is not a discrete series or a limit of discrete
series.
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Let M ando be inducing data for as in Theorem 5.1. We chooge= MN
to be of the form in Theorem 8.8 (cf. 8.1), and ®as the (unique) irreducible
guotient of the standard module

|nd]§p(2"’R>(a). (9.1a)

By Theorem 8.8 there is a non-zero magrom w to the tensor product of (9.1a)
and

Indg”’q) (o). (9.1b)

Herep', ¢', M’ ando’ are as in Theorem 5.1, the twistpgoming from( (n, k+n)
of Theorem 8.8.

Recall from (Section 4) that is the unique irreducible constituent of (9.1a)
containing a minimaﬁ-typeu, and similarlyz’. It is enough to show

i is in the image ofb. (9.2)

Letw ® " be any irreducible quotient of the image®fBy [5] 7" containsH (u).
Write the standard module (9.1a) &%), withy = (A, v), and similarly (9.1b).
It is immediate from the calculations in Section 6 tidat\) = )\’ (cf. the proof
of Theorem 5.5 below). By Proposition 67 1:) is a minimalK’-type of (9.1b),
and it follows thatr” = ', as we needed to show. -

To see (9.2) we apply Theorem 8.7. Let; be the minimalK'n M -type ofo.
By Corollary 5.2 applied t®p(2r, R) the Sp(2r, R) component ofu s is p', ¢'-
harmonic. By Proposition 6.21, and ([11], 111.9) for the GL termg; is of lowest
p', ¢’-degree ino, so condition (1) of Theorem 8.7 holds. By Proposition 6.18,
deg, ,(1) = deg, ,(1ar), and since @qi@q’ this equals deg , (11ar). Also
by Proposition 6.18, the restriction@fo KN M containg. ;. By Proposition 6.21,
1 is of lowest degree in (9.1a), and also of multiplicity one (this is a general fact
about standard modules). This verifies (8.7)(2).

Take« to be a generic character 8f given by a power ofdet on each of
the GL terms, and let/ = o*. Thenoa ® o'’ is a quotient ofw,, (cf. the
proof of Theorem 8.8) and (9.1a) is irreducible by the usual argument. Thus (3) for
Theorem 8.7 holds, and applying the theorem we conclude (9.2).

Inductive step: Limits of discrete series -
Let 7 be a genuine limit of discrete series representatio8m@en, R) notin the
discrete series. Thenmay be realized as the unique irreducible quotient of

Ind ) o) (9.3a)
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containing the (unique) minima -typey.. HereM ~ GL(2)¢ x Sp(2¢, R) ando is
a discrete series representatiod%f In the notation of (6.13Y, = >, min(z;, y;)
andt = 3, |z; <;|. This follows from the discussion in Section 6. As for (9.1a),
by Theorem 8.8 there is a non-zero map from the tensor product of (9.3a) and

Ind%p’q)(a’), (9.3b)

whereo’ is now a discrete series representatioﬂ%f The same argument applied

with (9.3a,b) in place of (9.1a,b) proves that the lowisand K’-types of (9.3a)

and (9.3b) correspond. Theorem 5.1 reduces to Theorem 3.3(2) in this case, and
holds from the calculations of Section 6.

Inductive step: Discrete series
Theorem 5.1 reduces to Theorem 3.3(1) in this case, so it is enough to prove
Theorem 3.3(1).

Proof of Theoren8.3(1). It is convenient to start on the orthogonal group. So
let 7’ be in the discrete series representatio®gs, ¢). By Proposition 6.29 and
Proposition 2.17" occurs in the representation correspondence, whil® sgn
does not. The corresponding representatiasf Sp(2n, R) is also in the discrete
series (the representation correspondence is the graph of a bijectisnn the
domain and all but the discrete series in the range are accounted for).

Let g be the lowesK-type ofr’, andyo the lowestK -type ofr. By Proposi-
tion 6.28(2),uy is of lowest degree and occurs in the space of joint harmonics; let
pw = H(u'). Itis enough to show = pp.

We calculate the length af(u), the element defined by the Vogan algorithm
applied toyu (cf. Section 6). If\ is the Harish-Chandra parameter ©f then
V(uo) = A, and (the Weyl group orbit of) is the infinitesimal character. The
relation between infinitesimal characters is given by the orbit map which preserves
lengths (cf. Section 1), 98| = |\'|, where)\’ is the Harish-Chandra parameter for
7', Therefore

V(po)| = [l
= [X|
= [V(uo)]
= |00(
M4
M4

1o))]
H(ug))| by Proposition 6.1

=
= [V(p)] (9.4)

Thusp andy are both lambda-lowesgt -types ofr [18, Definition 5.4.1]. There-
fore [17, Lemma 8.8}, and uq are both lowestK-types, and therefore equal.
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This accounts for all genuine discrete series representatiogsp(ﬁh,]R). This

completes the proof of Theorem 3.3(1) as well as Theorem 5.1. O
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