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The evolution of coherent vortical structures in
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We study the morphology of Eulerian vortical structures and their interaction with
density interfaces in increasingly turbulent stably stratified shear layers. We analyse the
three-dimensional, simultaneous velocity and density fields obtained in the stratified
inclined duct laboratory experiment (SID). We track, across 15 datasets, the evolution of
coherent structures from pre-turbulent Holmboe waves, through intermittent turbulence,
to full turbulence and mixing. We use the rortex–shear decomposition of the local
vorticity vectors into a rortex vector capturing rigid-body rotation and a shear vector.
We describe the morphology of ubiquitous hairpin-like vortical structures (revealed by
the rortex), similar to those commonly observed in boundary-layer turbulence. These
are born as relatively weak vortices around the strong three-dimensional shearing
structures of confined Holmboe waves, and gradually strengthen and deform under
increasing turbulence, transforming into pairs of upward- and downward-pointing hairpins
propagating in opposite directions on the top and bottom edge of the shear layer. The
pair of legs for each hairpin are counter-rotating and entrain fluid laterally and vertically,
whereas their arched-up ‘heads’, which are transverse vortices, entrain fluid vertically. We
then elucidate how this large-scale vortex morphology stirs and mixes the density field.
Essentially, vortices located at the sharp density interface on either edge of the mixing
layer (mostly hairpin heads) engulf blobs of unmixed fluid into the mixing layer, whereas
vortices inside the mixing layer (mostly hairpin legs) further stir it, generating strong,
small-scale shear, enhancing mixing. These findings provide new insights into the role of
turbulent coherent structures in shear-driven stratified mixing.
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1. Introduction

Stably stratified turbulence and the enhanced mixing across density isosurfaces
(isopycnals) that it accomplishes is a crucial but poorly understood component of many
deep-ocean and coastal flow systems of importance under a changing climate. A ‘grand
challenge’ of environmental fluid dynamics is to parameterise accurately this small-scale
‘diapycnal’ mixing in large-scale circulation models to improve predictions for the vertical
transport of heat, carbon dioxide, salt and other scalars in our oceans (Dauxois et al. 2021).
To complement expensive and sparse field observations, laboratory experiments have a
key role to play in the effort to develop better mixing parameterisations. In this paper
we use datasets obtained from such an experiment, the stratified inclined duct (SID),
which sustains a two-layer exchange flow in an inclined square duct. This experiment
allows us to accurately control the flow geometry and levels of interfacial turbulence
by a systematic variation of two key non-dimensional flow parameters. Using newly
available measurement technologies (Partridge, Lefauve & Dalziel 2019), this experiment
also allows us to obtain the three-dimensional Eulerian velocity and density fields
simultaneously at high spatio-temporal resolutions, and thus to study three-dimensional
coherent structures like never before.

These coherent flow structures, and especially vortical structures, exist across a wide
spectrum of spatio-temporal scales and play an important role in the processes of turbulent
bursting and mixing. Previous studies identified a range of vortical structures in stratified
shear layers (i.e. in a nearly parallel layer of vorticity not caused by a solid wall, and that
embeds a density interface), such as streamwise or quasi-streamwise vortices (Schowalter,
Van Atta & Lasheras 1994; Caulfield & Peltier 2000), spanwise vortices (Salehipour,
Peltier & Mashayek 2015) and hairpin vortices (Smyth & Winters 2003; Watanabe et al.
2019). In the shear-driven flows of interest in this paper, it is meaningful to define vortical
structures after an appropriate treatment of the ‘contaminating’ shear (Shrestha et al.
2021). To distinguish rigid-body rotation from straining motions, various decomposition
based on the velocity gradient tensor have been proposed (Kolář 2007; Li, Zhang &
He 2014; Gao & Liu 2018; Keylock 2018; Nagata et al. 2020; Watanabe, Tanaka &
Nagata 2020; Hayashi, Watanabe & Nagata 2021). Here, we apply to our state-of-the-art
experimental datasets the new rortex–shear (RS) decomposition proposed by Liu et al.
(2018) and Xu et al. (2019) to decompose the three-dimensional (3-D) vorticity vector into
a rigid-body rotation vector, the ‘rortex’ vector R, and a shear vector S. In some literature
(e.g. Shrestha et al. 2021) R is referred to as the ‘liutex’ vector, however we use the term
‘rortex’ (as originally proposed by Liu et al. (2018) to emphasise its rotational nature. The
15 datasets and accompanying movies are available online (Jiang et al. 2022).

Although vortices can be produced externally (e.g. by artificial vortex rings impinging
a density interface as a model for turbulent eddies, see Linden 1973; Olsthoorn & Dalziel
2015), they naturally develop internally, either from internal gravity waves (Fritts, Arendt
& Andreassen 1998) or from shear-driven instabilities leading to (usually short-lived)
Kelvin–Helmholtz billows (Caulfield & Peltier 2000) or (usually long-lived) Holmboe
waves (Smyth & Winters 2003). Lefauve et al. (2018a) described and explained the origin
of ‘confined’ Holmboe waves in the SID experiment, a typical example of long-lived
coherent vortical structures, which they visualised using a simple vorticity threshold.
The 3-D development of the Holmboe-wave instability was studied numerically by
Smyth & Winters (2003), who noted that ‘Loop structures in the density field associated
with hairpin-like vortices are a conspicuous feature of turbulent Holmboe waves. These
structures are initiated by secondary instabilities (in one case this resembled the localised
convective instability described by Smyth & Peltier 1991) and grow to large amplitude via
vortex stretching’. The hypothesis of horseshoe (or hairpin) vortices was initially proposed
947 A30-2
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Vortical structures in turbulent stratified shear layers

by Theodorsen (1952), and has proven key to the understanding of boundary-layer
turbulence (Acarlar & Smith 1987; Smith et al. 1991; Adrian 2007; Jiang 2019; Lee &
Jiang 2019). Head & Bandyopadhyay (1981) used smoke visualisation to investigate the
evolution of hairpins in a turbulent boundary layer with increasing Reynolds number,
and they found that elongated hairpin vortices were inclined at a characteristic angle of
approximately 40–50◦ to the wall. These hairpins were observed to be less elongated and
more isolated at low Reynolds number, and to agglomerate and become very elongated
at high Reynolds number. The inclination and evolution (generation and regeneration) of
hairpins was subsequently studied in more detail, numerically by Zhou et al. (1999) and
experimentally by Haidari & Smith (1994). A hypothesis based on soliton-like coherent
structures has been put forward to explain the bursting process and the generation of
hairpins in wall-bounded flows (Lee 1998; Lee & Wu 2008; Jiang et al. 2020a,b).
Hairpin-like structures have also been observed in stably stratified boundary layers,
experimentally by Williams (2014) and numerically by Atoufi, Scott & Waite (2019); they
are apparently similar to those found in unstratified boundary layers.

In stably stratified shear layers (not visibly influenced by top and/or bottom walls),
such as deep ocean overflows, exchange flows through straits or saltwater intrusions
in estuaries, Kelvin–Helmholtz or Holmboe instabilities (found in weakly and strongly
stratified flows, respectively) can grow in a symmetric or asymmetric fashion depending
on the vertical offset between the centres of the velocity profile and the density profile
(Carpenter, Lawrence & Smyth 2007). Hairpin vortices have been associated with these
wave trains, especially after they succumb to secondary instabilities (i.e. further symmetry
breaking in the third dimension), whose breakdown creates fully 3-D turbulence (Smyth
& Moum 2000; Smyth 2006; Pham, Sarkar & Winters 2012). Recently, using direct
numerical simulations, Watanabe et al. (2019) found inclined hairpin vortices throughout
the stratified shear layer, and argued that turbulent mixing was very active at the length
scales close the streamwise extent of the hairpins. In stratified plane Poiseuille flow, Lloyd,
Dorrell & Caulfield (2022) found numerically that hairpin vortices arise far from the wall
and interact with strong buoyancy gradient, inducing internal wave breaking.

However, despite tantalising numerical evidence of their existence and role in stratified
shear-driven mixing, hairpin vortices have until now not been described in comparable
laboratory flows. It also remains unclear: (i) how they develop from pre-turbulent flows
(especially Holmboe waves) and evolve in increasingly turbulent flows; and (ii) how
they interact with density interfaces and participate in density overturning, stirring and
ultimately mixing. These are the two questions that we address in this paper.

In § 2 we introduce our experimental datasets and explain their relevance to our
objectives. In § 3 we visualise vortical structures first by a traditional method, and then
by our new method based on the RS decomposition of vorticity, to build intuition for the
subsequent statistical analyses. In § 4 we reveal the detailed morphology of the ‘rortices’
identified by the rortex (and, to a lesser extent, of the shear) by a ‘weighted conditional
averaging’ (WCA) method. In § 5 we study the interaction between rortices and density
gradients, and in § 6 we confirm and augment these statistical results with ‘case studies’ on
instantaneous snapshots. In § 7 we synthesise these results and propose a tentative model
for the origin and role of hairpin vortices in stratified shear layers, and we conclude in § 8.

2. Experimental datasets

2.1. Set-up and flows
The datasets analysed in this paper were collected in the SID experiment, whose
set-up is described in prior publications such as Lefauve et al. (2018a) (see their § 3).
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The SID sustains a hydraulically controlled exchange flow inside a long duct (of length
L = 1350 mm) of square cross-section (of height and width H = 45 mm). The duct is
inclined at a small angle θ with respect to the horizontal and connects two large reservoirs
initially filled with aqueous salt solutions of different densities ρ0 ± �ρ/2. The Prandtl
number is thus Pr = ν/κ ≈ 700, where ν and κ are the kinematic viscosity and salt
diffusivities, respectively.

Increasing θ (defined to be positive when it accelerates the flow) and/or the Reynolds
number Re ∝ √

g(�ρ/ρ0)HH/ν (entirely set by the density difference here) allows the
experimenter to sweep through four qualitatively different flow regimes: from laminar flow
with a flat interface, through finite-amplitude Holmboe waves propagating at the interface
(this regime is hereafter abbreviated ‘H’), then intermittent turbulence and interfacial
mixing (hereafter ‘I’) and to fully developed turbulence and mixing (hereafter ‘T’). These
flow regimes have been mapped in the (θ, Re) plane and their transitions have been studied
extensively (Meyer & Linden 2014; Lefauve, Partridge & Linden 2019; Lefauve & Linden
2020).

2.2. Measurements and processing
We consider 15 datasets, each corresponding to a single experiment performed at a given
θ and Re. Four belong to the H regime (labelled H1–H4), eight to the I regime (I1–I8)
and three to the T regime (T1–T3). Each dataset comprises a time-resolved series of the
three-component velocity field (u, v, w) and density field ρ given simultaneously in 3-D
volumes (x, y, z), where u and x are the streamwise velocity and coordinate (along the
duct), v and y are spanwise and w and z are ‘vertical’ (normal to both x and y) in the frame
of reference of the tilted duct. The acceleration of gravity g along the ‘true vertical’ is
thus tilted with respect to this coordinate system and has components [g sin θ, 0, −g cos θ ]
along (x, y, z). See Lefauve et al. (2019), figure 1 for a schematic and figures 3 and 4 for a
snapshot of u and ρ in each regime.

These 3-D volumes were obtained by the novel laser-sheet-scanning technique described
in Partridge et al. (2019), in which simultaneous stereo particle image velocimetry (PIV)
and planar laser-induced fluorescence (PLIF) are performed in successive x–z planes. The
u, v, w, ρ data obtained at spanwise locations y = yi (i = 1, 2, . . . , ny) and respective
times t = ti are subsequently combined in volumes containing ny planes spanning the
cross-section of the duct. This makes the volumes only ‘near-instantaneous’ in the sense
that each plane (x, yi, z, ti) is separated from the previous one by a small time increment
δt = ti − ti−1. The advantage of this method over earlier scanning or tomographic methods
is the ability to scan relatively large volumes (here typically 200 × 45 × 45 mm3) and
obtain high x–z planar resolutions for both velocity and density. Each experiment typically
captures ≈300 volumes (time snapshots), and each volume typically contains ≈400 ×
40 × 80 velocity vectors in x, y, z, respectively.

Instead of the original datasets used and visualised in Lefauve et al. (2018a, 2019) and
Partridge et al. (2019), in this paper we use the slightly modified datasets of Lefauve
& Linden (2022a,b) (hereafter LL22a,b). These modifications are explained in LL22a
(see their §§ 3.3–3.5 and figure 1) and are summarised as follows. First, they cropped
early transients (in t) characterised by a slight net flow through the duct (sloshing
between reservoirs) in order to focus on statistically steady dynamics. Second, they
cropped the near-wall regions (in y and z) in order to discard viscous boundary layers
and focus on the interfacial quasi-hyperbolic-tangent ‘free shear layer’ region. Third,
they non-dimensionalised the coordinates and flow variables of each individual dataset
using: (i) half the density difference �ρ/2 (after removing the mean ρ0) such that

947 A30-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

58
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.588


Vortical structures in turbulent stratified shear layers

−1 ≤ ρ ≤ 1; (ii) half the actual resulting shear-layer depth, such that −1 ≤ z ≤ 1 ; and
(iii) half the actual (mean) peak-to-peak velocity magnitude, such that −1 � u � 1 with
the mean velocity extrema 〈u〉x,y( y = 0, z = ±1) = ∓1. This cropping procedure allows
for a meaningful side-by-side non-dimensional analysis of the shear-layer dynamics of all
15 datasets.

The datasets, and the associated codes and 3-D visualisation movies (with the same
viewing angle and slices positions as the supplementary movies of positions as used here),
can all be freely downloaded from their repository (Lefauve & Linden 2022c) .

2.3. Parameters and resolution
The corresponding ‘shear-layer’ Reynolds number Re and bulk Richardson number Rib are
defined as in LL22a §§ 3.2 and 3.3 as

Re ≡
�U

2
H
2

ν︸ ︷︷ ︸
hydraulics

(input)

· δu
2

h
2︸︷︷︸

shear layer
(output)

≡
√

g′HH
2ν

· δuh
4

(2.1)

and

Rib ≡
g
ρ0

�ρ

2
H
2(

�U
2

)2

︸ ︷︷ ︸
hydraulics

(input)

·
h
2(

δu
2

)2

︸ ︷︷ ︸
shear layer

(output)

≡ 1
4

· 2h
(δu)2 . (2.2)

These parameters are consistent with the non-dimensionalisation introduced previously.
These parameters consist of (i) a ‘hydraulics’ part based on input parameters, including
half the peak-to-peak dimensional velocity scale �U/2 ≡ √

g′H = √
g(�ρ/ρ0)H,

half the duct height H/2 and ν, and (ii) a ‘shear-layer’ rescaling based on half
the non-dimensional output (measured after the hydraulic non-dimensionalisation)
peak-to-peak velocity magnitude δu/2 (typically ≈0.5–1.2) and shear layer depth h/2
(typically ≈0.5–0.7). Note that Re and Rib were denoted as Res and Risb, respectively,
in LL22a,b to emphasise this specific shear-layer non-dimensionalisation.

The parameters of datasets H1-T3 are listed in table 1. For further properties, such as
the mean flows, see LL22a, § 4. As a rule of thumb, increasing levels of turbulence and
transitions between the H, I and T regimes, are well described by the product θRe. The
historical names of datasets (H1, . . . H4, I1, . . . I8, T1, . . ., T3) were based on increasing
values of the product of θ with the hydraulics (input) Reynolds number �UH/(4ν) in
Lefauve et al. (2019) rather than on the shear-layer (output) Reynolds number Re used in
this paper. Nevertheless, the datasets remain approximately ordered with increasing θRe.

The full vector resolution of each dataset in x, y, z, t are given in LL22a, table 3. As a rule
of thumb, the vector resolution of the data approaches the Kolmogorov turbulent length
scale (marking the end of the inertial range) in x, z, but it is coarser in y. The temporal
resolution (i.e. the time it takes to reconstruct a single volume) is of order 1–4 advective
time units, smaller values representing a better ‘freezing’ of the flow, see Partridge et al.
(2019). Fortunately, this does not mean that the structures of interest are distorted in the
x–y plane by as much as 1–4 length units. First, within the shear layer, substantial portions
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Name H1 H2 H3 H4 I1 I2 I3 I4 I5 I6 I7 I8 T1 T2 T3

θ (◦) 1 5 2 5 2 2 2 6 5 6 3 5 3 6 5
Re 381 204 422 203 531 872 891 646 607 497 905 708 1479 1030 1145
θRe 7 18 15 18 19 30 31 68 53 52 47 62 77 108 100

Table 1. List of the 15 volumetric datasets used, adapted from LL22a’s table 1. Note that θ is in radians in the
product θRe.

of the flow have speeds |u| � 1 (the maximum velocity |u| ≈ 1 is only reached at the
edges of the shear layer). Second, coherent structures tend to evolve more slowly than the
background flow at these relatively low Re. A archetypal example is the confined Holmboe
wave (CHW) in dataset H4, a slow-moving wave which was captured with very little
distortion in Lefauve et al. (2018a). This presumably extends to turbulent flows, because
the magnitude of the perturbation (turbulent) velocities are on average at most 25 % of the
mean flow (see figure 1(c) in Lefauve & Linden 2022b). Third, our statistics on long time
series alternating forward and backward scans help cancel out these distortions, at least
their asymmetry around the x = 0 plane (where vortices concentrate).

Although subject to inherent technical limitations (summarised in Lefauve et al. (2019),
Appendix A, and Lefauve & Linden (2022b), Appendix B), we show in the following that
these 15 state-of-the-art datasets deliver new insights into the time-resolved, 3-D coherent
structures of shear-driven stratified turbulence.

3. Identification of vortical structures

3.1. Previous methods and Q-criterion
As this paper focuses on Eulerian vortical structures in shear layers, we start by addressing
the delicate first step of identifying such ‘vortices’. It is known that identifying a vortex
based on a specified threshold of the magnitude of the vorticity vector ω = ∇ × u is
subjective and generally inappropriate (Zhou et al. 1999; Gao, Ortiz-Dueñas & Longmire
2011). For example, ω is not generally aligned with the local rotation, and the maximum
of |ω| does not generally coincide with the ‘core’ of a vortex, because vorticity does not
discriminate between shear and swirl (rotation).

Several improved Eulerian vortex identification schemes based on the eigenvalues of
the velocity gradient tensor ∇u have thus been developed since the 1980s, including the
Q-criterion (Hunt, Wray & Moin 1988), Δ-criterion (Chong, Perry & Cantwell 1990),
λ2-criterion (Jeong & Hussain 1995) and λci-criterion (Zhou et al. 1999; Chakraborty,
Balachandar & Adrian 2005). These methods have proved effective and influential to study
approximate vortex boundaries in a variety of flows.

Thus, we begin our analysis of vortical structures in figure 1 by a visualisation of vortices
based on the popular Q-criterion, i.e. the second principal invariant of ∇u calculated
as Q = 1

2 (‖B‖2 − ‖A‖2), where A = 1
2 (∇u + (∇u)T) and B = 1

2 (∇u − (∇u)T) are,
respectively, the symmetric (or strain rate tensor) and anti-symmetric (or rotation rate
tensor) components of the ∇u. We plot a single snapshot of Q-criterion vortices identified
by the isosurface Q = Q0 > 0 (i.e. the local rotation exceeds strain) in a selection of
10 representative datasets having three different tilt angles: θ = 5◦ in panels (a,b,d,g,j)
(datasets H2, H4, I5, I8, T3, with increasing Re), θ = 6◦ in panels (c,e,i) (datasets I4, I6,
T2) and θ = 3◦ in panels ( f,h) (datasets I7, T1). The colouring of the isosurfaces denotes

947 A30-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

58
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.588


Vortical structures in turbulent stratified shear layers

(a)

(b)

(c)

(d )

(e)

( f )

(g)

(h)

(i)

( j)

(H4,5,203,0.04)

(H2,5,204,0.05)

(I8,5,708,0.2)

(I4,6,646,0.1)

(I6,6,497,0.35)

(I7,3,905,0.2)

(I5,5,607,0.08)

(T2,6,1030,0.5)

(T1,3,1479,0.3)

(T3,5,1145,0.5)

U1
U2`

L1 L2`

SV2

SV1

z
0.9

–0.9

0

Figure 1. Isosurfaces of the Q-criterion (single snapshot) in datasets (a) H2, (b) H4, (c) I4, (d) I5, (e) I6,
( f ) I7, (g) I8, (h) T1, (i) T2 and (j) T3. The dataset name, tilt angle θ , shear-layer Reynolds number Re (see
table 1) and the isosurface Q value are listed on the right of each panel. Colours on the isosurfaces denotes the
z position (we show −0.9 < z < 0.9, i.e. the middle 90 % of the shear layer).

the vertical location z and the legend on each plot identifies the dataset, the tilt angle, the
Reynolds number and the Q value of the isosurface displayed.

Broadly speaking, from the Holmboe to the turbulent regime (i.e. with increasing
θRe), vortical structures evolve from individual, disconnected hairpins which start as

947 A30-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

58
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.588


X. Jiang, A. Lefauve, S.B. Dalziel and P.F. Linden

	-structures without elongated trailing legs (a,b), to groups of hairpins with elongated
legs (h–j). The hairpins of low-Re flows are relatively weak and less obvious (see (c,d)),
especially when a corrugation appears on the isosurfaces (which we attribute to a low
signal-to-noise ratio), or when the head of the hairpin is broken. However, we show in
the following that these hairpin-shaped vortices are indeed robust features of Holmboe
waves. In higher-Re flows, hairpins are stronger and more obvious (higher signal-to-noise
ratio), with their head tending toward the edges of the shear layer (|z| ≈ 1) and their legs
stretching in the streamwise direction (x).

Further features are worth mentioning. Figure 1(e) shows two large hairpins in each
of the upper (isosurfaces shaded in red and labelled ‘U1’ and ‘U2’) and lower (shaded
in blue and labelled ‘L1’ and ‘L2’) parts of the shear layer. Figure 1( f –h) (weaker
turbulence) show hairpins that are usually asymmetric in the sense that one ‘leg’ is longer
than the other. In this paper we interpret ‘quasi-streamwise vortices’ (denoted by ‘SV’;
e.g. see arrows SV1, SV2 in (h)) as an extreme form of asymmetric hairpin vortices.
Figure 1(i,j) (the most turbulent datasets) show large-scale hairpins coexisting with
small-scale, fragmentised structures distributed over the shear layer, which form hairpin
packets/forests reminiscent of turbulent boundary-layers.

The supplementary movie 1 available at https://doi.org/10.1017/jfm.2022.588 shows
the complete time evolution of figure 1(e–j). From these snapshots (and supplementary
movie 1), we hypothesise that hairpin-like coherent vortical structures may be a common
and important vortical structure in SID flows.

3.2. RS decomposition
Although the scalar Q-criterion identifies general rotational structures, it does not isolate
rigid-body rotation from shear (Gao & Liu 2018; Shrestha et al. 2021), nor does it provide
the orientation of vortical structures.

Recently, a new ‘vortex’ vector called the ‘rortex’ (or ‘liutex’) was proposed by Tian
et al. (2018) and Liu et al. (2018) using two successive coordinate rotations to isolate
the rigid rotational part in the vorticity field, and directly point in the direction of local
rigid-body rotation. The vorticity is decomposed uniquely as

ω = R + S, (3.1)

where R is the rortex vector and S is the shear vector. This decomposition is particularly
helpful in shear-driven turbulence, as in this paper. An alternative, eigenvector-based
definition of the rortex was introduced in Gao & Liu (2018), followed by its explicit
expression with a significantly improved implementation in Xu et al. (2019), who
calculated it as

R =
⎛
⎝1 −

√
1 − 4λ2

ci

(ω · r)2

⎞
⎠ (ω · r)r. (3.2)

The direction of the rortex r is the local unit real eigenvector of ∇u, indicating the
rotational axis, and λci is the imaginary part of the complex conjugate eigenvalues of ∇u.
This is the practical definition that we apply to our datasets in the remainder of this paper,
and we deduce the shear as S = ω − R.

Equation (3.2) is based on the idea that ∇u has either one or three real eigenvalues.
When there is only one real eigenvalue, the direction of the rortex R is aligned with
the associated normalised eigenvector r selected such that ω · r > 0. The conjugate pair
of complex eigenvalues have imaginary parts ±λci characterising the rotation about r.
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Vortical structures in turbulent stratified shear layers

When there are three real eigenvalues, λci = 0 and thus R = 0, meaning that all the
vorticity is shear without rigid-body rotation. Equation (3.2) shows the relative importance
of λci versus the vorticity projected onto r.

The RS decomposition (3.1) can be related to the anti-symmetric rotation rate tensor
B from the above tensor decomposition ∇u = A + B. As Bij = −(1/2)εijkωk (Batchelor
1967), we can write it as the sum of a ‘rortex tensor’ −(1/2)εijkRk and a ‘shear tensor’
−(1/2)εijkSk, where εijk is the Levi-Civita symbol.

Any flow with non-zero vorticity ω is fundamentally ‘rotational’, in the general sense
that infinitesimal fluid elements rotate. In the RS decomposition, vorticity is separated
into the rortex vector R, about which the fluid is in rigid-body rotation, and the remainder
is identified as shear (a rotation with relative motion of fluid particles). For example, a
parallel shear layer or a laminar boundary layer (Tian et al. 2018) have no rigid-body
rotation and ω = S.

Hereafter, we denote the magnitude of the shear vector |S| = S, and we refer to the
magnitude of the rortex vector |R| = R as the rorticity and any coherent, solid rotational
vortical structure it identifies simply as a rortex. We also use the term vortex to refer more
generically to vortical structures that have not been unequivocally identified using the RS
decomposition, as is the case in all the literature pre-dating 2018.

3.3. Rortex and shear structures
Figure 2 shows isosurfaces of rorticity R (in red) and shear S (in blue) in four datasets
(H4, I6, T2 and T3), together with contour plots of R in y–z planes (cross-sectional slices,
red shades) and a contour plot of S in an x–z plane (longitudinal slice, blue shades). Black
contour lines highlight the value of each isosurface and its projection on the respective
slices. (See supplementary movies 2, 3, 4 and 5 for the complete evolution of R and S as
well as the velocity and density information around them for Holmboe, intermittency and
turbulent regimes, respectively.)

Figure 2(a) in the Holmboe regime (H4) shows a shearing structure (blue isosurface),
which is highly reminiscent of the shape of the CHW described in Lefauve et al. (2018a)
from isosurfaces of the spanwise component of vorticity (ωy) of the same dataset. This
similarity is because the shear dominates the vorticity in the Holmboe regime, as seen by
the fact that contour values for S are at least five times larger than that of R (see colour
bars), and that the blue isosurface S = 1.3 is 10 times larger than the red isosurface R =
0.13. Although weaker, rortices are also observed near the ‘head’ of the Holmboe wave,
in a 	-shape similar to the Q-vortex from figure 1(a,b). The two ‘legs’ of the rortex flank
the ‘head’ of Holmboe wave, leading to a hypothesis that the rortex may originate from
the localised high-shear regions of the wave.

Figure 2(b) in the low-Re intermittent regime (I6) shows slightly evolving R and S
patterns, with a hairpin rortex straddling the shear, as pointed out by the arrows S1 and
S2. The snapshot in figure 2(b) is for the same flow and time as that shown in figure 1(e),
where two pairs of upper and lower rortices were labelled U1, U2, L1 and L2, respectively.
These S structures in figure 2(b) seem to originate from increasingly turbulent symmetric
Holmboe waves (having upper and lower counter-propagating modes), as opposed to the
asymmetric Holmboe wave of figure 2(a) (only having an upper mode).

Figure 2(c,d) in the turbulent regime (T2 and T3) shows more numerous and
smaller-scale structures, which is why the lower half of the shear layer (z < 0) was omitted
for clarity. An apparently robust observation is that rortices still tend to straddle the strong
shearing region. The high-shear regions tend to be pushed nearer the top and bottom edges
of shear layer, and they are more aligned with the x direction (less tilted) than in the
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Figure 2. Visualisation of rortex (R) and shear (S) structures in datasets (a) H4 (snapshot at time tn =
180), (b) I6 (at tn = 36); (c) T2 (at tn = 39) and (d) T3 (at tn = 132). In each panel, y–z slices show
the R values, whereas the x–z planes show the S values. Red 3-D structures represent an R isosurface
(respectively R = 0.13, 0.5, 0.85, 0.8 in a,b,c,d), whereas blue structures represent an S isosurface (respectively
S = 1.3, 1.4, 2, 1.8 in a,b,c,d). The value of the isosurfaces is shown by a black contour on the respective slices.
Note that (c,d) share the same colour scales for R and S as panel (b). In all isosurface panels, the spanwise edges
of the shear layer |y| > 0.85 have been blanked for clarity; the lower half z < 0 has also been blanked in (c,d).

Holmboe and intermittent regimes. Finally, the relative strength of rorticity versus shear
also increases (see the colour bars and isosurface values in the caption), indicating an
increasing correlation between rortices and turbulent mixing. Although we do not quantify
mixing explicitly in this paper, we refer the reader to Lefauve & Linden (2022a) and
Lefauve & Linden (2022b) who did so in these 15 datasets using a variety of measures.

Although the vortical structures identified by the threshold of rorticity or by
conventional diagnostics (e.g. the Q-criterion) are similar in general shape, the detailed
morphology and the strength of rotation are different, especially where shear strongly
dominates rotation (e.g. in the Holmboe wave).

3.4. Averaged distribution of rorticity and shear
The relative strengths of R and S are explored quantitatively in figure 3. In figure 3(a) we
plot, for all 15 experimental datasets, the averaged magnitudes 〈R〉xyzt and 〈S〉xyzt (where
〈·〉xyzt represents the average over the whole shear layer volume and time as in LL22a,b)
against the product θRe, our proxy for increasing levels of turbulence. Both 〈R〉xyzt (♦) and
〈S〉xyzt (�) are nearly constant at ≈0.1–0.2 and ≈1, respectively, when θRe � 80 (where
θ is in radians), corresponding to the H and I regimes, but they increase with turbulence
beyond this (see the dashed trend lines).
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Figure 3. (a) Distribution of 〈R〉xyzt and 〈S〉xyzt for all datasets, separating H, I and T data by the solid light
grey lines (� for S; ♦ for R; � for S′; © for R′; the dashed lines are trend lines the dotted line is the fitting
curve for S′; filled colours of the symbols denote the flow regime and number shown on the right). (b) and (c)
are distributions of 〈S〉xyt and 〈R〉xyt along the z direction for all datasets, respectively, separating H, I and T
data in different columns. Colours of the curves and shadings share the same legend in (a). The transparent
shadings denote the local variability in time corresponding to one root-mean-square value of 〈S〉xy − 〈S〉xyt
(and similarly for R).

To understand this, we also performed the RS decomposition on the fluctuating velocity
u′ = u − ū where ·̄ = 〈·〉t is the spatially varying temporal average, giving the underlying
parallel shear flow ū(x, y, z) (because v̄, w̄ ≈ 0). Figure 3(a) also shows the resulting
fluctuating shear S′ (�) and rorticity R′ (©). First, we find that R ≈ R′ (the symbols are
nearly indistinguishable) whereas S′ � S, as expected in the presence of mean background
shear ∂zū. Second, we find that S′ is only about two to three times larger than R′ (a weaker
dominance compared with that of S over R), and S′ seems to increase fairly linearly with
θRe even before the transition to fully turbulent flow at θRe ≈ 80 (see the green dotted
trend line). These observations suggest that the background shear plays an important role,
but the details are beyond the scope of the present study, which focuses primarily on rortex
structures. The remainder of this paper thus adopts the RS decomposition of the total
velocity, as in the original papers of Liu et al. (2018) and Gao & Liu (2018).

To examine the strength of S and R along the z (vertical) direction, we plot x, y, t averages
in figure 3(b,c), separating S and R, respectively, as well as the datasets belonging to the H
regime (top row), I regime (middle row) and T regime (bottom row) for clarity. The time
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variations around the averaged value measured by the local root mean square (r.m.s) are
displayed as transparent shadings underlying each curve.

Figure 3(b) shows that the symmetric Holmboe flows (datasets H1 and H3) have their
peak 〈S〉xyt at z > 0; these flows feature two trains of counter-propagating waves due to
the velocity interface 〈u〉xyt = 0 and density interface 〈ρ〉xyt = 0 being nearly coincident
around z ≈ 0–0.15 (see LL22a figure 3). By contrast, the asymmetric Holmboe flows
(H2 and H4) have their peak 〈S〉xyt at z < 0; these flows feature a single train of waves
due to the velocity interface 〈u〉xyt = 0 being slightly offset from the density interface
〈ρ〉xyt = 0, the latter of which is around z ≈ −0.2 (see LL22a figure 3). This peak is due
to the ‘body’ of the CHW structure described in Lefauve et al. (2018a), and observed in
figure 2(a). We also see an apparent plateau at 0 < z < 0.5 in these datasets (see the ‘P’
arrow), presumably due to the ‘head’ of the CHW. With increasing levels of turbulence
(I regime, middle row), this plateau in 〈S〉xyt appears to develop into another peak (see
the ‘peak2’ arrow). Both the former and the newer peaks then tend to move closer to the
edges (z = ±1) of the turbulent shear layer (T regime, rightmost column). Their values
≈1.5–2 is comparable to those in the H regime. A further interesting observation is that the
temporal r.m.s. fluctuations of 〈S〉xyt (width of the transparent shading) increase from the
H to the I regime but then decrease in the T regime. This trend reflects the high fluctuations
associated with intermittency.

Figure 3(c) shows that 〈R〉xyt is nearly uniform in z across the entire shear layer, with
H1 and H3 having higher values, presumably due to their higher Re than H2 and H4
(Re ≈ 400 versus 200). In the ‘late’ I regime (e.g. I7, I8) and in the T regime, a broad
peak in 〈R〉xyt is centred in the middle the shear layer, with peak value that increases
approximately monotonically. Finally, unlike the shear, the rortex experiences equally high
or even higher temporal fluctuations in the T regime (compared with the I regime), possibly
caused by the breakdown and interaction of rortices. This suggests that the emergence and
increasing importance of the rortex are fundamental aspects of turbulence dynamics and
mixing, justifying our greater focus on R (vortical structures) than S (shear structures) in
the remainder of this paper.

4. Detailed morphology of rortices

The magnitudes of R and S in the previous section provided us with the general trends
of their spatial structures. This section tackles their more detailed morphology, and in
particular the 3-D orientation of hairpin rortices, revealed by a comprehensive statistical
analysis of our R datasets.

4.1. WCA and orientation probability distribution functions (pdfs)
In order to remove noise and to give stronger weight to stronger rortices, we first apply
a ‘conditional sampling’ method on the fields R(x, t) (containing 0.3 × 109 to 1 × 109

points per dataset, depending on the spatial resolution and length of the time series). We
condition these data by the following formula at all (x, t):

R =
{

R, if R/Rrms ≥ kth,
0, if 0 < R/Rrms < kth,

(4.1)

where kth is a tunable threshold level below which the data are discarded, and Rrms is the
r.m.s. of all non-zero R values (before the above conditioning). Statistical processing is
then performed on all non-zero R after the above preconditioning.
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‘True horizontal’

plane (z′
⊥)

z′

x–y plane 
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β

x

x–y plane 

V

V

y–z plane (a)

(b)

–

+

–α

+

(x⊥)

x

Figure 4. Definition of the angles (a) α = ∠(V , x̂) − 90 and (b) β = ∠(V , ẑ′
) − 90, where V may represent

S, R, or ∇ρ, leading to the six angles summarised in table 2. The grey cones correspond to the locus of
possible V for a single value of (a) |α| and (b) |β|. The ‘true horizontal’ plane z′⊥ (in green in b) is normal to
the opposite direction of gravity ẑ′, whereas the plane x⊥ (in green in a) is normal to x̂. Finally, θ is the tilt of
the duct with respect to the horizontal direction (the convention is that θ > 0 indicates that the flow is forced).

Next, we use ‘orientation’ probability density functions (pdfs) to quantify the likelihood
of the orientation of specific vectors, measured by their frequency distribution in our
datasets. For any non-zero vector V (where V may represent R, S, etc.) we define the
angles between V and the planes x⊥ and z′⊥ as

α = ∠(V , x̂) − 90, β = ∠(V , ẑ′
) − 90, ẑ′ = −g

g
, (4.2a–c)

where ∠(a, b) ≡ arccos(a · b/(|a| |b|)) ∈ [0, 180] is the angle in degrees between a and
b. The unit vectors are defined as follows: x̂, ẑ are the unit vectors along the streamwise
(x) and wall-normal (z) direction of the duct; x⊥ indicates the plane normal to x̂; ẑ′ =
cos θ ẑ − sin θ x̂ is the ‘true vertical’ unit vector (in the opposite direction of gravity); and
z′⊥ is the ‘true horizontal’ plane normal to the ẑ′. These coordinate systems and angles
(with their sign) are illustrated in figure 4 and our angle notation is summarised in table 2.

Finally, to extract detailed rortex morphology from orientation pdfs, we weigh the
occurrence of each value within a particular interval (histogram value) by the local value
of the ‘rorstrophy’ (the squared rorticity) R2(x, t). This weight gives more importance
to occurrences that locally coincide with high rortex values. Practically, the averaged
orientation pdf N(i, kth) of any angle α or β at a value of i ∈ [−90◦, 90◦] and for a given
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αS βS αR βR αρ βρ φ

∠(S, x⊥) ∠(S, z′
⊥) ∠(R, x⊥) ∠(R, z′

⊥) ∠(∇ρ, x⊥) ∠(∇ρ, z′
⊥) ∠(∇ρ, R)

−90◦ −90◦ −90◦ −90◦ −90◦ −90◦
Figure 6 Figures 7, 8, 9 Figure 10 Figure 11

Table 2. Summary of the angles discussed in this paper (refer to definition (4.2a–c) and figure 4). The bottom
row indicates the figures in which their distributions are shown.

conditional threshold of kth is calculated by

N(i, kth) =
∑nt

l=1
∑ni

j=1 R(j, l)2

nt
, with R(j, l) = 0 if

R(j, l)
Rrms

< kth, (4.3)

where ni is the count of the occurrences when the angle under consideration belongs
to the interval (bin) i ± δi, j is the index for all (x, y, z) data points belonging to this
interval and l is the time index sweeping through the nt ‘frames’ (volumes) in the
dataset. Note that

∫ 90
−90 N di = 〈R2〉xyzt, i.e. the area under the curve of N gives the time-

and volume-averaged ‘rorstrophy’ satisfying the threshold R/Rrms ≥ kth. If kth = 0, the
original rortex field and all existing rortices are considered, following (4.1).

The process above is a weighted conditional average (WCA): weighted by R2 and
conditioned by selecting R/Rrms ≥ kth. This same approach will be applied to angle
frequency distributions and used to study how progressively stronger rortices are aligned
with respect to x⊥ and z′⊥. By analogy, we also extend WCA to S (weighting by S2 and
conditioning by S/Srms ≥ kth).

Before showing our results on the orientation of R, S, it is worth studying the ‘volume
fraction of rortices’ f resulting from our conditional sampling method in (4.1) alone,
without weighting. Figure 5(a) shows how the global rortex volume fraction 〈f 〉xyzt ∈ [0, 1]
(the time- and volume-averaged ratio of points satisfying R/Rrms ≥ kth) decreases with
increasing threshold level kth. The semi-log axes and the exponential fit (dashed line)
reveal that 〈f 〉xyzt decreases approximately exponentially with kth with decay constant
≈ 1.4. The intercept of 0.755 at kth = 0 means that before conditioning, approximately
three quarters of the shear layer volume has non-zero rortex (i.e. the velocity gradient
tensor ∇u has a component of solid-body rotation). All 15 datasets display a similar
behaviour at small kth, but their curves spread out significantly for kth � 2. Increasing
turbulence (curve colour transitioning from blue to red) reduces the decay rate at high
kth, confirming the intuition that turbulence leads to more frequent extreme rortex values.
Though not shown here, the volume fraction of R′ (based on the fluctuating velocity u′) is
indistinguishable from that of R.

Next, figure 5(b) shows the vertical distribution of volume fraction 〈f 〉xyt(z) (averaged
in horizontal planes and time, but not z) at threshold kth = 1. The result shows that
rortices mainly concentrate in the middle region of the shear layer in the intermittent
and turbulent datasets, which agrees with the plots of 〈R〉xyt(z) in figure 3(c) without
conditional thresholds. In particular, T2 and T3 have a robust ≈20 % fraction for |z| � 0.5,
which tapers off to only ≈5 % at the edges |z| = 1, justifying our cropping of the original
datasets (see § 2.2) to restrict our attention to the |z| ≤ 1 ‘shear layer’ containing the
turbulent rortices of interest. However, the H and early I regimes show slightly different
tends. While datasets H1, H3 and I1 (see arrows) have a similar distribution to I6–T3,
datasets H2, H4 and I4 have their minimum rortex fraction near the centre of the shear
layer and their maximum at the edges. This indicates that asymmetric Holmboe waves
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Figure 5. (a) Volume fraction 〈f 〉xyzt of non-zero rorticity R under different conditional threshold levels kth as
defined in (4.1). Dashed line denotes the exponential fit (note the semi-log axes). (b) Variation of the volume
fraction 〈 f 〉xyt of R along z for threshold kth = 1.
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Figure 6. Frequency distributions (orientation pdfs) of angles (a) αS and (b) βS with threshold S > kth = 2,
weighted by S2. All distributions are normalised to have unit integral (like any pdf) for easier comparison
between datasets.

(found at high θ , low Re) and symmetric Holmboe waves (found at low θ , high Re), and
their respective weakly intermittent turbulent counterpart (I1–I4) have inherently different
rortex distribution and dynamics along z. This echoes the findings of LL22a (§ 6.4) that
high-θ , low-Re turbulence is characterised by more overturning motions and less extreme
shear-dominated enstrophy than low-θ , high-Re turbulence.

4.2. Inclination of shear structures
Although vortical structures are the focus of this study, we start with a brief study of
the inclination angles of the shear vector S, remembering its background role (in fact,
dominant in magnitude) in shear-driven, stratified turbulence. Figure 6 shows the pdfs of
angles αS and βS (as summarised in table 2). We applied our WCA method with threshold
kth = 2 (thus excluding most of the modest shear associated with the mean flow ∂zū =
O(1)), and weight S2 (giving emphasis to large shear events). We see that large shear
events are generally perpendicular to both x̂ and ẑ′ and thus primarily along ŷ, indicating
the dominance of the spanwise component of vorticity, which motivated the use of ωy
in our previous study (Lefauve et al. 2018a). Increasing turbulence (blue to red curves)
widens the pdf of both αS and βS, revealing increasingly 3-D shearing structures. These
results are robust for other thresholds kth.
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4.3. Inclination of rortex structures
In previous studies, the orientation of vortices was obtained through the orientation of the
vorticity vector (Watanabe et al. 2019), two-point spatial correlations of velocity (Williams
2014), geometrical features of some isosurfaces/contours based on conventional vortex
diagnostics (Zhou et al. 1999) and vortex vectors (Arun et al. 2019). According to Arun
et al. (2019), the orientation of vortical structures has been shown to be closely related
to turbulence production in compressible mixing layers. We now turn to a comprehensive
analysis of the orientation pdfs of the vortex vector R angles in our stratified mixing layer,
which show different and more subtle behaviours than those of the shear.

In figure 7, we plot the pdfs of αR (a) and βR (b). Each of the 15 datasets are plotted
in separate subpanels, and arranged according to their positions in the (θ, Re) plane, in
order to draw connections between the observed vortex statistics and the two key flow
parameters. Furthermore, the pdfs are weighted with R2, and we use curves of increasingly
dark colour (blue in (a) and red in (b)) to indicate increasingly high conditional threshold
levels kth representative of more extreme rortices (note the semi-log scale). To facilitate
comparisons of magnitudes between the 15 subpanels, we use the same axis limits in all
subpanels and normalise all pdfs such that the integral of each over the interval −90◦

to 90◦ gives the all-time and volume-averaged square norm of the conditioned 〈R2〉xyzt
(rather than 1, as in figure 6). The dashed blue diagonal lines in the background are a fit
of the observed ‘overturn fractions’ in these datasets. These were calculated in LL22a
(see their § 6) as the time- and volume-averaged fraction of the flow that experiences
density overturnings (∂zρ > 0), and the best fit in (θ, Re) space was shown to scale with
θ3.17Re1.75.

4.3.1. With respect to the x⊥ plane
In figure 7(a) we observe the following.

(i) All αR pdfs are statistically symmetric around 0◦ to an excellent approximation.
(ii) Stronger rortices (i.e. high kth, darker blue lines) nearly always have the same peak

angle as weak rortices (i.e. low kth, light blue lines), identified by black arrows,
except in a few datasets when an additional minor peak at αR = 0◦ appears at higher
kth, identified by blue arrows.

(iii) A peak angle (maximum of the weighted pdf) at αR ≈ ±60◦ appears in the
bottom-left and top-right corners of the (θ, Re) plane, i.e. either at low θ and low Re
or high θ and high Re.

(iv) In contrast to (iii), a wider and more uniform pdf across αR ∈ [−60◦, 60◦] appears
in the upper-left and lower-right corners, i.e. either low θ and high Re or at large θ

and low Re.

These features are clearly visible in figure 8(a), which shows the evolution of the peak
values of αR for values of kth ranging from 1 (weak rortices) to 3 (strong rortices). Larger
symbols denote stronger (and, thus, more significant) peaks, and open symbols refer to
the fluctuating rortex data R′ (without ū), which are essentially similar to the full rortex
data R.

We conclude that both Re and θ influence the horizontal orientation of rortices in
subtle ways. In turbulent flows (T regime), both weaker and stronger rortices are primarily
inclined at an angle αR ≈ ±60◦ to the x⊥ plane, largely independent of θ (though it varies
across a wider range than Re does). However, at lower Re values (H, I regimes), the
evolution of αR with Re (at fixed values of θ , i.e. along horizontal lines) varies depending
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Figure 7. WCA frequency distribution (orientation pdfs) of angles (a) αR and (b) βR in all 15 datasets, arranged
in subpanels in the (θ, Re) plane (symbols indicate precise parameters of each dataset). We use R2 weights and
plot increasingly high conditional threshold levels kth ∈ [0 : 0.5 : 4] in darker shades. All panels have the same
axis limits as labelled in the H2 subpanel. The faint dashed blue lines in the background indicate the fitting of
the ‘overturn fraction’ of LL22a (their figure 8c). Note the semi-log scale in all subpanels.
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Figure 8. Peak angle(s) of the (a) αR and (b) βR pdfs, automatically extracted from figure 7 for kth = 1:0.5:3
(©). We use R2 weights and plot increasingly high conditional threshold levels kth ∈ [1 : 0.5 : 3] in darker
colours (as for figure 7). Open symbols (�) denote the peak angle based on R′ with the same kth range showing
the influence of background shear. Symbol size indicate the strength of the peak angles (proportional to the
square root of the ordinates

∑
R2 in figure 7).

on the value of θ . For example, at θ = 5◦, the unimodal or uniform pdf becomes bimodal
at higher Re (compare the evolution H2 → H4 → I5 → I8 → T3), whereas almost
the opposite happens at θ = 2 (evolution H3 → I1→ I2 → I3). This difference again
indicates that Holmboe waves at low versus high Re (here coinciding respectively with the
asymmetric and symmetric type of Holmboe waves) have different properties. Rortices
found in high-Re (symmetric) Holmboe waves H1, H3 are more akin to those found in
turbulent flows. Finally, stronger rortices can exhibit a trimodal pdf (see blue arrows) in
some intermittent flows (I regime). The middle peak at αR = 0◦ (perpendicular to the
x-axis) suggests transverse rortices or the heads of hairpin rortices, which become less
dominant under stronger turbulence.

4.3.2. With respect to the z′
⊥ plane (true horizontal)

In figure 7(b), we observe the following.

(i) All βR pdfs are also nearly statistically symmetric around 0◦, even at the highest tilt
angles θ = 5◦ and 6◦, confirming a certain symmetry of rortices with respect to z′⊥
(the true horizontal plane) rather than z⊥ (the x-y plane based on the duct coordinate
system).

(ii) Increasingly strong rortices are inclined at increasingly steep angles to the true
horizontal plane, i.e. the peak βR moves away from 0◦ (see the dashed trend lines
in the figure), especially at low Re and high θ (e.g. H2, H4); but this tendency
diminishes somewhat (i.e. the trend line becomes more vertical) in turbulent flows
(e.g. T1–T3) or at low θ and low Re (e.g. H1, H3).

(iii) Both weak and strong rortices have a relatively narrow peak βR = 0◦ (of width
≈ ± 10◦) in the bottom-left corner of the (θ, Re) plane (H1, H3, I1). This peak
widens slightly to ≈ ± 20◦ for the strong rortices in the top-right corner (I8, T1,
T2, T3).

(iv) The other pdfs (top-left and bottom-right corners of the (θ, Re) plane) tend to be
more uniform or bimodal, in particular H2, H4 which have two clear peaks at βR ≈
±(35 ∼ 55)◦.

The evolution of the peak values for βR (and βR′ in open �) are plotted in figure 8(b).
Holmboe flows are again split into two categories. In asymmetric H2 and H4 (and to some
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Figure 9. Schematics of the evolution of rortex structures in increasingly turbulent flows: (a–d) top view;
(e–h) side view. Left to right: Hasym and Hsym denote asymmetric and symmetric Holmboe regimes; I and T
denote intermittently turbulent and fully turbulent regimes, respectively. Light red denotes weak rorticity R
(low kth), dark red denotes strong R (high kth). Dashed lines indicate the typical angles of inclination found in
figures 7 and 8.

extent I1), 	-rortices (without elongated tails) are inclined to the horizontal plane at an
angle about ±35 ∼ 55◦, with their head inclined more steeply. In symmetric H1 and H3,
rortices lie close to the horizontal plane at 0 ∼ ±10◦. Supplementary movies 2–5 show
the complete time evolution of these structures. In turbulent datasets, the inclination angle
becomes smaller with increasing θRe (see inclined dashed line). However, there is a slight
difference between pdfs of βR and βR′ (open and closed symbols) in that the mean shear
seems to suppress the lift-up of rortices (i.e. βR < β ′

R). In H2 and H4, the central peak (the
maximum of the weighted pdf in figure 7b) βR = 0◦ observed for weak rortices (kth < 1)
seem less due to Holmboe waves than to the mean background shear ∂zū, ∂yū, because
this peak disappears entirely when considering the pdf βR′ (based on the fluctuation R′,
see figure 8b). However, the mean shear does not appear to ‘contaminate’ the spanwise
inclination of rortices (αR ≈ α′

R) in the more turbulent datasets (see figure 8a).

4.4. Inferred morphology
Based on the above descriptions, we now draw in figure 9 representative schematics of
the morphology of rortices typical of each flow regime. Top views (in the x–y plane) are
shown in the top row (a–d), whereas side views (in the x′–z′ plane, where x′ is normal to
z′) are shown in the bottom row (e–h). The strongest magnitudes R are always found inside
the structures and are denoted by darker shades of red (typically corresponding to kth = 1
and 2.5).

The angle αR of the rortices in (b–d) is close to that of hairpin vortices observed in
unstratified turbulent boundary layers having αR ≈ 40 ∼ 60◦ (Zhou et al. 1999). For the
vertical inclination, the rortices in the T regime (h) have an average |βR| ≈ 11◦ which
agrees well with the hairpin rortices observed in the direct numerical simulations of
stratified shear layers in Watanabe et al. (2019) (who reported an inclination of 14◦) and
those hairpin legs observed in unstratified wall-bounded flows in Haidari & Smith (1994)
and Zhou et al. (1999) (who reported ≈8◦). However, these angles are lower than the
average tilt of hairpin in unstratified turbulent boundary layers, which are typically ≈45◦
(Head & Bandyopadhyay 1981; Zhou et al. 1999). Interestingly, the ‘heads’ of our hairpin
rortices are barely more inclined than the legs, which suggests that the ‘lift-up’ of the
head may be inhibited by stratification. The legs of the symmetric Holmboe rortices ( f )
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are almost horizontal, showing a much clearer connection with intermittent and turbulent
structures than the asymmetric Holmboe ones (e).

The schematics shown in figure 9 are ideal models of symmetric Λ and hairpin
rortices representative of the evolution of global αR and βR statistics on either side of
the turbulent transition. Instantaneous rortices in high-Re, turbulent, unsteady flows, are
more likely to feature ‘broken’, asymmetric hairpins, such as quasi-streamwise or cane-like
rortices. Nevertheless, we will show with case studies in § 6 that these ideal models are
representative of actual rortices observed in instantaneous snapshots.

5. Interaction with density gradients

The statistical study in § 4 showed that the strength and orientation of the rortices change in
the different flow regimes (from Holmboe to turbulence). The morphology and behaviour
of rortices are expected to be influenced by the density (or buoyancy) field in stably
stratified flows having relatively large bulk Richardson numbers between Ri ≈ 0.15–0.55
(in H flows) and Ri ≈ 0.1–0.2 (in I and T flows). In this section we examine the interaction
between the rortex R and density gradient ∇ρ. We first apply our WCA method to the
3-D density gradient, before studying the averaged strength of interaction between rortex,
shear and density gradients along the vertical. Finally, we discuss the complex relationship
between vortical structures and mixing.

5.1. Distribution of the density gradient and relation to the rortex
In figure 10 we plot the WCA pdfs of the angle between ∇ρ and the ‘true horizontal’
plane z′⊥, i.e. βρ = ∠(∇ρ, ẑ′

) − 90. We compare the pdfs under two different weights: in
(a) with |∇ρ|2 to highlight the strongest density gradients (we refer to this as βρ1); and in
(b) with the squared rortex magnitude R2 to highlight the orientation of density interfaces
coinciding with strong rortices (we also impose the threshold R > kth = 2, and refer to
this as βρ2).

In (a) we find, unsurprisingly for stably stratified flows, that the strongest density
gradients overwhelmingly point downwards, thus βρ1 > 0◦, with a small deviation from
the perfect ‘true’ vertical of 90 − βρ1 ≈ 5◦.

By contrast, in (b) we observe a much broader pdf. The rorstrophy-weighted density
gradients are much less vertical or downward-pointing, and a significant fraction point
upward (see the grey shaded area ‘overturned’ for βρ2 < 0◦). Density gradients that are
co-located with strong rortices thus appear much more susceptible to being distorted and
even overturned. The peak values of this pdf tell us about the extent of this distortion
process. We observe an almost monotonic evolution from modest deviations of 90 −
βρ2 ≈ 7–10◦ in the H datasets to more substantial deviations of ≈16◦–25◦ in the I and
T datasets (see dashed trend line). In the latter datasets, and especially in T2 and T3, the
left-hand tails of the pdfs decay much more slowly, with significant overturns (we recall
that the overturn fraction was shown by light blue contours in figure 7, giving a typical
≈3 %–5 % of overturned fluid in T2 and T3). These observations are robust at different R
conditional threshold kth.

Figure 10(c) summarises the evolution of the peak angles of βρ2 (colour-filled ©),
noting in passing the difference with the evolution (or lack thereof) of βρ1 (empty ©).
The trend of a monotonically decreasing βρ2 (or increasing 90 − βρ2) with θRe is very
clear. We also add the peak in horizontal angle αρ = ∠(∇ρ, x̂) − 90 (αρ1 weighted by
|∇ρ|2 and αρ2 weighted by R2) to show that they both have a consistent peak at 0◦.
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Figure 10. Frequency distribution (orientation pdfs) of the WCA vertical angles of the density gradient: (a)
βρ1 weighted by |∇ρ|2 without conditional threshold; (b) βρ2 weighted by R2 with a threshold R > kth = 2.
(c) Peak angle (maximum of the weighted pdf) βρ1 (empty ©) and βρ2 (filled ©). We also add the horizontal
angles αρ1 with weight |∇ρ|2 (empty �) and αρ2 with weight R2 (filled �). Note the log vertical scale. Symbol
size indicates the relative strength of the peak, i.e. the value of its ordinate in (a,b).

Interpreting these results, we note that although both shear and rorticity increase with
turbulence (as was shown in figure 3), the decrease in βρ2 is presumably caused by
the increasing dominance of nearly horizontal rortices having βR ≈ 0◦ (see figure 8).
These strongly rotating hairpin ‘heads’ (see figure 9) lift up and overturn the flow around
the y axis. The symmetric Holmboe data (with high-Re, H1 and H3) are in this sense
‘pre-turbulent’, especially H1 (marked by a red arrow) which peaks at ≈70◦. However, the
asymmetric Holmboe data (with low-Re, H2 and H4, labelled with blue arrows) are again
different, because the rortex remains relatively weak compared with the shear and does
not visibly influence the density gradient. The density interfaces with strongest rortices
are indeed inclined at the same angle as the rortices themselves, as evidenced by the fact
that βρ2 peaks in the range 40–50◦ (labelled by blue arrows), which is very close to the
peak βR in figure 8(b).

To further study the relationship between rortices and density interfaces, we define a
last angle φ = ∠(R, ∇ρ). The evolution of its peak angle φp, extracted from its WCA
distribution, is shown in figure 11. The symbol size denotes the peak height, whereas
the shading denotes the width (or spread) of the distribution at half height (see top right
insert). Again we compare distributions under two different weights: |∇ρ|2 (white circles
and green shading) and R2 (red symbols and grey shading).

First, all peak angles are φp ≈ 90◦, revealing a new piece of information: rortices and
density gradients are most frequently perpendicular, in all datasets, regardless of statistical
weight. Second, distributions of φ weighted by |∇ρ|2 (green shading) are narrower than
those weighted by R2 (grey shading), having a typically spread of ±10◦ versus ±30◦ (in
some datasets even higher, e.g. H2, H4, I4). This observation brings an important nuance to
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Figure 11. Peak angle φp between R and ∇ρ based on WCA distributions. Symbol size denotes the peak height
h (as shown schematically in the insert). Shadings denote the width W of the distribution at half peak height
h/2 (see insert). Red-filled © and grey shading have weight R2; white-filled © and green shading have weight
|∇ρ|2. All statistics weighted by R2 have conditional threshold kth = 2.

our above conclusion: while the strongest ∇ρ are indeed frequently perpendicular to R, the
strongest R are less frequently perpendicular to ∇ρ. This subtle asymmetry in the relation
between R and ∇ρ is important and understandable: we expect strong density gradients
to generate rortices by baroclinic torque, but we do not expect all rortices, especially the
strongest ones, to be generated by this mechanism. Our stratified layers remain dominated
(driven) by shear, and most rortices can be expected to be a product of instabilities that
grow by extracting energy from the mean shear, especially in the centre of the shear layer
where the fluid is partially mixed and density gradients are weak.

Third, although we have argued that the spread of distributions weighted by ∇ρ (green
shading) is relatively ‘narrow’, it broadens somewhat from approximately 90 ± 5◦ (H
data) to 90 ± 15◦ (T data) as turbulence levels increase. This evolution shows that rortices
become less perpendicular to even the strongest density gradients in increasingly turbulent
flows, probably as a result of weaker stratification (Rib ≈ 0.15 in T data) and, thus, of a
weaker feedback of density in the momentum equation.

5.2. Vertical variation of the rortex–density and shear–density relationships
We now turn to the strength of |∇ρ| and of its relationships with S and R along the z
direction. Figure 12(a–c) shows 〈|∇ρ|〉xyt(z), segregating the H, I and T data in different
columns. We see that the initially sharp density interface broadens (from H → I → T) and
ends up in (c) becoming partially mixed across −0.5 � z � 0.5, flanked by two weaker
interfaces. This evolution is similar to that of the shear 〈S〉xyt(z) (previously shown in
figure 3b).

Figure 12(d–f ) shows the average magnitude of their cross product |S × ∇ρ|xyt scaled
by 〈|∇ρ|〉xyt. The profile is very close to 〈S〉xyt (shown by dashed lines), indicating that
sin(∠(S, ∇ρ)) ≈ 1, i.e. that S (primarily along y) is approximately perpendicular to ∇ρ

(primarily along z).
Figure 12(g–i) shows |R × ∇ρ| scaled by 〈|∇ρ|〉xyt. The interaction of rortex and

density gradient is distributed more evenly across z, with weak peaks that neither reflect
the peak of 〈R〉xyt (in dashed lines) nor the peak of 〈|∇ρ|〉xyt (see first row of this figure).
This proves that rortices interact strongly with density gradients across the whole shear
layer, rather than just at a single sharp density interface or at the two weaker interfaces
on either edge of the shear layer. Although the rortex and density gradient are frequently
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Figure 12. Vertical distribution (along z) of the average (a–c) 〈|∇ρ|〉xyt, (d–f ) 〈|S × ∇ρ|〉xyt/〈|∇ρ|〉xyt and
(g–i) 〈|R × ∇ρ|〉xyt/〈|∇ρ|〉xyt segregating the H, I and T regimes in different columns. The dashed lines in
(d–f ) and (g–i) correspond to 〈S〉xyt and 〈R〉xyt, respectively (repeating some information from figure 3b,c).

nearly perpendicular (as we have shown in the previous figure 11), the departure from this
general tendency is substantial enough, especially in turbulent flows, that we do not find
any region with strongly peaked |R × ∇ρ| across the shear layer.

The cross product is a particularly useful indicator because it considers not only
the strength of R and ∇ρ but also their angle φ (recall |R × ∇ρ| ≡ |R||∇ρ| sin φ).
Rortices perpendicular to the density gradient (| sin φ| = 1) have a potential energy cost
proportional to |∇ρ| and Rib, whereas those parallel to the density gradient (sin φ =
0) are energetically neutral. However, the interpretation of this cross product is not
straightforward: a ‘large’ cross product could correspond to a strong rortex barely
suppressed by a weak ∇ρ, or to a weak rortex suppressed by a strong ∇ρ, which is the
reason why normalised cross products were considered in figure 12.

947 A30-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

58
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.588


X. Jiang, A. Lefauve, S.B. Dalziel and P.F. Linden

5.3. Hypothesis for the role of rortices versus shear on mixing
To interpret the above observations on the different effects of shear versus rortex on
the density field, we formulate in the following a hypothesis for their interaction and
contributions to mixing. We first recall the flow visualisation in figure 2 showing strong
local shear structures among the hairpin-like rortices that ‘straddle’ them. Being dominant
in the vorticity field, the first contribution of the shear to mixing is to distort sharp
density interfaces by shear instabilities, a process that forms vortical structures that we
unequivocally identify as rortices. The role of these rortices (weaker relative to the shear)
then appears to depend on their relative strength and morphology, and on those of the
density gradient. When rortices are weak and density gradients are stronger, such as
in the Holmboe regime, rortices tend to ‘scour’ density interfaces but do not overturn
them (as pointed out by Salehipour, Caulfield & Peltier (2016)), and thus result in little
mixing. However, when rortices are strong and density gradients weaker, such as in
turbulent regime, hairpin rortices within the shear layer (i.e. their legs) create bursting (i.e.
lift-up or sweep-down events in the z direction), thereby further stirring fluid within the
partially-mixed layer (this is visible in the contours of velocity v and w in supplementary
movies 2–5).

On the other hand, the most strongly rotating parts of the hairpins at the edges of
the stratified layer (i.e. their heads) cause overturning and entrainment, thus broadening
the mixing layer. Strong local shear then further stretches these newly created density
gradients, accelerating small-scale molecular diffusion and ultimately achieving mixing.

In the next section we explore this hypothesis and consolidate our understanding of the
subtle role of rortices.

6. Case studies: instantaneous snapshots

The above hypothesis is based on the statistics of 15 datasets using spatial and temporal
averaging, which reveals the general characteristics of structures. To verify that these
characteristics are indeed representative of the actual flow phenomenology, we now study
instantaneous volumetric snapshots of the rortex–density dynamics. We focus on relatively
isolated rortices, inspired by the approach taken in ‘kernel’ studies of turbulent boundary
layers for the interaction of vortical structures and the generation of near-wall bursts
(Haidari & Smith 1994). We study three datasets in turn: H4, I6 and T3, which cover
the three key flow regimes of interest.

6.1. In Holmboe waves
Starting with a snapshot of asymmetric Holmboe flow H4 in figure 13(a,b), we first observe
in panel (a) that the streamwise vorticity (ωx, see colours) is mainly concentrated either
under the two sides of the wave ‘head’ or on the two sides of the wave ‘body’ (shown by an
isosurface of S in grey). The ‘rortex line’ (black lines labelled A, B and C), equivalent to a
streamline but based on the rortex vector R, connects the regions of high opposite-signed
ωx in a 	 shape. This indicates that the rortex we observed in § 3 likely originates from
the ‘confined Homboe wave’ of Lefauve et al. (2018a) (their paper was solely based on
this dataset H4).

The y component of R × ∇ρ in y–z planes (in colours) is plotted in (b). The strongest
interaction is located near the density interface where |∇ρ| (in grey) is largest (see the
regions labelled D, E and F), recalling that here |∇ρ| is an order of magnitude larger
than R and that the two vectors are nearly perpendicular. High values of (R × ∇ρ)y are
also found on either side of the wave head (see the region labelled G), due to the high
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Figure 13. Rortex–density interaction in asymmetric Holmboe dataset H4. Comparison between experimental
(a,b) and linear stability (c,d) results. (a) Streamwise vorticity (ωx, in colour) in three y–z planes I, II and III,
at time tn = 180, superimposed on an isosurface of shear structure (S = 1.3, in grey). (b) Spanwise component
of R × ∇ρ (in colour), superimposed with the contours of ∂zρ (grey contour) in the x–z mid-plane y = 0. Blue
lines indicate the contour of S = 1.3, and vectors indicate velocity in the plane. (c) Same visualisation as (a)
but for the fastest-growing mode of the 3-D ‘confined Holmboe instability’ computed in Lefauve et al. (2018a),
superimposed on the isosurface S = 2.5. (d) Same visualisation as (b). Only the structures within the regions
of −0.8 < y, z < 0.8 are shown, and the z axis is stretched by a factor of 3 as in Lefauve et al. (2018a).

rorticity R. The velocity profiles within the x–z plane reveal a more inflectional, and thus
potentially unstable, region above the density interface, especially near the wave head
(labelled k in the figure). We believe all these characteristics are important in asymmetric
Holmboe waves.

In figure 13(c,d) we show similar visualisations but for the numerical solution
corresponding to the fastest growing (or most unstable) linear mode computed on the
two-dimensional experimental base flow in Lefauve et al. (2018a) (these data are available
on the repository Lefauve et al. 2018b). The agreement between the observed ‘CHW’
(top row) and the numerically predicted ‘confined Holmboe instability’ (bottom row) is
excellent. The only discrepancy lies in the absence of the strong interaction region that
appears near the wave head in the linear solution (labelled G in c). We conclude that this
particular feature around the head (observed in the experimental data but absent from
the linear solution) is likely caused by nonlinearities. Conversely, most other details of
the rortex/density dynamics discussed previously can be attributed to linear instability
dynamics, which are significantly modulated by the spanwise confinement in the square
duct geometry (an effect studied in Ducimetière et al. 2021).

6.2. In intermittent turbulence
A snapshot of I6 is shown in figure 14. In this intermittently turbulent flow, the life cycle
(appearance and disappearance) of rortices is chaotic. Following the approach of ‘kernel’
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Figure 14. Rortex–density interaction in intermittent dataset I6 at time tn = 36. (a) Isosurface of R = 0.6 with
colour denoting the z position. (b) Spanwise component of R × ∇ρ in a y–z (labelled I in a). (c,d) Density and
vertical component of the density gradient in the same y–z plane and in (e, f ) a x–z plane (labelled II in a). The
black contour in (c) is for R = 0.6; the vectors in (c,e) show the (subsampled) velocity field; green contours
in (d, f ) are overturned regions where ∂zρ ≥ 0; the blue lines in ( f ) show S = 1.5. Only a subvolume (in x) is
shown here for better visualisation.

studies, this snapshot was selected at a time when rortices are in a relatively complete
form (before their breakdown). Figure 14(a) shows two hairpin rortices detected by the
isosurface R = 0.6 (with its head pointing up and the other pointing down, respectively
labelled Ru and Rd) travelling in opposite directions. The rortex Ru is stronger than Rd,
with the strength of their heads being R ≈ 2.2 and R ≈ 0.65, respectively. As time evolves
(see supplementary movie 4), Ru is lifted higher up, its head finally reaches outside the
shear layer while its legs are stretched through the upper layer. The overall inclination
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angle of Ru is ≈30◦, with its head inclined more steeply at ≈60◦ and its leg inclined less
steeply at ≈20◦. The inclination of this particular rortex is larger than the peak value (the
maximum of the WCA pdf), see the I6 data in figures 7 and 8. Meanwhile, the weaker
rortex Rd is inclined as a whole at 13◦ and its head does not lift up. The life of Rd is
relatively shorter as it quickly breaks down into smaller eddies.

Moving on to figure 14(b), we see four regions of strong interaction (labelled 1 to 4)
evidenced by the y-component of R × ∇ρ in the y–z plane labelled I in (a). Again, the
weaker rortex Rd seems to have a stronger interaction with the density gradient, just as in
dataset H4 in the above section. This is due to a stronger density gradient collocated with
Rd, as is clear in panels (c,d) (showing ρ and ∂zρ in the same y–z plane).

In figure 14(c) we see that dense fluid (in red) under Rd is lifted up after being driven
laterally outward by the rortex. On the contrary, light fluid is driven downward by the legs
of Ru. The combined effect of these two rortices stirs fluid of different density (blue and
red) around and make them meet in the middle region (see the white arrows in c) where
fluid is well mixed (cyan). This region between the two pairs of legs is where density
overturns are observed (labelled A and B in figure 14d). Note that the density field near
Ru is better mixed than near Rd, i.e. the asymmetry between Ru and Rd carries over to the
density field.

We now turn our attention to figure 14(e, f ) showing the velocity vectors and density
within the x–z plane ‘II’ in (a). The strong head of Ru is visible and causes lift-up and
sweep-down, just like the legs (see the white arrows). The overturns seen in (d) are visible
between the two rortices (labelled C and D in f ). We also note that the density interface
(white dashed line) tilts towards Rd. Strong shearing structures (blue lines) are found either
at the edge of the stratified shear layer (aligned with high density gradients, see the region
labelled F) or near the centre of a strong rortex (see the region labelled E). This upper
region of high S allows us to infer a relationship between the tilted rortex and the tilted
region of high shear. In the H4 snapshot (figure 13), the rortex was weak, likely created by
localised shear around the Holmboe wave crest. By contrast, in this I6 snapshot, the rortex
is further strengthened and stretched, and the lift up of its head also lifts up the high shear
region between its two legs.

Based on the above observation, we can describe rortex Ru as a strong ‘stirrer’ of
weakly stratified fluids, and rortex Rd as a weaker ‘revolving door’ entraining denser,
more strongly stratified fluid into the mixing zone, and pulling pre-mixed fluid away
from it. However this ‘revolving door’ remains weak compared to the stratification at the
interface and cannot destroy it entirely (in addition, the nature of the exchange flow in
SID ensures that unmixed fluid continually replaces mixed fluid, thereby sustaining such
interfaces).

6.3. In fully developed turbulence
In figures 15 and 16 we select a representative snapshot in T3. Here, rortices are more
complex, making it more difficult to inspect isolated structures. Figure 15(a) shows the
isosurface of R = 0.6 (grey region), ρ (in colour) and u vectors in two y–z planes (labelled
as p1 and p2). The regions where rortices intersect these two planes are numbered 1 to 9.
Rortices 1 and 2 are the two legs of a large hairpin, whose head has been partly truncated
in this figure because it protrudes outside the shear layer |z| ≤ 1 within which our analysis
is restricted. The strong rortices 1, 2 and 6 near the edges of the upper density interface
move fluid laterally (around their rortex axis), thereby entraining lighter fluid (in blue)
downward and neutral fluid (in green) upward. However, due to the buoyancy restoring
force, the vertical flow is less vigorous than the spanwise flow (note the arrow length).
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Figure 15. Rortex–density interaction in turbulent dataset T3 at time tn = 41. (a) Isosurface of
R = 0.6 (in grey), with two planes (p1 and p2) showing ρ( y, z). (b) Vortex lines (based on R) with colour
denoting the strength of rortex, with the same two planes showing ∂zρ( y, z). Green contours show density
overturns; blue lines show S = 1.5. Only a subvolume (in x) is shown here for clearer visualisation. Blue
numbers show the length scale.

This entrainment pattern agrees with our previous observation in I6 (figure 14c). The
streamwise length scale of these rortices is ≈1–2, i.e. of the order of the shear layer depth,
which is the energy-containing scale according to the turbulent kinetic energy spectra of
this dataset T3 (see figure 5(c, f,i) of Lefauve & Linden 2022b). However, the diameter
of these rortices is ≈0.1–0.4, i.e. almost an order of magnitude smaller, placing them in
the inertial range. This typical length/diameter ratio of 5–10 supports the schematics of
figure 9, in which we had anticipated the length scale data, not given by our statistical
analysis of the orientation of rortices. The non-dimensional Kolmogorov scale in these
turbulent datasets was estimated as η ≈ 2θ−1/4Re−3/4 ≈ 0.02 (Lefauve & Linden 2022b),
although it is subject to large uncertainties (see the discussion at the end of their § 5.1.3,
which also considers a smaller Kolmogorov scale of order 0.006). The most likely estimate
η ≈ 0.02 would make these rortices of length ≈50η–100η and diameter ≈5η–20η.

Inspecting now the density gradient in figure 15(b), we observe that rortex 1 acts again as
the typical ‘revolving door’ described in I6, which allows for density transport across the
relatively sharp upper density interface. Rortex lines, whose colour indicate the strength
R, intersect the y–z planes in regions 1, 2, 5 and 6. The upper density interface and the
corresponding high shear region (with S = 1.5, see blue contours) between rortices 1 and 2
is visibly distorted. Between the upper and lower density interfaces (in the mixing region),
rortices 3, 4, 5 and 7 stir the fluid, but the overturned region (∂zρ ≥ 0, green contours) is
spotty due to the weak stratification ∂zρ ≈ 0.

Figure 16 offers visualisation of the same snapshot in complementary planes (the x–z
plane with y = 0 in (a–d) and four different y–z planes in e–h). Based on ρ (a) and ∂zρ
(b) the upper density interface is more irregular and slightly less stratified compared with
the lower density interface. Velocity vectors also show that vertical motions are somewhat
suppressed near the lower interface. A strong rortex can deform and even break a nearby
strong density gradient in a vertical ‘eruption’ process across the interface (see region
D where the hairpin head of the rortices 1 and 2 appears in figure 15). Large overturning
regions (filled in green, see regions A, B and C) are usually close to regions of high density
gradients, sometimes forming a ‘sandwich’ configuration.
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Figure 16. Further rortex–density interaction in turbulent dataset T3 at time tn = 41 (as in figure 15).
(a–d) Contours in the y = 0 plane of ρ, ∂zρ, S and the x-component (R × ∇ρ)x, respectively. (e–h) Contours
in y–z planes of the y-component (R × ∇ρ)y. The solid lines in (a–d) indicate the position of the planes (I, II,
III and IV) in (e–h), whereas the dashed lines indicate the position of planes p1 and p2 in figure 15.

Comparing ∂zρ and S contours in figure 16(b,c) reveals a good correlation between
them (see also supplementary movie 5). Although this paper mainly discusses rotational
structures, it should be kept in mind that shear-driven instabilities are clearly important,
and probably even dominant, in the process of turbulent production and mixing. The
dominant contribution of shear to the vorticity was also reported for isotropic turbulence
in Nagata et al. (2020) and Boukharfane et al. (2021) and may be a generic feature of
turbulence.

Finally, we study the interaction between the rortex and the density fields, based on
the x and y components of R × ∇ρ in figure 16(d) and (e–h), respectively. We observe
that the strongest interactions occur near the upper and lower interfaces of the stratified
layer. Peaks in the x component of R × ∇ρ, denoted by (R × ∇ρ)x, are usually centred
at the concentration of a pair of opposite values of the y-component (R × ∇ρ)y which
again suggests a hairpin structure (see the pairs of D1–D2, E1–E2, G1–G2, F1–F2 and
H1–H2 in (e–h) and compare with the structures of (d) at nearby x locations). However,
in some datasets, the opposite pair have unequal magnitude (such as G1 and G2 in (g));
these rortices are then not complete hairpins, but rather cane-like or quasi-streamwise
rortices, such as a rortex with a single leg connecting to a spanwise-oriented head (Adrian
2007). Further comparison between (b,d) and ( f ) shows that the ‘sandwich’ region A is
consistent with the regions of K and E1–E2 pair, which indicates that the overturning is
closely related to adjacent rortices.
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7. Synthesis and discussion

Synthesising our previous statistics and case studies on rotational structures and density
interfaces, we now propose a simplified model for the evolution of their morphology under
increasing turbulence.

7.1. Origin of hairpin rortices
Lefauve et al. (2018a) described the (asymmetric) CHW in dataset H4 (here visualised in
figures 2(a) and 13). This long-lived 3-D wave is dominated by a shear structure having
a wide ‘body’ and a narrower ‘head’, which are well predicted by the most unstable
mode of a suitable linear stability analysis. The same study pointed out that the shear
in the CHW is closely related to the coherent intensification of spanwise vorticity due
to confinement by the lateral walls of the duct, which was studied systematically in
Ducimetière et al. (2021). This vorticity intensification is reminiscent of the wave warping
process (Hama & Nutant 1963) and the vortex concentration in wall-bounded flows (Smith
1984). Therefore, we speculate that the formation of rortices in SID flows is similar to
the scenario of wave-induced vortex generation in a transitional boundary layer, and that
	-rortices originate from 3-D CHWs.

A cartoon of the development of the CHW and its nearby rortices is shown in figure 17.
First, the confined Holmboe instability (Lefauve et al. 2018a, CHI) arises due to a resonant
interaction between a vorticity wave (on the edge of the shear layer) and a gravity wave
(at the density interface). It then grows to a finite amplitude, intensifying and warping the
background spanwise vorticity (ωy) until it nonlinearly saturates to the observed CHW
characteristic shear structure (indicated by the dashed line in figure 17a). Subsequently,
a 3-D state (with strong gradients of vorticity) likely develops according to Smyth &
Peltier (1991) and Smyth (2006), evidenced by the nucleation of streamwise vorticity (ωx)
on either side of the wave (figure 13a,b). These sites are located under the wave ‘head’
(or below the cusp) and above the wave body (or around the ‘neck’). Finally, rorticity
further concentrates at these two locations, forming a 	-shaped rortex (see the embryonic
rortex vectors in both the experimental and linear stability results of figure 13. The newly
generated rortices are labelled A and B in figure 17(a), corresponding to the two nucleation
sites labelled A and B in figure 13(a,c).

This above process is analogous to the wave-induced 	-vortex scenario described in
boundary layers (Lee 2000; Jiang et al. 2020a), in that the amplification of a 3-D wave
(soliton-like coherent structure) is a key initiator of a vortex, indicating that such structures
may be generic to shear-driven turbulence, with and without walls. The phenomenon
of Holmboe-wave-induced rortices was also suggested by the numerical simulations of
Smyth & Winters (2003). Because of the restoring force in the stratified layer, the induced
embryonic 	-rortex does not significantly distort the sharp density interface. The strength
of the rortex is about 10 % that of the shear, thus the flow remains shear-dominated,
although we recall that shear dominates over rotation even in isotropic turbulence. As
pointed out by Salehipour, Peltier & Caulfield (2018) and Zhou et al. (2017), in strongly
stratified flows such as in the H datasets (Ri ≈ 0.1–0.6), self-organisation occurs through
‘scouring’ motions that keep the density interface sharp and robust.

With increasing θ and Re, the 	-structure increases in amplitude as the rorticity is
amplified by stretching, thus a more readily identifiable hairpin rortex appears (labelled
C in figure 17b). Its head inclines more steeply, due to the competition between the
shear-induced stretching of the mean profile and the self-induced velocity of the 	-vortex
(Zhou et al. 1999). The rortex ejects stratified fluid away from the interface, and its
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Figure 17. Schematic view of (a) the origin of a hairpin rortex from Holmboe wave and its evolution in the
(b) intermittent regime and (c) turbulent regime. Dashed lines indicate shear structure, and green
segmented tubes indicate rortices (having direction R). The background colour indicates density stratification.
Abbreviations are: LU, lift up; SD, sweep down; LM, lateral movement; R, rortex vector, HS, high shear.

elongated legs stretch into the body of the former Holmboe wave, creating transient
bursts consisting of lift-up (LU) and sweep-down (SD) events, as shown in figure 17(b)
by the green and blue arrows, respectively. This stirs fluid above or below their original
positions, creating a net buoyancy flux and production of turbulent kinetic energy from
the mean shear. At this stage, the interface becomes more unstable, overturns more
frequently, becomes thicker (see region labelled E in the figure), and the Holmboe wave
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becomes shorter-lived. Owing to the presence of a strong rortex and of its induced bursting
behaviours, the shear corresponding to the CHW is intensified and becomes more unstable.
This localised high shear further stimulates a new rortex (e.g. the embryonic rortex labelled
D in the figure), which jointly contributes to create more intense intermittent fluctuations.

Although the model shown in figure 17 is inspired from asymmetric Holmboe data,
we believe the rortex generation mechanism is similar in symmetric Holmboe data. In
symmetric Holmboe waves, the typical 	-rortex is more streamwise (as depicted in
figure 9b), and the streamwise stretching of the rortex legs plays a significant role during
the transition to turbulence. The more horizontal the hairpin rortex is, the easier it is for it
to stir fluid up and down between its legs, generating vertical motions.

The source of the mixing in these flows is unequivocally ‘internal’ (following the
classification of Turner 1973) in the sense that the rortex develops internally within the
shear layer, which contrasts with externally introduced vortices, such as the vortex rings
produced by actuating a pump (Olsthoorn & Dalziel 2015).

The above hypothesis on hairpin rortices originating from pre-turbulent CHWs differs
from other mechanisms proposed in slightly different flows. For example, hairpin-like
vortices may develop from shear-layer-stretched spanwise tubes formed during the
breakdown of Kelvin–Helmholtz billows (Pham & Sarkar 2011; Pham et al. 2012), or
from spanwise vortices hypothesised in stratified plane Poiseuille flow to be due to local
quasi-linear processes and internal waves (Lloyd et al. 2022).

7.2. Role of hairpin heads and legs on stirring
At higher θ and Re, there is a stronger rortex–density interaction, more bursting and
overturning because: (i) the rortices are stronger and more horizontal (i.e. they have
a smaller inclination angle to the x–y plane, see figure 9); (ii) a weaker stratification
(Rib ≈ 0.1–0.2) is less able to suppress these vigorous vertical motions.

Figure 17(c) shows a schematic model of rortex–density interface interaction in such
conditions representative of the late intermittent regime and the turbulent regime. Both
quasi-streamwise and hairpin-like rortices are observed in the thicker, partially mixed layer
bounded by two interfaces (see, e.g., figure 2c,d). Here, for simplicity, we only sketch one
hairpin rortex on the upper interface.

The hairpin rortex consisting of a head and two legs is inclined to the true horizontal
plane at a small angle (5◦ ∼ 15◦). The legs with opposite rotation lift up denser fluid in
the middle of the rortex (see green arrow LU1 in figure 17c), whereas on the outer side of
the rortex legs, lighter fluid is swept down (see blue arrow SD1). This bursting cycle also
enhances a lateral exchange of momentum along the legs (see the black arrows labelled
LM1 and LM2), which produces sufficiently large spanwise stress for a burst regeneration
(Landahl 1975; Haidari & Smith 1994). Compared to vertical motions, such lateral motions
in stratified turbulence are more energetic due to the absence of buoyancy restoring force
in the spanwise direction.

The appearance of a distinct rortex head (or transverse rortex, along y), as a
manifestation of the strong concentration of spanwise rorticity, provides another bursting
cycle, labelled LU2 and SD2. Dense fluid is lifted up (LU2) by the head, and overturned
by the corresponding sweep-down (SD2). Importantly, the lift-ups caused by the rortex
legs and head creates a localised, inclined high-shear region slightly above the rortex
(dashed line, labelled HS). Secondary instabilities of this localised high-shear produce
further rortices which enhance the mixing, in a fractal-like fashion.

In figure 18, we further represent rortices according to their position: (i) on the interface
of the stratified layer or (ii) within the partially mixed layer, away from the interfaces.
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Figure 18. Cartoon of turbulent rortices near a density interface and within the partially mixed layer. (a) Side
view (x–z plane). (b) Cross-sectional view (y–z plane). RL: longitudinal rortex (green) with R primarily along
x; RT: transverse rortex (magenta) with R primarily along y.

The green longitudinal cylinder indicates a longitudinal rortex (labelled RL, e.g.
streamwise vortex, legs of hairpin vortex or cane-like vortex), whereas the magenta spiral
indicates a transverse rortex (labelled RT, e.g. spanwise vortex, hairpin head). As explained
in § 5, the rortex across the interface acts as a ‘revolving door’ lifting inner (pre-mixed)
denser fluid away from the upper interface and entraining outer lighter fluid into the shear
layer. Both RL and RT can be candidates for this role, as shown in figure 18(a). The
localised breakup of the interface is closely related to this bursting cycle (see rortex 1, 2 and
3 for example). However, the rortices within the stratified shear layer (and away from the
interface, e.g. rortex 4 and 5) contribute little to this revolving door, being instead primarily
responsible for further lateral stirring of the pre-mixed fluid, causing the spanwise density
gradient to be further smoothed, making the interior better mixed. For rortices across
the interfaces, this lateral rotation deforms the shear layer and promotes the inner-outer
exchange of fluid (see rortex 6 in the cross-sectional view of figure 18b).

8. Conclusions

In this paper, we have investigated the morphology of coherent vortical structures, and
more specifically ‘rortices’, and their relation to density gradients. We have adopted an
empirical (data-driven) approach based on the analysis of 15 experimental datasets of
increasingly turbulent stratified shear layers obtained by exchange flow in a long inclined
square duct.

Using the standard Q-criterion, we first observed (figure 1) that coherent vortical
structures are mainly hairpin-like (e.g. 	-structures, hairpin structures, cane structures,
quasi-streamwise structures) irrespective of the flow regime. After splitting vorticity into
rigid-body rotation (rortex vector R) and anti-symmetric shearing motion (shear vector
S) in figure 2, we examined their averaged magnitude R, S and vertical distribution in all
datasets (figure 3). We have found that the shear S always dominates, although the rorticity
R increases significantly in the intermittent and turbulent regimes, and shows coherent
structures reminiscent of other turbulent shear flows.

We then studied the morphology of vector-based coherent structures, rortices, about
which the flow is in rigid-body rotation, using detailed statistics (WCA) of the orientation
of the rortex R (figures 4–8). This allowed us to draw in a key schematic (figure 9)
the evolution of typical rortices from asymmetric (high-θ low-Re) and symmetric (low-θ
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high-Re) Holmboe waves (H regime), to intermittent (or transitional) flow (I regime) and
eventually to turbulent flows (T regime). The two types of Holmboe waves have different
rortices, the high-Re symmetric ones being more similar to those found in the turbulent
regime. In the intermittent (transitional) regime, some datasets show similarities to the
asymmetric H regime, whereas others show similarities to the symmetric H or T regimes.
Strong transverse rortices (which we attribute to ‘wide’ hairpin heads) are most clearly
observed in the I regime.

Applying a similar statistical analysis to the density gradients and to the cross products
of R or S with ∇ρ (figures 10–12), we found that increasingly turbulent density interfaces
were increasingly steeply inclined (with respect to their true horizontal equilibrium)
as a result of weaker stratification and increasing interaction with rotational structures
(rortices) across the entire shear layer. By contrast, strong interaction between density
gradients and shear only occurs on the edges of the partially mixed region. We also found
that while rortices can be generated baroclinically by strong density gradients, the strongest
rortices were not associated with strong density gradients; in contrast, they appear in the
partially mixed region presumably as a result of shear-driven instabilities.

To complement and validate our insights based on time- and volume-averaged statistics,
we examined in figure 13–16 the instantaneous rortex and density interface morphologies
from a representative snapshot in three datasets representative of each regime. In the H
regime (figure 13), the region above the density interface and near the wave head is the
most unstable. The position of initial streamwise vorticity concentration agrees with the
position of embryonic rortices due to a supposed secondary, nonlinear instability (which
are not present in the corresponding structure predicted by a linear stability analysis). In
the I regime (figure 14) the region between a pair of hairpin rortices (pointing up and
down) is the most overturned and mixed. Strong shearing structures are located either
at edge of the shear layer and aligned with region of high density gradient, or near the
centre of a strong rortex. In the T regime, overturnings are frequently sandwiched by two
high-density-gradient regions near the upper and lower density interfaces and flanked by
nearby rortices (figures 15 and 16).

To synthesise these statistical and structural results, we proposed a model for the
evolution of vortical structures and density interfaces (figure 17). First, we hypothesise that
	-rortices originate from the 3-D CHW, described in Lefauve et al. (2018a), through the
formation of a highly localised shear region, the nucleation of secondary instabilities and
longitudinal roll-up. In turbulent flows, this rortex is strengthened and arches up, creating
characteristic hairpin rortices that stir the fluid around multiple axes. Their effect on
stirring (ultimately leading to mixing) is explained in figure 18. Rortices present across the
upper or lower density interface act as revolving doors that drive (mixed) fluid away from
the interface and entrain outer (unmixed) fluid into the mixing region. Both longitudinal
rortices (e.g. hairpin legs) and transverse rortices (e.g. hairpin head) are candidates for
this role. However, rortices present within the mixing region are mainly responsible for
further stirring the pre-mixed fluids by lift-up/sweep-down events as well as by strong
lateral movement.

These large-scale rotational stirring motions explain the generation of a vertical
buoyancy flux and the production of turbulent kinetic energy from the mean shear, which
are both key energy fluxes in stratified turbulence. At smaller scales, high strain rates
and density gradients cause turbulent kinetic energy dissipation and irreversible mixing,
respectively. However, our analysis in this paper has been purely kinematic; the dynamical
role of coherent rortices versus shear in shaping the turbulent energetics, and in particular
the efficiency of mixing, remains an open question.
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Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.588.
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