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GROUPS ADMITTING ONLY FINITELY MANY
NILPOTENT RING STRUCTURES

BY
SHALOM FEIGELSTOCK

ABSTRACT. The abelian groups which are the additive groups of only
finitely many non-isomorphic (associative) nilpotent rings are studied.
Progress is made toward a complete classification of these groups. In the
torsion free case, the actual number of non-isomorphic nilpotent rings these
groups support is obtained.

i. All groups considered here are abelian with addition the group operation. The
additive group of a ring R will be denoted by R *. Terminology and notation follow [5].

Szele [7] initiated the study of groups allowing only finitely many non-isomorphic
ring structures, Fuchs [4] made much progress towards classifying them, and Borho [2]
concluded the classification of all such groups which are not nil. The object of this
paper is to study the groups allowing only finitely many non-isomorphic nilpotent ring
structures. For G a torsion free group, the number of non-isomorphic rings R satisfying
R™ = G will be obtained.

ii. DEFINITION. A group G is (associative) nilpotent nil if the only (associative)
nilpotent ring R satisfying R* = G is the zeroring, i.e., R* = 0. If G admits only finitely
many non-isomorphic (associative) nilpotent ring structures, then G is said to be
(associative) quasi-nilpotent nil.

THEOREM 1. Let G be a torsion group. The following are equivalent:
1) G is nilpotent nil.
2) G is associative nilpotent nil.

3)G =D ® ®,er Z(p) with D a divisible torsion group, P a set of distinct primes,
and D, = 0 for allp € P.

Proor. Clearly 1) = 2).

2) = 3): Suppose that G is associative nilpotent nil. G = D @ H, with D the maximal
divisible subgroup of G. Suppose that H, + 0, and H, # Z(p) for some prime p. Then
H, and hence G, has a direct summand K = Z(p*), 1 <k <o, or K = Z(p) @ Z(p),
[5, Corollaries 27.2 and 27.3]. It is readily seen that there exists an associative nilpotent
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ring § with S* = K, and § # 0. Since a direct summand of an associative nilpotent
nil group must clearly be associative nilpotent nil, we have a contradiction. Therefore
H = @®,ecpZ(p), P aset of distinct primes. Suppose that D, # 0 for some p € P. Then
G has a direct summand K @ L with K = Z(p), and L = Z(p”). Let a be a generator
for K, and let b € L with |b| = p. The products a®> = b, ax = xa = xy = 0 for all
X,y € L induce an associative nilpotent ring structure S satisfying S* = K @ L, and
S% # 0, a contradiction.

The implication 3) = 1) is easily obtained.

The argument used above in proving the implication 2) = 3) yields:

COROLLARY 1.1. Let G be an associative nilpotent nil group. Then the torsion part
of G,G,=D @ ®,ecrZ(p), with D a divisible torsion group, P a set of distinct primes,
and D, = 0 for all p € P.

THEOREM 2. Let G be a torsion group. The following are equivalent:

1) G is quasi-nilpotent nil.

2) G is associative quasi-nilpotent nil.

3)G=D®@®F @ ®,er Z(p), with D a divisible torsion group, F a finite group,
P a set of distinct primes, D, = 0 for all but finitely many p € P, and F, = 0 for all
p EP.

PrOOF. Clearly 1) = 2).

2) = 3): Suppose that G is associative quasi-nilpotent nil. G = D @ H, with D the
maximal divisible subgroup of G. Suppose there exists an infinite set of primes P’ such
that H, # 0, and H, # Z(p) for all p € P’. Then for p € P’ there exists an associative
nilpotent ring S, with S; = H,, and S; # 0. Now G = H, @ K(p). Let R(p) be the
ring direct sum R(p) = S, ® T(p), with T(p)* = K(p) and T(p)* = 0. Clearly R(p)
is an associative nilpotent ring, R(p)* = G, and for distinct primes p, ¢ € P,
R(p) # R(q), a contradiction. It therefore suffices to show that H, is finite for every
prime p. Suppose there exists a prime p such that H, is an infinite group. Repeated
applications of [5, Corollaries 27.2 and 27.3] yield that for every positive integer n, H,,,
and hence G, has a direct summand H,(n") = @}, Z(p*), with k; a positive integer,
l=i=<n,and k, =k, =<...=<k, Leta,be agenerator for Z(p*),i=1,...,n. The
products

Amin(i,j) - 1 fori # 1 andj 1
a;0%a; =
0 fori=1orj=1

induce an associative nilpotent ring structure S(n) with S(n)* = H,(n). Now
G = H,(n) ® K(n). Let T(n) be the zeroring with T(n)" = K(n). Then the ring direct
sum R(n) = S(n) @ T(n) is associative, nilpotent, and R(n)" = G. It is readily seen
that for distinct positive integers n, m, R(n) #: R(m), a contradiction.
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Let p be a prime for which D, # 0, and H, # 0. Then G = Z(p*) ® Z(p") ® K,
with Z(p™) a direct summand of D, and Z(p") a direct summand of H. Let a be a
generator of Z(p"), and let b € Z(p~) satisfying |b| = p". For x; = ¢; + k;a + y; with
c; €Z(p%), y; EK, and k; an integer, i = 1, 2, define x,*x, = k,k,b. These products
induce an associative nilpotent ring structure R(p) on G. For distinct primes p, ¢,
R(p) # R(q). Therefore D, = 0 for all but finitely many primes p for which H, # 0.
We now have that G = D @ F' @ @,ep Z(p), with F' a finite group, P’ a set of
distinct primes, and D, = 0 for all but finitely many p € P'. Let {p,,...,p.} be the
set of primes p € P’ for which F, # 0. Put F = F' @ @', Z(p), and let P =
P —{pi,....,pi}- Then G =D @ F ® @®,er Z(p) with F, = 0 for all p € P.

3> 1):LetG=DDF D D,crZ(p), with D a divisible torsion group, F a finite
group, P a set of distinct primes, and D, = O for all but finitely many p € P. It may
be assumed that F, = O for all p € P. The group of ring multiplications on G,
Mult G, is isomorphic to Hom (G &) G, G) [5, Theorem 118.1], and [3, 1.2.1]. Let
{p1,....p.} be the set of all primes in P such that D, # 0,i = 1,...,n. It follows
from [5, Theorem 431.1 and vol. 1, p. 255(D)] that Mult G = Hom (F Q) F, D) @®
@]~ Hom Z(p,), D) ® Hom (F @ F, F) @11, , Hom Z(p) ® Z(p), Z(p)). Clearly
Hom (F ® F, D), @;., Hom Z(p;), D) and Hom (F ) F, F) are finite groups. A
multiplication on G corresponding to a nonzero homomorphism Z(p) ® Z(p) — Z(p)
induces a field structure on a direct summand Z( p) of G. Therefore G is quasi-nilpotent
nil.

Counting the number of non-isomorphic (associative) ring structures which can be
defined on an (associative) quasi-nilpotent nil torsion group is a difficult problem. An
asymptotic expression for the number of associative nilpotent rings of order p”,
p a prime, may be found in [6, Corollary 5.2.12].

As was the case in Theorem 1, the argument used to prove the implication 2) = 3)
remains true for G an arbitrary associative quasi-nilpotent nil group. Hence:

COROLLARY 2.1. Let G be an associative quasi-nilpotent nil group. Then G, = D @
F @ @,er Z(p), with D a divisible torsion group, F a finite group, P a set of distinct
primes, D, = 0 for all but finitely many p € P, and F, = 0 for all p € P.

COROLLARY 2.2. Let G be an associative quasi-nilpotent nil group with G, = D @
F® @,er Z(p) as in Corollary 2.1. Then for all but finitely many p € P, G = H(p)
@ Z(p) with H(p) a p-divisible subgroup of G.

Proor. Since G, = Z(p) for all but finitely many p € P, there exists a subgroup
H(p) of G such that G = H(p) @ Z(p) for all but finitely many p € P, [5, Theorem
27.5] (in fact it is not difficult to show that Z(p) is a direct summand of G for all
p € P). Suppose that H(p) is not p-divisible. Then the canonical homomorphism
H(p)— H(p)/pH(p) followed by a projection yield an epimorphism ¢:H(p) — (a),
where (a) is a cyclic group of order p generated by a. The product a-a = a induces
a field structure on (a). Let b generate the direct summand Z(p) of G, and let
U:(a) — (b) be the epimorphism induced by the map a — b. Every element in G is
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of the form x = h + nb with h € H(p), and n an integer. Let x;, = h;, + n;b, i =
1, 2, be elements in G written in this form. Then the products x,x, = Y[e(h))e(h,)],
with the product in the square brackets being the field multiplication on (a), yield an
associative nilpotent ring R(p) with R(p)" = G, and (R(p)’)* = Z(p). Therefore
H(p) is p-divisible for all but finitely many p € P.

EXAMPLE 2.3. A group admitting only finitely many non-isomorphic (associative)
ring structures, decomposes into the direct sum of a torsion group, and a torsion free
group both satisfying the same property, [3, Theorem 2.2.7].

This is not the case for an (associative) quasi-nilpotent nil group G. Although by
Corollary 2.1, G, is (associative) quasi-nilpotent nil, G/G, may not be, and G need not
split into the direct sum of a torsion and torsion free group. Let P be an infinite set of
distinct primes. It is well known that G = I1, <, Z(p) does not split into the direct sum
of a torsion and torsion free group. G/G, = @. Q", with Q the field of rationals, and
¢ the powers of the continuum, is clearly not associative quasi-nilpotent nil. Let R be
a nilpotent ring with R* = G. Since G, = @,er Z(p) is nilpotent nil, G,2 = (. Let
a € G, a#0,xER, with |a| = n. Since G/G, is divisible, there exist y € R, and
b € G, such that x = ny + b. Hence xa = nya = 0. Similarly ax = 0, and so G,
annihilates R. For z € G, let z, denote the p-component of z for every p € P. Let
x, y € R. As above there exist x; € G, and a € G, such that x = px, + a. Therefore
xy = px;y, and so (xy), = O for all p € P, i.e., R* = 0, and G is nilpotent nil.

LEMMA 3. Let G be an (associative) quasi-nilpotent nil group, and let R be an
(associative) nilpotent ring withR* = G. Then (R*)* = E @ F with E a divisible group,
and F a finite group.

PROOF. Let R be an (associative) nilpotent ring with R* = G. For every positive
integer n, the products ax,b = n(ab) for all a, b € G, with products on the righthand
side of the equality being multiplication in R, induce an (associative) nilpotent ring
structure R(n) on G. Since G is (associative) quasi-nilpotent nil, there exist integers
my, . ..,m; such that for every positive integer n, there exists 1 < i =< k for which
R(n) =R(m;). Putm = I1'_, m;. Then m(R?)" is divisible. Hence (R*)* = E ® B with
E divisible, and mB = 0. Since B< G, =D @ F @ @®,er Z(p), with decomposition
of G, as in Corollary 2.1, it suffices to show that B" = m,(B) is finite, where m, is the
natural projection of G, onto D. Let C be a direct summand of B’, and let 7 be a
projection of B onto C. Let x, y € R. Then x-y = e + b with e € E, b € B. Define
x *c y = ¢ mp(b). These products induce a ring structure Rc on G. Letx, y, z € G.
Since x #¢ y € D, there exists d € D such that x *c y = md. Hence (x *¢c y) *¢c z =
m(d *¢ z) = 0.Similarly, x *¢ (y *¢ z) = 0. Therefore Rf; = 0, and so R¢ is an
associative nilpotent ring with (Ré)Jr = C. Since G is (associative) quasi-nilpotent nil,
B’ is a bounded group possessing only finitely many pairwise non-isomorphic direct
summands. This clearly implies that B’ is finite.
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COROLLARY 3.1. A reduced torsion free group is (associative) quasi-nilpotent nil if
and only if it is (associative) nilpotent nil.

If G is a quasi-nilpotent nil, then an argument similar to that used in proving
Lemma 3 shows that (R®)" has only finitely many pairwise non-isomorphic direct
summands. This together with Lemma 3 yields:

COROLLARY 3.2. Let G be a quasi-nilpotent group, and let R be a nilpotent ring with

R+ = G Then (R2)+ = @ﬁnite Q @ @pEP @up Z(Pm) @ F7 with P aﬁnite set Ofprimes’
o, a finite cardinal for each p € P, and F a finite group.

THEOREM 4. Let G be a torsion free (associative) quasi-nilpotent nil group. Then
either G is a reduced (associative) nilpotent nil group, or the rank of G, r(G) = 2.
Conversely, every non-reduced torsion free group of rank =< 2 is associative quasi-
nilpotent nil.

PROOF. Let G be a torsion free (associative) quasi-nilpotent nil group. By Corollary
3.1 it may be assumed that G is not reduced, i.e., G = Q" @ H. Suppose that
r(H) > 1. Then choose b, € Q, by ¥ 0, and independent elements b,, b, € H. Let
A = (a;), 1 =i, j=2bea?2 X 2 matrix with components in Q. Since 0% ®
G = Qby ® Qb, @ Qb, @ K, after identifying elements with their isomorphic
images, every element of 0 X G can be uniquely written in the form rob, + r b, +
r.b, + ¢ with ry, r, r, € Q, and ¢ € K. Let x = roby + rib, + r,b, + ¢, and
y = r¢bo + rib, + rjb, + ¢’ be elements in Q* (X) G written in the above form. The
products xy = Ei j=1 rirja;bo induce an associative nilpotent Q-algebra structure on
0" ® G. Identifying elements g € G with 1 X) g € 0* ® G, and restricting the above
multiplication to G, yields an associative nilpotent ring R, with R, =G.LetA = (a i)
B = (B;) be two nonzero 2 X 2 matrices over Q, and let :R, — Rj be an iso-
morphism. Since ¢ extends to an algebra isomorphism ¢:Q ® Ry = Q0 & R;,
@(b;) = 2i_o pubr, with p, € Q for i, k = 0, 1, 2. Choose i, j € {1, 2} such that o,
# 0. Then @(by:b;) = a;;9(bo) = 213:0 a;pocbi. However o(b))e(b)) = (Ef=| 2‘f§=1
PiljeBre)bo. Hence poy = 0 for k= 1, 2, and pyar;; = DFEND PicPjeBre- The same
argument used in proving [3, Theorem 2.2.4] shows that there are infinitely many
nonisomorphic rings R4, A a 2 X 2 matrix over Q.

Conversely, let G be a non-reduced group with r(G) = 2. If r(G) = 1, then the
condition “G non-reduced” is superfluous, because a ring with rank one torsion free
additive group is either isomorphic to a subring of Q, or is the zeroring, [5, Theorem
121.1]. Therefore every rank one torsion free group is nilpotent nil. If 7(G) = 2, then
either (A) G = Q* @ H with H a reduced rank one torsion free group, or (B) G = Q*
@ Q". Let R be an associative nilpotent ring with R* = G. If G is of form (A), then
by Lemma 3, R* C Q*. Choose a; € Q*,a, EH, a; #0,i = 1, 2. Then a;a; = r;a,,
with r; € Q, i, j = 1, 2. For every positive integer n, a} = r}; 'a,, a\a; = rja,, and
a, a; = rya,. Therefore r\, = r;, = ry = 0, and so every associative nilpotent ring
with additive group G is obtained by defining
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ra,fori=j=2
aiaj:{

0 otherwise

with r an arbitrary rational number. Let R, be the ring obtained in this manner. Let
r # 0, s # 0 be rational numbers. Every element in R, is of the form r,a, + r,a, with
rir, € Q. Themap ¢:R,— R, via @(r\a, + r,a;) = rir 'sa, + r,a, is an isomorphism.

Suppose that G = Q% @ QF, and let R be an associative nilpotent ring with
R* = G, and R* # 0. Then there exists @ € R such that a and a? are independent in
G, [1, Lemmas 1 and 2], and a® = 0, [3, Theorem 3.1.3]. If S is any associative
nilpotent ring, with S* = G, §* # Q, and b € S such that b abd b* are independent
in G, then the map ¢:R — S via ¢(ra + sa®) = rb + sb’forall r, s € Q, is an
isomorphism.

The following result is implicit in the proof of Theorem 4:

COROLLARY 4.1. Let G be a torsion free group. If r(G) = 1 then G is the additive
group of only one nilpotent ring. If r(G) = 2, and G is not reduced then G is
the additive group of precisely two non-isomorphic associative nilpotent rings. If
r(G) > 2, and G is not reduced, then G is the additive group of infinitely many
non-isomorphic associative nilpotent rings. If G is a reduced group, then either G is
the additive group of only one (associative) nilpotent ring, or of infinitely many
non-isomorphic (associative) nilpotent rings.

The following results shed some light on the mixed case.

LEMMA 5. Let G be an associative quasi-nilpotent nil group, with G, = D ® F @®
@,erZ(p) as in Corollary 2.1. Then for every prime p, there exists a subgroup K(p)
of G such that G = G, @ K(p), p-divisible for all primes p for which D, + 0, and for
all but finitely many primes p € P.

PROOF. G, is a direct summand of G for every prime p € P by Corollary 2.1 and
[5, Theorems 21.2 and 27.5], i.e., G = G, @ K(p). For all primes p for which
F,=0,K(p)=H(p) ® D,, with H(p) the group in the proof of Corollary 2.2. Since
D, is p-divisible for all primes p, and H(p) is p-divisible for all but finitely many primes
p € P, it follows that K(p) is p-divisible for all but finitely many primes p € P. Let
p be a prime for which D, # 0. Then K = Z(p”) @ K(p) is a direct summand of G,
and so K is associative quasi-nilpotent nil. If K(p) is not p-divisible, then for every
positive integer n, there exists an epimorphism ¢:[K(p)/P"K(p)] ® [K(p)/p"K(p)]
— Z(p"), where Z(p") is a subgroup of Z(p™). Letd, € Z(p”), a; € K(p),i =1, 2.
The products (d, + a,)(d, + a;) = ¢(a; ® a,) induce an associative nilpotent ring
structure R, on K. Since (Rf) = Z(p"), R, =|= R, for positive integers n ¥ m, a
contradiction.

COROLLARY 5.1. Let G and G, be as in Lemma 5. Then G/G, is p-divisible for every
prime p such that D, # 0, and for all but finitely many p € P. If G/G, is p-divisible
for only finitely many primes p, then G, is a direct summand of G.
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PRrOOF. Since G/G, is a homomorphic image of G/G, = K(p), it follows from
Lemma 5, that G/G, is p-divisible for all primes p such that D, # 0, and for all but
finitely many p € P. Therefore if G/G, is p-divisible for only finitely many primes p,
then P is a finite set of primes and so G, is the direct sum of a bounded (in fact finite)
group and a divisible group. By [5, Theorem 100.1], G, is a direct summand of G.

COROLLARY 5.2. Let G be an associative quasi-nilpotent nil group, and let H be a
torsion free direct summand of G. If r(H) > 1, then G, is reduced.

PROOF. Suppose that r(H) > 1, and that G, is not reduced. Then K = Z(p*) @ K(p)
is a direct summand of G for some prime p, with K(p) as in Lemma 5. Now K is
associative quasi-nilpotent nil, and K(p) is p-divisible by Lemma 5. Let Z(p~) =
U;_, (a;) with (a;) a cyclic group of order p’ generated by a;, i = 1, 2, . .. . The p-adic
integers are the endomorphisms of Z(p~), [5, vol. 1, p. 181, ex 3]. Let u, v be
independent elements in H. Every element x € K is of the form x = d + ru +
sv + wwithd € Z(p”); r, s € Q,w € K(p). Letx, =d; + riu + s;v + w,,
i =1, 2, be elements in K written in the above form, and let 1 be a p-adic integer. The
products x,x, = (r,r, + 5,5,m)a, induce an associative nilpotent ring structure R on K.
The same argument used in proving [3, Theorem 2.2.7] shows that there are infinitely
many non-isomorphic rings R, a contradiction.

COROLLARY 5.3. Let G be an associative quasi-nilpotent nil group, and let D be the
maximal divisible subgroup of G. Then either (A) D is a torsion group, (B) D =
Q" @® Q" or (C)D =D, ® QF, and D, = 0 for all but finitely many primes p.

PrROOF. D must have form (A), (B) or D = D, ® Q" by Corollary 5.2, and
[5, Theorem 23.1]. Suppose that D = D, @ Q", p is a prime for which D, # 0, and
¢:0 ® Q — Z(p~) is a nonzero homomorphism into a direct summand Z(p~) of D.
Letd, € D,a; € Q,i =1, 2. The products (d, + a,) (d, + a,) = ¢(a, ¥ a,) induce
an associative nilpotent ring structure R, on D. Since R, + R, for primes p # ¢,
D, = 0 for all but finitely many primes p.
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