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Preface 

In view of the exciting developments in our understanding of those partic­
ular aspects of fundamental physics that string theory seems to capture, 
it seems appropriate to collect together some of the key tools and ideas 
which helped move things forward. The developments included a true 
revolution, since the physical perspective changed so radically that it un­
dermined the long-standing status of strings as the basic fundamental 
objects, and instead the idea has arisen that a string theory description 
is simply a special (albeit rather novel and beautiful) corner of a larger 
theory called 'M-theory'. This book is not an attempt at a history of the 
revolution, as we are (arguably) still in the midst of it, especially since we 
are in the awkward position of not knowing even one satisfactory intrin­
sic definition of M-theory, and have implicit knowledge of it only through 
interconnections of its various limits. 

All revolutions are supposed to have a collection of characters who 
played a crucial role in it, 'heroes' if you will. Hence, one would be ex­
pected to proceed to list here the names of various individuals. While 
I was lucky to be in a position to observe a lot of the activity at first hand 
and collect many wonderful anecdotes about how some things came to be, 
I will decline to start listing names at this juncture. It is too easy to yield 
to the temptation to emphasise a few personalities in a short space (such 
as this preface), and the result can sometimes be at the expense of others, 
a practice which happens all too often elsewhere. This seems to me to be 
especially inappropriate in a field where the most striking characteristic 
of the contributions has been the collective effort of hundreds of thinkers 
all over the planet, often linked bye-mail and the web, often never having 
met each other in person. 

There were marvellous weeks, back in 1995 and 1996 especially, where 
there was one key paper after another, from all over the world, driven by 

xx 
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Preface XXI 

the fact that new ideas were pouring in from conversations everyone was 
excitedly having at blackboards, in the sand, over lunch, via e-mail, on the 
back of an envelope, etc. However, when one is speculating about aspects 
of fundamental physics which are not yet in the directly testable realm it 
should be noted that ideas - even radical ones - are cheap. Computational 
tools are needed to test them, and to provide access to the new regimes 
to which the ideas beckon. The collection of tools which filled this crucial 
role in this context was built around 'D-branes', and it was the change 
of perspective and computational power that they brought that unlocked 
that steady flow of marvellous papers. In my mind, they can indisputably 
be placed high on list of characters cast as heroes of the revolution. Indeed, 
many will speak of the feeling that often arose after working with them 
for a while in those exciting days, that the D-branes simply had a life and 
character of their own. They shaped the ideas and language of the field in 
a way that was directed by no single personality, and - most importantly­
were a wonderful and sharp tool for investigating in detail the nature of 
the many bold conjectures which were made. 

D-branes were discovered well before the revolution, of course, but 
in the Summer of 1995 it was shown by Joseph Polchinksi that they 
were relevant to strongly coupled string theory. I arrived as a postdoc­
toral researcher at the Institute for Theoretical Physics (Santa Barbara, 
California) in the following Autumn, and by then it was already clear that 
there were many people, both young and old, who could benefit from a 
refresher course on issues outside the realm of heterotic string theory 
(on which much of the focus had been up to then, with an eye on phe­
nomenology) and an introduction to D-branes. Furthermore, there was 
some need for an agreement about language and conventions, since there 
had not been much in the way of texts or other notes which focused on 
the relevant aspects. (Polchinski's modern textbook l was still only par­
tially written, and the manuscript had been seen only by a privileged 
few.) 

Some of us begged Joe to give us some lectures at the ITP, and I (and 
probably others) quickly had the idea for a written set of notes that could 
be circulated to the world at large, as a basic toolbox. I suggested this to 
him, and he eventually agreed. During the lectures, I took such notes as 
I could and then together with Shyamoli Chaudhuri, we produced some 
notes with Joe, which we released2 with his name listed as first author -
breaking the strict alphabetical convention in this field - as it seemed to 
me highly inappropriate, given our roles as scribes, that his name might 
come last. Happily, the 'D-notes' (as I liked to call them) seemed to be 
well received by very many, and proved to be useful in forming a common 
point of departure for almost everyone working in the field. 
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I was fortunate enough to be asked to give introductory lectures on D­
branes over the following months and years, and this led me to write more 
notes to embellish the D-notes, finding new ways of explaining things, 
sometimes making illustrative links between different aspects, depending 
on the theme of the lecture series in which I was participating. 

This book grew out of such lecture notes3, 4, and contains my own bi­
ased perspective on what aspects of D-branes ought to be included in an 
introductory text. Pressures of space mean that I have omitted a large 
number of remarkably interesting and useful material, and my choices 
will no doubt not suit everyone. I have made many efforts for it to be 
a stand alone handbook. It is intended that the person who knows little 
or no string theory (but with some background in quantum field the­
ory and relativity) can open this book, and upon working through it, 
learn many things about string theory, and become adept at computing 
with D-branes, making no reference to another string theory text. Per­
haps as a bonus, they will even learn various aspects of advanced topics 
in relativity, geometry and quantum gravity and quantum field theory 
since those are the meat and drink of D-brane physics. However, if they 
want a deeper knowledge of many aspects of string theory which are only 
sketched here due to lack of space, then they can consult the excellent 
text of Polchinski\ and also that of Green, Schwarz and Witten5 , which 
is still an excellent text for many aspects of the subject. There are also 
many other sources, on the web (e.g., www.arXiv.org) and elsewhere, of 
detailed reviews of various specialised topics, even other string theory 
books6 . 

So, this is not intended to be a string theory text book. It is instead 
a handbook or toolbox for concepts concerning branes in string theory, 
with emphasis on D-branes. However, since many of the applications are 
in what I like to call 'extreme string theory' - taking limits like strong 
coupling, low energy, large N, etc. - the reader will also learn important 
physics of those regimes and others, which are not covered in any other 
text at this time. 

Over the years I have had the great benefit of lengthy conversations 
about string theory and D-branes with many people, out of which my 
intuition for these matters developed, and I would like to thank them 
all. Chief among these are Robert Myers, Joseph Polchinski, and Edward 
Witten, all of whose patience (and refreshing open-mindedness in the early 
days) is much appreciated. I also thank all of the people with whom I have 
collaborated in very many exciting research projects, and from whom I 
learned a great deal. Aspects of some of that work will appear in this 
text, and I would like it made clear that any inaccuracies in presenting 
the results are my own. 
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Parts of this book were written (or sometimes day-dreamt about) in 
many inspiring places, not all of which I can recall, but I should thank 
especially a number of institutions for providing facilities: The New York 
Public Library's Rose Reading Room, and Columbia University's Butler 
Library (New York, NY, USA), the Bodlean Library (Oxford, England), 
The Aspen Centre for Physics (Aspen, Co., USA), The Park City 
Mathematical Institute 2001 (Park City, Utah, USA), El Centro de 
Estudious Cientificos (Valdivia, Chile), The Physics Department at 
Stellenbosch University, and the Stellenbosch Institute for Advanced Study 
(Stellenbosch, South Africa), The Perimeter Institute for Fundamental 
Research (Waterloo, Canada), The Village Vanguard (New York, USA), 
Broadway (New York, USA), and various United Airlines lounges world­
wide. 

Thanks to Ian Davies, James Gregory, Laur Jarv, Ken Lovis, Rob Myers 
and David Page for reading and commenting on parts of the manuscript, 
and many people around the world for their useful remarks upon ear­
lier notes which were absorbed into this book. Thanks also go to Jim 
Gates, Brian Greene, David Gross, Ted Jacobson and Lenny Susskind for 
their thoughts on a late title change, and on other important matters 
concerning the book, logistical and otherwise t. I'd like to thank all of 
my colleagues at the Department of Mathematical Sciences, University 
of Durham, for providing such a friendly and supportive working envi­
ronment, and Carol, Delia and Robert Johnson for their encouragement. 
Thanks also to Elizabeth and Nich Butler for much appreciated culinary 
provision and other matters of hospitality over Christmas 200l. 

I would especially like to thank Samantha Butler for her constant 
patience and support throughout this project, and beyond. 

t A conversation with Brian led to a flirtation with the slightly irreverent idea of giving 
this book the simple title 'Volume III'. I abandoned this after a while, since it would 
produce confusion amongst those not aware of the affection held for (or existence of) 
the two-volume texts in references [1] and [5]. 
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1 
Overview and overture 

Einstein's theory of the classical relativistic dynamics of gravity is remark­
able, both in its simple elegance and in its profound statement about the 
nature of spacetime. Before we rush into the diverse matters which concern 
and motivate the search which leads to string theory and beyond, such 
as the nature of the quantum theory, the unification with other forces, 
etc., let us remind ourselves of some of the salient features of the classical 
theory. This will usefully foreshadow many of the concepts which we will 
encounter later. 

1.1 The classical dynamics of geometry 

Spacetime is of course a landscape of 'events', the points which make 
it up, and as such it is a classical (but of course relativistic) concept. 
Intuition from quantum mechanics points to a modification of this picture, 
and there are many concrete mechanisms in string theory which support 
this expectation and show that spacetime is at best a derived object or 
effective description. We shall see some of these mechanisms in the sequel. 
However, since string theory (as currently understood), seems to be devoid 
of a complete definition that does not require us to refer to spacetime, 
the language and concepts we will employ will have much in common 
with those used by professional practitioners of General Relativity, and 
of classical and quantum Field Theory. In fact, it will become clear to the 
newcomer that success in the physics of string theory is greatly aided by 
having technical facility in both of those fields. It is instructive to tour 
a little of the foundations of our modern approach to classical gravity 
and observe how the Relativist's and the Field Theorist's perspective are 
muddled together. String theory makes good and productive use of this 
sort of conflation. 

1 
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2 1 Overview and overture 

It is useful to equip a description of spacetime with a set of coordinates 
x iL , f-L = 0,1, ... , D - 1, where xO == t (the time) and we shall remain 
open-minded and work in D dimensions for much of the discussion. The 
metric, with components giLV(x), is a function of the coordinates which 
allows for a local measure of the distance between points separated by an 
interval dxiL: 

ds2 = giLv(x)dxiLdxv. 

The metric is a tensor field since under an arbitrary change of variables 
xiL ----+ x'iL (x) it transforms as 

(1.1 ) 

Of course, 'distance' here means the more generalised Special Relativistic 
interval characterising how two events are separated, and it is negative, 
zero or positive, giving us timelike, null or spacelike separations, according 
to whether if it possible to connect the events by causal subluminal motion 
(appropriate to a massive particle), or by moving at the speed of light 
(massless particles), or not. This of course defines the signature of our 
metric as being 'mostly plus': {- + + + ... } henceforth. 

As a particle moves it sweeps out a path or 'world-line' xiL( T) in space­
time (see figure 1.1), which is parametrised by T. The wonderful thing is 
that what we would have said in pre-Einstein times was 'a particle moving 
under the influence of the gravitational force' is simply replaced by the 
statement 'a particle following a geodesic', a path which is determined by 
the metric in terms of the second order geodesic equation: 

d2 x A dxiL dxv 
dT2 = -r~v(g) dT dT ' (1.2) 

Fig. 1.1. A particle's world-line. The function xiL(T) embeds the world­
line, parametrised by T, into spacetime, coordinatised by xiL. 
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1.1 The classical dynamics of geometry 3 

where the affine connection r(g) is made out of first derivatives of the 
metric: 

r~V(g) = ~g.\K (8{lgKV + 8VgK{l - 8Kg{lv). 

Here and everywhere else, when working with curved spacetime we lower 
and raise indices with the metric and its inverse, (which has components 
g{ll/ such that g{l.\gWlC = of). Also note that 8{l == 8/ 8x{l. 

Switching language again we see that since the term on the left hand 
side of the equation (1.2) is what we think of as the 'acceleration', our 
Newtonian intuition determines the right hand side to be the 'applied 
force', attributed to gravity. In such language, g{ll/(x) is interpreted as a 
potential for the gravitational field. 

In the purely geometrical language, there are no forces. There is only 
geometry, and the particle simply moves along geodesics. The above state­
ment in equation (1.2) about how a particle moves in response to the 
metric is derivable from a simple action principle, which says that the 
motion minimises (more properly, ext remises) the total path length that 
its motion sweeps out: 

where a dot denotes a derivative with respect to T. (The reader might 
consider checking this by application of the Euler-Lagrange equations or 
by direct variation.) 

The only question (which is of course one of the biggest) remaining 
is the nature of what determines the metric itself. This turns out to be 
governed by the distribution of stress-energy-momentum, and we must 
write field equations which determine how the one sources the other, 
just as we would in any field theory like Maxwell's electromagnetism (see 
insert 1.1). 

The stress-energy-momentum contained in the matter is captured in 
the elegant package that is the tensor T{ll/(x) , a second rank, symmetric, 
divergence-free tensor which for an observer with four-velocity u, encodes 
the energy density as T{ll/u{lul/, the momentum density as - T{ll/u{lxl/, and 
shear pressures (stresses) as T{ll/x{lyl/, where the unit vectors x and yare 
orthogonal to u. 

Einstein's field equations are: 

1 
R{ll/ - 2g{lI/R = 8'TrGNT{l1/ , (1.6) 

where GN is Newton's constant. As one would expect, the quantity on the 
left hand side is made up of the metric and its first and second derivatives, 
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4 1 Overview and overture 

Insert 1.1. A reminder of Maxwell's field equations 

'Maxwell's equations' are second order partial differential equations 

for the electromagnetic potentials A (x, t), ¢(x, t) from which the 

magnetic (B(x,t)) and electric (i!;(x,t)) fields can be derived: 

~ ~ ~ ~ aj1(x, t) 
E(x,t) = - V¢(x . t) - a 
B(x,t) = v x A(X,t). 

In terms of the fields, Maxwell's equations are: 

V· E = 47TP 

V· B = 0 

t 
(1.4) 

(1.5) 

Here, the functions 7(x, t) and p(x, t), the current density and the 
charge density are the 'sources' in the field equations. 

We have written the equations with the sources on the right hand 
side and the expression for the derivatives of the resulting fields 
(to which the sources give rise) on the left hand side. We will write 
these much more covariantly in insert 1.3. 

where the Ricci scalar and tensor, 

R == g{WRjw , R - K,p RA 
JLV = 9 gAP jLK,V' 

are the only two contentful contractions of the Riemann tensor: 

R~K,v == ajLr~v - aVr~jL + r~jLr~V - r~vr~JL" 

(1.7) 

(1.8) 

Except for the metric itself, the quantity on the left hand side of equa­
tion (1.6) is the unique rank two, divergenceless and symmetric tensor 
made from the metric (and its first and second derivatives), and hence 
can be allowed to be equated to the stress tensor. 

When the stress tensor is zero, i.e. when there is no matter to act as a 
source, the vanishing of the left hand side is equivalent to the vanishing 
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1.1 The classical dynamics of geometry 5 

Rjw = 0, and solutions of this equation are said to be 'Ricci-flat'. This 
includes highly non-trivial spacetimes such as Schwarzschild black holes, 
which follows from the non-linearity of the left hand side, representing 
the fact that the stress-energy in the gravitational field itself can act as 
its own source ('gravity gravitates'). 

The physical foundation behind the geometric approach is of course 
the Principle of Equivalence, which begins by observing that gravity is 
indistinguishable from acceleration, and tells one how to find a locally 
inertial frame: one must simply 'fall' under the influence of gravity (i.e. 
just follow a geodesic) and one does not feel one's own weight, and so 
one is in an inertial frame where the Laws of Special Relativity hold. See 
insert 1.2 for a reminder of this in equations. The sourceless field equations 
then follow from the recasting of the relative motion observed between 
frames on neighbouring geodesics in terms of an apparent 'tidal' force. 

The full statement of the field equations to include sources is also guided 
by covariance, which means that it is a physical equation between ten­
sors of the same type, and with the same divergenceless property (which 
is a physical statement of continuity). The equations are therefore true 
in all coordinate systems obtained by an arbitrary change of variables 
x{l ----+ x/{l(x), since they transform as tensors in a way generalising the 
transformation of the metric in equation (1.1). 

Note that the statement of divergencelessness is a covariant one too, 
i.e. \7 {IT{ll/ = 0 uses the covariant derivative*, which is designed to yield 
a tensor after acting on one, say V: 

\7 V{l'" = a V{l'" + r{l VA'" + ... - r A V{l'" - . . . (1.9) 
/';, 1/'" - /';, 1/'" A/';, 1/'" /';,1/ A", . 

Finally, note that the field equations themselves may be derived from 
an action principle, the ext remising of the Einstein-Hilbert action coupled 
to matter: 

8 = 8M + 8EH 

8EH Ie J dDXH R 
161T N 

2 8SIYI 

A8g{lI/' 

where g is the determinant of the metric. 

(1.10) 

* In fact, this (not entirely unambiguous) procedure ofreplacing the ordinary derivative 
by the covariant derivative, together with the replacement of the Minkowski metric 
TjI"V by the curved spacetime metric gl"v(x) is often called the principle of 'minimal 
coupling' as a procedure for how to generalise Special Relativistic quantities to curved 
spacetime. 
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Insert 1.2. Finding an inertial frame by freely falling 

In order to find an inertial frame, we must find coordinates so that 
at least locally, at a point x~, say, we can can do special relativity. 
This means that we perform a change of coordinates xfl ----+ x'fl(x) so 
that when the metric changes, according to (1.1), the result is 

where r]fll/ is the Minkowski metric, diag( -1, +1, ... ,). How accu­
rately can we achieve this? In our coordinate transformation, we have 
in the neighbourhood of x~: 

so we have, at first order, D2 coefficients to adjust. Since g~1/ has 
D(D + 1)/2 components, we are left with 

D2 _ D(D + 1) = _D--'---(D_--------'--l) 
2 2 

transformations at our disposal. Happily, this is precisely the dimen­
sion of the Lorentz group, SO(D-1, 1) of rotations and boosts avail­
able in our inertial frame. At second order, we have D2(D + 1)/2 
coefficients to adjust, which is precisely the same number of first 
derivatives ag~1/ / ax'K of the metric that we need to adjust to zero, 
cancelling all of the 'forces' in the geodesic equation (1.2). At third 
order, we have D2(D + l)(D + 2)/6 coefficients to adjust, while there 
are D2(D + 1)2/4 second derivatives of the metric, a2g~l//ax'Kax').. , 
to adjust, which is rather more. In fact, this failure to adjust 

D2(D + l)(D + 2) 
6 

second derivatives is of course a statement of physics. This is pre­
cisely the number of independent components of the Riemann tensor 
R~fll/' which appears in the field equations determining the metric. 
So everything fits together rather nicely. 
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1.2 Gravitons and photons 7 

A favourite example of a stress tensor for a matter system is the Maxwell 
system of electromagnetism. Combining the electric potential rp and vector 

potential A into a four-vector A(x) = (rp,A), with components AIL' the 

magnetic induction iJ and electric field E are captured in the rank two 
antisymmetric tensor field strength: 

and an observer with four-velocity u reads the fields as: 

(1.11) 

where EILVK )., is the totally antisymmetric tensor in four dimensions, with 
E0123 = -1. (See insert 1.3 for more on this covariant presentation of 
electromagnetism.) The action is: 

S - J d D f' - 1 j.( )1/2F FILvdD M - XJ.., - --- -g ILV X, 
167T 

(1.12) 

and so it is easily verified that the Euler-Lagrange equations 

give the field equations 
\7 vFILV = 0, 

where we have used a very useful identity which is easily derived: 

(1.13) 

On the other hand, since 

(1.14) 

the stress tensor is 

(1.15) 

1.2 Gravitons and photons 

The quantum Field Theorist's most sacred tool is the idea of associating 
a particle to every sort of field, whether it be matter or force. So a force is 
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8 1 Overview and overture 

Insert 1.3. Maxwell written covariantly 

Probably most familiar is the fiat space writing: 

(1.16) 

for the Maxwell tensor. In addition to the four-vector A(x) = (¢, A), 
one in general will have a four-current for the source, which com-

bines the current and electric charge density: J(x) = (p, J). With 
these definitions, Maxwell's equations take on a particularly simple 
covariant form: 

(1.17) 

for the equations with sources, and the source-free equations (Bianchi 
identity). The energy-momentum tensor for electromagnetism is 
given in terms of F in equation (1.15), and is subject to the con­
servation equation (when the sources J/L = 0): \7 /LT/LV = O. This 
contains familiar physics. Specialising to fiat space: 

1 --+2 --+2 
Too = 87r ((E) + (B) ), 

which is the familiar expression for the energy density and the mo­
mentum density (Poynting vector) of the electromagnetic field 

mediated by a particle which propagates along in spacetime between ob­
jects carrying the charges of that interaction. There is great temptation to 
do this for gravity (by allowing all sources of stress-energy-momentum to 
emit and absorb appropriate quanta), but we immediately run into a con­
ceptuallog jam. On the one hand, we have just reminded ourselves of the 
beautiful picture that gravity is associated to the dynamics of spacetime 
itself, while on the other hand we would like to think of the gravitational 
force as mediated by gravitons which propagate on a spacetime back­
ground. A technical way of separating out this problem into manageable 
pieces (up to a point) is to study the linearised theory. 

The idea is to treat the metric as split between the background which is 
say, fiat spacetime given by the Minkowski metric TJ/LV, diag( -1, + 1, ... ,), 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


1.2 Gravitons and photons 9 

and some position dependent fluctuation h/Lv (x) which is to be small 
h/Lv (x) « 1. Then the equations determining h/Lv (x) are derived from 
Einstein's equations (1.6) by substituting this ansatz: 

and keeping only terms linear in h/Lv. 
Let us carry this out. We will raise and lower indices with rl/Lv, and 

note that g/LV will continue to be the inverse metric, which is distinct 
from ry/Lartf3gaf3. Note also that g/LV = rtV - hpv, to the accuracy to which 
we are working. The affine connection becomes: 

and to this order, the Ricci tensor and scalar are: 

R/LV = [pa(vh/L)a - ~aaaah/Lv - ~a/Lavh + O(h2), 

R = aaaf3 haf3 - aaaah + O(h2), 

where h = h~. Thus we learn that 

R/Lv - ~ry/LvR = aaa(vh/L)a - ~aaaah/Lv - ~a/Lavh 

-~ry/LV (aaaf3haf3 - aaaah) + O(h2). 

Defining 1/Lv = h/Lv - ~ry/Lvh, we find our linearised field equations: 

(1.18) 

(1.19) 

(1.20) 

There is an explicit gauge degree of freedom (recognisable from equa­
tion (1.1) as an infinitesimal coordinate transformation) 

(1.21) 

for arbitrary an arbitrary vector ~/L" Using this freedom, we choose the 
gauge aVh/Lv = 0 (using a gauge transformation satisfying avaV~/L + 
aVh/Lv = 0), which implies 

(1.22) 

This is highly suggestive. Consider the system of electromagnetism, with 
equations of motion (1.17). The equations are invariant under the gauge 
transformation 
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10 1 Overview and overture 

where A is an arbitrary scalar. We can use this freedom to choose a gauge 
o{lA{l = 0, (with a parameter satisfying o{lo{l A + OU Au = 0), which gives 
the simple equation 

O{lO{l Au = -47TJu. 

This is of a very similar form to what we achieved in equation (1.22) 
for the system of linearised gravity. The analogy is clear. The Maxwell 
system has yielded a field equation for a vector (spin one) particle (the 
photon A{l (x)) sourced by a vector current (J{l (x)), while the gravitational 
system yields the precisely analogous equation for a spin two particle (the 
graviton h{lu (x)) sourced by the stress tensor T{lu (x). 

This is the starting point for treating gravity on the same footing as 
field theory, and in many places later we will have cause to use the word or 
idea 'graviton', and it is in this sense (a spin two particle propagating on 
a reference background) that we will mean it. We have seen how to make 
the delicate journey from the Relativist's geometrical understanding of 
gravity to a perturbative Field Theorist's. To make the return journey, 
reconstructing a picture of, say the non-trivial spacetime metric due to 
a star by starting from the graviton picture is a bit harder, but roughly 
it is conceptually similar to the same problem in electromagnetism. How 
does one go from the picture of the photon moving along in spacetime 
to building up a picture of the strong magnetic fields around a pair of 
Helmholtz coils? Words and phrases which are offered include 'coherent 
state of photons', or 'condensation of photons', and these should invoke 
the idea that the coils' field cannot be constructed using only the per­
turbative photon picture. One can instead use the photon description to 
describe processes in the background of the Helmholtz field, and we can 
similarly do the same thing for gravity, describing the propagation of 
gravitons in the background fields produced by a star. In this way, we see 
that there is a possibility that there are situations where the conceptual 
separation between particle quanta and background in principle needs be 
no more dangerous in gravitation than it is in electromagnetism. 

Eventually, however, we would like to compute beyond tree level, and 
the celebrated problems of the theory of gravity treated as a quantum 
theory will be encountered. Then, the linearised Einstein-Hilbert action 

(1.23) 

will eventually reveal itself to be non-renormalisable once we add interac­
tions coming from the next order above linear. In particular, the process 
of recursively adding counterterms to the bare action in order to define 
physically measurable quantities does not terminate. As Field Theorists 
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1.3 Beyond classical gravity: perturbative strings 11 

(and perhaps as Relativists) we would have cause to be discouraged, and 
it is a much celebrated statement that as String Theorists, we won't be. 

1.3 Beyond classical gravity: perturbative strings 

A reason for dwelling on some of the previous points is that it is custom­
ary to do a lot of moving back and forth between the picture of quanta 
moving on a fiat background and other pictures, for example ones in­
volving considerably curved background fields. This is not because string 
theorists have a clever collection of new technological tools for seeing how 
to move from one to the other (although as we shall see with the aid of su­
persymmetry, in some cases we can often keep track of many properties of 
objects in moving between pictures) but because as was said before, string 
theory is a developing subject which has borrowed and hybridised intu­
ition from the Relativist's and the (perturbative and non-perturbative) 
quantum Field Theorist's worlds. 

This borrowing is not to be taken as a sign of intellectual bankruptcy, 
but quite the opposite. The adoption of terminology and concepts from a 
wide range of other fields is as a result of the richness of genuinely novel 
physical phenomena, with (as a whole) no precise precedent or analogue, 
which the theory appears to be revealing. This is very similar to what 
happened almost precisely a century ago. The treatment of quanta in a 
context dependent manner either as a wave or as a particle, an under­
standing still called 'Wave-Particle Duality' by many, grew out of the 
attempt to grasp a new physical phenomenon - Quantum Mechanics - by 
reference to established physical concepts from the century before. 

In the next chapter we will review how one proceeds to describe the 
relativistic string propagating in a fiat background. There are two very 
broad categories, open strings which have end-points, and closed strings 
which do not. The basic input parameter is the mass per unit length of 
the string, its tension: 

1 1 
T=-=-

27TO:' - 27TR2' s 

As is well known, the characteristic length scale of the string, Rs , is tradi­
tionally very small compared to scales on which we do current-day physics. 
This means that string excitations will have a good description as point­
particle-like states on scales much longer than Rs. After quantisation, it 
rapidly becomes clear that the spectrum of string theory is rather rich 
and demands application. Since finite masses in the spectrum are set by 
the inverse of Rs , the infinite tower of massive excitations of the string 
(see figure 1.2) will be very inaccessible at low energy (long distance, or 
infra-red (IR)). The tower is of course crucial to the properties of the 
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Fig. 1.2. The string spectrum has a massless sector separated by a gap 
(set by the tension) after which there is an infinite tower of massive states. 

high energy (short distance, or ultra-violet (UV)) physics of the string. It 
is the massless part of the spectrum which is accessible at low energy and 
hence relevant to phenomenology. 

For example, closed string theories describe a massless spin two particle 
which is identified with the graviton. The questions of non-renormalisa­
bility which arose in quantum field theory turn out to be circumvented 
by the remarkable ultra-violet properties of string theory, which give rise 
to an extremely well-behaved perturbative description of multi-loop pro­
cesses involving gravitonst. The simple fact is that string theory is very 
unlike field theory at short distances, since it assembles together an in­
finity of increasingly massive excitations (in a particular way) which all 
playa role in the UV. The theory's supplying a satisfactory perturba­
tive quantum theory of gravity is just the beginning of the many phe­
nomena which arise from its properties as an extended object, as we 
shall see. 

Other massless fields which arise in string spectra are Abelian and non­
Abelian gauge fields, and various fermions and scalars, some of which one 
might expect give rise to the observed gauge interactions and matter fields. 
There is also a family of higher rank antisymmetric tensor fields general­
ising the photon on which we will focus in some detail. Remarkably, the 
value of one scalar excitation of interest, the dilaton <1>, determines the 
strength of the string self-interaction, g8 = e ij), and hence (since closed 
strings excitations can be gravitons) the value of GN. It is a striking fact 
that string theory dynamically determines its own coupling strength. (See 
figure 1.3.) 

t Sadly, lack of space will prevent us from describing this here, and we refer the reader 
to a textbook on thisl, 5. 
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1.3 Beyond classical gravity 13 

Fig. 1.3. The basic three-string interaction for closed strings, and its ana­
logue for open strings. Its strength, g8, along with the string tension, 
determines Newton's gravitational constant GN. 

Just as with the particle, it is straightforward to generalise the treat­
ment of the string to motion in a curved background with metric gILV(X) , 
and one can derive the analogue of classical geodesic equations of motion 
(if desired) for the string. 

The string sweeps out a 'world-sheet' with coordinates ((}1, (}2) == (T, ()). 
The string's path in spacetime is described by XIL(T,(}), giving the shape 
of the string's world-sheet in target spacetime (see figure 1.4). There is 
an 'induced metric' on the world-sheet given by (oa == 0/ O(}a): 

(1.24) 

with which we can perform meaningful measurements on the world-sheet 
as an object embedded in spacetime. Using this, we can define an action 
analogous to the one we thought of first for the particle, by asking that 

-----I>-

a o 

Fig. 1.4. A string's world-sheet. The function XIL( T, (}) embeds the world­
sheet, parametrised by (T, ()), into spacetime, coordinatised by XIL. 
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we extremise the area of the world-sheet: 

S = -T / dA = -T / dTder (-dethab )1/2 == / dTder £(X, Xl; er, T). 

(1.25) 
Expanded, this is 

(1.26) 

where Xl means ax/aero 
This is very analogous to the case of the particle, and we will analyse 

it further in the next chapter. However, there is much more to the story 
than this. The thorny question arises concerning what dynamics govern 
the allowed metrics, and it is a riddle of considerable depth: the string 
has revealed itself as generating the basic quantum of gravity as one of its 
modes of oscillation. Our experience from before allows us to trust that 
there ought to be a manner in which one can treat the graviton (and hence 
the string that carries it) as a small disturbance on a fixed background, 
but there is an additional problem which we did not have last time. Since 
the string is also the source of gravity, and if it dynamically generates 
the strength of the coupling, it ought to also determine gravitational dy­
namics. How does it go about determining the gravitational background 
in which it is supposed to propagate? In the terms we used previously, 
where do the field equations governing the background come from? 

The surprise turns out to be that internal quantum mechanical consis­
tency of the string theory does make certain demands on the properties of 
spacetime, in ways that no previous theory has managed before. First of 
all, it requires that it only propagates in spacetimes of certain dimension­
ality (for example, 26 for bosonic strings, 10 for superstrings). Secondly, 
it demands that at low energy the background metric satisfies Einstein's 
equations (sourced by the stress tensor due to the other massless fields)! 
This should be contrasted with the case of a particle where the issue of 
how it propagates in a metric is completely divorced from whether the 
metric satisfies Einstein's equations. 

Somehow, the simple generalisation of a particle to a string has captured 
something very new. Is there an analogue of the Equivalence Principle at 
work which gives Einstein's equations at low energy and then new physics+ 

t It is hoped that this new physics will cure a number of problems in strongly coupled 
gravity, like the loss of predictability of relativistic physics at spacetime singularities 
such as in black holes or at the Big Bang. 
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at high energy? Even though this remarkable fact is relatively old by now, 
there is no simple thought experiment which explains why a generalisation 
from a particle to a string quantum-mechanically demands the solution 
of field equations for which the underlying principle is covariance and 
equivalence. 

1.4 Beyond perturbative strings: branes 

The reader may have noticed that the word 'perturbative' was used a 
lot in the last section, even when describing the remarkable successes of 
string theory in the arena of quantum gravity. The Second Superstring 
Revolution gets its name from the remarkable change of perspective which 
occurred with breakthroughs in understanding of this very issue, and the 
resulting flow of ideas and results. A great deal of quite surprising insight 
was gained about the supersymmetric string theories (whose existence and 
consistency followed from discoveries in the First Superstring Revolution) 
in the limit of very strong coupling, much of which we will cover later. 

The big question which arose time and again in string theory over the 
years before the revolution was the issue of its description beyond pertur­
bation theory. Actually, there were possibly two problems and not just 
one, however they usually are discussed together, although they may be 
logically distinct. Motivated by analogy with field theory, string theorists 
sought for something like a field theory of strings, which would allow for 
the non-perturbative exploration of the landscape in which vacua lie, in 
a way which is familiar in field theory, allowing the study of important 
phenomena like tunnelling, instantons, solitons, etc. The idea was that 
there would be a 'string field' ~ whose role was to create and destroy 
a string in a particular configuration. This begins by being conceptually 
on a par with the successful ordinary field theory concept about the role 
of a field in creating and destroying particle quanta, but this view soon 
changes when one remembers that the string is like an infinite number of 
particles from the point of view of field theory. The ideally next simplest 
step would be to find a simple way of writing a kinetic energy and po­
tential V(~), which would allow a study of dynamics and hence 'second 
quantised' strings (to use another old misnomer). See figure 1.5. In prin­
ciple, some type of field theory is not an altogether crazy thing to want 
to find. Given the success of the field theory framework, it would be an 
understatement to say that it would have been neglectful if the possibil­
ity had not been explored. There is another problem, however, into which 
experience with field theory seems to offer little insight. This is 'back­
ground independence'. In ordinary quantum field theory, a Lagrangian 
for the theory is defined with reference to a spacetime background. This 
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(1 ) (2) ~ (3) 

Fig. 1.5. A fanciful view of a slice through the infinite dimensional land­
scape of non-perturbatively accessible string vacua. 2; represents the en­
tire field content of a string theory, and V(2;) is a potential. Locations 
(1) and (3) represent perturbatively stable vacua, while (2) is unstable. 
Important physics may be found in the non-perturbative effects relating 
these vacua. 

is of course fine, since the fields are supposed to propagate on this back­
ground. However, it is not clear that this luxury should be available to 
us in the string theory, since it is supposed to determine the background 
upon which it is propagating, given that it generates gravity and the value 
of GN. 

The search for string field theories were not entirely unsuccessful, but 
since they are very difficult to work with, at the time of writing, it is not 
clear what they have taught us. It is a remarkable achievement in itself 
that one could define a string field 2;, and find a sensible Lagrangian. 
Both the kinetic and potential are on the face of it, written in such a way 
that there is a chance of background independence since the 'derivative' 
and the means of multiplying together string fields do not seem to di­
rectly refer to spacetime. Sadly, the means of unpacking the Lagrangian 
to perform a computation require one to make reference to objects which 
originally were defined with perturbative intuition about backgrounds 
again, and so background independence is still not apparent. 

This is not really a failure, if one reduces ones expectations about what 
a string field theory is supposed to do for us. It is possible to imagine 
that such a theory can tell us interesting physics involving various types 
of string vacua, and how they are inter-related, without ever addressing 
the background independence issue. 

This possibility was regarded as unsatisfactory for a long time, since it 
made string theory seem logically incomplete, with no physical principle 
or mechanism to appeal to, given that it was supposed to be the theory 
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1.4 Beyond perturbative strings 17 

of everything. Happily, the Second Revolution happened, and now we 
have a new possibility. String theory is not a theory of strings after all. 
There are two clear signs of this (which we will discuss later in detail). 
One is that there are extended objects in the theory ('D-branes') which 
carry265 the basic charges of a special class of higher rank antisymmet­
ric fields which the string theory necessarily describes, but cannot it­
self source. Coupled with this fact is that at arbitrarily strong coupling, 
these objects can become arbitrarily light (see insert 1.4), indeed lighter 
that the string itself, and so their behaviour dominates the low energy 
physics, undermining the fundamental role of the strings. A second sign 
is that some string theories are directly related at strong coupling (some­
times by a condensation of a tower of increasingly light D-particles) to a 
field theory - at low energy - which includes gravity. The short-distance 
completion of this gravitational theory does not seem to involve the dy­
namics of strings, and the new degrees of freedom are unknown. This 
unknown theory, whose existence is strongly suggested by the intricate 
web of strong/weak coupling dualities between the superstrings in diverse 
situations151, 152, 153, is often called 'M-theory', and it seems that all of 
the superstring theories that we know of may be obtained as a limit of it. 
In this sense, we see that string theory is itself an effective theory, albeit 
a remarkably interesting one. All of the various string theories that we 
know are perturbative corners of a larger coupling space. See figure 1.6. 
From this new picture (in which in some cases the extended objects 
which become light at strong coupling are weakly coupled strings of an 

lId supergravity 
EsXEs heterotic 

Type IIA 
M-theory 

Type I 

Type lIB 

SO(32) heterotic 

Fig. 1.6. A schematic diagram of the statement that all superstring the­
ories, and eleven dimensional supergravity, are effective descriptions of 
certain dynamical corners of a larger theory, called 'M-theory'. 
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Insert 1.4. Soliton properties and the kink solution 

Everybody's favourite soliton example is the kink solution of q} the­
ory in 1 + 1 dimensions. The mass m and the coupling A combine into 
a dimensionless coupling 9 = A/m2 , and we write: 

The kink (or anti-kink) solution is 

-+. ( ) = ±_1 h (m(x - xo)) <p± X tan /()' 
J9 v 2 

and so it is clearly an interpolating solution between the two vacua 
(located at ±¢o = ±1/ J9) of the double well potential. 

The parameter Xo is a constant, corresponding to the ability to trans­
late the solution. The configuration's mass-energy is: 

E= - - +U(¢±) dx=--, ; '00 (1 (O¢±)2 ) 2V2m 
-00 2 ox 3 9 

which is inversely proportional to the dimensionless coupling. So at 
weak coupling, this is a very heavy localised lump of energy. If we 
could trust this formula at strong coupling (and for various types 
of soliton in e.g. supersymmetric theories, we can), it is clear that 
for large 9 this solution becomes a light, sharply localised particle. In 
fact, it has a conserved charge, due to the existence of the topological 
current j{l = (J9/2)E{lVOv¢, which is: 

Q = /00 jodx = J9 (¢(+oo) - ¢(-oo)) = ±l. -00 2 

All of these properties will appear for solitons of theories which we 
shall study. The validity of the mass formula at strong coupling will 
allow various 'dualities' of supersymmetric theories to be uncovered. 
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entirely different type from the starting theory, giving a 'string-string' 
strong/weak coupling duality), it is clear that the string field theory 
approach would have had to produce a completely unlooked-for phe­
nomenon, and convert the world-sheet expansion of one type of string 
(say a closed one) into the completely different type of world-sheet ex­
pansion of another type of string (sayan open one). It would also have 
to point to new directions in which there is a perturbation theory not 
involving strings at all. Lastly, it would also have to be background 
independent. 

Of course, this may yet happen (but we might not call it a field theory 
any more!), but another possibility is that string field theory (at least in 
the intuitive form in which it was conceived) will be useful as an effective 
theory (arising from M-theory) useful for the study of a restricted but 
important set of non-perturbative effects. 

1.5 The quantum dynamics of geometry 

The issue of background independence may be tied up with matters which 
the theory is only really still just touching on, and so it may have been 
premature to worry about it previously. This is the fact that there are 
dynamical signs that clearly show that string theory avoids a definite pic­
ture of some of the properties of spacetime which we would have thought 
were fixed, if we were field theorists. 

Scattering of strings seems to show that attempts to confine the string 
to a small domain of spacetime are defeated by the strings' tendency to 
increasingly extend itself and spread out. From T-duality14 (to be first 
encountered in chapter 4, but probably in every chapter beyond that), 
we learn that when a string theory is compactified on a circle, there is 
an ambiguity in the spectrum about whether the propagation is on a 
circle of radius R or radius f!U R. The standard 'momentum' states with 
energy in multiples of 1/ R are joined by 'winding' states whose energy is 
in multiples of R/ f!;, coming from winding around the circle. The 'duality' 
exchanges these two types of mode. This is remarkable, especially if one 
considers the limit that R ---+ 0, since it says that an arbitrarily small circle 
compactification (reducing an effective spacetime dimension) is physically 
equivalent to having an arbitrarily large dimension (restoring an effective 
dimension). The outcome of this reasoning is that there appears to be 
an effective minimum distance arising in the dynamics of (perturbative) 
strings, of order the string scale f!s. This is qualitatively just the sort of 
granularity of spacetime which one might have anticipated (and indeed it 
was) in thinking about expectations for a quantum theory of gravity. We 
can go even further, however. 
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As already mentioned, at strong coupling some string theories turn into 
something which at low energy is a field theory in one dimension higher 
than the target spacetime of the weakly coupled string. Since the string 
coupling is dynamically generated by the string itself, we arrive at the 
result that the dimension of spacetime itself is dynamical. 

Also, the coordinates describing various objects like D-branes located 
in string theory's target space arise as not just numbers, but matrices26 . 

For example, in superstring theory for N pointlike D-branes (known as 
DO-branes or D-particles), there are nine N x N matrices, Xi(T), de­
scribing their world-lines parametrised by T. When the D-branes are 
widely separated from each other, it is dynamically favourable for these 
matrices to be diagonal, and we have N copies of the usual coordi­
nates x/1 describing the positions of N pointlike objects in nine spatial 
directions: 

o 0 
x~( T) 0 

o x~ (T) (1.27) 

When the branes are close together, there are dynamically favourable re­
gimes when these matrices are non-commuting, and correspondingly, the 
spacetime coordinate interpretation is now in terms of a non-commutative 
picture. There is more here, actually. Since DO-branes turn out to be mo­
mentum modes, in a compact direction, of an eleven dimensional graviton, 
this picture turns out to be a sort of light cone formulation of the eleven 
dimensional theory. This is the beginning of the Matrix Theory157 formu­
lation of M-theory. 

Spacetime is clearly a far more interesting place when the dynamics of 
string/M-theory are explored, and so it may be a while before we know 
even if we are asking the right sorts of questions about its nature. This 
includes the issue of background independence, and it may be that we 
have to wait for a complete formulation of M-theory (which may well 
have nothing to do with spacetime at all) before we get an answer. 

1.6 Things to do in the meantime 

While we wait for a complete formulation of M-theory to show up, there is 
a lot to do in the meantime. String theory's second revolution has provided 
us with a large number of tools to explore many regimes of fundamental 
physics, both old and new. 
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Gauge theories arise in string theories in many different (and often in­
terrelated) ways, for example by dimensional reduction and the Kaluza­
Klein mechanism (described in section 4.1.1), or as the collective dynamics 
on the world-volume of branes (described in section 4.10), or from gauge 
fields intrinsic to the structure of a closed string theory (described in sec­
tion 7.2). So string theory is an arena for studying gauge theories. The 
very geometrical way in which string theories treat gauge fields allows 
for many gauge theory phenomena to be usefully recast in geometrical 
terms. This also means that known gauge theory phenomena, correctly 
interpreted in this context, can also teach us new things about the ge­
ometry of string theories. Many of the applications of D-branes which we 
will discuss later in this book are concerned with this powerful dialogue. 

In this way, useful tools can be extracted for application to very concrete 
and pragmatic questions in the dynamics of strongly coupled gauge theory, 
of great concern to us of course in the physics being explored or shortly 
to be explored in experiments. 

Since string theory is also a theory of gravity, it is exciting to learn 
that there are regimes where much progress may be made in the study 
of situations where hard questions about quantum gravity arise. The 
most celebrated example of this is the precise statistical interpretation 
of Bekenstein's thermodynamical black hole entropy262, for a large class 
of black holes. This thermodynamical quantity can arise as the inevitable 
conclusion of semi-classical treatments of quantum gravity, where quan­
tum fields are studied in a classical black hole background (a useful con­
ceptual and technical compromise alluded to earlier). Such a treatment 
led Hawking261 to realise that there is thermal radiation (at a specific 
temperature) from a black hole, after other suggestive properties289, 292 

led Bekenstein to the realisation that there is an entropy associated to 
the area of the horizon. The universal Bekenstein-Hawking entropy for a 
black hole is: 

A 
S = 4GN ' (1.28) 

and is at the heart of the laws of black hole thermodynamics. This was 
a bit awkward, since there was no underling theory of quantum gravity 
to supply the 'statistical mechanics' which account for the precise rela­
tion between the entropy and the properties of the black hole. As we will 
describe in detail, for a large class of black holes, string theory provides 
the precise answer, in terms of D-brane constituents, and the gauge the­
ories which describe them. In fact, (for a smaller class of black holes) the 
spacetime dynamics of individual D-branes conspires to provide a micro­
scopic mechanism for the operation of the second law of thermodynamics 
as well7 . 
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One of the most profound insights of the revolution which might have 
the furthest-reaching consequences, is the identification of tractable 
regimes where a duality between gravitation and gauge theory can be 
found. This grew out of the above results concerning black holes, and 
even the ideas concerning the translation of gauge theory phenomena 
into geometry, but it is in some sense logically distinct from those. There 
is a very striking and intricate dynamical duality between the two, which 
again crosses dimensionality and is indicative of a very rich underlying pic­
ture. The 'AdS/CFT correspondence,270, 271, 272, the title under which the 
simplest examples are known, is also the sharpest known example of what 
is known as the 'Holographic Principle,286, 287, which states (roughly) that 
there should be a lower dimensional non-gravitational representation of 
the degrees of freedom of any quantum theory of gravity. Matrix theory 
is another example158 . 

The idea of the principle arises from the realisation that any high energy 
density scattering used to probe the short distance degrees of freedom in 
a theory including gravity will ultimately create black holes. Black holes 
seem to exhibit all of their degrees of freedom on their horizon, an object 
which is of one dimension fewer than the parent theory. This suggests (but 
of course does not supply a definite constructive tip for how to find it) that 
there is a more economical description of theories of D-dimensional gravity 
in terms of a theory in D - 1 dimensions. The AdS/CFT correspondence 
manages this by relating a theory of gravity in an anti-de Sitter back­
ground (a highly symmetric spacetime with negative cosmological con­
stant, reviewed in section 10.1.7) to a strongly coupled SU(N) gauge 
theory (of large N) in one dimension fewer. This is remarkable, since the­
ories of gravity and gauge theory are so very different in crucial dynamical 
respects, and we explore this in detail in chapter 18, showing how it arises 
from our study of D-branes, and exploring some of the consequences for 
new descriptions of strongly coupled gauge theory phenomena. 

Exploring the correspondence in more complicated cases is of great 
interest, as it might give us insights and new tools which we can apply 
to more phenomenologically relevant gauge theories, and we spend some 
time discussing some examples of this. 

1. 7 On with the show 

It is apparently an Irish saying that one will never plough a field by turning 
it over in one's mind, and so we should now begin the task of exploring 
things more carefully. In setting the scene, we have begun to unpack some 
of the more difficult concepts and some of the language which we will 
encounter many times as we go along. We will proceed by developing the 
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basic language of string theory, uncovering many remarkable phenomena 
and vacua, using perturbation theory only. Certain perturbative hints of 
non-perturbative physics will appear from time to time, and with the help 
of D-branes and supersymmetry, we later uncover such physics using many 
'duality' relations. Much later, we combine these techniques and ideas to 
probe and map out aspects of M-theory, and also to study certain aspects 
of duality in field theory. It will be an exciting journey. 
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2 
Relativistic strings 

This chapter is devoted to an introduction to bosonic strings and their 
quantisation. There is no attempt made at performing a rigourous or 
exhaustive derivation of some of the various formulae we will encounter, 
since that would take us well away from the main goal. That goal is to 
understand some of how string theory incorporates some of the familiar 
spacetime physics that we know from low energy field theory, and then 
rapidly proceed to the point where many of the remarkable properties 
which make strings so different from field theory are manifest. That will 
be a good foundation for appreciating just what D-branes really are. The 
careful reader who needs to know more of the details behind some of what 
we will introduce is invited to consult texts devoted to the study of string 
theory. 

2.1 Motion of classical point particles 

Let us start by reminding ourselves about a description of a point particle. 
We already touched on it in section 1.1, but we want to take it a bit further 
now, in preparation for doing the same thing for the analogous formula­
tion for strings. The particle moves in the 'target spacetime' (with coordi­
nates (t == xO,xl, ... ,XD- 1)) sweeping out a 'world-line' (see figure 1.1, 
page 2) parametrised by T. We want to write an action principle which 
yields equations of motion for the allowed paths, XM(T). 

2.1.1 Two actions 

The most obvious action is the total path length swept out in spacetime. 
The infinitesimal path length traversed is: 

dl! = (_ds 2)1/2 = (-dXMdX uTJMU)1/2 = (-dXMdXM)1/2, (2.1) 

24 
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2.1 Motion of classical point particles 25 

and we have assumed that the particle is massive and hence that ds 2 < o. 
The massless case will be discussed below. So the action is 

(2.2) 

where a dot denotes differentiation with respect to T. Let us vary the 
action: 

oSo = m /dT(-XILXIL)-1/2XVOXv = m / dTUvOXv 

= -m / druv oXv , 

where the last step used integration by parts, and 

UV == (-XILXIL )-1/2Xv. 

(2.3) 

(2.4) 

So for oX arbitrary, we get UV = 0, which is Newton's Law of motion: 

d2 XIL 
dT2 = 0, (2.5) 

where we have used dfjdT = (_XILXIL)1/2. There is another action from 
which we can derive the same physics. Consider the action 

S = ~ / dT ('Tl-1XILXIL - 'Tlm2) , (2.6) 

for some independent function 'Tl( T) defined on the world-line. 

N.B. In preparation for the coming treatment of strings, think 
of the function rl as related to the particle's 'world-line metric', 
''/TT) as 'Tl(T) = [-'TT(T)j1/2. The function ,(T) ensures world-line 
reparametrisation invariance: 

This is all a bit redundant in 0 + 1 dimensions, but the structure 
will make more sense when we consider the 1+1 dimensions of the 
string's world-sheet. 

If we vary S with respect to 'Tl: 

oS = ~ / dT [-'Tl- 2 XIL X IL - m2] o'Tl. (2.7) 
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So for 817 arbitrary, we get an equation of motion 

r,2m2 + x{! X{! = 0, (2.8) 

which we can solve with 17 = m-1 ( -X{! X{!)1/2. Upon substituting this 
into our expression (2.6) defining S, we get: 

showing that the two actions are equivalent. 
Notice, however, that the action S allows for a treatment of the mass­

less, m = 0, case, in contrast to So. Another attractive feature of S is that 
it does not use the awkward square root that So does in order to compute 
the path length. The use of the 'auxiliary' parameter 17 allows us to get 
away from that. 

2.1.2 Symmetries 

There are two notable symmetries of the action . 
• Spacetime Lorentz/Poincare: 

where A is an SO(l, 3) Lorentz matrix and A{! is an arbitrary con­
stant four-vector. This is a trivial global symmetry of S (and also 
So), following from the fact that we wrote them in covariant form . 

• world-line reparametrisations: 

for some parameter ((T). This is a non-trivial local or 'gauge' sym­
metry of S. This large extra symmetry on the world-line (and its 
analogue when we come to study strings) is very useful. We can, for 
example, use it to pick a nice gauge where we set 17 = m-l. This 
gives a nice simple action, resulting in a simple expression for the 
conjugate momentum to X{!: 

a£ . 
II{! = -.- = mX{!. 

aX{! 

We will use this much later. 

(2.10) 
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2.2 Classical bosonic strings 

Turning to strings, we parametrise the 'world-sheet' which the string 
sweeps out with coordinates (0"\0"2) = (T,O"). The latter is a spatial coor­
dinate, and for now, we take the string to be an open one, with ° ::; 0" ::; 7T 
running from one end to the other. The string's evolution in spacetime is 
described by the functions Xfl(T, 0"), fL = 0, ... , D - 1, giving the shape 
of the string's world-sheet in target spacetime (see figure 1.4, p. 13). 

2.2.1 Two actions 

As we already discussed in section 1.3, using the induced metric on the 
world-sheet which we recall here: 

(2.11) 

we can measure distances on the world-sheet as an object embedded in 
spacetime, and hence define an action analogous to the one for the particle: 
the total area swept out by the world-sheet (equation (1.25)), which we 
repeat here: 

So = -T J dA = -T J dTdO" (-dethab )1/2 == J dTdO" £(X, X'; 0", T). 

(2.12) 

So ~ -T J dTda [(8:: a::)' -(8::), (8::)'r 
= -T J dTdO" [(X' . X)2 - X ,2 X2] 1/2 , (2.13) 

where X' means ax / aO" and a dot means differentiation with respect to T. 

This is the Nambu-Goto action. 
Varying the action, we have generally: 

(2.14) 

Requiring this to be zero, we get: 

a£ 
aX'fl = ° at 0" = 0,7T, (2.15) 
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28 2 Relativistic strings 

dr 

do 

Fig. 2.1. The infinitesimal momenta on the world sheet. 

which are statements about the conjugate momenta: 

(2.16) 

Here, Pf: is the momentum running along the string (i.e. in the 0' di­
rection) while Pf is the momentum running transverse to it. The total 
spacetime momentum is given by integrating up the infinitesimal (see 
figure 2.1): 

(2.17) 

Actually, we can choose any slice of the world-sheet in order to compute 
this momentum. A most convenient one is a slice T = constant, revealing 
the string in its original paramaterisation: plL = J PfdO' , but any other 
slice will do. 

Similarly, one can define the angular momentum: 

(2.18) 

It is a simple exercise to work out the momenta for our particular 
Lagrangian: 

XIL X/2 - X/IL(X . X') 
plL = T -----;:=======_ 

T V(X.X/)2-X2X/2 

X/IL X2 - XIL(X . X') 
plL = T . 

eY V(X. X/)2 _ X2X/2 
(2.19) 

It is interesting to compute the square of Pf: from this expression, and 
one finds that 

P2 - plLp _ 2T2X· 2 
eY = eY ILeY - - • (2.20) 
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This is our first (perhaps) non-intuitive classical result. We noticed that 
PrJ vanishes at the endpoints, in order to prevent momentum from flow­
ing off the ends of the string. The equation we just derived implies that 
X2 = 0 at the endpoints, which is to say that they move at the speed of 
light. 

Just like we did in the point particle case, we can introduce an equiva­
lent action which does not have the square root form that the current one 
has. Once again, we do it by introducing a independent metric, lab((J, T), 
on the world-sheet, and write the 'Polyakov' action: 

S = - 4:0:/ J dTd(J( -1)1/2Iab[)aXM[)bXuTJlw 

= __ 1_ J d2(J (-1)1/2Iabhab' 
41T0:/ 

If we vary I, we get 

(2.21) 

DS = - 4:0:/ J d2(J {-~( -1)1/2Dllabhab + (-1)1/2Dlabhab}' (2.22) 

Using the fact that DI = IlabDlab = -llabDlab, (which we already used 
in higher dimensions, see equation (1.13)) we get 

1 J 2 ( ) 1/2 ab { 1 cd } DS = - 41T0:/ d (J -I DI hab - 21abi hcd . (2.23) 

Therefore we have 
1 cd 

hab - 21abi hcd = 0, (2.24) 

from which we can derive 

(2.25) 

and so substituting into S, we recover (just as in the point-particle case) 
that it reduces to the Nambu-Goto action, So. 

2.2.2 Symmetries 

Let us again study the symmetries of the action . 
• Spacetime Lorentz/Poincare: 

XM ---+ X/M = AM Xu + AM 
U , 

where A is an SO(l, 3) Lorentz matrix and AM is an arbitrary con­
stant four-vector. Just as before this is a trivial global symmetry 
of S (and also So), following from the fact that we wrote them in 
covariant form. 
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30 2 Relativistic strings 

• world-sheet reparametrisations: 

OXfL = (aoaXfL 

o,ab = (coc,ab _ oc(a,cb _ oc(b,ac, (2.26) 

for two parameters (a (T, (/). This is a non-trivial local or 'gauge' 
symmetry of S. This is a large extra symmetry on the world-sheet 
of which we will make great use . 

• Weyl invariance: 

/ 2w 
lab ----+ lab = e lab, (2.27) 

specified by a function w( T, (/). This ability to do local rescalings of 
the metric results from the fact that we did not have to choose an 
overall scale when we chose lab to rewrite So in terms of S. This can 
be seen especially if we rewrite the relation (2.25) as (_h)-1/2hab = 

( _,)-1/2,ab' 

N.B. We note here for future use that there are just as many pa­
rameters needed to specify the local symmetries (three) as there are 
independent components of the world-sheet metric. This is very use­
ful, as we shall see. 

2.2.3 String equations of motion 

We can get equations of motion for the string by varying our action (2.21) 
with respect to the XfL: 

which results in the equations of motion: 

with either: 
Open string 

(Neumann b.c.s) 

(2.28) 

(2.29) 

(2.30) 
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or: 

2.2 Classical bosonic strings 

X'IL(T,O) = X'IL(T,'Tr) 
XIL(T, O) = XIL(T,'Tr) } 
lab ( T, 0) = lab ( T, 'Tr) 

Closed string 
(periodic b.c.s) 

31 

(2.31) 

We shall study the equation of motion (2.29) and the accompanying 
boundary conditions a lot later. We are going to look at the standard 
Neumann boundary conditions mostly, and then consider the case of 
Dirichlet conditions later, when we uncover D-branes, using T-duality. 
Notice that we have taken the liberty of introducing closed strings by 
imposing periodicity (see also insert 2.1 (p. 32)). 

2.2.4 Further aspects of the two dimensional perspective 

The action (2.21) may be thought of as a two dimensional model of D 
bosonic fields XIL( T, o} This two dimensional theory has reparameterisa­
tion invariance, as it is constructed using the metric lab (T, (J) in a covariant 
way. It is natural to ask whether there are other terms which we might 
want to add to the theory which have similar properties. 

With some experience from General Relativity two other terms spring 
effortlessly to mind. One is the Einstein-Hilbert action (supplemented 
with a boundary term): 

X = - d2(J (_1)1/2 R + - dsK, 1 j' 1 fr' 
4'Tr M 2'Tr aM 

(2.32) 

where R is the two dimensional Ricci scalar on the world-sheet M and K 
is the trace of the extrinsic curvature tensor on the boundary 3M. This 
latter quantity may be less familiar to some, and we will use it a lot in 
diverse dimensions much later in this book. (There is a discussion of it in 
insert 10.2 (p. 229), and we will not worry about it in detail here lest we 
get sidetracked.) 

The other term is: 

e = _1_ j' d2(J (_1)1/2, 
4'Tro:' M 

(2.33) 

which is the cosmological term. What is the role of these terms here? 
Well, under a Weyl transformation (2.27), it can be seen that (-1)1/2 ----+ 

e2w (_1)1/2 and R ----+ e-2W (R - 2V2w), and so X is invariant, (because R 
changes by a total derivative which is cancelled by the variation of K) 
but e is not. 

So we will include X, but not e in what follows. Let us anticipate some­
thing that we will do later, which is to work with Euclidean signature to 
help make sense of the topological statements to follow: lab with signa­
ture (-+) has been replaced by gab with signature (++). Now, since as 
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Insert 2.1. T is for tension 

As a first non-trivial example (and to learn that T, a mass per unit 
length, really is the string's tension) let us consider a closed string 
lying in the (xl, X2) plane. 

X O = 2Rr , 
Xl = Rsin20" 

X2 = R cos 20". 

We have made it by arranging that the 0" = 0, 7T ends meet, that 
momentum flows across that join. An examination of the equations 
of motion shows that this configuration is not a solution, and there 
are terms which do not vanish corresponding to the fact that the 
string does not want to stay at rest: since the string has tension, it 
is likely to want to shrink its length away if put into this shape. So 
let us think of this as a snapshot of such a situation, ignoring the 
non-vanishing terms which involve time derivative. It is worth taking 
the time to use this to show that one gets 

Pf = T (2R, 0, 0), P!: = T (0, -2Rcos20", 2Rsin20"), 

which is interesting, as a sketch shows. 

There is momentum flowing around the string (which is lying in a 
circle of radius R). The total momentum is 

{7T 
plL = Jo dO" Pf· 

The only non-zero component is the mass-energy: M 
lengthxT. 

27TRT 
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Insert 2.2. A rotating open string 

As a second non-trivial example consider the following open string 
rotating at a constant angular velocity in the (Xl, X2) plane. Such 
a configuration is: 

where it should be checked that the equations of motion fix A = 7(:. 
This is what it looks like (the spinning string is shown in frozen 
snapshots) . 

5 

o 

It is again a worthwhile exercise to compute PM, and also MMV. With 
J == Ml2 and M == pO, some algebra shows that 

IJI 1 , 
------0: M2 - 27fT - . 

This parameter, 0:', is the slope of the celebrated 'Regge' trajectories: 
the straight line plots of J vs. M2 seen in nuclear physics in the 1960s. 
There remains the determination of the intercept of this straight line 
graph with the J-axis. It turns out to be one for the bosonic string 
as we shall see. 
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34 2 Relativistic strings 

we said earlier, the full string action resembles two dimensional gravity 
coupled to D bosonic 'matter' fields XIL, and the equations of motion are, 
of course, 

(2.34) 

The left hand side vanishes identically in two dimensions, and so there 
are no dynamics associated to (2.32). The quantity X depends only on 
the topology of the world-sheet (it is the Euler number) and so will only 
matter when comparing world sheets of different topology. This will arise 
when we compare results from different orders of string perturbation the­
ory and when we consider interactions. 

We can see this in the following. Let us add our new term to the action, 
and consider the string action to be: 

S = -41 
I r d2(J gl/2gabf)aXILf)bXIL 

TIC\: JM 

+).. {~ r d2(J gl/2 R + ~ r dSK} , (2.35) 
4TI JM 2TI JaM 

where).. is - for now - and arbitrary parameter that we have not fixed to 
any particular value. 

N.B. It will turn out that ).. is not a free parameter. In the full 
string theory, it has dynamical meaning, and will be equivalent to 
the expectation value of one of the massless fields - the 'dilaton' -
described by the string. 

So what will ).. do? Recall that it couples to Euler number, so in the 
full path integral defining the string theory: 

(2.36) 

resulting amplitudes will be weighted by a factor e-Ax , where X = 2-2h­
b - c. Here, h, b, c are the numbers of handles, boundaries and crosscaps, 
respectively, on the world sheet. Consider figure 2.2. An emission and 
reabsorption of an open string results in a change Ox = -1, while for 
a closed string it is Ox = -2. Therefore, relative to the tree level open 
string diagram (disc topology), the amplitudes are weighted by eA and 
e2A , respectively. The quantity gs == eA therefore will be called the closed 
string coupling. Note that it is the square of the open string coupling, 
which justifies the labelling we gave of the two three-string diagrams in 
figure 1.3. 
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~ D 8X=-1 

8X=-' 

... ~ ') 
Fig. 2.2. World-sheet topology change due to emission and reabsorption 
of open and closed strings. 

2.2.5 The stress tensor 

Let us also note that we can define a two dimensional energy-momentum 
tensor: 

Notice that 
T a - Tab 0 a = lab =. (2.38) 

This is a consequence of Weyl symmetry. Reparametrisation invariance, 
D'"'(S' = 0, translates here into (see discussion after equation (2.34)) 

(2.39) 

These are the classical properties of the theory we have uncovered so far. 
Later on, we shall attempt to ensure that they are true in the quantum 
theory also, with interesting results. 

2.2.6 Gauge fixing 

Now recall that we have three local or 'gauge' symmetries of the action: 

2D reparametrisations: 0', T ----+ 0'(0', T), +(0', T), 

Weyl: lab ----+ exp(2w(O',T))rab. (2.40) 
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The two dimensional metric lab is also specified by three independent 
functions, as it is a symmetric 2 x 2 matrix. We may therefore use the 
gauge symmetries (see equations (2.26) and (2.27)) to choose lab to be a 
particular form: 

q; (-1 
lab = TJab e = ° 0) q; 1 e, (2.41) 

i.e. the metric of two dimensional Minkowski, times a positive function 
known as a conformal factor. In this 'conformal' gauge, our X{L equations 
of motion (2.29) become: 

(2.42) 

the two dimensional wave equation. (In fact, the reader should check that 
the conformal factor cancels out entirely of the action in equation (2.21).) 
As the wave equation is arY+arY-X{L = 0, we see that the full solution to 
the equation of motion can be written in the form: 

(2.43) 

where (T± == T ± (T. 

or 

N.B. Write (T± = T ± (T. This gives metric ds 2 = -dT2 + d(T2 ----+ 

-d(T+ d(T-. So we have TJ-+ = TJ+- = -1/2, TJ-+ = TJ+- = -2 and 
TJ++ = TJ-- = TJ++ = TJ-- = 0. Also, aT = a+ + a_ and arY = a+ - a_. 

Our constraints on the stress tensor become: 

__ 1.{L'_ 
TTrY - TrYT = - X Xu - ° ex/ t" 

T - T - 1 (X· {LX· X/{LX/) - ° 
rYrY - TT - 2ex' {L + {L - , (2.44) 

(2.45) 

and T_+ and T+_ are identically zero. 
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2.2.7 The mode decomposition 

Our equations of motion (2.43), with our boundary conditions (2.30) and 
(2.31) have the simple solutions: 

XM( T, CJ) = xM + 2a/pMT + i(2a/)1/2 L ~a~e-inT cos rw, 
n:r'O n 

for the open string and 

XM( T, CJ) = X~(CJ-) + xt(CJ+) 

1 (a/)1/2 1 ._ 
X~(CJ-) = -xM + a/pMCJ- + i - L _a~e-2m(J 

2 2 n:r'O n 

1 (a/)1/2 1 . xt(CJ+) = -xM + a/pMCJ+ + i - L _a~e-2m(J+, 
2 2 n#O n 

(2.46) 

(2.47) 

for the closed string, where, to ensure a real solution we impose a~n = 

(a~)* and a~n = (a~)*. Note that x M and pM are the centre of mass 
position and momentum, respectively. In each case, we can identify pM 
with the zero mode of the expansion: 

open string: 

closed string: 

",/1 -'-"0 -

",/1 -<'<0 - (2.48) 

N.B. Notice that the mode expansion for the closed string (2.47) is 
simply that of a pair of independent left and right moving travelling 
waves going around the string in opposite directions. The open string 
expansion (2.46) on the other hand, has a standing wave for its solu­
tion, representing the left and right moving sector reflected into one 
another by the Neumann boundary condition (2.30). 

2.2.8 Conformal invariance as a residual symmetry 

Actually, we have not gauged away all of the local symmetry by choosing 
the gauge (2.41). We can do a left-right decoupled change of variables: 

(2.49 ) 

Then, as 

(2.50) 
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we have 

(2.51) 

However, we can undo this with a Weyl transformation of the form 

(2.52) 

if exp(-2wL(0-+)) = 3+1(0-+) and exp(-2wR(0--)) = 3_9(0--). So we 
still have a residual 'conformal' symmetry. As 1 and g are independent 
arbitrary functions on the left and right, we have an infinite number of 
conserved quantities on the left and right. This is because the conserva­
tion equation Va Tab = 0, together with the result T +_ = T _+ = 0, turns 
into: 

3_T++ = ° and 3+T __ = 0, 

but since 3-1 = ° = 3+9, we have 

(2.53) 

(2.54) 

resulting in an infinite number of conserved quantities. The fact that we 
have this infinite dimensional conformal symmetry is the basis of some 
of the most powerful tools in the subject, for computing in perturbative 
string theory. We will return to it not too far ahead. 

2.2.9 Some Hamiltonian dynamics 

Our Lagrangian density is 

from which we can derive that the conjugate momentum to Xfl is 

So we have the equal time Poisson brackets: 

[Xfl(o-), Ir'(o-')]P.B. = TJflV 8(0- - 0-'), 
[llfl (0-), IIv (0-')] P.B. = 0, 

with the following results on the oscillator modes: 

(2.55) 

(2.56) 

(2.57) 

(2.58) 

(2.59) 
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We can form the Hamiltonian density 

(2.60) 

from which we can construct the Hamiltonian H by integrating along the 
length of the string. This results in: 

j 'TI 1 00 

H = dcrH(cr) = - LCLn ' an 
a 2 

-00 

(open) (2.61) 

( closed). 

(We have used the notation an . an == a~anw) The constraints T++ 
o = T __ on our energy-momentum tensor can be expressed usefully in 
this language. We impose them mode by mode in a Fourier expansion, 
defining: 

(2.62) 

and similarly for L m , using T++. Using the Poisson brackets (2.59), these 
can be shown to satisfy the 'Virasoro' algebra: 

[Lm, Ln]p.B. = i(m - n)Lm+n; 

[Lm, Ln]p.B. = O. 

[Lm' Lnjp.B. = i(m - n)Lm+n; 

(2.63) 

Notice that there is a nice relation between the zero modes of our expan­
sion and the Hamiltonian: 

H=Lo (open); H = La + La ( closed). (2.64) 

So to impose our constraints, we can do it mode by mode and ask that 
Lm = 0 and Lm = 0, for all m. Looking at the zeroth constraint results 
in something interesting. Note that 

1100 
La = -a6 + 2 x - L a-n · an 

2 2 n=l 
00 

= a'pMpM + L a-n · an 
n=l 

00 
= -a'M2 + L a-n · an· 

n=l 
(2.65) 
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Requiring Lo to be zero - diffeomorphism invariance - results in a (space­
time) mass relation: 

(open), (2.66) 

where we have used the zero mode relation (2.48) for the open string. A 
similar exercise produces the mass relation for the closed string: 

( closed). (2.67) 

These formulae (2.66) and (2.67) give us the result for the mass of a state 
in terms of how many oscillators are excited on the string. The masses 
are set by the string tension T = (27TO:') -1, as they should be. Let us not 
dwell for too long on these formulae however, as they are significantly 
modified when we quantise the theory, since we have to understand the 
infinite constant which we ignored. 

2.3 Quantised bosonic strings 

For our purposes, the simplest route to quantisation will be to promote 
everything we met previously to operator statements, replacing Poisson 
Brackets by commutators in the usual fashion: [ , jP.B. ----+ -i [ , j. 
This gives: 

(2.68) 

N.B. One of the first things that we ought to notice here is that 
VmO:~m are like creation and annihilation operators for the harmonic 
oscillator. There are actually D independent families of them - one 
for each spacetime dimension - labelled by f-L. 

In the usual fashion, we will define our Fock space such that 10; k) 
is an eigenstate of pM with centre of mass momentum k M. This state is 
annihilated by o:~. 

What about our operators, the Lm? Well, with the usual 'normal or­
dering' prescription that all annihilators are to the right, the Lm are all 
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fine when promoted to operators, except the Hamiltonian, Lo. It needs 
more careful definition, since CY~ and CY~n do not commute. Indeed, as an 
operator, we have that 

1 00 

Lo = "2 CY6 + L CY-n . CYn + constant, (2.69) 
n=l 

where the apparently infinite constant is composed of the infinite sum 
(1/2) L~=l n for each of the D families of oscillators. As is of course 
to be anticipated, this infinite constant can be regulated to give a finite 
answer, corresponding to the total zero point energy of all of the harmonic 
oscillators in the system. 

2.3.1 The constraints and physical states 

For now, let us not worry about the value of the constant, and simply 
impose our constraints on a state I¢) as*: 

(Lo - a)I¢) = 0; Lml¢) = 0 for m > 0, 

(Lo - a)I¢) = 0; Lml¢) = 0 for m > 0, (2.70) 

where our regulated constant is set by a, which is to be computed. There 
is a reason why we have not also imposed this constraint for the L-ms. 
This is because the Virasoro algebra (2.63) in the quantum case is: 

D 3 
[Lm, Lnl (m - n)Lm+n + 12 (m - m)8m+n; [Lm' Lnl = 0; 

- D 3 
[Lm, Lnl (m - n)Lm+n + 12 (m - m)8m+n. (2.71) 

There is a central term in the algebra, which produces a non-zero constant 
when m = n. Therefore, imposing both Lm and L_m would produce an 
inconsistency. Note now that the first of our constraints (2.70) produces 
a modification to the mass formulae: 

(f CY-n . CYn - a) 
n=l 

(open) (2.72) 

( closed). 

* This assumes that the constant a on each side are equal. At this stage, we have no 
other choice. We have isomorphic copies of the same string modes on the left and the 
right, for which the values of a are by definition the same. When we have more than 
one consistent conformal field theory to choose from, then we have the freedom to 
consider having non-isomorphic sectors on the left and right. This is how the heterotic 
string is made, for example, as we shall see later. 
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Notice that we can denote the (weighted) number of oscillators excited as 
N = LCLn · an (= LnNn) on the left and N = La-n · an (= LnNn) 
on the right. N n and Nn are the true count, on the left and right, of the 
number of copies of the oscillator labelled by n is present. 

There is an extra condition in the closed string case. While La + La gen­
erates time translations on the world sheet (being the Hamiltonian), the 
combination La - La generates translations in 0'. As there is no physical 
significance to where on the string we are, the physics should be invari­
ant under translations in 0', and we should impose this as an operator 
condition on our physical states: 

(La - Lo)I¢; = 0, (2.73) 

which results in the 'level-matching' condition N = N, equating the num­
ber of oscillators excited on the left and the right. This is indeed the 
difference between the two equations in (2.70). 

In summary then, we have two copies of the open string on the left and 
the right, in order to construct the closed string. The only extra subtlety 
is that we should use the correct zero mode relation (2.48) and match 
the number of oscillators on each side according to the level matching 
condition (2.73). 

2.3.2 The intercept and critical dimensions 

Let us consider the spectrum of states level by level, and uncover some 
of the features, focusing on the open string sector. Our first and simplest 
state is at level 0, i.e. no oscillators excited at all. There is just some 
centre of mass momentum that it can have, which we shall denote as klL. 
Let us write this state as 10; k;. The first of our constraints (2.70) leads 
to an expression for the mass: 

(La - a)IO; k; = ° so (2.74) 

This state is a tachyonic state, having negative mass-squared (assuming 
a> 0. 

The next simplest state is that with momentum kIL, and one oscillator 
excited. We are also free to specify a polarisation vector (IL. We denote 
this state as I(,k; == ((. a-l)IO;k;; it starts out the discussion with D 
independent states. The first thing to observe is the norm of this state: 

((;kll(;k'; = (O;kl(* ·al(-a-lIO;k/; 

= (~(v(O; klara~lIO; k'; 
= (. ((0; klO; k'; = (. ((2'IT)DOD(k - k'), (2.75) 
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where we have used the commutator (2.68) for the oscillators. From this 
we see that the timelike (s will produce a state with negative norm. Such 
states cannot be made sense of in a unitary theory, and are often calledt 

'ghosts'. 
Let us study the first constraint: 

(Lo - a)I(; k) = ° =? a'k2 + 1 = a, (2.76) 

The next constraint gives: 

=?, k· (= 0. (2.77) 

Actually, at level one, we can also make a special state of interest: 
I'lj;) == L-IIO; k). This state has the special property that it is orthogonal 
to any physical state, since (¢I'lj;) = ('lj;I¢)* = (0; kIL11¢) = 0. It also has 
L11'lj;) = 2Lo10; k) = a'k2 10; k). This state is called a 'spurious' state. 

So we note that there are three interesting cases for the level one 
physical state we have been considering. 

1. a < 1 =? M2 > ° : 
• momentum k is timelike, 

• we can choose a frame where it is (k, 0, 0, ... ), 

• spurious state is not physical, since k2 i- 0, 

• k· ( = ° removes the timelike polarisation; D - 1 states left. 

2. a > 1 =? M2 < ° : 
• momentum k is spacelike, 

• we can choose a frame where it is (0, kl' k2 , .. . ), 

• spurious state is not physical, since k2 i- 0, 

• k . ( = ° removes a spacelike polarisation; D - 1 tachyonic 
states left, one which is including ghosts. 

3. a = 1 =? M2 = ° : 
• momentum k is null, 

• we can choose a frame where it is (k, k, 0, ... ), 

• spurious state is physical and null, since k 2 = 0, 

t These are not to be confused with the ghosts of the friendly variety - Faddeev-Popov 
ghosts. These negative norm states are problematic and need to be removed. 
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• k . ( = 0 and k 2 = 0 remove two polarisations; D - 2 states 
left. 

So if we choose case (3), we end up with the special situation that we 
have a massless vector in the D dimensional target spacetime. It even has 
an associated gauge invariance: since the spurious state is physical and 
null, and therefore we can add it to our physical state with no physical 
consequences, defining an equivalence relation: 

I¢) ;v I¢) + AI?/!) (2.78) 

Case (1), while interesting, corresponds to a massive vector, where the 
extra state plays the role of a longitudinal component. Case (2) seems 
bad. We shall choose case (3), where a = 1. 

It is interesting to proceed to level two to construct physical and spu­
rious states, although we shall not do it here. The physical states are 
massive string states. If we insert our level one choice a = 1 and see what 
the condition is for the spurious states to be both physical and null, we 
find that there is a condition on the spacetime dimension+: D = 26. 

In summary, we see that a = 1, D = 26 for the open bosonic string 
gives a family of extra null states, giving something analogous to a point 
of 'enhanced gauge symmetry' in the space of possible string theories. 
This is called a 'critical' string theory, for many reasons. We have the 24 
states of a massless vector we shall loosely called the photon, AM' since it 
has a U(l) gauge invariance (2.78). There is a tachyon of M2 = -1/0:' in 
the spectrum, which will not trouble us unduly. We will actually remove 
it in going to the superstring case. Tachyons will reappear from time 
to time, representing situations where we have an unstable configuration 
(as happens in field theory frequently). Generally, it seems that we should 
think of tachyons in the spectrum as pointing us towards an instability, 
and in many cases, the source of the instability is manifest. 

Our analysis here extends to the closed string, since we can take two 
copies of our result, use the appropriate zero mode relation (2.48), and 
level matching. At level zero we get the closed string tachyon which has 
M2 = -4/0:'. At level zero we get a tachyon with mass given by M2 = 

-4/0:', and at level 1 we get 242 massless states from 0:':10:~110; k). The 
traceless symmetric part is the graviton, GMU and the antisymmetric part, 
EMU' is sometimes called the Kalb-Ramond field, and the trace is the 
dilaton, <I>. 

t We get a condition on the spacetime dimension here because level two is the first 
time it can enter our formulae for the norms of states, via the central term in the 
Virasoro algebra (2.71). 
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2.3.3 A glance at more sophisticated techniques 

Later we shall do a more careful treatment of our gauge fixing procedure 
(2.41) by introducing Faddeev-Popov ghosts (b, c) to ensure that we stay 
on our chosen gauge slice in the full theory. Our resulting two dimensional 
conformal field theory will have an extra sector coming from the (b, c) 
ghosts. 

The central term in the Virasoro algebra (2.71) represents an anomaly 
in the transformation properties of the stress tensor, spoiling its properties 
as a tensor under general coordinate transformations. Generally: 

where here c is a number, the central charge which depends upon the con­
tent of the theory. In our case, we have D bosons, which each contribute 
1 to c, for a total anomaly of D. 

The ghosts do two crucial things: They contribute to the anomaly the 
amount -26, and therefore we can retain all our favourite symmetries for 
the dimension D = 26. They also cancel the contributions to the vacuum 
energy coming from the oscillators in the /L = 0,1 sector, leaving D - 2 
transverse oscillators' contribution. 

The regulated value of -a is the vacuum or 'zero point' energy (z.p.e.) 
of the transverse modes of the theory. This zero point energy is simply the 
Casimir energy arising from the fact that the two dimensional field theory 
is in a box. The box is the infinite strip, for the case of an open string, or 
the infinite cylinder, for the case of the closed string (see figure 2.3). 

A periodic (integer moded) boson such as the types we have here, XIL, 
each contribute -1/24 to the vacuum energy (see insert 2.3 (p. 46) on a 
quick way to compute this). So we see that in 26 dimensions, with only 

'IT 

Fig. 2.3. String world-sheets as boxes upon which lives two dimensional 
conformal field theory. 
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Insert 2.3. Zero point energy from the exponential map 

After doing the transformation to the z-plane, it is interesting to note 
that the Fourier expansions we have been working with to define the 
modes of the stress tensor become Laurent expansions on the complex 
plane, e.g. 

00 Lm 
zm+2· 

rn=-oo 

One of the most straightforward exercises is to compute the zero point 
energy of the cylinder or strip (for a field of central charge c) by 
starting with the fact that the plane has no Casimir energy. One 
simply plugs the exponential change of coordinates z = eW into the 
anomalous transformation for the energy momentum tensor and com­
pute the contribution to Tww starting with Tzz : 

2 C 
Tww = -z Tzz - 24' 

which results in the Fourier expansion on the cylinder, in terms of 
the modes: 

24 contributions to count (see previous paragraph), we get that -a = 

24 x (-1/24) = -1. (Notice that from equation (2.69), this implies that 
L:~=1 n = -1/12, which is in fact true (!) in (-function regularisation.) 

Later, we shall have world-sheet fermions ?j;fl as well, in the supersym­
metric theory. They each contribute 1/2 to the anomaly. World sheet 
superghosts will cancel the contributions from ?j;0, ?j;1. Each anti-periodic 
fermion will give a z.p.e. contribution of -1/48. 

Generally, taking into account the possibility of both periodicities for 
either bosons or fermions: 

z.p.e. = 

w= 

1 
-w for boson; 
2 

~ - ~(2e - 1)2 
24 8 

1 
--w 

2 

{~ o 
1 
"2 

for fermion (2.80) 

(integer modes) 
(half-integer modes). 

This is a formula that we shall use many times in what is to come. 
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2.4 The sphere, the plane and the vertex operator 

The ability to choose the conformal gauge, as first discussed in 
section 2.2.6, gives us a remarkable amount of freedom, which we can 
put to good use. The diagrams in figure 2.3 represent free strings coming 
in from T = -00 and going out to T = +00. Let us first focus on the 
closed string, the cylinder diagram. Working with Euclidean signature by 
taking T -----+ -iT, the metric on it is 

ds2 = dT2 + dcr2, -00 < T < +00 0 < cr ::; 27T. 

We can do the change of variables 

(2.81) 

with the result that the metric changes to 

ds2 = dT2 + dcr2 ----+ Izl- 2dzdz. 

This is conformal to the metric of the complex plane: d!32 = dzdz, and so 
we can use this as our metric on the world-sheet, since a conformal factor 
e¢ = Izl-2 drops out of the action, as we already noticed. 

The string from the infinite past T = -00 is mapped to the origin while 
the string in the infinite future T = +00 is mapped to the 'point' at infin­
ity. Intermediate strings are circles of constant radius Izl. See figure 2.4. 
The more forward-thinking reader who prefers to have the T = +00 string 
at the origin can use the complex coordinate i = 1/ z instead. 

One can even ask that both strings be placed at finite distance in z. 
Then we need a conformal factor which goes like Izl-2 at z = 0 as before, 
but like Izl2 at z = 00. There is an infinite set of functions which do that, 
but one particularly nice choice leaves the metric: 

2 4R2dzdz 
ds = (R2 + IzI2)2' (2.82) 

ooX 

xo 

0< a <, 2rc 

Fig. 2.4. The cylinder diagram is conformal to the complex plane and the 
sphere. 
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which is the familiar expression for the metric on a round 52 with radius 
R, resulting from adding the point at infinity to the plane. See figure 2.4. 
The reader should check that the precise analogue of this process will 
relate the strip of the open string to the upper half plane, or to the disc. 
The open strings are mapped to points on the real axis, which is equivalent 
to the boundary of the disc. See figure 2.5. 

We can go even further and consider the interaction with three or more 
strings. Again, a clever choice of function in the conformal factor can be 
made to map any tubes or strips corresponding to incoming strings to a 
point on the interior of the plane, or on the surface of a sphere (for the 
closed string) or the real axis of the upper half-plane of the boundary of 
the disc (for the open string). See figure 2.6. 

2.4.1 States and operators 

There is one thing which we might worry about. Have we lost any infor­
mation about the state that the string was in by performing this reduction 
of an entire string to a point? Should we not have some sort of marker 
with which we label each point with the properties of the string it came 
from? The answer is in the affirmative, and the object which should be 
inserted at these points is called a 'vertex operator'. Let us see where it 
comes from. 

As we learned in the previous subsection, we can work on the complex 
plane with coordinate z. In these coordinates, our mode expansions (2.46) 
and (2.47) become: 

( ')1/2 (')1/2 1 XM(z, z) = xM - i ~ 0:6 in zz + i ~ L -0:~ (z-n + Z-n) , 
2 2 n:r'O n 

(2.83) 

o ------ 'IT a 

Fig. 2.5. The strip diagram is conformal to the upper half of the complex 
plane and the disc. 
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(XJ Xl 
XO 

~ 

Fig. 2.6. Mapping any number of external string states to the sphere or 
disc using conformal transformations. 

for the open string, and for the closed: 

1 (ex') 1/2 (ex/) 1/2 1 
XM (z) = -xM - i-aM In z + i - """"' -aM z-n 

R 2 2 0 2 ~n n , 
n#O 

(2.84) 

where we have used the zero mode relations (2.48). In fact, notice that: 

(2.85) 

and that we can invert these to get (for the closed string) 

which are non-zero for n 2: O. This is suggestive: equations (2.85) define 
left-moving (holomorphic) and right-moving (anti-holomorphic) fields. 
We previously employed the objects on the left in (2.86) in making states 
by acting, e.g. ex~110; k). The form of the right hand side suggests that 
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this is equivalent to performing a contour integral around an insertion of a 
pointlike operator at the point z in the complex plane (see figure 2.7). For 
example, a~l is related to the residue ozXIL(O), while the a~m correspond 
to higher derivatives 0;: XIL(O). This is course makes sense, as higher lev­
els correspond to more oscillators excited on the string, and hence higher 
frequency components, as measured by the higher derivatives. The state 
with no oscillators excited (the tachyon), but with some momentum k, 
simply corresponds in this dictionary to the insertion of 

10; k) (2.87) 

We have integrated over the insertions' position on the sphere since the 
result should not depend upon our parameterisation. This is reasonable, 
as it is the simplest form that allows the right behaviour under transla­
tions: A translation by a constant vector, XIL ---+ XIL + AIL, results in a 
multiplication of the operator (and hence the state) by a phase eikA . The 
normal ordering signs :: are there to remind us that the expression means 
to expand and keep all creation operators to the left, when expanding in 
terms of the a±mS. 

The closed string level one vertex operator corresponds to the emission 
or absorption of GILV , E ILv and <1>: 

(2.88) 

where the symmetric part of (ILV is the graviton and the antisymmetric 
part is the antisymmetric tensor. 

t 
~!lVa~l a~lIO;k) 

Fig. 2.7. The correspondence between states and operator insertions. A 
closed string (graviton) state (ILVa~l 0:~110; k) is set up on the closed string 
at T = -00 and it propagates in. This is equivalent to inserting a graviton 
vertex operator VILV(z) =: (ILVozXIL8:zXveik.X : at z = O. 
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For the open string, the story is similar, but we get two copies of the 
relations (2.86) for the single set of modes O:~n (recall that there are 
no as). This results in, for example the relation for the photon: 

(2.89) 

where the integration is over the position of the insertion along the 
real axis. Also, at means the derivative tangential to the boundary. The 
tachyon is simply the boundary insertion of the momentum: eik.X : alone. 

2.5 Chan-Paton factors 

Let us endow the string endpoints with a slightly more interesting prop­
erty. We can add non-dynamical degrees of freedom to the ends of the 
string without spoiling spacetime Poincare invariance or world-sheet con­
formal invariance. These are called 'Chan-Paton' degrees of freedom22 

and by declaring that their Hamiltonian is zero, we guarantee that they 
stay in the state that we put them into. In addition to the usual Fock 
space labels we have been using for the state of the string, we ask that 
each end be in a state i or j for i, j from 1 to N (see figure 2.8). We use 
a family of N x N matrices, Aij' as a basis into which to decompose a 
string wavefunction 

N 

Ik; a) = L Ik, ij)Aij · (2.90) 
i,j=l 

These wavefunctions are called 'Chan-Paton factors'. Similarly, all open 
string vertex operators carry such factors. For example, consider the tree­
level (disc) diagram for the interaction of four oriented open strings in 
figure 2.9. As the Chan-Paton degrees of freedom are non-dynamical, the 
right end of string number 1 must be in the same state as the left end of 
string number 2, etc., as we go around the edge of the disc. After summing 
over all the possible states involved in tying up the ends, we are left with 
a trace of the product of Chan-Paton factors, 

(2.91) 

j 

Fig. 2.8. An open string with Chan-Paton degrees of freedom. 
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2 

4 

Fig. 2.9. A four-point scattering of open strings, and its conformally re­
lated disc amplitude. 

All open string amplitudes will have a trace like this and are invariant 
under a global (on the world-sheet) U(N): 

(2.92) 

under which the endpoints transform as Nand N. 
Notice that the massless vector vertex operator vaIL = A'ij 3t XIL exp X 

(ik· X) transforms as the adjoint under the U(N) symmetry. This means 
that the global symmetry of the world-sheet theory is promoted to a gauge 
symmetry in spacetime. It is a gauge symmetry because we can make a 
different U(N) rotation at separate points XIL((J, T) in spacetime. 

2.6 Unoriented strings 

2.6.1 Unoriented open strings 

There is an operation of world-sheet parity 0 which takes (J -----+ 'IT - (J, on 
the open string, and acts on z = eT - iCT as z +--+ -z. In terms of the mode 
expansion (2.83), XIL(z, z) -----+ XIL( -z, -z) yields 

XIL -----+ xIL 

pIL -----+ pIL 

o:~ -----+ (-1 )mo:~. (2.93) 

This is a global symmetry of the open string theory and so we can, if we 
wish, also consider the theory that results when it is gauged, by which we 
mean that only O-invariant states are left in the spectrum. We must also 
consider the case of taking a string around a closed loop. It is allowed to 
come back to itself only up to an over all action of 0, which is to swap 
the ends. This means that we must include unoriented world-sheets in 
our analysis. For open strings, the case of the Mobius strip is a useful 
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example to keep in mind. It is on the same footing as the cylinder when 
we consider gauging O. The string theories which result from gauging 0 
are understandably called 'unoriented string theories'. 

Let us see what becomes of the string spectrum when we perform this 
projection. The open string tachyon is even under 0 and so survives the 
projection. However, the photon, which has only one oscillator acting, 
does not: 

Olk) = +Ik) 

OO:~llk) = -O:~llk). (2.94) 

We have implicitly made a choice about the sign of 0 as it acts on the vac­
uum. The choice we have made in writing equation (2.94) corresponds to 
the symmetry of the vertex operators (2.89): the resulting minus sign 
comes from the orientation reversal on the tangent derivative at (see 
figure 2.10). 

Fortunately, we have endowed the string's ends with Chan-Paton fac­
tors, and so there is some additional structure which can save the photon. 
While 0 reverses the Chan-Paton factors on the two ends of the string, 
it can have some additional action: 

(2.95) 

This form of the action on the Chan-Paton factor follows from the re­
quirement that it be a symmetry of the amplitudes which have factors 
like those in equation (2.91). 

If we act twice with 0, this should square to the identity on the fields, 
and leave only the action on the Chan-Paton degrees of freedom. States 
should therefore be invariant under: 

(2.96) 

Fig. 2.10. The action of 0 on the photon vertex operator can be deduced 
from seeing how exchanging the ends of the string changes the sign of the 
tangent derivative, at. 
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Now it should be clear that the A must span a complete set of N x N 
matrices: If strings with ends labelled ik and jl are in the spectrum for 
any values of k and l, then so is the state ij. This is because jl implies lj 
by CPT, and a splitting-joining interaction in the middle gives ik + lj ----+ 

ij + lk. 
Now equation (2.96) and Schur's lemma require M M-T to be propor­

tional to the identity, so M is either symmetric or antisymmetric. This 
gives two distinct cases, modulo a choice of basis24. Denoting the n x n 
unit matrix as In, we have the symmetric case: 

(2.97) 

In order for the photon Aija~llk, ij) to be even under 0 and thus survive 
the projection, A must be antisymmetric to cancel the minus sign from 
the transformation of the oscillator state. So A = -AT, giving the gauge 
group SO(N). For the antisymmetric case, we have: 

M = _MT = i [ 0 IN/2]. 
-IN / 2 0 

(2.98) 

For the photon to survive, A = -MAT M, which is the definition of the 
gauge group USp(N). Here, we use the notation that USp(2) == SU(2). 
Elsewhere in the literature this group is often denoted Sp(N/2). 

2.6.2 Unoriented closed strings 

Turning to the closed string sector. For closed strings, we see that the 
mode expansion (2.84) for XM(z, z) = Xi(z) + X~(z) is invariant under 
a world-sheet parity symmetry (J" ----+ -(J", which is z ----+ -z. (We should 
note that this is a little different from the choice of 0 we took for the 
open strings, but more natural for this case. The two choices are related 
to each other by a shift of 'IT.) This natural action of 0 simply reverses 
the left- and right-moving oscillators: 

0: (2.99) 

Let us again gauge this symmetry, projecting out the states which are 
odd under it. Once again, since the tachyon contains no oscillators, it is 
even and is in the projected spectrum. For the level one excitations: 

(2.100) 

and therefore it is only those states which are symmetric under fL ----+ 1/ - the 
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graviton and dilaton - which survive the projection. The antisymmetric 
tensor is projected out of the theory. 

2.6.3 Warld-sheet diagrams 

As stated before, once we have gauged D, we must allow for unoriented 
world-sheets, and this gives us rather more types of string world-sheet 
than we have studied so far. Figure 2.11 depicts the two types of one-loop 
diagram we must consider when computing amplitudes for the open string. 
The annulus (or cylinder) is on the left, and can be taken to represent an 
open string going around in a loop. The Mobius strip on the right is an 
open string going around a loop, but returning with the ends reversed. 
The two surfaces are constructed by identifying a pair of opposite edges 
on a rectangle, one with and the other without a twist. 

Figure 2.12 shows an example of two types of closed string one-loop 
diagram we must consider. On the left is a torus, while on the right is a 
Klein bottle, which is constructed in a similar way to a torus save for a 
twist introduced when identifying a pair of edges. 

In both the open and closed string cases, the two diagrams can be 
thought of as descending from the oriented case after the insertion of the 
normalised projection operator ~Tr(l + D) into one-loop amplitudes. 

Similarly, the unoriented one-loop open string amplitude comes from 
the annulus and Mobius strip. We will discuss these amplitudes in more 
detail later. 

The lowest order unoriented amplitude is the projective plane ffiJp'2, 
which is a disk with opposite points identified (see figure 2.13). Shrinking 

II \ II 

(a) (h) 

Fig. 2.11. (a) Constructing a cylinder or annulus by identifying a pair of 
opposite edges of a rectangle. (b) Constructing a Mobius strip by identi­
fying after a twist. 
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I' 

Ca) (h) 

Fig. 2.12. (a) Constructing a torus by identifying opposite edges of a 
rectangle. ( b) Constructing a Klein bottle by identifying after a twist. 

Fig. 2.13. Constructing the projective plane ffiJp'2 by identifying opposite 
points on the disk. This is equivalent to a sphere with a crosscap insertion. 

the identified hole down, we recover the fact that lRP2 may be thought of 
as a sphere with a crosscap inserted, where the crosscap is the result of 
shrinking the identified hole. Actually, a Mobius strip can be thought of as 
a disc with a crosscap inserted, and a Klein bottle is a sphere with two 
crosscaps. Since a sphere with a hole (one boundary) is the same as a disc, 
and a sphere with one handle is a torus, we can classify all world-sheet 
diagrams in terms of the number of handles, boundaries and crosscaps that 
they have. Insert 2.4 (p.57) summaries all the world-sheet perturbation 
theory diagrams up to one loop. 

2.7 Strings in curved backgrounds 

So far, we have studied strings propagating in the (uncompactified) 
target spacetime with metric rJ/Lv. While this alone is interesting, it is 
curved backgrounds of one sort or another which will occupy much of 
this book, and so we ought to see how they fit into the framework 
so far. 
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Insert 2.4. World-sheet perturbation theory diagrams 

It is worthwhile summarising all of the string theory diagrams up to 
one-loop in a table. Recall that each diagram is weighted by a factor 
g~ = g;h-2+b+c where h, b, c are the numbers of handles, boundaries 
and crosscaps, respectively. 

gs-"L gs-l g~ 

sphere S2 torus T2 

closed 
(plane) 

0 0 oriented 

disc D2 cylinder C2 
(half-plane) (annulus) 

open 

0 0 oriented 

projective 
plane ffiJp'2 Klein bottle KB 

closed 

0 0 unoriented 

Mobius strip MS 

open 

0 unoriented 
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A natural generalisation of our action is simply to study the 'o--model' 
action: 

(2.101) 

Comparing this to what we had before (2.21), we see that from the two 
dimensional point of view this still looks like a model of D bosonic fields 
XJ-L, but with field dependent couplings given by the non-trivial spacetime 
metric GJ-Lv(X). This is an interesting action to study. 

A first objection to this is that we seem to have cheated somewhat: 
strings are supposed to generate the graviton (and ultimately any curved 
backgrounds) dynamically. Have we cheated by putting in such a back­
ground by hand? Or a more careful, less confrontational question might 
be: is it consistent with the way strings generate the graviton to introduce 
curved backgrounds in this way? 

Well, let us see. Imagine, to start off, that the background metric is 
only locally a small deviation from fiat space: GJ-Lv(X) = rJJ-LV + hJ-Lv(X) , 
where h is small. 

Then, in conformal gauge, we can write in the Euclidean path integral 
(2.36): 

e-S ", = e-s (1 + 4:0:/ J d2zhJ-Lv(X)8zXJ-L8zXV + ... ) , (2.102) 

and we see that if hJ-Lv(X) ex: gS(J-LV exp( ik . X), where ( is a symmetric 
polarisation matrix, we are simply inserting a graviton emission vertex 
operator. So we are indeed consistent with that which we have already 
learned about how the graviton arises in string theory. Furthermore, the 
insertion of the full GJ-Lv(X) is equivalent in this language to inserting 
an exponential of the graviton vertex operator, which is another way of 
saying that a curved background is a 'coherent state' of gravitons. 

It is clear that we should generalise our success, by including o--model 
couplings which correspond to introducing background fields for the an­
tisymmetric tensor and the dilaton: 

SIJ = 4:0:/ J d2o- gl/2 {(gabGJ-Lv(X) + iEab EJ-LV (X)) 8aXJ-L8bXV + o:'if>R} , 

(2.103) 

where EJ-Lv is the background antisymmetric tensor field and if> is the 
background value of the dilaton. The coupling for EJ-Lv is a rather straight­
forward generalisation of the case for the metric. The power of 0:/ is there 
to counter the scaling of the dimension one fields XJ-L, and the antisym­
metric tensor accommodates the antisymmetry of E. For the dilaton, a 
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coupling to the two dimensional Ricci scalar is the simplest way of writing 
a reparametrisation invariant coupling when there is no index structure. 
Correspondingly, there is no power of ex' in this coupling, as it is already 
dimensionless. 

N.B. It is worth noting that 0' is rather like n. for this two dimensional 
theory, since the action is very large if 0' ----+ 0, and so this is a good 
limit to expand around. In this sense, the dilaton coupling is a one­
loop term. Another thing to notice is that the 0' ----+ 0 limit is also like 
a 'large spacetime radius' limit. This can be seen by scaling lengths 
by G jJ.V ----+ r2G jJ.V' which results in an expansion in 0' / r2. Large radius 
is equivalent to small 0'. 

The next step is to do a full analysis of this new action and ensure that 
in the quantum theory, one has Weyl invariance, which amounts to the 
tracelessness of the two dimensional stress tensor. Calculations (which we 
will not discuss here) reveal that: 

(2.104) 

(if V = 0' (RjJ.v+2\7jJ.\7v<I>-lHjJ./W"Hv",rJ) +0(0'2), 

{3ffv = 0' ( -~ \7K HKjJ.v + \7K<I> HKjJ.// ) + 0(0'2), (2.105) 

{3 iP = 0' (D - 26 _ ~\72<I> + \7 <I>\7 K<I> _ ~H HKjJ.//) + 0(0'2) 
60' 2 K 24 KjJ.// , 

with HjJ.VK == 8jJ.B//K + 8//BKjJ. + 8KBjJ.//. For Weyl invariance, we ask that 
each of these {3-functions for the cr-model couplings actually vanish. (See 
insert 3.1 for further explanation of this.) The remarkable thing is that 
these resemble spacetime field equations for the background fields. These 
field equations can be derived from the following spacetime action: 

S = - dD X(_G)1/2e- 2iP R + 4\7 <I>\7jJ.<I> - -H HjJ.//A 1 j. [ 1 
21\;6 jJ. 12 jJ.//A 

_ 2(D - 26) + 0(0')] . ( ) 30' 2.106 
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N.B. Now we note something marvellous: 1> is a background field 
which appears in the closed string theory cr-model multiplied by the 
Euler density. So comparing to equation (2.35) (and discussion fol­
lowing), we recover the remarkable fact that the string coupling gs is 
not fixed, but is in fact given by the value of one of the background 
fields in the theory: gs = e(iP). So the only free parameter in the 
theory is the string tension. 

Turning to the open string sector, we may also write the effective action 
which summarises the leading order (in a/) open string physics at tree 
level: 

(2.107) 

with C a dimensionful constant which we will fix later. It is of course of 
the form of the Yang-Mills action, where FI-LV = 3J-tAv - 3vAw The field 
AJ-t is coupled in cr-model fashion to the boundary of the world sheet by 
the boundary action: 

r dT AJ-t3t X J-t, 
JaM 

mimicking the form of the vertex operator (2.89). 

(2.108) 

One should note the powers of eiP in the above actions. Recall that the 
expectation value of eiP sets the value of gs. We see that the appearance 
of 1> in the actions are consistent with this, as we have e-2iP in front of 
all of the closed string parts, representing the sphere (g;2) and e- iP for 
the open string, representing the disc (g; 1 ). 

Notice that if we make the following redefinition of the background 
fields: 

GJ-tv(X) = e2r2(X)GJ-tv = e4 (iPo-iP)/(D-2)GJ-tv, (2.109) 

and use the fact that the new Ricci scalar can be derived using: 

(2.110) 

the action (2.106) becomes: 

S = - d X(-G) R - --\7 1>\7J-t1> 1 j' D - 1/2 [ - 4 --
2",,2 D - 2 J-t 

(2.111) 

_ ~e-8<I>/(D-2) H HJ-tl/A _ 2(D - 26) e4<I>/(D-2) + o(a/)] 
12 J-tl/A 3a' ' 
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with <1> = <1> - <1>0. Looking at the part involving the Ricci scalar, we see 
that we have the form of the standard Einstein-Hilbert action (i.e. we 
have removed the factor involving the dilaton <1», with Newton's constant 
set by 

(2.112) 

The standard terminology to note here is that the action (2.106) written 
in terms of the original fields is called the 'string frame action', while the 
action (2.111) is referred to as the 'Einstein frame action'. It is in the 
latter frame that one gives meaning to measuring quantities like gravita­
tional mass-energy. It is important to note the means, equation (2.109), 
to transform from the fields of one to another, depending upon dimension. 

2.8 A quick look at geometry 

Now that we are firmly in curved spacetime, it is probably a good idea 
to gather some concepts, language and tools which will be useful to us in 
many places later on. We have already reminded ourselves in chapter 1 of 
aspects of the classical differential geometry that is used to formulate the 
dynamics of gravity, introducing the metric, affine connection, Riemann 
tensors, etc. We will have reason to use another very pleasant way of 
writing of the various geometrical objects which appear in dynamical 
gravity, so we will quickly review it now, visiting a few other useful objects 
like differential forms along the way. 

2. 8.1 Working with the local tangent frames 

We can introduce 'vielbeins' which locally diagonalise the metric§: 

gMU(x) = 'Tlabe~(x)e~(x). 

The vielbeins form a basis for the tangent space at the point x, and 
orthonormality gives 

a ( ) Mb( ) _ ab eM x e x - rl . 

These are interesting objects, connecting curved and tangent space, 
and transforming appropriately under the natural groups of each (see 
figure 2.14). It is a covariant vector under general coordinate transforma­
tions x ---+ x': 

a 'a 3xu a 
eM ---+ eM = 3x'M eu, 

§ 'Vielbein' means 'many legs', adapted from the German. In D = 4 it is called a 'vier­
bein'. We shall offend the purists henceforth and not capitalise nouns taken from the 
German language into physics, such as 'ansatz', 'bremsstrahlung' and 'gedankenex­
periment'. 
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xA) 
e~ 

Fig. 2.14. The local tangent frame to curved spacetime is a copy of 
Minkowski space, upon which the Lorentz group acts naturally. 

and a contravariant vector under local Lorentz: 

e~(x) --+ e~(x) = Aab(x)e~(x), 

where Aab(x)Ac d(X)T/ac = T/bd defines A as being in the Lorentz group 
50(1, D-1). 

So we have the expected freedom to define our vielbein up to a local 
Lorentz transformation in the tangent frame. In fact the condition A is 
a Lorentz transformation guarantees that the metric is invariant under 
local Lorentz: ,a ,b ( ) 

9/1,1/ = rlabe J-ie v' 2.113 

Notice that we can naturally define a family of inverse vielbiens as well, 
by raising and lowering indices in the obvious way, e~ = rlabgJ-iv e~. (We 
use the same symbol for the vielbien, but the index structure will make 
it clear what we mean.) Clearly, 

(2.114) 

In fact, the vielbien may be thought of as simply the matrix of coeffi­
cients of the transformation (discussed in insert 1.2) which finds a locally 
inertial frame ~a(x) from the general coordinates xJ-i at the point x = Xo: 

which, by construction, has the transformation properties ascribed to it 
above. 
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As a not-unrelated aside, note that the prototype contravariant vector 
in curved spacetime is in fact the object whose components are the in­
finitessimal coordinate displacements, dxIL , since by the elementary chain 
rule, under x ----+ Xl: 

axllL 
d IL d IlL 'd v x ----+ x =-- x 

axv 
(2.115) 

They are often thought of as the coordinate basis elements, {dxIL }, for 
the 'cotangent' space at the point x, and are a natural dual coordinate 
basis to that of the tangent space, the objects {a/axIL}, via the perhaps 
obvious relation: 

a d v xV 
axIL' x = Uw (2.116) 

Of course, the {a/axIL} are the prototype covariant vectors: 

a a axv a 
-- ----+ -- = ----
axIL axllL ax IlL axv ' 

(2.117) 

The things we usually think of as vectors in curved spacetime have a 
natural expansion in terms of these bases: 

V=VIL~ 
axIL' 

where the latter is sometimes called a 'covector', and is also m fact a 
one-form. 

2.8.2 Differential forms 

Since we've seen some one-forms appearing, let's pause to introduce them 
properly, if briefly. As might be apparent, it is the dxIL which are useful 
for constructing p-forms, objects whose components are rank p tensors 
which are totally antisymmetric'lf. 

As already stated, the dxIL are themselves the basis for one-forms. Any 
one-form A has components AIL and is expanded A = AILdxIL . To make 
higher rank forms, we need the idea of the wedge product /\. The basis 
for two-forms for example, is made by the antisymmetric tensor product 

dXIL /\ dxv == dxIL Q9 dxv - dxv Q9 dxIL = -dxv /\ dxIL , 

and we may then define a two-form F to have totally antisymmetric com­
ponents FILv , so that F = (FlLv/2)dxIL /\ dxv. After noting paranthetically 

'\I We will not give an exhaustive account of these objects here, but enough detail to 
get an intuitive feel for what we need. We shall uncover more features as we need 
them. 
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and for completeness that ordinary functions are zero-forms, the gener­
alisation to higher rank forms is obvious: we make a basis for a p-form 
by making a totally antisymmetric combination of tensor multiplications 
of the one-forms, by adding together the results of taking products in all 
possible permutations, including a result with a minus sign if the permu­
tation is odd, and a plus sign if it is even, giving us for example: 

dX/L 1 /\ d X/L 2 /\ d X/L3 

== dxiLl Q9 d X/L2 Q9 d X/L3 + d x 1L2 Q9 d X /L3 Q9 dxiLl + d X/L3 Q9 dxiLl Q9 d x 1L2 

-dX/L1 Q9 d X /L3 Q9 d X /L2 - d X/L3 Q9 d X/L2 Q9 dX/L 1 - d X /L2 Q9 dX/L 1 Q9 d X/L3 . 

So in general we have, for rank p: 

dx/L 1 /\ d x /L2 /\ ... /\ dx/Lp , 

with which we can define a p-form G(p) with totally antisymmetric com­
ponents G/Ll/L2"'/Lp. We have: 

1 
G - -G dX/L 1 /\ d X /L2 /\ ... /\ dx/Lp (p) - , iLl/L2"'/Lp" , . 

p. 

It is natural to define the 'exterior derivative' which makes a (p + 1)­
form from a p-form: 

dG - ~ ~ (G ) d 1/ /\ d iLl /\ d /L2 /\ ••• /\ d /Lp (p) - p! oxl/ /Ll/L2"'/Lp x X X X . 

Notice that d2 always gives zero, since (as the reader should check) this 
would give a symmetric combination of partial derivatives, which is being 
summed with the antisymmetric basis, which can't help but give zero. 

A form G which can be written everywhere as the result of having acted 
with d on a form of lower rank is said to be 'exact'. A form H for which 
dH = 0 is 'closed'. Exact forms are trivially closed, since d2 = 0, and so 
the interesting exercise is to find the closed forms on a space which are 
not exact. This is a problem of cohomology, and we shall have some more 
to say about this matter in chapter 9. 

Forms are extremely natural objects to integrate over some manifold, M. 
In fact, a manifold of dimension p has a natural form defined on it, of rank 
p, which is simply the volume form, w = dx 1 /\ . .. /\ dxp . All p-forms on M 
are made by taking this object and multiplying it by some function. So 
the meaning of integrating a p-form on a manifold of dimension p is simply 
the standard multiple integration of the function: 

1M F(p) == j~ :! F/Ll"'/Lpdx/Ll /\ ... /\ dx/Lp 

= j~ Fl ... pdx1 /\ ... /\ dxP = j~ F1"'pdPx, 
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where the reader should notice that this required no metric on the mani­
fold to be defined at all. Putting this observation together with the state­
ments about cohomology, it should be apparent that forms give tools for 
computing topological properties of manifolds, since they can be inte­
grated on various submanifolds to give numbers, and we never have to 
specify a metric. 

The wedge or exterior product between a p-form and a q-form, which 
gives a (p + q) form, is straightforward to define. On components, the 
result is: 

(p + q)! 
(A(p) 1\ B(q))I-'ULp+q = p!q! A[l-'l"'l-'pBl-'p+1"'h+q]' 

It is worth noting that 

A(p) 1\ B(q) = (-1 )pq B(q) 1\ A(p). 

More subtle is the observation that the space of independent p-forms 
on a D-dimensional spacetime is in fact of the same dimension as that of 
the D - p-forms. There is a map which takes one into the other, called 
'Hodge duality', which takes any p-form and gives back a (D - p)-form. 
On the basis it is: 

* (dxl-'l 1\ dXl-'2 1\ . . . 1\ dxl-'p) = 

( ) 1/2 
-g EI-'11-'2"'l-'p dXl-'p+1 1\ dXl-'p+2 1\ ... 1\ dXI-'D (D _ p)! I-'p+1l-'p+2"'I-'D " . , 

from which its action on components of any form gives: 

*G _ (_g)1/2 Vl'''VpG 
1-'1'''I-'D-p - ,El-'l'''I-'D_p Vl'''Vp' p. 

Notice that it is the totally antisymmetric tensor (normalised to unity 
for its non-zero components) which appears in this definition, and indices 
are raised and lowered with the metric. 

A most useful object is the 'inner product' between two p-forms, A(p) 

and B(p), which yields a number. It is defined as: 

(A B ) =/A I\*B - '/(- )1/2A BI-'l1-'2'''d 11\ ... d D (p), (p) - M (p) (p) - p. M 9 1-'11-'2'" X X . 

2.8.3 Coordinate vs. orthonormal bases 

Yet another way of thinking of the vielbiens is as a means of converting 
that coordinate basis into a basis for the tangent space which is orthonor­
mal, via {ea = e~ (x )dxl-'}. We see that we have defined a natural family of 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


66 2 Relativistic strings 

Insert 2.5. Yang-Mills theory with forms 

Just in case differential forms which we are briefly introducing have 
not been encountered before, let us familiarise ourselves with how 
they work using Yang-Mills theory as an example. The gauge po­
tential, which is valued in the Lie algebra of some gauge group G 
can be written as a matrix-valued one-form: A = ta A~dx/L, where 
the ta are generators of the Lie algebra. (The index a here is a label 
of generators in the adjoint representation of the Yang-Mills gauge 
group G.) Recall also that the generators of the Lie algebra satisfy 

where the jabc are the 'structure constants'. We shall discuss some Lie 
algebra and group theory more carefully in section 4.6.1. 
We write the Yang-Mills field strength as a matrix-valued 2-form: 

1 
F = dA + A /\ A = Fata = 2ta F:vdx/L /\ dxv, 

where F:v = 8/LA~ - 8vA~ + irbcAtA~. 

Note that we'll sometimes suppress the /\ and write F = dA + A2 for 
short. 
A gauge transformation is 

or infinitessimally, writing L: = e-A , it is: 

DA = dA+ [A,A]. 

The field strength transforms under this as 

F ---+ L:FL:-1 . , or DF = [F,A]. 

The action for the theory is 

where by Tr(F2) we mean F:vFb/LVTr(tatb) and the trace is on the 
gauge indices. Here g?M is the Yang-Mills coupling. 
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one-forms. Similarly, using the inverse vielbiens, we can make an orthonor­
mal basis for the dual tangent space via ea = e~a / axl". 

As an example, for the two-sphere, S2, of radius R, the metric in stan­
dard polar coordinates (B, rp) is ds2 = R2 (dB2 + sin 2 Bdrp2) and so we have: 

e~ = R, e~ = RsinB, i.e. e1 = RdB, e2 = RsinBdrp. (2.118) 

The things we think of as vectors, familiar from flat space, now have 
two natural settings. In the local frame, there is the usual vector prop­
erty, under which the vector has Lorentz contravariant components Va(x). 
But we can now relate this component to another object which has an in­
dex which is contravariant under general coordinate transformations, VI". 
These objects are related by our handy vielbiens: Va(x) = e~(x)VI". 

2.8.4 The Lorentz group as a gauge group 

The standard covariant derivative which we defined earlier in equation 
(1.9), e.g. on a contravariant vector VI", has a counterpart for va = e~VI": 

Dv VI" = av VI" + r~1i: Vii: ::::} Dv Va = av Va + Wabv Vb, 

where Wabv is the spin connection, which we can write as a I-form in either 
basis: 

a a d I" a I" Cd v a C W b = W bl" X = W bl"ec ev X = W bce . 

We can think of the two Minkowski indices (a, b) from the space tangent 
structure as labelling components of W as an SO(D-l, 1) matrix in the 
fundamental representation. So in the analogy with Yang-Mills theory, 
(see insert 2.5), wI" is rather like a gauge potential and the gauge group 
is the Lorentz group. 

Actually, the most natural appearance of the spin connection is in the 
structure equations of Cartan. One defines the torsion T a , and the curva­
ture Rab, both two-forms, as follows: 

(2.119) 

Now consider a Lorentz transformation ea ---+ e1a = Aabeb. It is amusing 
to work out how the torsion changes. Writing the result as T'a = A abTb, 
the reader might like to check that this implies that the spin connection 
must transform as (treating everything as SO(I, D - 1) matrices): 

W ---+ AwA -1 - dA . A-I, i.e. wI" ---+ AWI"A -1 - al"A . A-I, (2.120) 
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or infinitessimally we can write A = e-8 , and it is: 

Ow = d8 + [w, 8]. (2.121) 

A further check shows that the curvature two-form does 

R ----+ R' = ARA -1, or oR = [R,8], (2.122) 

which is awfully nice. This shows that the curvature two-form is the ana­
logue of the Yang-Mills field strength two-form in insert 2.5. The following 
rewriting makes it even more suggestive: 

2.8.5 Fermions in curved spacetime 

Another great thing about this formalism is that it allows us to discuss 
fermions in curved spacetime. Recall first of all that we can represent the 
Lorentz group with the r-matrices as follows. The group's algebra is: 

(2.123) 

with Jab = -Jba, and we can define via the Clifford algebra: 

(2.124) 

where the curved space r-matrices are related to the familiar flat (tan­
gent) spacetime ones as r a = e~(x)rM(x), giving {rM, rU} = 2gMU . With 
the Lorentz generators defined in this way, it is now natural to couple a 
fermion 'IjJ to spacetime. We write a covariant derivative as 

(2.125) 

and since the curved space r-matrices are now covariantly constant, we 
can write a sensible Dirac equation using this: r M DM'I/J = O. 

2.8.6 Comparison to differential geometry 

Let us make the connection to the usual curved spacetime formalism now, 
and fix what w is in terms of the vielbiens (and hence the metric). Asking 
that the torsion vanishes is equivalent to saying that the vielbeins are 
covariantly constant, so that DMee = O. This gives DM va = eau DM Vu , 
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allowing the two definitions of covariant derivatives to be simply related 
by using the vielbeins to convert the indices. 

The fact that the metric is covariantly constant in terms of curved 
spacetime indices relates the affine connection to the metric connection, 
and in this language makes wab antisymmetric in its indices. Finally, we 
get that 

a an 1/ a(3 1/ rl/ "') w b{l = el/ v {leb = el/ {leb + {l",eb . 

We can now write covariant derivatives for objects with mixed indices 
(appropriately generalising the rule for terms to add depending upon the 
index structure), for example, on a vielbien: 

(2.126) 

Revisiting our two-sphere example, with bases given in equation (2.118), 
we can see that 

o = del + W 12 /\ e2 = 0 + W 12 /\ e2, 

o = de2 + W 21 /\ e1 = Rcosede /\ d¢; + W 21 /\ el, 

from which we see that W 12 = -cos e d¢;. The curvature is: 

R 1 d 1 . ede d-+. 1 1 2 R1 1 2 2 = W 2 = SIn /\ <p = R2 e /\ e = 212e /\ e . 

(2.127) 

(2.128) 

Notice that we can recover our friend the usual Riemann tensor if we 
pulled back the tangent space indices (a, b) on Rab{ll/ to curved space 
indices using the vielbiens e~. 

One last thing to note is the usefulness of forms for writing volume 
elements for integration: 

Commonly, we will take the totally antisymmetric symbol E and make 
a tensor out of it by multiplying by (-g) 1/2, defining: 

and the reader should check that this is a tensor, noting that the factor of 
the tensor density (_g)1/2 will produce just the right non-tensorial parts 
to cancel those of the permutation symbol. 

We can write the Einstein-Hilbert Lagrangian as: 

I: rv eR, (2.129) 

where R is the Ricci scalar, with dea+wea = 0 as an additional condition. 
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3 
A closer look at the world-sheet 

The careful reader has patiently suspended disbelief for a while now, al­
lowing us to race through a somewhat rough presentation of some of the 
highlights of the construction of consistent relativistic strings. This en­
abled us, by essentially stringing lots of oscillators together, to go quite 
far in developing our intuition for how things work, and for key aspects 
of the language. 

Without promising to suddenly become rigourous, it seems a good idea 
to revisit some of the things we went over quickly, in order to unpack 
some more details of the operation of the theory. This will allow us to 
develop more tools and language for later use, and to see a bit further 
into the structure of the theory. 

3.1 Conformal invariance 

We saw in section 2.2.8 that the use of the symmetries of the action to fix a 
gauge left over an infinite dimensional group of transformations which we 
could still perform and remain in that gauge. These are conformal trans­
formations, and the world-sheet theory is in fact conform ally invariant. 
It is worth digressing a little and discussing conformal invariance in arbi­
trary dimensions first, before specialising to the case of two dimensions. 
We will find a surprising reason to come back to conformal invariance in 
higher dimensions much later, so there is a point to this. 

3.1.1 Diverse dimensions 

Imagine275 that we do a change of variables x ----+ x'. Such a change, if 
invertible, is a 'conformal transformation' if the metric is invariant up to 
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an overall scale D(x), which can depend on position: 

g~,Axl) = D(x)g/Lv(x). (3.1 ) 

The name comes from the fact that angles between vectors are unchanged. 
If we consider the infinitessimal change 

(3.2) 

then from equation (1.1), we get: 

(3.3) 

and so we see that in order for this to be a conformal transformation, 

(3.4) 

where, by taking the trace of both sides, it is clear that: 

( ) _ 2 /LV::; 
F x - D g U/LEv . 

It is enough to consider our metric to be Minkowski space, in Cartesian 
coordinates, i.e. g/LV = TJ/Lv. We can take one more derivative OK of the 
expression (3.4), and then do the permutation of indices", ----+ fL, fL ----+ 

v, v ----+ '" twice, generating two more expressions. Adding together any 
two of those and subtracting the third gives: 

(3.5) 

which yields 
(3.6) 

We can take another derivative this expression to get 2o/LDEK = (2-
D)O/LOKF, which should be compared to the result of acting with D on 
equation (3.4) to eliminate E leaving: 

where we have obtained the last result by contraction. 
For general D we see that the last equations above ask that o/LOVF = 0, 

and so F is linear in x. This means that E is quadratic in the coordinates, 
and of the form: 

E/L = A/L + B/Lvxv + C/LVKXVXK, 

where C is symmetric in its last two indices. 

(3.8) 
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Table 3.1. The finite form of the conformal transformations and their infinites­
simal generators 

Operation Action Generator 

translations x'J-L = xJ-L + AJ-L PJ-L = -iaJ-L 

rotations X'J-L = MJ-LvxV LJ-Lv = i(xJ-L8v - xv8J-L) 

dilations x'J-L = AXJ-L D = -ixJ-L8J-L 

special xJ-L - bJ-L x 2 
conformal X'J-L = 

1 - 2(x· b) - bJ-Lx2 
KJ-L = -i(2xJ-Lxv 8v - x 2 8J-L) 

transformations 

The parameter AJ-L is obviously a translation. Placing the E term in 
equation (3.8) back into equation (3.4) yields that EJ-Lv is the sum of an 
antisymmetric part wJ-LV = -WVJ-L and a trace part A: 

(3.9) 

This represents a scale transformation by 1 + A and an infinitessimal 
rotation. Finally, direct substitution shows that 

(3.10) 

and so the infinitesimal transformation which results is of the form 

(3.11) 

which is called a 'special conformal transformation'. Its finite form can be 
written as: 

x'J-L xJ-L 
-' = -' - bJ-L (3.12) 
X '2 x 2 ' 

and so it looks like an inversion, then a translation, and then an inver­
sion. We gather together all the transformations, in their finite form, in 
table 3.l. 

Poincare and dilatations together form a subgroup of the full confor­
mal group, and it is indeed a special theory that has the full conformal 
invariance given by enlargement by the special conformal transformations. 

It is interesting to examine the commutation relations of the generators, 
and to do so, we rewrite them as 

J- 1,J-L = ~(PJ-L - KJ-L)' 
J- 1,0 = D, JJ-LV = LJ-Lv, (3.13) 
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with Jab = -Jba , a, b = -1,0, ... , D, and the commutators are: 

(3.14) 

Note that we have defined an extra value for our indices, and TJ is now 
diag( -1, -1, + 1, ... ). This is the algebra of the group 50(D,2) with 
~(D + 2)(D + 1) parameters. 

3.1.2 The special case of two dimensions 

As we have already seen in section 2.2.8, the conformal transformations 
are equivalent to conformal mappings of the plane to itself, which is an 
infinite dimensional group. This might seem puzzling, since from what 
we saw just above, one might have expected 50(2,2), or in the case 
where we have Euclideanised the world-sheet, 50(3,1), a group with six 
parameters. Actually, this group is a very special subgroup of the infinite 
family, which is distinguished by the fact that the mappings are invertible. 
These are the global conformal transformations. Imagine that w(z) takes 
the plane into itself. It can at worst have zeros and poles, (the map is 
not unique at a branch point, and is not invertible if there is an essential 
singularity) and so can be written as a ratio of polynomials in z. However, 
for the map to be invertible, it can only have a single zero, otherwise 
there would be an ambiguity determining the pre-image of zero in the 
inverse map. By working with the coordinate i = 1/ z, in order to study 
the neighbourhood of infinity, we can conclude that it can only have a 
single simple pole also. Therefore, up to a trivial overall scaling, we have 

az + b 
z ----+ w(z) = --d' 

cz + (3.15) 

where a, b, c, d are complex numbers, with for invert ability, the determi­
nant of the matrix 

should be non-zero, and after a scaling we can choose ad - bc = 1. This is 
the group 5L(2, q which is indeed isomorphic to 50(3,1). In fact, since 
a, b, c, d is indistinguishable from -a, -b, -c, -d, the correct statement is 
that we have invariance under 5L(2, Q/7/.,2. 

For the open string we have the upper half-plane, and so we are re­
stricted to considering maps which preserve (say) the real axis of the 
complex plane. The result is that a, b, c, d must be real numbers, and the 
resulting group of invertible transformations is 5L(2, lR)/7/.,2. Correspond­
ingly, the infinite part of the algebra is also reduced in size by half, as the 
holomorphic and antiholomorphic parts are no longer independent. 
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N.B. Notice that the dimension of the group SL(2, CC) is six, equiva­
lent to three complex parameters. Often, in computations involving 
a number of operators located at points, Zi, a conventional gauge 
fixing of this invariance is to set three of the points to three values: 
Zl = 0, Z2 = 1, Z3 = 00. Similarly, the dimension of SL(2, lR) is three, 
and the convention used there is to set three (real) points on the 
boundary to Zl = 0, Z2 = 1, Z3 = 00. 

3.1.3 States and operators 

A very important class of fields in the theory are those which transform 
under the SO(2, D) conformal group as follows: 

, 1 ax 1% L'>. ¢(x'") ---+ ¢(x '") = ax' ¢(x'") = 02 ¢(x'"). (3.16) 

Here, I g:, I is the Jacobian of the change of variables. (,6, is the dimension 

of the field, as mentioned earlier.) Such fields are called 'quasi-primary', 
and the correlation functions of some number of the fields will inherit such 
transformation properties: 

(3.17) 

In two dimensions, the relation is 

( az)h (az)h ¢(z, z) ---+ ¢(z', 2') = az' az' ¢(z, z), (3.18) 

where ,6, = h + 11" and we see the familiar holomorphic factorisation. This 
mimics the transformation properties of the metric under Z ----+ z' (z): 

, (az) (aZ) gzz = az' az' gzz, 

the conformal mappings of the plane. This is an infinite dimensional fam­
ily, extending the expected six of SO(2, 2), which is the subset which is 
globally well-defined. The transformations (3.18) define what is called a 
'primary field', and the quasi-primaries defined earlier are those restricted 
to SO(2, 2). So a primary is automatically a quasi-primary, but not vice 
versa. 
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In any dimension, we can use the definition (3.16) to construct a def­
inition of a conformal field theory (CFT). First, we have a notion of a 
vacuum 10; that is 50(2, D) invariant, in which all the fields act. In such 
a theory, all of the fields can be divided into two categories: a field is 
either quasi-primary, or it is a linear combination of quasi-primaries and 
their derivatives. Conformal invariance imposes remarkably strong con­
straints on how the two- and three-point functions of the quasi-primary 
fields must behave. Obviously, for fields placed at positions Xi, trans­
lation invariance means that they can only depend on the differences 
Xi - Xj. 

3.1.4 The operator product expansion 

In principle, we ought to be imagining the possibility of constructing 
a new field at the point xiL by colliding together two fields at the same 
point. Let us label the fields as ¢k, then we might expect something of the 
form: 

lim ¢i(X)¢j(Y) = L ci/(x - Y)¢k(Y), 
x---+y k 

(3.19) 

where the coefficients ci/(x-y) depend only on which operators (labelled 
by i, j) enter on the left. Given the scaling dimensions ~i for ¢i, we see 
that the coordinate behaviour of the coefficient should be: 

k 1 
ciJ" (x - y) ;v ( )6+6-6. X-Y , J k 

This 'operator product expansion' (OPE) in conformal field theory is 
actually a convergent series, as opposed to the case of the OPE in ordinary 
field theory where it is merely an asymptotic series. An asymptotic series 
has a family of exponential contributions of the form exp(-L/lx - yl), 
where L is a length scale appropriate to the problem. Here, conformal 
invariance means that there is no length scale in the theory to play the 
role of L in an asymptotic expansion, and so the convergence properties 
of the OPE are stronger. In fact, the radius of convergence of the OPE is 
essentially the distance to the next operator insertion. 

The OPE only really has sensible meaning if we define the operators 
as acting with a specific time ordering, and so we should specify that 
xO > yO in the above. In two dimensions, after we have continued to 
Euclidean time and work on the plane, the equivalent of time ordering is 
radial ordering (see figure 2.4). All OPE expressions written later will be 
taken to be appropriately time ordered. 
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Actually, the OPE is a useful way of giving us a definition of a normal 
ordering prescription in this operator language*. It follows from Wick's 
theorem, which says that the time ordered expression of a product of 
operators is equal to the normal ordered expression plus the sum of all 
contractions of pairs of operators in the expressions. The contraction is a 
number, which is computed by the correlator of the contracted operators. 

(3.20) 

Actually, we can compute the OPE between objects made out of products 
of operators with this sort of way of thinking about it. We'll compute some 
examples later (for example in equations (3.37) and (3.39)) so that it will 
be clear that it is quite straightforward. 

3.1.5 The stress tensor and the Virasoro algebra 

The stress-energy-momentum tensor's properties can be seen directly from 
conformal invariance in many ways, because of its definition as a conjugate 
to the metric via equation (1.10) which we reproduce here: 

T /-w _ 2 DS 
------- A Dg/-w · 

(3.21) 

A change of variables of the form (3.2) gives, using equation (3.3): 

1 J 1 j. S -----+ S -"2 dDxAT/LV Dg/Lv = S + "2 dDxAT/LV (a/LEV + aVE/L) . 

In view of equation (3.4), this is: 

S -----+ S + ~ J dDxH T/L/LaVEv 

for a conformal transformation. So if the action is conformally invariant, 
then the stress tensor must be traceless, T/L/L = O. 

We can formulate this more carefully using Noether's theorem, and also 
extract some useful information. Since the change in the action is 

given that the stress tensor is conserved, we can integrate by parts to 
write this as 

* For free fields, this definition of normal ordering is equivalent to the definition in 
terms of modes, where the annihilators are placed to the right. 
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We see that the current jlL = TILV ElL' with Ev given by equation (3.4) is 
associated to the conformal transformations. The charge constructed by 
integrating over an equal time slice 

Q = J dD-1xJO, 

is conserved, and it is responsible for infinitessimal conformal transforma­
tions of the fields in the theory, defined in the standard way: 

(3.22) 

In two dimensions, infinitesimally, a coordinate transformation can be 
written as 

z ----+ z' = Z + E(Z), Z ----+ z' = Z + E(Z). 

As we saw in the previous chapter, or can be verified using the above 
discussion, the tracelessness condition yields Tzz = Tzz = 0 and the con­
servation of the stress tensor is 

3zTzz (z) = 0 = 3zTzz(z). 

For simplicity, we shall often use the shorthand: T(z) == Tzz(z) and T(z) == 
Tzz (z). On the plane, an equal time slice is over a circle of constant radius, 
and so we can define 

1 f -Q = -. (T(y)E(y)dy + T(y)E(y)dy). 
27TZ 

Infinitesimal transformations can then be constructed by an appropriate 
definition of the commutator [Q, ¢(z)] of Q with a field ¢. 

Notice that this commutator requires a definition of two operators at 
a point, and so our previous discussion of the OPE comes into play here. 
We also have the added complication that we are performing a y-contour 
integration around one of the operators, inserted at z or z. Under the 
integral sign, the OPE requires that Izl < Iyl, when we have Q¢(y), or 
that Izl > Iyl if we have ¢(y)Q. The commutator requires the difference 
between these two, and after consulting figure 3.1, can be seen in the limit 
y ----+ z to simply result in the y contour integral around the point z of the 
OPE T(z)¢(y) (with a similar discussion for the antiholomorphic case): 

1 f -OE,E¢(Z, z) = 27Ti ({T(y)¢(z, z)}E(y)dy + {T(y)¢(z, z)}E(Y)dy). (3.23) 

The result should simply be the infinitesimal version of the defining 
equation (3.18), which the reader should check is: 

(3.24) 
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Fig. 3.1. Computing the commutator between the generator Q, defined 
as a contour in the y-plane, and the operator ¢, inserted at z. The result 
in the limit y -----t Z is on the right. 

This defines the operator product expansions T(z)¢(z, z) and T(z)¢(z, z) 
for us as: 

T(y)¢(z, z) = ( h)2 ¢(z, z) + ( 1 ) 8z ¢(z, z) + ... 
y-z y-z 

- h 1 
T(y)¢(z,z)=(_ -)2¢(z,z)+(- _)8z¢(z,z)+ ... , (3.25) y-z y-z 

where the ellipsis indicates that we have ignored parts which are regular 
(analytic). These OPEs constitute an alternative definition of a primary 
field with holomorphic and antiholomorphic weights h, 17, often referred 
to simply as an (h,17.) primary. 

We are at liberty to Laurent expand the infinitesimal transformation 
around (z, z) = 0: 

CXl CXl 

E(Z) = - L E(Z) = - L - -n+l anz , 
n=-CXl n=-CXl 

where the an, an are coefficients. The quantities which appear as genera­
tors, f.n = zn+18z , In = zn+18z, satisfy the commutation relations 

[f.n, f.m] = (n - m)f.n+m, 

[f.n,lml = 0, 

[In, lml = (n - m)ln+m, (3.26) 

which is the classical version of the Virasoro algebra we saw previously in 
equation (2.63), or the quantum case in equation (2.71) with the central 
extension, c = C = O. 
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Now we can compare with what we learned here. It should be clear af­
ter some thought that f-1' fo, f1 and their antiholomorphic counterparts 
form the six generators of the global conformal transformations generating 
SL(2, CC) = SL(2, lR) x SL(2, lR). In fact, L1 = 3z and L1 = 3z generate 
translations, fo + lo generates dilations, i(fo - lo) generates rotations, 
while f1 = z23z and II = z23z generate the special conformal transfor­
mations. 

Let us note some useful pieces of terminology and physics here. Recall 
that we had defined physical states to be those annihilated by the fn, fn 
with n > O. Then fo and fo will measure properties of these physical 
states. Considering them as operators, we can find a basis of fo and fo 
eigenstates, with eigenvalues hand h (two independent numbers), which 
are the 'conformal weights' of the state: folh) = hlh), lolh) = hlh). Since 
the sum and difference of these operators are the dilations and the rota­
tions, we can characterise the scaling dimension and the spin of a state 
or field as ~ = h + h, s = h - h. 

It is worth noting here that the stress-tensor itself is not in general a 
primary field of weight (2,2), despite the suggestive fact that it has two 
indices. There can be an anomalous term, allowed by the symmetries of 
the theory: 

c 1 2 1 
T(z)T(y) = -2 ( )4 + ( )2 T(y) + -3yT(y), z-y z-y z-y 
- - C 1 2 - 1-
T(z)T(y) = - (_ -)4 + (- _)2T(y) + ~3yT(y). 2 z-y z-y z-y 

(3.27) 

The holomorphic conformal anomaly c and its antiholomorphic counter­
part C, can in general be non-zero. We shall see this occur below. 

It is worthwhile turning some of the above facts into statements about 
commutation relation between the modes of T(z), 7'(z), which we remind 
the reader are defined as: 

00 

T(z) = L Lnz-n- 2, 
n=-oo 

L = _1_ f dz zn+1T(z) 
n 27ri ' 

00 

7'(z) = L Lnz-n-2, (3.28) 
n=-oo 

In these terms, the resulting commutator between the modes is that dis­
played in equation (2.71), with D replaced by c and c on the right and left. 

The definition (3.24) of the primary fields ¢ translates into 

[Ln, ¢(y)] = ~ f dzzn+1T(z)¢(y) = h(n + l)yn¢(y) + yn+ 13y¢(y). 
27rz 

(3.29) 
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It is useful to decompose the primary into its modes: 

00 

¢(z) = L ¢nz-n-h, (3.30) 
n=-oo 

In terms of these, the commutator between a mode of a primary and of 
the stress tensor is: 

(3.31) 

with a similar antiholomorphic expression. In particular this means that 
our correspondence between states and operators can be made precise 
with these expressions. Lolh) = hlh) matches with the fact that ¢-hIO) = 

Ih) would be used to make a state, or more generally Ih, h), if we include 
both holomorphic and antiholomorphic parts. The result [La, ¢-h] = h¢-h 
guarantees this. 

In terms of the finite transformation of the stress tensor under z ----+ z/, 
the result (3.27) is 

_ (3z/)2 / ~ (3Z/)-21 3z' 33 z/ _ ~ (32Z/)2l (3.32) 
T(z) - 3z T(z) + 12 3z l 3z 3z3 2 3z2 j' 

where the quantity multiplying c/12 is called the 'Schwarzian derivative', 
S(z, z/). It is interesting to note (and the reader should check) that for 
the SL(2, q subgroup, the proper global transformations, S(z, z/) = 0. 
This means that the stress tensor is in fact a quasi-primary field, but not 
a primary field. 

3.2 Revisiting the relativistic string 

Now we see the full role of the energy-momentum tensor which we first 
encountered in the previous chapter. Its Laurent coefficients there, Ln and 
In, realised there in terms of oscillators, satisfied the Virasoro algebra, 
and so its role is to generate the conformal transformations. We can use 
it to study the properties of various operators in the theory of interest 
to us. 

First, we translate our result of equation (2.44) into the appropriate 
coordinates here: 

(3.33) 
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We can use here our definition (3.20) of the normal ordering at the op­
erator level here, which we construct with the OPE. To do this, we need 
to know the result for the OPE of ax I" with itself. This we can get by 
observing that the propagator of the field XI"(z, z) = X(z) + X(z) is 

(3.34) 

By taking a couple of derivatives, we can deduce the OPE of azXI"(z) or 
azXI"(z): 

v ex' 'rfI"V 
azxl"(z)a X (y) = -- + ... y 2 (z- y)2 

- v _ - _ ex' 'rfI"V 
a-x (z)8-XI"(y) = -- + .... 

z y 2 (z-y)2 (3.35) 

So in the above, we have, using our definition of the normal ordered 
expression using the OPE (see discussion below equation (3.20)): 

with a similar expression for the antiholomorphic part. It is now straight­
forward to evaluate the OPE ofT(z) and azXV(y). We simply extract the 
singular part of the following: 

T(z)ayXV(y) = ~ : azxl"(z)azXI"(z) : ayXV(y) 
ex 

1 
= 2· ,azxl"(z) (azXI"(z)azXV(y)) + ... 

ex 

= azXV(z) ( 1 )2 + .... 
z-y 

(3.37) 

In the above, we were instructed by Wick to perform the two possible 
contractions to make the correlator. The next step is to Taylor expand 
for small (z - y): XV(z) = XV(y) + (z - y)ayXV(y) + ... , substitute into 
our result, to give: 

T(z)a XV(y) = ayXV(y) + a;XV(y) + ... , 
y (z-y)2 z-y (3.38) 

and so we see from our definition in equation (3.25) that that the field 
azXV(z) is a primary field of weight h = 1, or a (1,0) primary 
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field, since from the OPEs (3.35), its OPE with T obviously vanishes. 
Similarly, the antiholomorphic part is a (0,1) primary. Notice that we 
should have suspected this to be true given the OPE we deduced 
in (3.35). 

Another operator we used last chapter was the normal ordered expo­
nentiation V(z) =: exp(ik· X(z)) :, which allowed us to represent the 
momentum of a string state. Here, the normal ordering means that we 
should not contract the various X s which appear in the expansion of 
the exponential with each other. We can extract the singular part to de­
fine the OPE with T(z) by following our noses and applying the Wick 
procedure as before: 

T(z)V(y) = ~ : ozXJ-L(z)ozXJ-L(z) :: eikX(y) : 
ex' 

~((OzXJ-L(z)ik. X(y)))2: eik.X(y) : 
ex' 

+2 . ~OzXJ-L(z)(OzXJ-L(z)ik. X(y)) : eikX(y) : 
a 

a/k2 1 . tk X(y). ik· ozX(z) : eikX(y) : 
4 (z - y)2 . e . + (z - y) 

a/k2 V(y) Oy V(y) 
-4-(z-y)2 + (z-y)" (3.39) 

We have Taylor expanded in the last line, and throughout we only dis­
played explicitly the singular parts. The expressions tidy up themselves 
quite nicely if one realises that the worst singularity comes from when 
there are two contractions with products of fields using up both pieces 
of T(z). Everything else is either non-singular, or sums to reassemble 
the exponential after combinatorial factors have been taken into account. 
This gives the first term of the second line. The second term of that line 
comes from single contractions. The factor of two comes from making 
two choices to contract with one or other of the two identical pieces of 
T(z), while there are other factors coming from the n ways of choosing 
a field from the term of order n from the expansion of the exponential. 
After dropping the non-singular term, the remaining terms (with the n) 
reassemble the exponential again. (The reader is advised to check this 
explicitly to see how it works.) The final result (when combined with the 
antiholomorphic counterpart) shows that V (y) is a primary field of weight 
(a'k 2 /4, a'k2 /4). 

Now we can pause to see what this all means. Recall from section 2.4.1 
that the insertion of states is equivalent to the insertion of operators into 
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the theory, so that: 

s ----+ S/ = S + A J d2z0(z, z). (3.40) 

In general, we may consider such an operator insertion for a general the­
ory. For the theory to remain conform ally invariant, the operator must 
be a marginal operator, which is to say that O(z, z) must at least have 
dimension (1,1) do that the integrated operator is dimensionless. In prin­
ciple, the dimension of the operator after the deformation (i.e. in the new 
theory defined by Sf) can change, and so the full condition for the operator 
is that it must remain (1,1) after the insertion (see insert 3.1). It in fact 
defines a direction in the space of couplings, and A can be thought of as an 
infinitessimal motion in that direction. The statement of the existence of 
a marginal operator is then referred to the existence of a 'fiat direction'. 

In the first instance, we recall that the use of the tachyon vertex op­
erator V(z, z) corresponds to the addition of J d2 z V(z, z) to the ac­
tion. We wish the theory to remain conformal (preserving the relativis­
tic string's symmetries, as stressed in chapter 1), and so V(z, z) must 
be (1,1). In fact, since our conformal field theory is actually free, we 
need do no more to check that the tachyon vertex is marginal. So we 
require that (0/ k 2 /4, ex' k 2 /4) = (1, 1). Therefore we get the result that 
M2 == -k2 = -4/0/, the result that we obtained previously for the 
tachyon. 

Another example is the level one closed string vertex operator: 

It turns out that there are no further singularities in contracting this with 
the stress tensor, and so the weight of this operator is (1 + 0'k2/4, 1 + 
0'k2/4). So, marginality requires that M2 == -k2 = 0, which is the mass­
less result that we encountered earlier. 

Another computation that the reader should consider doing is to work 
out explicitly the T(z)T(y) OPE, and show that it is of the form (3.27) 
with c = D, as each of the D bosons produces a conformal anomaly of 
unity. This same is true from the antiholomorphic sector, giving c = D. 
Also, for open strings, we get the same amount for the anomaly. This result 
was alluded to in chapter 2. This is problematic, since this conformal 
anomaly prevents the full operation of the string theory. In particular, 
the anomaly means that the stress tensor's trace does not in fact vanish 
quantum mechanically. 

This is all repaired in the next section, since there is another sector 
which we have not yet considered. 
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Insert 3.1. Deformations, RG flows, and eFTs 

A useful picture to have in mind for later use is of a conformal field 
theory as a 'fixed point' in the space of theories coordinatised by the 
coefficients of possible operators such as in equation (3.40). (There 
is an infinite set of such perturbations and so the space is infinite 
dimensional.) In the usual reasoning using the renomalisation group 
(RG), once the operator is added with some value of the coupling, the 
theory (i.e. the value of the coupling) flows along an RG trajectory 
as the energy scale f-L is changed. The 'f)-function', {)().,,) == f-L3)."j3f-L 
characterises the behaviour of the coupling. One can imagine the 
existence of 'fixed points' of such flows, where ()().,,) = 0 and the 
coupling tends to a specific value, as shown in the diagram. 

/3(A) /3 (A) 

l:f 

On the left, 5. is an 'infra-red (IR) fixed point', s~1ce the coupling is 
driven to it for decreasing f-L, while on the right, )." is an 'ultra-violet 
(UV) fixed point', since the coupling is driven to it for increasing f-L. 
The origins of each diagram of course define a fixed point of the 
opposite type to that at 5.. A conformal field theory is then clearly 
such a fixed point theory, where the scale dependence of all couplings 
exactly vanishes. A 'marginal operator' is an operator which when 
added to the theory, does not take it away from the fixed point. A 
'relevant operator'deforms a theory increasingly as f-L goes to the IR, 
while an 'irrelevant operator' is increasingly less important in the IR. 
This behaviour is reversed on going to the UV. When applied to a 
fixed point, such non-marginal operators can be used to deform fixed 
point theories away from the conformal point, often allowing us to 
find other interesting theories, as we will do in later chapters. D = 4 
Yang-Mills theories, for sufficiently few flavours of quark (like QeD), 
have negative f)-function, and so behave roughly as the neighbour­
hood of the origin in the left diagram. 'Asymptotic freedom' is the 
process of being driven to the origin (zero coupling) in the UV. Later, 
we will see examples of both type of fixed point theory. 
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3.3 Fixing the conformal gauge 

It must not be forgotten where all of the riches of the previous section -
the conformal field theory - came from. We made a gauge choice in equa­
tion (2.41) from which many excellent results followed. However, despite 
everything, we saw that there is in fact a conformal anomaly equal to D 
(or a copy each on both the left and the right hand side, for the closed 
string). The problem is that we have not made sure that the gauge fixing 
was performed properly. This is because we are fixing a local symme­
try, and it needs to be done dynamically in the path integral, just as in 
gauge theory. This is done with Faddeev-Popov ghosts in a very similar 
way to the methods used in field theory. Let us not go into the details 
of it here, but assume that the interested reader can look into the many 
presentations of the procedure in the literature. The key difference with 
field theory approach is that it introduces two ghosts, ca and bab which 
are rank one and rank two tensors on the world sheet. The action for 
them is: 

(3.41 ) 

and so bab and ca , which are anticommuting, are conjugates of each other. 

3.3.1 Conformal ghosts 

Once the conformal gauge has been chosen, (see equation (2.41)) picking 
the diagonal metric, we have 

(3.42) 

From equation (3.41), the stress tensor for the ghost sector is: 

(3.43) 

with a similar expression for Tghost (,z). Just as before, as the ghosts are free 
fields, with equations of motion ozc = 0 = ozb, we can Laurent expand 
them as follows: 

00 

b(z) = L 
n=-oo 

b -n-2 
n Z , 

00 

c(z) = (3.44) 
n=-oo 

which follows from the property that b is of weight 2 and c is of weight -1, 
a fact which might be guessed from the structure of the action (3.41). The 
quantisation yields 

(3.45) 
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and the stress tensor is 
00 

L~h = L (2n - m) : bmcn- m : -on,O, (3.46) 
m=-oo 

where we have a normal ordering constant -1, as in the previous sector, 

The OPE for the ghosts is given by 

1 
b(z)c(y) = ( ) + ... , 

z-y 

(3.47) 

1 
c(z)b(y) = ( ) + ... , 

z-y 
b(z)b(y) = O(z - y), c(z)c(y) = O(z - y), (3.48) 

where the second expression is obtained from the first by the anticom­
muting property of the ghosts. The second line also follows from the an­
ticommuting property. There can be no non-zero result for the singular 
parts there. 

As with everything for the closed string, we must supplement the above 
expressions with very similar ones referring to 2, c(2) and b(2). For the 
open string, we carry out the same procedures as before, defining every­
thing on the upper half-plane, reflecting the holomorphic into the anti­
holomorpic parts, defining a single set of ghosts (see also insert 3.2). 

3.3.2 The critical dimension 

Now comes the fun part. We can evaluate the conformal anomaly of the 
ghost system, by using the techniques for computation of the OPE that 
we refined in the previous section. We can do it for the ghosts in as simple 
a way as for the ordinary fields, using the expression (3.43) above. In the 
following, we will focus on the most singular part, to isolate the conformal 
anomaly term. This will come from when there are two contractions in 
each term. The next level of singularity comes from one contraction, and 
so on: 

Tgh(z)Tgh(y) 

= (: ozb(z)c(z) : + : 2b(z)ozc(z) :)(: oyb(y)c(y) : + : 2b(y)oyc(y) :) 
= : ozb(z)c(z) :: oyb(y)c(y) : +2 : b(z)ozc(z) :: oyb(y)c(y) : 
+ 2 : ozb(z)c(z) :: b(y)oyc(y) : +4 : b(z)ozc(z) :: b(y)oyc(y) : 
= (ozb(z)c(y))(c(z)oyb(y)) + 2(b(z)c(y))(ozc(z)oyb(y)) 
+ 2(ozb(z)oyc(y)) (c(z)b(y)) + 4(b(z)oyc(y))(ozc(z)b(y)) 

13 
(z - y)4' (3.49) 
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Insert 3.2. Further aspects of conformal ghosts 

Notice that the fiat space expression (3.42) is also consistent with the 
stress tensor 

T(z) =: ozb(z)c(z) : -~ : oz[b(z)c(z)] :, (3.50) 

for arbitrary ~, with a similar expression for the antiholomorphic 
sector. It is a useful exercise to use the OPEs of the ghosts given in 
equation (3.48) to verify that this gives band c conformal weights 
h = ~ and h = 1 - ~, respectively. The case we studied above was 
~ = 2. Further computation (recommended) reveals that the con­
formal anomaly of this system is c = 1 - 3(2K. - 1)2, with a similar 
expression for the antiholomorphic version of the above. 
The case of fermionic ghosts will be of interest to us later. In that 
case, the action and stress tensor are just like before, but with b ----+ {-J 
and c ----+ I, where {-J and I, are fermionic. Since they are fermionic, 
they have singular OPEs 

1 
(-J(z)/(y) = - + "', (z - y) 

1 
I(z){-J(y) = ( ) + .... (3.51) z-y 

A computation gives conformal anomaly 3(2~ - 1)2 - 1, which in 
the case ~ = 3/2, gives an anomaly of 11. In this case, they are 
the 'superghosts', required by supersymmetry in the construction of 
superstrings later on. 

and so comparing with equation (3.27), we see that the ghost sector has 
conformal anomaly c = -26. A similar computation gives c = -26. 

So recalling that the 'matter' sector, consisting of the D bosons, has 
c = c = D, we have achieved the result that the conformal anomaly 
vanishes in the case D = 26. This also applies to the open string in the 
obvious way. 

3.4 The closed string partition function 

We have all of the ingredients we need to compute our first one-loop 
diagram t. It will be useful to do this as a warm up for more complicated 

t Actually, we've had them for some time now, essentially since chapter 2. 
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examples later, and in fact we will see structures in this simple case which 
will persist throughout. 

Consider the closed string diagram of figure 3.2( a). This is a vacuum 
diagram, since there are no external strings. This torus is clearly a one loop 
diagram and in fact it is easily computed. It is distinguished topologically 
by having two completely independent one-cycles. To compute the path 
integral for this we are instructed, as we have seen, to sum over all possible 
metrics representing all possible surfaces, and hence all possible tori. 

Well, the torus is completely specified by giving it a fiat metric, and 
a complex structure, T, with ImT 2: o. It can be described by the lattice 
given by quotienting the complex w-plane by the equivalence relations 

w ;v W + 27Tn; W;v W + 27TmT, (3.52) 

for any integers m and n, as shown in figure 3.2(b). The two one-cycles can 
be chosen to be horizontal and vertical. The complex number T specifies 
the shape of a torus, which cannot be changed by infinitesimal diffeomor­
phisms of the metric, and so we must sum over all all of them. Actually, 
this naive reasoning will make us overcount by a lot, since in fact there 
are a lot of TS which define the same torus. For example, clearly for a 
torus with given value of T, the torus with T + 1 is the same torus, by 
the equivalence relation (3.52). The full family of equivalent tori can be 
reached from any T by the 'modular transformations': 

T: 

s: 
T----+T+l 

1 
T ----+ --, 

T 
(3.53) 

which generate the group SL(2, Z), which is represented here as the group 

····---···0··· ........ .... _--_.. -.------.-

(a) 

lm(w) 
211: 

(b) 

Re(w) 
2n 

Fig. 3.2. (a) A closed string vacuum diagram. ( b) The fiat torus and its 
complex structure. 
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of 2 x 2 unit determinant matrices with integer elements: 

SL(2,Z) : T -----+ aT + b; with (ae db), ad - be = 1. 
CT + d 

(3.54) 

(It is worth noting that the map between tori defined by S exchanges 
the two one-cycles, therefore exchanging space and (Euclidean) time.) 
The full family of inequivalent tori is given not by the upper half-plane 
H~ (i.e. T such that ImT 2: 0) but the quotient of it by the equiva­
lence relation generated by the group of modular transformations. This is 
:F = H~/ PSL(2, Z), where the P reminds us that we divide by the extra 
Z2 which swaps the sign on the defining SL(2, Z) matrix, which clearly 
does not give a new torus. The commonly used fundamental domain in 
the upper half-plane corresponding to the inequivalent tori is drawn in 
figure 3.3. Any point outside that can be mapped into it by a modular 
transformation. 

The fundamental region :F is properly defined as follows: Start with the 
region of the upper half-plane which is in the interval (-~, +~) and above 
the circle of unit radius. we must then identify the two vertical edges, and 
also the two halves of the remaining segment of the circle. This produces 
a space which is smooth everywhere except for two points about which 
there are conical singularities, described in insert 3.3. 

The string propagation on our torus can be described as follows. Imag­
ine that the string is of length 1, and lies horizontally. Mark a point on the 
string. Running time upwards, we see that the string propagates for a time 
t = 21TImT == 21TT2. Once it has got to the top of the diagram, we see that 

Im(r) 

F 

"'~~" 

1 
2: Re(r) 

Fig. 3.3. The space of inequivalent tori. 
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Insert 3.3. Special points in the moduli space of tori 

Actually, there are two very special points of interest on F, depicted 
in figure 3.3. They can be clearly seen in the figure. The point T = 

2'ITi 
i and the point T = e-3-, which is one sharp corner (its mirror 
image is also visible). The significance of these points is that they 
are fixed points of certain elements of SL(2, :2:,). The point T = i 
is fixed by the element S, while the other point is fixed by the ele­
ment ST. 

These points are 'orbifold' singularities, a term that will become 
more widely used here after chapter 4. For our purposes here, this 
means that they have a conical deficit angle. For example, the point 
T = i, because it is at the tip of a region formed by folding the plane 
in half (remember we identified the two halves of the circle segment), 
has a deficit angle of 'IT. In other words, because of the folding, one 
only needs to go half way around a circle in order to return to where 
one started. Similalry, the other orbifold point has a deficit angle of 
4 'IT /3: one only needs to go a third of the way around a circle in order 
to return to where one started. 

One may visualise the significance of these points, recalling that 
we make the tori from lattices in the plane. The lattices for these 
two points have special, and familiar, symmetry. The T = i point is 
simply a square lattice, and S is in fact just a 'IT /2 rotation. Notice 

2'ITi 
that S4 = 1, which fits with this fact nicely. The T = e-3- point is 
an hexagonal lattice, and ST is a rotation by 'IT /3, which dovetails 
nicely with the relation (ST)6 = 1. We draw the lattice below, with 
appropriate basis vectors. It might be worth studying the action of 
Sand ST, and considering the tori to which they correspond. 

+ 

L 
+ 

+ + + 

+ + + + + + 
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our marked point has shifted rightwards by an amount x = 27TReT == 27TTI. 
We actually already have studied the operators that perform these two 
operations. The operator for time translations is the Hamiltonian (2.64), 
H = La + La - (c + c) /24 while the operator for translations along the 
string is the momentum P = La - La discussed above equation (2.73). 
Recall that c = c = D-2 = 24. So our vacuum path integral is 

(3.55) 

Here, q == e27TiT , and the trace means a sum over everything which is 
discrete and an integral over everything which is continuous, which in 
this case, is simply T. This is easily evaluated, as the expressions for La 
and La give a family of simple geometric sums (see insert 3.4 (p. 92)), 
and the result can be written as: 

where 

Z(q) ~ IT21-12(qq)-' III (I - qn)- 24 I' ~ (v'T,rliil-24, 

is the 'partition function', with Dedekind's function 

00 

17(q) == qf4 II (1 - qn) ; 
n=l 

(3.56) 

(3.57) 

(3.58) 

This is a pleasingly simple result. One very interesting property it 
has is that it is actually 'modular invariant'. It is invariant under the 
T transformation in equation (3.52), since under T ----+ T + 1, we get that 
Z(q) picks up a factor exp(27Ti(Lo - La)). This factor is precisely unity, 
as follows from the level matching formula (2.73). Invariance of Z(q) 
under the S transformation T ----+ -1/ T follows from the property men­
tioned in equation(3.58), after a few steps of algebra, and using the result 
S: T2 ----+ T2/ITI2. 

Modular invariance of the partition function is a crucial property. It 
means that we are correctly integrating over all inequivalent tori, which is 
required of us by diffeomorphism invariance of the original construction. 
Furthermore, we are counting each torus only once, which is of course 
important. 

Note that Z (q) really deserves the name 'partition function' since if 
it is expanded in powers of q and q, the powers in the expansion - after 
multiplication by 4/0:' - refer to the (mass)2 level of excitations on the left 
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Insert 3.4. Partition functions 

It is not hard to do the sums. Let us look at one dimension, and so 
one family of oscillators D:n . We need to consider 

We can see what the operator q~':~o cx-nan means if we write it explic­
itly in a basis of all possible multi particle states of the form D:-n 10), 
(D:_n)210), etc.: 

1 

and so clearly Trqa-nan = ~~l (qn)i = (1 - qn)-l, which is remark­
ably simple! The final sum over all modes is trivial, since 

00 00 

Trq~':~oa_nan = II Trqa-nan = II (1 _ qn)-l. 
n=O n=O 

We get a factor like this for all 24 dimensions, and we also get con­
tributions from both the left and right to give the result. 
Notice that if our modes were fermions, 1/;n, things would be even 
simpler. We would not be able to make multiparticle states (1/;_n)210), 
(Pauli), and so we only have a 2x2 matrix of states to trace in this 
case, and so we simply get 

Therefore the partition function is 

00 00 

Tr q~':~o 1f!-n1f!n = II T rq1f!-n1f!n = II (1 + qn). 
n=O n=O 

We will encounter such fermionic cases later. 
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and right, while the coefficient in the expansion gives the degeneracy at 
that level. The degeneracy is the number of partitions of the level number 
into positive integers. For example, at level three this is three, since we 
have 0:-3,0:-10:-2, and 0:-10:-10:-1· 

The overall factor of (qij) -1 sets the bottom of the tower of masses. Note 
for example that at level zero we have the tachyon, which appears only 
once, as it should, with M2 = -4/0:'. At level one, we have the mass­
less states, with multiplicity 242 , which is appropriate, since there are 
242 physical states in the graviton multiplet (G/LU, E/Lu, 1». Introducing 
a common piece of terminology, a term qWl qw2, represents the appear­
ance of a 'weight' (WI, W2) field in the 1 + 1 dimensional conformal field 
theory, denoting its left-moving and right-moving weights or 'conformal 
dimensions' . 
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4 
Strings on circles and T -duality 

In this chapter we shall study the spectrum of strings propagating in a 
spacetime that has a compact direction. The theory has all of the prop­
erties we might expect from the knowledge that at low energy we are 
placing gravity and field theory on a compact space. Indeed, as the com­
pact direction becomes small, the parts of the spectrum resulting from 
momentum in that direction become heavy, and hence less important, 
but there is much more. The spectrum has additional sectors coming 
from the fact that closed strings can wind around the compact direction, 
contributing states whose mass is proportional to the radius. Thus, they 
become light as the circle shrinks. This will lead us to T -duality, relat­
ing a string propagating on a large circle to a string propagating on a 
small circle 14 . This is just the first of the remarkable symmetries relating 
two string theories in different situations that we shall encounter here. 
It is a crucial consequence of the fact that strings are extended objects. 
Studying its consequences for open strings will lead us to D-branes, since 
T-duality will relate the Neumann boundary conditions we have already 
encountered to Dirichlet ones9 , 11, corresponding to open strings ending 
on special hypersurfaces in spacetime. 

4.1 Fields and strings on a circle 

Let us remind ourselves of what happens in field theory, for the case of 
placing gravity on a spacetime with a compact direction. This will help 
us appreciate the extra features encountered in the case of strings, and 
will also prepare for remarks to be made in a variety of cases much later. 
We start with the idea of Kaluza, later refined by Klein. 

94 
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4.1.1 The Kaluza-Klein reduction 

Imagine that we are in five dimensions, with metric components G M N, 

M, N = 0, ... ,4, and that the spacetime is actually of topology JPi.4 x 8 1 , 

and so has one compact direction. So we will have the usual four dimen­
sional coordinates on JPi.4, (x{l, fL = 0, ... ,3) and a periodic coordinate, 
x4 = x4 + 2TiR, where R is the radius of the circle. 

Now as we have seen before, the five dimensional coordinate transfor­
mation x M ----+ x/M = x M + EM (x) is an invariance of our five dimensional 
theory, under which 

(4.1 ) 

The metric has the natural decomposition into G~~J, Gi~, and G~~ , where 
the superscript is necessary to distinguish similar-looking quantities in 
four dimensions, as we shall see. 

Let us consider the class of transformations E4(X{l), E{l = 0, which cor­
responds to an x{l-dependent isometry (rotation) of the circle. Then G~5J 
and Gi~ are invariant, and 

(4.2) 

However, from the four dimensional point of view, Gi~ is a scalar, G~5J is 
proportional to the metric, and G~~ is a vector, proportional to what we 
will call A{l' and so equation (4.2) is simply a U(l) gauge transformation: 
A{l ----+ A{l - o{lA (x). So the U (1) of electromagnetism can be thought of 
as resulting from compactifying gravity, the gauge field being an internal 
component of the metric. The idea of using this, as a first attempt at 
unifying gravity with electromagnetism, was that R is small enough that 
the world would be effectively four dimensional on larger scales, so an 
observer would have to work hard to see it. On distance scales much 
longer than that set by R, physical quantities in the theory would be 
effectively x4-independent. 

Let us be a bit more precise. Explicitly, we can write the most general 
metric consistent with the translation invariance in x4 as 

and we write G44 = e2rP . The five dimensional Ricci scalar decomposes as 

( 4.4) 
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where F/1V = aMAI/ - al/Aw Notice for future reference that the lower di­
mensional metric components in the 0, 1,2,3 directions are a modification 
of the higher dimensional metric components: 

e (4) - e(5) - 2¢A A 
MI/ - MI/ e M 1/ , 

which is an important observation for later. So, suppressing the x4 de­
pendence of the fields, we get 

S = 1 !(-e )1/2 R(5)d5x 
16'ITeN (5) 

(5) 

= 1 !(-e )1/2 (R(4) _ '.ia ~aM~ _ le3¢ F FMI/) d4x 
16 e N (4) 2 M'P 'P 4 MI/ , 

'IT (4) 

where we have defined G~~ = e¢e~~ and used equation (2.110). Now we 
have a relation between the five dimensional and four dimensional Newton 
constants: 

1 
eN' 

( 4) 

and the gauge coupling is set by cP and Newton's constant. 

(4.5) 

Let us be more careful about following how the x4-independence of the 
theory arises. Since momentum in x4 is quantised as P4 = n/ R, any scalar 
(or component of a field) in D = 5 (which obeys aMaMcP = 0) can be 
expanded: 

cP(xM) = L cPn(xM)einx4/R, (4.6) 
nEZ 

giving 

(4.7) 

and so we see that the cPn appear in four dimensions as a family of scalars 
of mass m = n/ R, and U(l) charge n. We get a tower of states which 
becomes extremely heavy for very small R, and are therefore hard to 
excite. We shall see this sort of spectrum arise in the closed string theory 
as well (since it contains gravity at low energy), but accompanied by new 
features. 

4.1.2 Closed strings on a circle 

The mode expansion (2.84) for the closed string theory can be written as: 

x M iP fit fit XM(z z) = - + - - i -(oP + (iM)T + -(oP - (iM)(J + oscillators. 
, 22 2 00 2 00 

(4.8) 
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We have already identified the spacetime momentum of the string: 

PIL = _l_(o:IL + (jP). 
V20:' 0 0 

( 4.9) 

If we run around the string, i.e. take (J" ----+ (J" + 27T, the oscillator terms are 
periodic and we have 

(4.10) 

So far, we have studied the situation of non-compact spatial directions 
for which the embedding function XIL(z, z) is single-valued, and therefore 
the above change must be zero, giving 

(4.11) 

Indeed, momentum plL takes a continuum of values reflecting the fact that 
the direction XIL is non-compact. 

Let us consider the case that we have a compact direction, say X 25 , of 
radius R. Our direction X 25 therefore has period 27T R. The momentum 
p25 now takes the discrete values n/ R, for n E Z. Now, under (J" ;v (J" + 21T, 
X25(z, z) is not single valued, and can change by 27TWR, for W E Z. Solving 
the two resulting equations gives: 

and so we have: 

25 - 25 2Rn (d2' 
0:0 + 0:0 = V 2: 
",25 _ ;;,25 _ uo uo- (2wR V-;;; 

0:65 (n + WR) (d == PL (d 
R 0:' V2: V2: 

a65 = (~ - :~)~ ==PR~' 

(4.12) 

(4.13) 

We can use this to compute the formula for the mass spectrum in 
the remaining uncompactified 24+ 1 dimensions, using the fact that 
M2 = -PlLpIL, where now fL = 0, ... ,24. 

2 4 
M2 = _pILplL = 0:' (0:65)2 + 0:' (N - 1) 

--;(a65)2 + ~(N - 1), 
0: 0: 

(4.14) 
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98 4 Strings on circles and T-duality 

where N, f.r denote the total levels on the left- and right-moving sides, as 
before. These equations follow from the left and right La, La constraints. 
Recall that the sum and difference of these give the Hamiltonian and the 
level-matching formulae. Here, they are modified, and a quick computa­
tion gives: 

2 n 2 w2 R2 2 -
M =-+-+-(N+N-2) 

R2 a'2 ex' 
nw+N -N= O. (4.15) 

The key features here are that there are terms in addition to the usual 
oscillator contributions. In the mass formula, there is a term giving the 
familiar contribution of the Kaluza-Klein tower of momentum states for 
the string (see section 4.1.1), and a new term from the tower of winding 
states. This latter term is a very stringy phenomenon. Notice that the 
level matching term now also allows a mismatch between the number of 
left and right oscillators excited, in the presence of discrete winding and 
momenta. 

In fact, notice that we can get our usual massless Kaluza-Klein states* 
by taking 

n = w = 0; N= N= 1, (4.16) 

exciting an oscillator in the compact direction. There are two ways of 
doing this, either on the left or the right, and so there are two U (1) s 
following from the fact that there is an internal component of the metric 
and also of the antisymmetric tensor field. We can choose to identify the 
two gauge fields of this U (1) x U (1) as follows: 

We have written these states out explicitly, together with the correspond­
ing spacetime fields, and the vertex operators (at zero momentum), below. 

field state operator 

G/1V (O:~la~l + O:~la~l)IO; k; aXJLaxV + aXJLaxV 

BJLv (o:JL aV - o:V aJL ) 10· k; -1 -1 -1 -1 , aXJL[}xv - aXJL[}xv 

AJL(R) o:JL a 25 10· k; aXJL[}x25 
-1 -1 , 

AJL(L) aJL 0: 25 10· k; ax25 [}xJL -1 -1 , 

¢ == ~ log G25,25 0: 25 a 25 10· k; ax25 [}x 25 -1 -1 , 

* We shall sometimes refer to Kaluza-Klein states as 'momentum' states, to distinguish 
them from 'winding' states, in what follows. 
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4.2 T-duality for closed strings 99 

So we have these 25-dimensional massless states which are basically 
the components of the graviton and antisymmetric tensor fields in 26 
dimensions, now relabelled. (There is also of course the dilaton <P, which 
we have not listed.) There is a pair of gauge fields giving a U(l)LxU(l)R 
gauge symmetry, and in addition a massless scalar field ¢. Actually, ¢ 
is a massless scalar which can have any background vacuum expectation 
value (vev), which in fact sets the radius of the circle. This is because the 
square root of the metric component G25 .25 is indeed the measure of the 
radius of the X 25 direction. . 

4.2 T-duality for closed strings 

Let us now study the generic behaviour of the spectrum (4.15) for different 
values of R. For larger and larger R, momentum states become lighter, 
and therefore it is less costly to excite them in the spectrum. At the same 
time, winding states become heavier, and are more costly. For smaller 
and smaller R, the reverse is true, and it is gets cheaper to excite winding 
states while it is momentum states which become more costly. 

We can take this further: as R ----+ 00, all of the winding states, i.e. 
states with w i- 0, become infinitely massive, while the w = ° states with 
all values of n go over to a continuum. This fits with what we expect 
intuitively, and we recover the fully uncompactified result. 

Consider instead the case R ----+ 0, where all of the momentum states, 
i.e. states with n i- 0, become infinitely massive. If we were studying field 
theory we would stop here, as this would be all that would happen - the 
surviving fields would simply be independent of the compact coordinate, 
and so we have performed a dimension reduction. In closed string theory 
things are quite different: the pure winding states (i.e. n = 0, w i- 0, 
states) form a continuum as R ----+ 0, following from our observation that 
it is very cheap to wind around the small circle. Therefore, in the R ----+ ° 
limit, an effective uncompactified dimension actually reappears! 

Notice that the formula (4.15) for the spectrum is invariant under the 
exchange 

n----+w and R ----+ R' == (x' / R. ( 4.17) 

The string theory compactified on a circle of radius R' (with momenta 
and windings exchanged) is the 'T-dual' theory14, and the process of going 
from one theory to the other will be referred to as 'T -dualising'. 

The exchange takes (see (equation 4.13)) 

(4.18) 

The dual theories are identical in the fully interacting case as well (after a 
shift of the coupling to be discussed shortly) 15. Simply rewrite the radius 
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R theory by performing the exchange 

X25(z, z) = X 25 (z) + X 25 (z) ------+ X,25(z, z) = X 25 (z) - X 25 (z). (4.19) 

The energy-momentum tensor and other basic properties of the conformal 
field theory are invariant under this rewriting, and so are therefore all of 
the correlation functions representing scattering amplitudes, etc. The only 
change, as follows from equation (4.18), is that the zero mode spectrum 
in the new variable is that of the ex' / R theory. 

So these theories are physically identical. T-duality, relating the Rand 
ex' / R theories, is an exact symmetry of perturbative closed string theory. 
Shortly, we shall see that it is non-perturbatively exact as well. 

N.B. The transformation (4.19) can be regarded as a spacetime parity 
transformation acting only on the right-moving (in the world sheet 
sense) degrees of freedom. We shall put this picture to good use in 
what is to come. 

4.3 A special radius: enhanced gauge symmetry 

Given the relation we deduced between the spectra of strings on radii R 
and a' / R, it is clear that there ought to be something interesting about 
the theory at the radius R = Vd. The theory should be self-dual, and 
this radius is the 'self-dual radius'. There is something else special about 
this theory besides just self-duality. 

At this radius we have, using (4.13), 

25 (n + w) 
aD = J2 ; 

and so from the left and right we have: 

(n - w) 

J2 

2 2 2 4 M = _pILp = -(n + w) + -(N - 1) 
IL a' a' 

2 2 4-
= -(n - w) + -(N - 1). 

a' a' 
So if we look at the massless spectrum, we have the conditions: 

(n + w) 2 + 4N = 4; (n - w) 2 + 4N = 4. 

( 4.20) 

( 4.21) 

( 4.22) 

As solutions, we have the cases n = w = 0 with N = 1 and N = 1 from 
before. These are include the vectors of the U(l) x U(l) gauge symmetry 
of the compactified theory. 
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4.3 A special radius 101 

Now, however, we see that we have more solutions. In particular: 

n = -w = ±1, N = 1, N = 0; n = w = ±1, N = 0, N = 1. 

( 4.23) 

The cases where the excited oscillators are in the non-compact direction 
yield two pairs of massless vector fields. In fact, the first pair go with 
the left U(l) to make an SU(2), while the second pair go with the right 
U(l) to make another SU(2). Indeed, they have the correct ±1 charges 
under the Kaluza-Klein U(l)s in order to be the components of the 
W-bosons for the SU(2)L x SU(2)R 'enhanced gauge symmetries'. The 
term is appropriate since there is an extra gauge symmetry at this special 
radius, given that new massless vectors appear there. 

When the oscillators are in the compact direction, we get two pairs of 
massless bosons. These go with the massless scalar ¢ to fill out the mass­
less adjoint Higgs field for each SU(2). These are the scalars whose vevs 
give the W-bosons their masses when we are away from the special radius. 

In fact, this special property of the string theory is succinctly visible at 
all mass levels, by looking at the partition function (4.30). At the self-dual 
radius, it can be rewritten as a sum of squares of 'characters' of the su(2) 
affine Lie algrebra: 

(4.24) 

where 
( 4.25) 

n n 

It is amusing to expand these out (after putting in the other factors of 
(rrf!) -1 from the uncompactified directions) and find the massless states 
we discussed explicitly above. 

It does not matter if an affine Lie algebra has not been encountered 
before by the reader. We can take this as an illustrative example, arising in 
a natural and instructive way. See insert 4.1 for further discussion 12. In the 
language of two dimensional conformal field theory, there are additional 
left- and right-moving currents (i.e. fields with weights (1,0) and (0,1)) 
present. We can construct them as vertex operators by exponentiating 
some of the existing fields. The full set of vertex operators of the SU(2)L x 
SU(2)R spacetime gauge symmetry: 

SU(2)L: 8X'"[)X25 (z), 8X'" exp(±2iX25 (z)/Vd) 

SU(2)R: [)X'"8X 25 (z), [)X'"exp(±2iX25 (z)/Vd), ( 4.26) 

corresponding to the massless vectors we constructed by hand above. 
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Insert 4.1. Affine Lie algebras 

The key structure of an affine Lie algebra is just what we have seen 
arise naturally in this self-duality example. In addition to all of the 
nice structures that the conformal field theory has - most pertinently, 
the Virasoro algebra - there is a family of unit weight operators, 
often constructed as vertex operators as we saw in equation (4.26), 
which form the Lie algebra of some group G. They are unit weight as 
measured either from the left or the right, and so we can have such 
structures on either side. Let us focus on the left. Then, as (1,0) 
operators, Ja(z), (a is a label) we have: 

( 4.27) 

where 

( 4.28) 

and 
( 4.29) 

where it should be noticed that the zero modes of these currents 
form a Lie algebra, with structure constants jabc ' The constants dab 

define the inner product between the generators (ta , tb) = dab. Since 
in bosonic string theory a mode with index -1 creates a state that 
is massless in spacetime, J~l can be placed either on the left with 
0:~1 on the right (or vice versa) to give a state J~l 0:~110) which is 
a massless vector Alta in the adjoint of G, for which the low energy 
physics must be Yang-Mills theory. 

The full algebra is called an 'affine Lie algebra', or a 'current 
algebra', and sometimes a 'Kac-Moody' algebra275 . In a standard 
normalisation, k is an integer and is called the 'level' of the affinisa­
tion. In the case that we first see this sort of structure, the string at 
a self-dual radius, the level is 1. The currents in this case are: 

J3(Z) = ia/-1/2azX25(z), 

J1(z) = : cos(2a/- 1/ 2 X 25 (z)):, J2(z) =: sin(2a/-1/ 2 X 25 (z)) : 

which satisfy the algebra in (4.29) with r bc = Eabc , k = 1, and 
dab = ~8ab, as appropriate to the fundamental representation. 
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The vertex operator for the change of radius, 8X 25 [JX 25 , correspond­
ing to the field ¢, transforms as a (3,3) under 5U(2)L x 5U(2)R, and 
therefore a rotation by 7T in one of the 5U(2)s transforms it into minus 
itself. The transformation R ----+ ex' / R is therefore the £::2 Weyl subgroup 
of the 5U(2) x 5U(2). Since T-duality is part of the spacetime gauge 
theory, this is a clue that it is an exact symmetry of the closed string 
theory, if we assume that non-perturbative effects preserve the spacetime 
gauge symmetry. We shall see that this assumption seems to fit with non­
perturbative discoveries to be described later. 

4.4 The circle partition function 

It is useful to consider the partition function of the theory on the circle. 
This is a computation as simple as the one we did for the uncompactified 
theory earlier, since we have done the hard work in working out Lo and 
Lo for the circle compactification. Each non-compact direction will con­
tribute a factor of (rriJ)-l, as before, and the non-trivial part of the final 
T-integrand, coming from the compact X 25 direction is: 

I '\"' ex' p2 ex' p2 
Z(q, R) = (TJrj)- ~ q4 Lij4 R, ( 4.30) 

n,w 

where PL,R are given in (4.13). Our partition function IS manifestly 
T-dual, and is in fact also modular invariant. Under T, it picks us a 
phase exp ( 7Ti (p[ - P~)), which is again unity, as follows from the second 
line in (4.15): p[ - P~ = 2nw. Under 5, the role of the time and space 
translations as we move on the torus are exchanged, and this in fact ex­
changes the sums over momentum and winding. T-duality ensures that 
the 5-transformation properties of the exponential parts involving PL,R 
are correct, while the rest is 5 invariant as we have already discussed. 

It is a useful exercise to expand this partition function out, after com­
bining it with the factors from the other non-compact dimensions first, 
to see that at each level the mass (and level matching) formulae (4.15) 
which we derived explicitly is recovered. 

In fact, the modular invariance of this circle partition function is part 
of a very important larger story. The left and right momenta PL,R are 
components of a special two dimensional lattice, rl,l. There are two basis 
vectors k = (l/R,l/R) and k = (R, -R). We make the lattice with 
arbitrary integer combinations of these, nk + wk, whose components are 
(PL,PR). (d. equation (~.13)). If we define the dotApr~ducts between our 
basis vectors to be k . k = 2 and k . k = 0 = k . k, our lattice then 
has a Lorentzian signature, and since p[ - P~ = 2nw E 2£::, it is called 
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'even'. The 'dual' lattice ri.1 is the set of all vectors whose dot product 
with (PL , PR ) gives an integer. In fact, our lattice is self-dual, which is to 
say that r 1,1 = r*1.1. It is the 'even' quality which guarantees invariance 
under T as we have seen, while it is the 'self-dual' feature which ensures 
invariance under S. In fact, S is just a change of basis in the lattice, and 
the self-duality feature translates into the fact that the Jacobian for this 
is unity. 

4.5 Toriodal compactifications 

It will be very useful later on for us to outline how things work more 
generally. The case of compactification on the circle encountered above 
can be easily generalised to compactification on the torus Td c::::' (Sl )d. Let 
us denote the compact dimensions by X rn , where m, n = 1, ... , d. Their 
periodicity is specified by 

Xrn ;v Xrn + 27rR(rn)n rn , 

where the nrn are integers and R(rn) is the radius of the mth circle. 
The metric on the torus, Grnn , can be diagonalised into standard unit 
Euclidean form by the veilbeins e~ where a, b = 1, ... ,d: 

and it is convenient to use tangent space coordinates xa = xrne~ so that 
the equivalence can be written: 

We have defined for ourselves a lattice A = {ea nrn nrn E Z}. We now rn , 

write our torus in terms of this as 

There are of course conjugate momenta to the X a , which we denote 
as pa. They are quantised, since moving from one lattice point to an­
other, producing a change in the vector X by oX E 27rA are physi­
cally equivalent, and so single-valuedness of the wavefunction imposes 
exp(ip· X) = exp(ip· [X + oX]), i.e. 

from which we see that clearly 
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where nm are integers. In other words, the momenta live in the dual lattice, 
A *, of A, defined by 

where the inverse veilbiens ewmnm are defined in the usual way using the 
inverse metric: 

*am _ a Gmn 
e = em , or 

Of course we can have winding sectors as well, since as we go around 
the string via cr ----+ cr + 27T, we can change to a new point on the lattice 
characterised by a set of integers wm , the winding number. Let us write 
out the string mode expansions. We have 

where 

(4.31) 

for the left, while on the right we have 

X R = xR - i[f;PR(T + cr) + oscillators 
a 

a X (Ja xR=-+ 
2 

w a R(a) 1 PR = pa - == e*am n - _ea wm 
ex' m ex' m 

( 4.32) 

The action of the manifest T-duality symmetry is simply to act with a 
right-handed parity, as before, swopping PL +--+ PL and PR +--+ -PR, and 
hence momenta and winding and XL +--+ XL and XR +--+ -XR. 

To see more, let us enlarge our bases for the two separate lattices A, A * 
into a singe one, via: 

A_I ( e~) 
em - ex' -e~ , 

and now we can write 

which lives in a (d + d)-dimensional lattice which we will call r d,d. We 
can choose the metric on this space to be of Lorentzian signature (d, d), 
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which is achieved by 

G= (Doab 0) 
-Dab ' 

and using this we see that 

( 4.33) 

which shows that the lattice is self-dual, since (up to a trivial overall 
scaling), the structure of the basis vectors of the dual is identical to that 
of the original: rd,d = r d,d. Furthermore, we see that the inner product 
between any two momenta is given by 

( 4.34) 

In other words, the lattice is even, because the inner product gives even 
integer multiples of 2/c/. 

It is these properties that guarantee that the string theory is modu­
lar invariant 173 . The partition function for this compactification is the 
obvious generalisation of the expression given in (4.30): 

( 4.35) 

where the PL,R are given in (4.32). Recall that the modular group is gen­
erated by T : T ---+ T + 1, and S : T ---+ -l/T. So T-invariance follows 
from the fact that its action produces a factor exp( i'TrO:' (PL - P~J /2) = 

exp( i'TrO:' (jJ2) /2) which is unity because the lattice is even, as shown in 
equation (4.34). 

Invariance under S follows by rewriting the partition function Z ( -1 / T) 
using the Poisson resummation formula given in insert 4.2, to get the 
result that 

Zr ( -~) = vol(r*)Zp(T). 

The volume of the lattice's unit cell is unity, for a self-dual lattice, since 
vol(A)vol(A*) = 1 for any lattice and its dual, and therefore S-invariance 
is demonstrated, and we can define a consistent string compactification. 
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Insert 4.2. The Poisson resummation formula 

A very useful trick is the following. Assume that we have a function 
f (x) defined on ]]{n. Then its Fourier transform is given as 

The formula we need is written in terms of this. If we sum over a 
lattice A c ]]{n, then: 

'" J '" dnk k 
A '" A ~ f(n) = ~ (27T)n et >·m f(k) = vol(A *) ~ f(2TIrn). 

nEA nEA mEA" 

We shall meet two very important examples of large even and self-dual 
lattices later in subsection 7.2. They are associated to the construction of 
the modular invariant partition functions of the ten dimensional Es xEs 
and 50(32) heterotic strings2o . 

There is a large space of inequivalent lattices of the type under discus­
sion, given by the shape of the torus (specified by background parameters 
in the metric G) and the fluxes of the B-field through it. We can work 
out this 'moduli space' of compactifications. It would naively seem to be 
simply O(d, d), since this is the space of rotations naturally acting, tak­
ing such lattices into each other, i.e. starting with some reference lattice 
ro, r' = Gro should be a different lattice. We must remember that the 
physics cares only about the values of PI and p~, and so therefore we must 
count as equivalent any choices related by the O( d) x O( d) which acts inde­
pendently on the left and right momenta: G rv G'G, for G' E O(d) x O(d). 
So at least locally, the space of lattices is isomorphic to 

O(d, d) 
M = O(d) x O(d) ( 4.36) 

A quick count of the dimension of this space gives 2d(2d - 1) /2 - 2 x 
d( d - 1) /2 = d2 , which fits nicely, since this is the number of independent 
components contained in the metric Gmn , (d(d + 1)/2) and the antisym­
metric tensor field Bmn , (d(d-1)/2), for which we can switch on constant 
values (sourced by winding). 

There are still a large number of discrete equivalences between the 
lattices, which follows from the fact that there is a discrete subgroup of 
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O(d, d), called O(d, d, Z), which maps our reference lattice ro into itself: 
ro rv G"ro. This is the set of discrete linear transformations generated 
by the subgroups of SL(2d, Z) which preserves the inner product given 
in equations (4.33). This group includes the T-dualities on all of the d 
circles, linear redefinitions of the axes, and discrete shifts of the B-field. 
The full space of torus compactifications is often denoted: 

M = O(d, d, Z)\O(d, d)j[O(d) x O(d)], ( 4.37) 

where we divide by one action under left multiplication, and the other 
under right. 

Now we see that there is a possibility of much more than just the 
SU(2)L x SU(2)R enhanced gauge symmetry which we got in the case 
of a single circle. We can have this large symmetry from any of the d 
circles, of course but there is more, since there are extra massless states 
that can be made by choices of momenta from more than one circle, 
corresponding to weight one vertex operators. This will allow us to make 
very large enhanced gauge groups, up to rank d, as we shall see later in 
section 7.2. 

4.6 More on enhanced gauge symmetry 

The reader is probably keen to see more of where some of the structures 
of sections 4.3, 4.4, and 4.5 come from, and so we will pause here to study 
a little about Lie groups and algebras. 

4.6.1 Lie algebras and groups 

Lie algebras are usually described in terms of a basis of generators, t a , 

which have a specific antisymmetric product: 

( 4.38) 

where the Jab c are often called the structure constants. This product must 
satisfy the Jacobi identity, which states that: 

Once we have the algebra, we can form the group G by exponentiating 
the generators, to make a group element 
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N.B. One of the reasons why Lie groups are interesting is that the 
group elements form a manifold, and so there is a lot of familiar 
geometry to be found in their description. For example, one can think 
of the Lie algebra as the vector space that is simply the tangent 
space to the group manifold, G, and keep in mind a picture like that 
in figure 2.14. The natural way to make the Lie algebra from the 
group elements g is via the Maurer-Cartan forms, g-ldg which give 
a family of one-forms which are valued in the Lie algebra. We won't 
use this much, but the curious reader can look ahead to insert 7.4, 
where we make this explicit for SU(2), which is the manifold S3. 

There is also an inner product between the generators, which is defined 
as (ta, t b) = dab, which is positive if the group is compact. We can lower 
and raise indices with this fellow, and having done this on the structure 
constants to get r bc , there is an additional condition that they are totally 
antisymmetric in all of their indices. We shall restrict our attention mostly 
to the simple Lie algebras, for which a choice can be made to make dab 
proportional to {5ab. 

Most familiar is of course the representation of the algebra in (4.38) by 
matrices, for which we can use the notation t~, where R stands for a repre­
sentation, and the matrix elements are denoted t~,ij. The antisymmetric 
product is then the familiar matrix commutator, and the inner product 
is matrix multiplication with the trace. Then we have Tr(t~t~) = TR{5ab, 
where TR is a number which depends on the representation. Note that we 
can define the Casimir invariant of the representation R as t~t~ = QRl. 

The Jacobi identity above translates into 

A most convenient matrix representation of the algebra is given by 

and for this we see that we get 

and so we see that the structure constants themselves form a representa­
tion of the Lie algebra. This is the adjoint representation. Notice that the 
dimension of the representation is the number of generators of the group. 
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It is useful to divide the generators ta into two families. There is the 
maximal set of commuting generators, which are denoted Hi, where i = 

1, ... , r with r being the rank of the group, and there are the rest, denoted 
EO! of reasons to be given very shortly. 

The set Hi, for which 
[Hi,Hj] = 0, 

is the Cartan subalgebra, and the Hi are often said to form the maximal 
torus, which we shall discuss more later. These elements are the gener­
alisation of J3 from the familiar case of SU(2). For a representation of 
dimension d, we can think of the Hi as d x d matrices. We will pick 
a specific basis for these and keep in that basis to describe everything 
else. Being all mutually commutative, they may be simultaneously diag­
onalised, and there are d distinct eigenvalues for each H. Consider the 
nth entry along a diagonal. Each of the Hi supplies a component, wi, of 
a vector w in a space ]RT. There are d such weight vectors. 

Everything else can be given an assignment of 'charges' corresponding 
to the H-eigenvalues, via 

[Hi, EO!] = o:iEO!. 

We can think of the o:i as components of an r-dimensional vector known 
as a root. It is a vector in the space ]RT mentioned above. Every root is 
uniquely associated to a generator EO!. The remaining parts of the Lie 
algebra are: 

if 0: + {3 is a root, 
if 0: + (3 = 0, 

otherwise, 

where the dot product is defined with the relevant part of the inner prod­
uct form, dij, and E(o:,{J) is ±l. It is worth noting that the roots are the 
weights of the adjoint representation. 

The EO! are the generalisations of the J± familiar from SU(2), the 
raising and lowering operators. One can decompose weights into three 
classes, whether they are positive, negative, or zero. This is given by 
whether or not the first non-zero entry is positive, negative or zero (i.e. all 
components zero). There is a unique highest weight in any representation. 
Specialising to the weights of the adjoint representation, the roots, divides 
the EO! into raising operators, if 0: is positive, and lowering operators if 0: 

is negative. One can build the whole representation of the groups starting 
with the highest weight and acting with the lowering operators, while 
acting on a highest weight with a raising operator gives zero. 

The simple roots are the positive roots that cannot be written as the 
sum of two positive roots, and they form a linearly independent set. The 
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number of them is equal to the rank of the group, r. Using these, it can 
be shown that the entire structure of the group may be reconstructed. A 
useful way of specifying the simple roots is to give their relative lengths 
and the angles between them, which turn out to be restricted to between 
90° and 180°. The Dynkin diagram is a very useful way of giving that 
information in an easy to read form. Each simple root is a node in the 
diagram. There are links between nodes if the angle between them is not 
90°. There is a single line if the angle is 120°, a double line if the angle is 
135° and a triple line if it is 150°. To denote the odd root which is shorter 
than the rest, it is often a practice to make the note a different shade of 
colour in the diagram. 

4.6.2 The classical Lie algebras 

Let us list the classical Lie algebras of Cartan's classification. 

• SU(n) Denoted An - 1 in Cartan's classification. The generators are 
traceless n x n Hermitian matrices, and the group elements of SU (n) 
are unit determinant unitary matrices. 

• SO(n) If n = 2k + 1 this is denoted B k , while if n = 2k it is D k . 

The generators are n x n antisymmetric Hermitian matrices, and 
the group elements of SO( n) are real orthogonal matrices. 

• Sp(k) = USp(2k) This is denoted Ck in the classification. The gen­
erators are Hermitian 2k x 2k matrices t satisfying 

where T denotes the transpose and 

M = i ( 0 Ik) 
-Ik 0 ' 

where Ik is the k x k identity matrix. The groups is the set of unitary 
matrices u satisfying 

where - T denotes the inverse of the transpose. 

We will often have cause to encounter some non-compact groups closely 
related to these. We obtain them by multiplying some generators by 
an i. In this way we will get the set of traceless imaginary matrices to 
make the group of real matrices of unit determinant, SL(n) by continuing 
SU(n). We have already encountered O(n, m), which is a continuation of 
O(n + m) made by such a continuation. 
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Insert 4.3. The simply laced Lie algebras 

It turns out that for the Lie algebras An, Db E6, E7 and Es, all of the 
roots are the same length. These are called the simply laced algebras. 
It is very useful to know a bit about their structure, as manifest in 
the Dynkin diagrams given below. 

An-l ~I----~----
(n-l nodes) 
---------- ~ SU(n) 

(n nodes) 
~ SO(2n) 

~ ~ I ~ ~ 

E7 ~ ~ I ~ ~ ~ 

E8 ~ ~ I ~ ~ ~ ~ 
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4.6.3 Physical realisations with vertex operators 

Now we can return to some of the physical objects that we saw arising in 
the string theory and make contact with some of the structures we saw 
above. Recall that we represented the weights as vectors in lPi.r , where r 
was the rank of the Lie algebra, arising as charges under the commuting 
generators or maximal torus given by the Hi. These vectors came with a 
specific set of entries, and we could build all representations out of them, 
by adding vectors. The set of points in lPi. r made in this way is the Lie 
algebra lattice, and it can be placed on a very physical footing in the 
context of toroidal compactification in the following way. 

If we placed r directions Xi on a torus T r , the weight (0,1) objects 
Hi(z) = ia'-1/2f)z X i parameterise the very object we have been working 
with: the maximal torus. The weight vectors that we had, with the addi­
tive structure allowing us to reach other points in the lattice, building up 
other representations, are simply the momenta, which are the zero modes 
of the Hi(z), which are also additive. 

In general, we can make states corresponding to the weight vector wi 

with the vertex operator exp(2ia'-1/2w . ¢). So now we see how to get a 
gauge symmetry, following the discussion in insert 4.1, we need to have 
vertex operators of weight (0,1) to go with the Hi(z). These can be made 
with the vertex operators if the w 2 = 2. So we see that we need the simply 
laced algebras to do this. They are listed in insert 4.3, together with their 
Dynkin diagrams. 

4.7 Another special radius: bosonisation 

Before proceeding with the T-duality discussion, let us pause for a moment 
to remark upon something which will be useful later. In the case that 
R = J( a' /2), something remarkable happens. The partition function is: 

( 0') 1( w)2 1( w)2 Z q, R = V 2: = (7]7])-1 L. q'i n+"2 ij'i n-"2 . 
n,w 

(4.39) 

Note that the allowed momenta at this radius are (d. equation (4.13)): 

a65 = PL ~ = (n + ~) 
&65 = PR ~ = (n - ~), ( 4.40) 

and so they span both integer and half-integer values. Now when PL is an 
integer, then so is PR and vice versa, and so we have two distinct sectors, 
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integer and half-integer. In fact, we can rewrite our partition function as 
a set of sums over these separate sectors: 

( 4.41) 

The middle sum is rather like the first, except that there is a -1 whenever 
n is odd. Taking the two sums together, it is just like we have performed 
the sum (trace) over all the integer momenta, but placed a projection 
onto even momenta, using the projector 

( 4.42) 

In fact, an investigation will reveal that the third term can be written 
with a partner just like it save for an insertion of (_l)n also, but that 
latter sum vanishes identically. This all has a specific meaning which we 
will uncover shortly. 

Notice that the partition function can be written in yet another nice 
way, this time as 

where, for here and for future use, let us define 

CXl 

h(q) == = q~ II (1 - qn) == TJ(T) 
n=l 

CXl 

12(q) == = v'2q~ II (1 + qn) 
n=l 

CXl 1 

h(q) == = q--is II (1 + qn-"2) 
n=l 

CXl 1 
14(q) == = q--is II (1 - qn-"2), 

n=l 

and note that 

12 ( -~) = 14 (T); h ( -~) = h (T); 

h(T+1)=14(T); 12(T+1)=12(T). 

( 4.43) 

( 4.44) 

( 4.45) 

( 4.46) 
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While the rewriting as (4.43) might not look like much at first glance, 
this is in fact the partition function of a single Dirac fermion in two 
dimensions: Z(R = Ja'/2) = ZDirac' We have arrived at the result that a 
boson (at a special radius) is in fact equivalent to a fermion. This is called 
'bosonisation' or 'fermionisation', depending upon one's perspective. How 
can this possibly be true? 

The action for a Dirac fermion, W = (WL' wRf (which has two compo­
nents in two dimensions) is, in conformal gauge: 

where we have used 

-1) o . 

Now, as a fermion goes around the cylinder (J" ----+ (J" + 27T, there are two 
types of boundary condition it can have. It can be periodic, and hence 
have integer moding, in which case it is said to be in the 'Ramond' (R) 
sector. It can instead be antiperiodic, have half-integer moding, and is 
said to be in the 'Neveu-Schwarz' (NS) sector. 

In fact, these two sectors in this theory map to the two sectors of allowed 
momenta in the bosonic theory: integer momenta to NS and half-integer 
to R. The various parts of the partition function can be picked out and 
identified in fermionic language. For example, the contribution: 

looks very fermionic, (recall insert 3.4 (p. 92)) and is in fact the trace 
over the contributions from the NS sector fermions as they go around 
the torus. It is squared because there are two components to the fermion, 
wand W. We have the squared modulus beyond that since we have the 
contribution from the left and the right. 

The f4(q) contribution on the other hand, arises from the NS sector 
with a (_)F inserted, where F counts the number of fermions at each 
level. The h(q) contribution comes from the R sector, and there is a 
vanishing contribution from the R sector with (-l)F inserted. We see 
that that the projector 

( 4.48) 
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is the fermionic version of the projector (4.42) we identified previously. 
Notice that there is an extra factor of two in front of the R sector contri­
bution due to the definition of 12. This is because the R ground state is 
in fact degenerate. The modes \[10 and \jIo define two ground states which 
map into one another. Denote the vacuum by IS}, where s can take the 
values ±~. Then 

\[101- ~} = 0; 

~ol- ~} = I + ~}; 

- 1 
\[101 + 2} = 0; 

\[101 + ~} = 1- ~}, 
( 4.49) 

and \[10 and ~o therefore form a representation of the two dimensional 
Clifford algebra. We will see this in more generality later on. In D dimen­
sions there are D /2 components, and the degeneracy is 2D /2. 

As a final check, we can see that the zero point energies work out nicely 
too. The mnemonic (2.80) gives us the zero point energy for a fermion 
in the NS sector as -1/48, we multiply this by two since there are two 
components and we see that that we recover the weight of the ground state 
in the partition function. For the Ramond sector, the zero point energy of 
a single fermion is 1/24. After multiplying by two, we see that this is again 
correctly obtained in our partition function, since -1/24+ 1/8 = 1/12. It 
is awfully nice that the function fi (q) has the extra factor of 2ql/8, just 
for this purpose. 

This partition function is again modular invariant, as can be checked 
using elementary properties of the J-functions (4.46): 12 transforms into 
J4 under the S transformation, while under T, J4 transforms into h. 

At the level of vertex operators, the correspondence between the bosons 
and the fermions is given by: 

\[IL(z) = eif3xl5(z); 

\[IR(Z) = eif3X~5U:); 
~L(z) = e-if3xl5(z); 

~R(Z) = e-if3X~5(;:), 
( 4.50) 

where (3 = J2/ci. This makes sense, for the exponential factors define 
fields single-valued under X 25 ---+ X 25 + 2TIR, at our special radius R = 

J ex' /2. We also have 

(4.51) 

which shows how to combine two (0,1/2) fields to make a (0,1) field, with 
a similar structure on the left. Notice also that the symmetry X 25 ---+ 

_X25 swaps \[IL(R) and ~L(R)' a symmetry of interest in the next subsec­
tion. We will return to this bosonisation/fermionisation relation in later 
sections, where it will be useful to write vertex operators in various ways 
in the supersymmetric theories. 
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4.8 String theory on an orbifold 

There is a rather large class of string vacua, called 'orbifolds,23 , with 
many applications in string theory. We ought to study them, as many of 
the basic structures which will occur in their definition appear in more 
complicated examples later on. 

The circle Sl, parametrised by X 25 , has the obvious £::2 symmetry R25 : 

X 25 ----+ - X25. This symmetry extends to the full spectrum of states and 
operators in the complete theory of the string propagating on the circle. 
Some states are even under R25 , while others are odd. Just as we saw 
before in the case of 0, it makes sense to ask whether we can define 
another theory from this one by truncating the theory to the sector which 
is even. This would define string theory propagating on the 'orbifold' space 
Sl/£::2. 

In defining this geometry, note that it is actually a line segment, where 
the endpoints of the line are actually 'fixed points' of the £::2 action. The 
point X 25 = 0 is clearly such a point and the other is X 25 = 'IT R rv -'IT R, 
where R is the radius of the original Sl. A picture of the orbifold space is 
given in figure 4.1. In order to check whether string theory on this space is 
sensible, we ought to compute the partition function for it. We can work 
this out by simply inserting the projector 

( 4.52) 

which will have the desired effect of projecting out the R 25-odd parts 
of the circle spectrum. So we expect to see two pieces to the partition 
function: a part that is ~ times Zcircle, and another part which is Zcircle 
with R25 inserted. Noting that the action of R25 is 

( 4.53) 

the partition function is: 

Zorbifold = ~ [Z(R, T) + 2 (Ih(q) 1-2 + Ih(q) 1-2 + If4(q) 1-2)]. (4.54) 

o 'ITR 0»(-( ----------7<)( 'IT R 

Fig. 4.1. A £::2 orbifold of a circle, giving a line segment with two fixed 
points. 
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The 12 part is what one gets if one works out the projected piece, but 
there are two extra terms. From where do they come? One way to see that 
those extra pieces must be there is to realise that the first two parts on 
their own cannot be modular invariant. The first part is of course already 
modular invariant on its own, while the second part transforms (4.46) into 
14 under the S transformation, so it has to be there too. Meanwhile, 14 
transforms into h under the T-transformation, and so that must be there 
also, and so on. 

While modular invariance is a requirement, as we saw, what is the 
physical meaning of these two extra partition functions? What sectors of 
the theory do they correspond to and how did we forget them? 

The sectors we forgot are very stringy in origin, and arise in a similar 
fashion to the way we saw windings appear in earlier sections. There, the 
circle may be considered as a quotient of the real line .!Pi. by a translation 
X 25 ----+ X 25 + 27T R. There, we saw that as we go around the string, cr ----+ 

cr + 27T, the embedding map X 25 (cr) is allowed to change by any amount 
of the lattice, 27TRw. Here, the orbifold further imposes the equivalence 
X 25 rv - X 25 , and therefore, as we go around the string, we ought to be 
allowed: 

X 25 (cr + 27T, T) = _X25(cr, T) + 27TWR, 

for which the solution to the Laplace equation is: 

X25(z,z) =X25 +if;' f= 1 (0:25 lZn+~ +0;25 lZn+~), 2 (if> + 1) n+-2 n+-2 n=-oo II, 2 

( 4.55) 
with x 25 = 0 or 7T R, no zero mode 0:65 (hence no momentum), and no 
winding: w = o. 

This is a configuration of the string allowed by our equations of motion 
and boundary conditions and therefore has to be included in the spectrum. 
We have two identical copies of these 'twisted sectors' corresponding to 
strings trapped at 0 and 7TR in spacetime. They are trapped, since x 25 is 
fixed and there is no momentum. 

Notice that in this sector, where the boson X25(w, w) is antiperiodic as 
one goes around the cylinder, there is a zero point energy of 1/16 from 
the twisted sector: it is a weight (1/16,1/16) field, in terms of where it 
appears in the partition function. 

Schematically therefore, the complete partition function ought to be 

Z T ( (1+R25) Lo-.l-Lo-.l) 
orbifold = r untwisted 2 q 24 q 24 

T ( (1+R25) LO-.l-Lo-.l) + rtwisted 2 q 24 q 24 ( 4.56) 
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to ensure modular invariance, and indeed, this is precisely what we have 
in (4.54). The factor of two in front of the twisted sector contribution is 
because there are two identical twisted sectors, and we must sum over all 
sectors. 

In fact, substituting in the expressions for the f-functions, one can 
discover the weight (1/16,1/16) twisted sector fields contributing to the 
vacuum of the twisted sector. This simply comes from the q-1/48 factor in 
the definition of the h,4-functions. They appear inversely, and for example 
on the left, we have 1/48 = -c/24 + 1/16, where c = 1. 

Finally, notice that the contribution from the twisted sectors do not 
depend upon the radius R. This fits with the fact that the twisted sectors 
are trapped at the fixed points, and have no knowledge of the extent of 
the circle. 

4.9 T-duality for open strings: D-branes 

Let us now consider the R ----+ 0 limit of the open string spectrum. Open 
strings do not have a conserved winding around the periodic dimension 
and so they have no quantum number comparable to w, so something 
different must happen, as compared to the closed string case. In fact, it 
is more like field theory: when R ----+ 0 the states with non-zero internal 
momentum go to infinite mass, but there is no new continuum of states 
coming from winding. So we are left with a theory in one dimension fewer. 
A puzzle arises when one remembers that theories with open strings have 
closed strings as well, so that in the R ----+ 0 limit the closed strings live in 
D spacetime dimensions but the open strings only in D - 1. 

This is perfectly fine, though, since the interior of the open string is 
indistinguishable from the closed string and so should still be vibrating in 
D dimensions. The distinguished part of the open string are the endpoints, 
and these are restricted to a D - 1 dimensional hyperplane. 

This is worth seeing in more detail. Write the open string mode expan­
sion as 

XI"(z, z) = XI"(z) + XI"(z), 

xl" x/I" (a/) 1/2 1 
XI"(z) = - + - - ia'pl" in z + i - L -a~z-n, 

2 2 2 ny!oO n 

xl" x/I" (a/) 1/2 1 
XI"(z) = - - - - ia'pl" in z + i - L -a~z-n, 

2 2 2 ny!oO n 
( 4.57) 

where x/I" is an arbitrary number which cancels out when we make the 
usual open string coordinate. Imagine that we place X 25 on a circle of 
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radius R. The T-dual coordinate is 

= x'25 - ia'p25 In (~) + i(2a')1/2 L ~a~5e-inT sin nO' 
Z n#Q n 

= x'25 + 2a'p25O' + i(2a')1/2 L ~a~5e-inT sin nO' 
n#Q n 

= x'25 + 2a' ~O' + i(2a')1/2 L ~a~5e-inT sin nO'. 
R n#Q n 

( 4.58) 

Notice that there is no dependence on T in the zero mode sector. This is 
where momentum usually comes from in the mode expansion, and so we 
have no momentum. In fact, since the oscillator terms vanish at the end­
points 0' = 0, TI, we see that the endpoints do not move in the X'25 direc­
tion! Instead of the usual Neumann boundary condition 8nX == 8IJX = 0, 
we have 8t X == i8TX = O. More precisely, we have the Dirichlet condition 
that the ends are at a fixed place: 

( 4.59) 

In other words, the values of the coordinate X'25 at the two ends are 
equal up to an integral multiple of the periodicity of the dual dimension, 
corresponding to a string that winds as in figure 4.2 . 

....... 

.' ..... 
.' 

~/ 

o 

. ' ..... 

.' .' ..-
..-

.' ..... 
.' 

:, ... 

2nR' 

.... 
..-

..-.' .' ..-

X'25 

• 

Fig. 4.2. Open strings with endpoints attached to a hyperplane. The 
dashed planes are periodically identified. The strings shown have winding 
numbers zero and one. 
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This picture is consistent with the fact that under T-duality, the defi­
nition of the normal and tangential derivatives get exchanged: 

25( ) 8X25 (z) 8X25 (z) _ 8 X,25( -) 8n X z,z = + z z 8z 8z - t , 

8tX25(z, z-) = 8X25 (z) _ 8X25 (z) - 8 X'25( -) 
8z 8z - n Z, Z . ( 4.60) 

Notice that this all pertains to just the direction which we T -dualised, 
X25. So the ends are still free to move in the other 24 spatial dimensions, 
which constitutes a hyperplane called a 'D-brane'. There are 24 spatial 
directions, so we shall denote it a D24-brane. 

4.9.1 Chan-Paton factors and Wilson lines 

This picture becomes even more rich when we include Chan-Paton 
factors25 . Consider the case of U (N), the oriented open string. When 
we compactify the X 25 direction, we can include a Wilson line 

A25 = diag{e1, e2, ... , eN }/27TR, 

which generically breaks U(N) ----+ U(l)N. (See insert 4.4 (p. 122) for a 
short discussion.) Locally this is pure gauge, 

A25 = -iA -1825A, A = diag{ eix258l/27TR, eix2582/27TR, ... , eix258l/27TR}. 

(4.61) 
We can gauge A25 away, but since the gauge transformation is not peri­
odic, the fields pick up a phase 

( 4.62) 

under X 25 ----+ X 25 + 27T R. 
What is the effect in the dual theory? From the phase (4.62) the open 

string momenta are now fractional. As the momentum is dual to winding 
number, we conclude that the fields in the dual description have frac­
tional winding number, i.e. their endpoints are no longer on the same 
hyperplane. Indeed, a string whose endpoints are in the state lij; picks 
up a phase ei(8j-8;), so their momentum is (2TIr~+ej - ei)/27TR. Modifying 
the endpoint calculation (4.59) then gives 

( 4.67) 

In other words, up to an arbitrary additive constant, the endpoint in state 
i is at position 

( 4.68) 
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Insert 4.4. Particles and Wilson lines 

The following illustrates an interesting gauge configuration which 
arises when spacetime has the non-trivial topology of a circle (with 
coordinate X 25 ) of radius R. Consider the case of U(l). Let us make 
the following choice of constant background gauge potential: 

Me. -1 aA 
A 25 (X ) = - 2TIR = -zA aX25' ( 4.63) 

iex25 
where A(X25) = e- 2TIR • This is clearly pure gauge, but only lo-
cally. There still exists non-trivial physics. Form the gauge invariant 
quantity ('Wilson line'): 

Wq = exp (iq f dX25 A25) = e-iq8 . (4.64) 

Where does this observable show up? Imagine a point particle of 
charge q under the U(l). Its action can be written (see section 4.2) 
as: 

( 4.65) 

The last term is just -iq I A = -iq I AMdxM, in the language of forms. 
This is the natural coupling of a world volume to an antisymmetric 
tensor, as we shall see.) Recall that in the path integral we are com­
puting e-s . So if the particle does a loop around X 25 circle, it will 
pick up a phase factor of W q . Notice: the conjugate momentum to 
XM is 

af: . 
lIM = i-.- = iXM 

aXM ' 
except for 

where the last equality results from the fact that we are on a circle. 
Now we can of course gauge away A with the choice A-I, but it will 
be the case that as we move around the circle, i.e. X 25 ---+ X 25 + 2TI R, 
the particle (and all fields) of charge q will pick up a phase eiq8 . So 
the canonical momentum is shifted to: 

2" n qe 
p ;) = R + 2TIR· ( 4.66) 
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Fig. 4.3. Three D-branes at different positions, with various strings at­
tached. 

We have in general N hyperplanes at different positions as depicted in 
figure 4.3. 

4.10 D-brane collective coordinates 

Clearly, the whole picture goes through if several coordinates 

Xm = {X 25 , X 24 , ... , XP+1} ( 4.69) 

are periodic, and we rewrite the periodic dimensions in terms of the dual 
coordinates. The open string endpoints are then confined to N (p + 1)­
dimensional hyperplanes, the D(p + l)-branes. The Neumann conditions 
on the world-sheet, 8n X m(crl, cr2 ) = 0, have become Dirichlet conditions 
8t x'm(crl, cr2 ) = ° for the dual coordinates. In this terminology, the orig­
inal 26 dimensional open string theory theory contains N D25-branes. 
A 25-brane fills space, so the string endpoint can be anywhere: it just 
corresponds to an ordinary Chan-Paton factor. 

It is natural to expect that the hyperplane is dynamical rather than 
rigid8 . For one thing, this theory still has gravity, and it is difficult to see 
how a perfectly rigid object could exist. Rather, we would expect that the 
hyperplanes can fluctuate in shape and position as dynamical objects. We 
can see this by looking at the massless spectrum of the theory, interpreted 
in the dual coordinates. 

Taking for illustration the case where a single coordinate is dualised, 
consider the mass spectrum. The D - 1 dimensional mass is 

M2 = (p25)2 + ~(N - 1) 
a/ 

= ([2m? + (()i - ()j)]R') 2 + ~(N -1). 
27Ta/ a/ 

(4.70) 
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Note that [27Tn + (ei - e j ) 1 R' is the minimum length of a string winding 
between hyperplanes i and j. Massless states arise generically only for 
non-winding (i.e. n = 0) open strings whose end points are on the same 
hyperplane, since the string tension contributes an energy to a stretched 
string. We have therefore the massless states (with their vertex operators): 

a~llk; ii), V = [AXiL, 

arrlllk; ii), V = OtX25 = onx,25. (4.71) 

The first of these is a gauge field living on the D-brane, with p + 1 com­
ponents tangent to the hyperplane, AiL(ea ), IL, a = 0, ... ,po Here, eiL = xiL 
are coordinates on the D-branes' world-volume. The second was the gauge 
field in the compact direction in the original theory. In the dual theory 
it becomes the transverse position of the D-brane (see equation (4.68)). 
From the point of view of the world-volume, it is a family of scalar fields, 
<I>m(ea ) , (m = p + 1, ... , D - 1) living there. 

We saw this in equation (4.68) for a Wilson line, which was a con­
stant gauge potential. Now imagine that, as genuine scalar fields, the <I>m 
vary as we move around on the world-volume of the D-brane. This there­
fore embeds the brane into a variable place in the transverse coordinates. 
This is simply describing a specific shape to the brane as it is embed­
ded in spacetime. The <I>m(ea ) are exactly analogous to the embedding 
coordinate map X iL (rJ, T) with which we described strings in the earlier 
sections. 

The values of the gauge field backgrounds describe the shape of the 
branes as a soliton background, then. Meanwhile their quanta describe 
fluctuations of that background. This is the same phenomenon which 
we found for our description of spacetime in string theory. We started 
with strings in a flat background and discover that a massless closed 
string state corresponds to fluctuations of the geometry. Here we found 
first a flat hyperplane, and then discovered that a certain open string 
state corresponds to fluctuations of its shape. Remarkably, these open 
string states are simply gauge fields, and this is one of the reasons for 
the great success of D-branes. There are other branes in string theory (as 
we shall see) and they have other types of field theory describing their 
collective dynamics. D-branes are special, in that they have a beautiful 
description using gauge theory. Ultimately, we can use the long experience 
of working with gauge theories to teach us much about D-branes, and 
later, the geometry of D-branes and the string theories in which they 
live can teach us a lot about gauge theories. This is the basis of the 
dialogue between gauge theory and geometry which dominates the field 
at present. 
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It is interesting to look at the U(N) symmetry breaking in the dual pic­
ture where the brane can move transverse to their world-volumes. When 
no D-branes coincide, there is just one massless vector each, or U(l)N 
in all, the generic unbroken group. If k D-branes coincide, there are new 
massless states because strings which are stretched between these branes 
can achieve vanishing length. Thus, there are k2 vectors, forming the ad­
joint of a U (k) gauge group25, 26. This coincident position corresponds to 
e1 = e2 = ... = ek for some subset of the original {e}, so in the original 
theory the Wilson line left a U(k) subgroup unbroken. At the same time, 
there appears a set of k 2 massless scalars: the k positions are promoted 
to a matrix. This is not intuitive at first, but plays an important role in 
the dynamics of D-branes26 . We will examine many consequences of this 
later in this book. Note that if all N branes are coincident, we recover the 
U (N) gauge symmetry. 

Although this picture seems quite odd, and will become more so in the 
unoriented theory, note that all we have done is to rewrite the original 
open string theory in terms of variables which are more natural in the 
limit R « R. Various obscure features of the small-radius limit become 
clear in the T-dual picture. 

Observe that, since T-duality interchanges Neumann and Dirichlet 
boundary conditions, a further T-duality in a direction tangent to a Dp­
brane reduces it to a D(p - l)-brane, while a T-duality in a direction 
orthogonal turns it into a D(p + 1 )-brane. 

4.11 T-duality for unoriented strings: orientifolds 

The R ---+ 0 limit of an unoriented theory also leads to a new extended 
object. Recall that the effect of T-duality can also be understood as a 
one-sided parity transformation. For closed strings, the original coordi­
nate is xm(z, z) = Xm(z) + xm(z). We have already discussed how to 
project string theory with these coordinates by O. The dual coordinate is 
x'm(z, z) = xm(z) - xm(z). The action of world sheet parity reversal is 
to exchange XM(z) and XM(z). This gives for the dual coordinate: 

(4.72) 

This is the product of a world-sheet and a spacetime parity operation. 
In the unoriented theory, strings are invariant under the action of [2, 

while in the dual coordinate the theory is invariant under the product 
of world-sheet parity and a spacetime parity. This generalisation of the 
usual unoriented theory is known as an 'orientifold', a term that mixes 
the term 'orbifold' with orientation reversal. 
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Imagine that we have separated the string wavefunction into its internal 
part and its dependence on the centre of mass, xm. Furthermore, take 
the internal wavefunction to be an eigenstate of D. The projection then 
determines the string wavefunction at _xm to be the same as at xm, up 
to a sign. The various components of the metric and antisymmetric tensor 
satisfy, for example, 

Gi-'n(xi-', _xm) = -Gi-'n (xi-' , x m), 
Gmn(xi-', _xm) = Gmn (xi-' , x m), 

Bi-'n(xi-', _xm) = Bi-'n(xi-', xm), 
Bmn(xi-', _xm) = -Bmn(xi-', xm). (4.73) 

In other words, when we have k compact directions, the T-dual spacetime 
is the torus T 25 - k moded by a 2::2 reflection in the compact directions. 
So we are instructed to perform an orbifold construction, modified by the 
extra sign. In the case of a single periodic dimension, for example, the 
dual spacetime is the line segment 0 ::; x 25 ::; TIR'. The reader should 
remind themselves of the orbifold construction in section 4.8. At the ends 
of the interval, there are fixed 'points', which are in fact spatially 24-
dimensional planes. Looking at the projections (4.73) in this case, we 
see that on these fixed planes, the projection is just like we did for the 
D-projection of the 25+1 dimensional theory in section 2.6: the theory 
is unoriented there, and half the states are removed. These orientifold 
fixed planes are called 'a-planes' for short. For this case, we have two 
024-planes. (For k directions we have 2k 0(25 - k)-planes arranged on 
the vertices of a hypercube.) In particular, we can usefully think of the 
original case of k = 0 as being on an 025-plane. 

While the theory is unoriented on the a-plane, away from the orientifold 
fixed planes, the local physics is that of the oriented string theory. The 
projection relates the physics of a string at some point xm to the string 
at the image point _xm. 

In string perturbation theory, orientifold planes are not dynamical. Un­
like the case of D-branes, there are no string modes tied to the orientifold 
plane to represent fluctuations in its shape. Our heuristic argument in 
the previous subsection that gravitational fluctuations force a D-brane to 
move dynamically does not apply to the orientifold fixed plane. This is 
because the identifications (4.73) become boundary conditions at the fixed 
plane, such that the incident and reflected gravitational waves cancel. For 
the D-brane, the reflected wave is higher order in the string coupling. 

The orientifold construction was discovered via T -duality8 and inde­
pendently from other approaches27, 10. One can of course consider more 
general orientifolds which are not simply T-duals of toroidal compactifica­
tions. The idea is simply to combine a group of discrete symmetries with D 
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such that the resulting group of operations (the 'orientifold group', Go) is 
itself a symmetry of some string theory. One then has the right to ask what 
the nature of the projected theory obtained by dividing by Go might be. 
This is a fruitful way of construction interesting and useful string vacua28 . 

We shall have more to say about this later, since in superstring theory 
we shall find that O-planes, like D-branes , are sources of various closed 
string sector fields. Therefore there will be additional consistency condi­
tions to be satisfied in constructing an orientifold, amounting to making 
sure that the field equations are satisfied. 

So far our discussion of orientifolds was just for the closed string sector. 
Let us see how things are changed in the presence of open strings. In 
fact, the situation is similar. Again, let us focus for simplicity on a single 
compact dimension. Again there is one orientifold fixed plane at 0 and 
another at TIR'. Introducing SO(N) Chan-Paton factors, a Wilson line 
can be brought to the form 

(4.74) 

Thus in the dual picture there are ~N D-branes on the line segment 
o ::; X,25 < TIR', and ~N at their image points under the orientifold 
identification. 

Strings can stretch between D-branes and their images, as shown in 
figure 4.4. The generic gauge group is U(1)N/2, where all branes are sep­
arated. As in the oriented case, if m D-branes are coincident there is a 
U(m) gauge group. However, now if the m D-branes in addition lie at one 
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. ' 
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.' 
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.' ..-

,.'" X l25 
~.' • 

Fig. 4.4. Orientifold planes at 0 and TIR'. There are D-branes at B1R' and 
B2R', and their images at -B1R' and -B2R'. [2 acts on any string by a 
combination of a spacetime reflection through the planes and reversing 
the orientation arrow. 
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of the fixed planes, then strings stretching between one of these branes 
and one of the image branes also become massless and we have the right 
spectrum of additional states to fill out SO(2m). The maximal SO(N) 
is restored if all of the branes are coincident at a single orientifold plane. 
Note that this maximally symmetric case is asymmetric between the two 
fixed planes. Similar considerations apply to U Sp( N). As we saw before, 
the difference between the appearance of the two groups is in a sign on 
the matrix M as it acts on the string wavefunction. Later, we shall see 
that this sign is correlated with the sign of the charge and tension of the 
orientifold plane. 

We should emphasise that there are ~N dynamical D-branes but an N­
valued Chan-Paton index. An interesting case is when k + ~ D-branes lie 
on a fixed plane, which makes sense because the number 2k + 1 of indices 
is integer. A brane plus image can move away from the fixed plane, but 
the number of branes remaining is always half-integer. This anticipates 
a discussion which we shall have about fractional branes much later, m 
section 13.2, even outside the context of orientifolds. 
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Background fields and world-volume 

actions 

T -duality is clearly a remarkable phenomenon that is highly indicative of 
the different view string theory has of spacetime from that of field theo­
ries. This heralds a rather rich landscape of possibilities for new physics, 
and indeed T-duality will govern much of what we will study in the rest of 
this book, either directly or indirectly. So far, we have uncovered it at the 
level of the string spectrum, and have used it to discover D-branes and 
orientifolds. However, we have so far restricted ourselves to fiat space­
time backgrounds, with none of the other fields in the string spectrum 
switched on. In this chapter, we shall study the action of T-duality when 
the massless fields of the string theory take on non-trivial values, giving 
us curved backgrounds and/or gauge fields on the world-volume of the 
D-branes. It is also important to uncover further aspects of the dynam­
ics of D-branes in non-trivial backgrounds, and we shall also uncover an 
action to describe this here. 

5.1 T-duality in background fields 

The first thing to notice is that T-duality acts non-trivial on the dila­
ton, and therefore modifies the string coupling16, 17. After dimensional 
reduction on a circle of radius R, the effective 25-dimensional string cou­
pling read off from the reduced string frame supergravity action is now 
g8 = e<P (27T R) -1/2. Since the resulting 25-dimensional theory is supposed 
to have the same physics, by T-duality, as a theory with a dilaton <I>, com­
pactified on a circle of radius R', it is required that this coupling is equal to 
98 = eel> (27TR') -1/2, the string coupling of the dual 25-dimensional theory: 

(5.1 ) 

129 
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130 5 Background fields and world-volume actions 

This is just part of a larger statement about the T-duality transformation 
properties of background fields in general. Starting with background fields 
Gp,v, Bp,v and <I>, let us first T-dualise in one direction, which we shall label 
X 25 , as before. In other words, X 25 is a direction which is a circle of radius 
R, and the dual circle X/25 is a circle of radius R' = all R. 

We may start with the two dimensional sigma model (2.103) with back­
ground fields Gp,v, Bp,v, <I> , and assume that locally, all of the fields are 
independent of the direction X25. In this case, we may write an equivalent 
action by introducing a Lagrange multiplier, which we shall call X/25 : 

S(J = 4:0/ J d2(}gl/2{ gab [G25 ,25VaVb + 2G25,p,VaObXP, + Gp,vOaXP,ObXVj 

+ iEab [2B25,p,VaObXP, + Bp,vOaXP,ObXv + 2X/250aVb] + O/R<I>}. (5.2) 

Since the equation of motion for the Lagrange multiplier is 

of: . ab;:;, 
OX/25 = ZE UaVb = 0, 

we can write a solution as Vb = Ob¢ for any scalar ¢, which we might 
as well call X 25 , since upon substitution of this solution back into the 
action, we get our original action in (2.103). 

Instead, we can find the equation of motion for the quantity Va: 

of: _ ~ ( of: ) _ 0 
OVa O(}b o( ObVa) -

(5.3) 

= gab [G 25 ,25Vb + G 25 ,p,ObX P,j + iEab [B25 ,p,ObX P, + ObX/25] , 

which, upon solving it for Va and substituting back into the equations 
gives an action of the form (2.103), but with fields Gp,v and Bp,v given by: 

(5.4) 

where a one loop (not tree level) world-sheet computation (e.g. by checking 
the p-function equations again, or by considering the new path integral 
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measure induced by integrating out va), gives the new dilaton. This fits 
with the fact that it couples at the next order in a' (which plays the role 
of n on the world-sheet) as discussed previously. 

Of course, we can T-dualise on many (say d) independent circles, form­
ing a torus Td. It is not hard to deduce that one can succinctly write the re­
sulting T-dual background as follows. If we define the DxD 
metric 

(5.5) 

and if the circles are in the directions Xi, i = 1, ... , d, with the remaining 
directions labelled by X a , then the dual fields are given by 

Eij = Eij, Eaj = EakEkj, 

Eab = Eab - EaiEij Ejb, (5.6) 

where EikEkj = 6/ defines Eij as the inverse of Eij. We will find this 
succinct form of the O( d, d) T -duality transformation very useful later on. 

5.2 A first look at the D-brane world-volume action 

The D-brane is a dynamical object, and as such, feels the force of gravity. 
In fact, it must be able to respond to the values of the various background 
fields in the theory. This is especially obvious if one recalls that the D­
branes' location and shaped is controlled (in at least one way of describing 
them) by the open strings which end on them. These strings respond to 
the background fields in ways we have already studied (we have written 
world-sheet actions for them), and so should the D-branes. We must find 
a world-volume action describing their dynamics. 

If we introduce coordinates ~a, a = 0, ... ,p on the brane, we can begin 
to write an action for the dynamics of the brane in terms of fields living 
on the world-volume in much the same way that we did for the string, in 
terms of fields living on the world-sheet. The background fields will act as 
generalised field-dependent couplings. As we discussed before, the fields 
on the brane are the embedding XM(~) and the gauge field Aa(~). We shall 
ignore the latter for now and concentrate just on the embedding part. By 
direct analogy to the particle and string case studied in chapter 2, the 
action is 

(5.7) 

where Gab is the induced metric on the brane, otherwise known as the 
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'pull-back' of the spacetime metric G/1V to the brane: 

uX{luXU 

Gab == U~a U~b G{lu. (5.8) 

Tp is the tension of the Dp-brane, which we shall discuss at length later. 
The dilaton dependence e-<I> = g;;l arises because this is an open string 
tree level action, and so this is the appropriate function of the dilaton to 
introduce. 

N.B. The world-volume reparametrisation invariant action we have 
just written is in terms of the determinant of the metric. It is a com­
mon convention to leave the a, b indices dangling in writing this ac­
tion and its generalisations, and we shall adopt that somewhat loose 
notation here. More careful authors sometimes use other symbols, 
like det 1/ 2 P[G], where the P denotes the pull-back, and G means 
the metric, now properly thought of as a matrix whose determinant 
is to be taken. Here, the meaning of what we write using the looser 
notation should always be clear from the context. 

Of course, this cannot be the whole story, and indeed it is clear that 
we shall need a richer action, since the rules of T-duality action on the 
background fields mean that T-dualising to a D(p+ 1)- or D(p-1)-brane's 
action will introduce a dependence on E{lu, since it mixes with components 
of the metric. Furthermore, there will be mixing with components of a 
world-volume gauge field, since some of kinetic terms for the transverse 
fields, uaxm, m = p+ 1, ... ,D-1, implicit in the action (5.8), will become 
derivatives of gauge fields, 27Ta' uaAm according to the rules of T-duality 
for open strings deduced in the previous chapter. We shall construct the 
full T-duality respecting action in the next subsection. Before we do that, 
let us consider what we can learn about the tension of the D-brane from 
this simple action, and what we learned about the transformation of the 
dilaton. 

The tension of the brane controls its response to outside influences 
which try to make it change its shape, absorb energy, etc., just as we 
saw for the tension of a string. We shall compute the actual value of the 
tension in chapter 6. Here, we are going to uncover a useful recursion 
relation relating the tensions of different D-branes, which follows from 
T-duality76, 29. The mass of a Dp-brane wrapped around a p-torus TP is 

P 

Tpe-<I> II (27TRi)' (5.9) 
i=l 
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T -dualising on the single direction XP and recalling the transforma­
tion (5.1) of the dilaton, we can rewrite the mass (5.9) in the dual vari­
ables: 

p-I p-I 

Tp(21Tv';I)e-<1>' II (21TRi) = Tp_ I e-<1>I II (21TRi). (5.10) 
i=l i=l 

Hence, 

(5.11) 

where we performed the duality recursively to deduce the general relation. 
The next step is to take into account new couplings for the embedding 

coordinates/fields which result of other background spacetime fields like 
the antisymmetric tensor B{w. This again appears as an induced tensor 
Bab on the worldvolume, via a formula like (5.8). 

It is important to notice that that there is a restriction due to spacetime 
gauge symmetry on the precise combination of Bab and Aa which can 
appear in the action. The combination Bab + 2mx' Fab can be understood 
as follows. In the world-sheet sigma model action of the string, we have 
the usual closed string term (2.103) for B and the boundary action (2.108) 
for A. So the fields appear in the combination: 

- B+ A. 1 j J 
21Ta/ M 8M 

(5.12) 

We have written everything in terms of differential forms, since B and A 
are antisymmetric. For example J A == J Aad~a. 

This action is invariant under the spacetime gauge transformation JA = 

d>.. However, the spacetime gauge transformation JB = d( will give a sur­
face term which must be cancelled with the following gauge transforma­
tion of A: JA = -(/21Ta/. So the combination B + 21Ta/ F, where F = dA 
is invariant under both symmetries; this is the combination of A and B 
which must appear in the action in order for spacetime gauge invariance 
to be preserved. 

5.2.1 World-volume actions from tilted D-branes 

There are many ways to deduce pieces of the world-volume action. One 
way is to redo the computation for Weyl invariance of the complete sigma 
model, including the boundary terms, which will result in the (p + 1)­
dimensional equations of motion for the world-volume fields Gab, Bab and 
Aa. One can then deduce the p+ I-dimensional world-volume action from 
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which those equations of motion may be derived. We will comment on 
this below. 

Another way, hinted at in the previous subsection, is to use T-duality to 
build the action piece by piece. For the purposes of learning more about 
how the branes work, and in view of the various applications to which we 
will put the branes, this second way is perhaps more instructive. 

Consider38 a D2-brane extended in the Xl and X2 directions, and let 
there be a constant gauge field F12 . (We leave the other dimensions un­
specified, so the brane could be larger by having extent in other direc­
tions. This will not affect our discussion.) We can choose a gauge in which 
A2 = Xl F 12 . Now consider T-dualising along the x2-direction. The rela­
tion (4.68) between the potential and coordinate gives 

This says that the resulting D1-brane is tilted at an angle* 

e = tan-l (27Ta' F 12 ) 

(5.13) 

(5.14) 

to the X 2-axis! This gives a geometric factor m the D1-brane world­
volume action, 

We can always boost the D-brane to be aligned with the coordinate axes 
and then rotate to bring FjJ,V to block-diagonal form, and in this way 
we can reduce the problem to a product of factors like (5.15) giving a 
determinant: 

S;v J dDX det l / 2 (7]jLV+ 27ra'FjLv). (5.16) 

This is the Born-Infeld action.42 

In fact, this is the complete action (in a particular 'static' gauge which 
we will discuss later) for a space-filling D25-brane in fiat space, and with 
the dilaton and antisymmetric tensor field set to zero. In the language 
of section 2.7, Weyl invariance of the open string sigma model (2.108) 
amounts to the following analogue of (2.105) for the open string sector: 

(5.17) 

* The reader concerned about achieving irrational angles and hence densely filling the 
(Xl, X2) torus should suspend disbelief until chapter 8. There, when we work in the 
fully consistent quantum theory of superstrings, it will be seen that the fluxes are 
quantised in just the right units to make this sensible. 
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these equations of motion follow from the action. In fact, in contrast to the 
Maxwell action written previously (2.107), and the closed string action 
(2.106), this action is true to all orders in 0', although only for slowly 
varying field strengths; there are corrections from derivatives of Fjw .32 

5.3 The Dirac-Born-Infeld action 

We can uncover a lot of the rest of the action by simply dimensionally 
reducing. Starting with (5.16), where FjJ,V = 8{lAv-8vA{l as usual (we will 
treat the non-Abelian case later) let us assume that D-p-1 spatial coor­
dinates are very small circles, small enough that we can neglect all deriva-
tives with respect to those directions, labelled X m , m = p + 1, ... , D - l. 
(The uncompactified coordinates will be labelled X a , a = 0, ... , p.) In 
this case, the matrix whose determinant appears in (5.16) is: 

(~ (5.18) 

where 

lVI = 6mn ; (5.19) 

Using the fact that its determinant can be written as IMIIN +ATM-1AI, 
our action becomes56 

(5.20) 

up to a numerical factor (coming from the volume of the torus we reduced 
on. Once again, we used the T-duality rules (4.68) to replace the gauge 
fields in the T -dual directions by coordinates: 21TO' Am = xm. 

This is (nearly) the action for a Dp-brane and we have uncovered how 
to write the action for the collective coordinates xm representing the fluc­
tuations of the brane transverse to the world-volume. There now remains 
only the issue of putting in the case of non-trivial metric, B{lv and dilaton. 
This is easy to guess given that which we have encountered already: 

(5.21) 

This is the Dirac-Born-Infeld Lagrangian, for arbitrary background fields. 
The factor of the dilaton is again a result of the fact that all of this physics 
arises at open string tree level, hence the factor g;.:1, and the Bab is in 
the right place because of spacetime gauge invariance. Tp and Gab are in 
the right place to match onto the discussion we had when we computed 
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the tension. Instead of using T-duality, we could have also deduced this 
action by a generalisation of the sigma model methods described earlier, 
and in fact this is how it was first derived in this context34 . 

We have re-introduced independent coordinates ea on the world­
volume. Note that the actions given in equations (5.15) and (5.20) were 
written using a choice where we aligned the world-volume with the first 
p + 1 spacetime coordinates as ea = X a , leaving the D - p - 1 trans­
verse coordinates called xm. We can always do this using world-volume 
and spacetime diffeomorphism invariance. This choice is called the 'static 
gauge', and we shall use it quite a bit in these notes. Writing this out (for 
vanishing dilaton) using the formula (5.8) for the induced metric, for the 
case of G/LV = 'r//LV we see that we get the action (5.20). 

5.4 The action of T-duality 

It is amusing41 , 51 to note that our full action obeys (as it should) the rules 
of T-duality which we already wrote down for our background fields. The 
action for the Dp-brane is built out of the determinant IEab + 2mx' Fab I, 
where the (a, b = 0, ... ,p) indices on Eab mean that we have performed 
the pullback of E/Lv (defined in (5.5)) to the world-volume. This matrix 
becomes, if we T-dualise on n directions labelled by Xi and use the rules 
we wrote in (5.6): 

I 

Eab - Eai Eij Ejb + 2mx' Fab 
Eik Ekb + ObXi 

- Eak Ek}- oaXi I 
EZJ ' 

(5.22) 

which has determinant IEijllEab + 27Ta'Fabl. In forming the square root, 
we get again the determinant needed for the definition of aT-dual DBI 
action, as the extra determinant IEij I precisely cancels the determinant 
factor picked up by the dilaton under T -duality. (Recall, Eij is the inverse 
of E ij .) 

Furthermore, the tension Tpl comes out correctly, because there is a 
factor of IIi (27TRi) from integrating over the torus directions, and a factor 
IIi(RdVd) from converting the factor e- iP , (see equation (5.1)), which 
fits nicely with the recursion formula (5.11) relating Tp and Tpl. 

The above was done as though the directions on which we dualised were 
all Neumann or all Dirichlet. Clearly, we can also extrapolate to the more 
general case. 

5.5 Non-Abelian extensions 

For N D-branes the story is more complicated. The various fields on the 
brane representing the collective motions, Aa and X m, become matrices 
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valued in the adjoint. In the Abelian case, the various spacetime back­
ground fields (here denoted F{l for the sake of argument) which can ap­
pear on the world-volume typically depend on the transverse coordinates 
xm in some (possibly) non-trivial way. In the non-Abelian case, with N 
D-branes, the transverse coordinates are really N x N matrices, 21Ta'<I>m, 
since they are T-dual to non-Abelian gauge fields as we learned in 
previous sections, and so inherit the behaviour of gauge fields (see 
equation (4.68)). We write them as <I>m = xm / (21T(~i). So not only should 
the background fields F{l depend on the Abelian part, but they ought to 
possibly depend (implicitly or explicitly) on the full non-Abelian part as 
F ( <I> ) {l in the action. 

Furthermore, in (5.21) we have used the partial derivatives oaX{l to 
pull back spacetime indices fL to the world-volume indices, a, e.g. Fa = 

F{loaX{l, and so on. To make this gauge covariant in the non-Abelian 
case, we should pull back with the covariant derivative: Fa = F{lDaX{l = 

F{l(oaX{l + [Aa, X{l]). 
With the introduction of non-Abelian quantities in all of these places, 

we need to consider just how to perform a trace, in order to get a gauge 
invariant quantity to use for the action. Starting with the fully Neumann 
case (5.16), a first guess is that things generalise by performing a trace (in 
the fundamental of U(N)) of the square rooted expression. The meaning 
of the Tr needs to be stated, It is proposed that is means the 'symmet­
ric' trace, denoted 'STr' which is to say that one symmetrises over gauge 
indices, consequently ignoring all commutators of the field strengths en­
countered while expanding the action43 . (This suggestion is consistent 
with various studies of scattering amplitudes and also the BPS nature 
of various non-Abelian soliton solutions. There is still apparently some 
ambiguity in the definition which results in problems beyond fifth order 
in the field strength 44, 343.) 

Once we have this action, we can then again use T-duality to deduce 
the form for the lower dimensional, Dp-brane actions. The point is that we 
can reproduce the steps of the previous analysis, but keeping commutator 
terms such as [Aa, <I>m] and [<I>m, <I>n]. We will not reproduce those steps 
here, as they are similar in spirit to that which we have already done 
(for a complete discussion, the reader is invited to consult some of the 
literature45 .) The resulting action is: 

Sp = -Tp / dP+1~e-q, £, where 

£ = STr {detl/2[Eab + Eai(Q-l - J)ij Ejb + 21Ta' Fab] detl/2[Qij]} ,(5.23) 
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5.6 D-branes and gauge theory 

In fact, we are now in a position to compute the constant C in equa­
tion (2.107), by considering N D25-branes, which is the same as an ordi­
nary (fully Neumann) N-valued Chan-Paton factor. Expanding the D25-
brane Lagrangian (5.16) to second order in the gauge field, we get 

(5.24) 

with the trace in the fundamental representation of U(N). This gives the 
precise numerical relation between the open and closed string couplings. 

Actually, with Dirichlet and Neumann directions, performing the same 
expansion, and in addition noting that 

(5.25) 

one can write the leading order action (5.23) as 

Sp = - Tp(2:al )2 / dP+1~ e-<I>Tr [Fab Fab + 2Va1>iVa1>i + [1>\ 1>]]2]}. 

(5.26) 

This is the dimensional reduction of the D-dimensional Yang-Mills 
term, displaying the non-trivial commutator for the adjoint scalars. This 
is an important term in many modern applications, as we shall see. Note 
that the (p + I)-dimensional Yang-Mills coupling for the theory on the 
branes is 

2 T-1(2 ')-2 gYM,p = g8 P 'ITa . (5.27) 

This is worth noting70. With the superstring value of Tp which we will 
compute later, it is used in many applications to give the correct relation 
between gauge theory couplings and string quantities. 

5.7 BPS lumps on the world-volume 

We can of course treat the Dirac-Born-Infeld action as an interesting 
theory in its own right, and seek for interesting solutions of it. These 
solutions will have both a (p + I)-dimensional interpretation and a D­
dimensional one. 

We shall not dwell on this in great detail, but include a brief discussion 
here to illustrate an important point, and refer to the literature for more 
complete discussions. 55 More details will appear when we get to the su­
persymmetric case. One can derive an expression for the energy density 
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contained in the fields on the world-volume: 

£2 = E a Eb FcaFcb + E a EbGab + det( G + 27Ta/ F), (5.28) 

where here the matrix Fab contains only the magnetic components (i.e. 
no time derivatives) and E a are the electric components, subject to the 
Gauss Law constraint V . E = O. Also, as before 

m = p + 1, ... , D - 1. (5.29) 

Let us consider the case where we have no magnetic components and 
only one of the transverse fields, say X 25 , switched on. In this case, we 
have 

£2 = (1 ± E . V X 25 )2 + (E =t= V X25)2, 

and so we see that we have the Bogomol'nyi condition 

£ ~ IE. V x251 + 1. 

This condition is saturated if E = ± V X25. In such a case, we have 

(5.30) 

(5.31 ) 

(5.32) 

a harmonic solution, where cp is a constant to be determined. The total 
energy (beyond that of the brane itself) IS, integrating over the world­
volume: 

100 ~ c2 (p - 2)D -1 
- l' T p-1d dn (nx25)2 - l' T p p - 1m p r r Hp-1 v - 1m p -2 

E-tOO E E-tOO EP 

= lim Tpcp(p - 2)Dp_ 1X 25 (E), (5.33) 
E-+OO 

where Dp- 1 is the volume of the sphere Sp-1 surrounding our point charge 
source, and we have cut off the divergent integral by integrating down to 
r = E. (We will save the case of p = 1 for later140,60.) Now we can 
chooset a value of the electric fiux such that we get (p - 2)cpDp-1Tp = 
(27Ta/)-1. Putting this into our equation for the total energy, we see that 
the (divergent) energy of our configuration is: 

1 25 E tot = --X (E). 
27Ta/ 

(5.34) 

What does this mean? Well, recall that X25(~) gives the transverse 
position of the brane in the X 25 direction. So we see that the brane 

t In the supersymmetric case, this has a physical meaning, since overall consistency of 
the D-brane charges set a minimum electric flux. Here, it is more arbitrary, and so 
we choose a value by hand to make the point we wish to illustrate. 
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(a) (b) 

Fig. 5.1. The D-dimensional interpretation of the Blon solution. (a) It is 
an infinitely long spike representing a fundamental string ending on the 
D-brane. (b) Blons are BPS and therefore can be added together at no 
cost to make a multi-Blon solution. 

has grown a semi-infinite spike at r = 0, and the base of this spike is 
our point charge. The interpretation of the divergent energy is simply 
the (infinite) length of the spike multiplied by a mass per unit length. 
But this mass per unit length is precisely the fundamental string tension 
T = (27TOO/)-1! In other words, the spike solution is the fundamental string 
stretched perpendicular to the brane and ending on it, forming a point 
electric charge, known as a 'Blon'; see figure 5.1(a). In fact, a general 
Blon includes the non-linear corrections to this spike solution, which we 
have neglected here, having only written the linearised solution. 

It is a worthwhile computation to show that if test source with the same 
charges is placed on the brane, there is no force of attraction or repulsion 
between it and the source just constructed, as would happen with pure 
Maxwell charges. This is because our sources have in addition to electric 
charge, some scalar (X25) charge, which can also be attractive or repulsive. 
In fact, the scalar charges are such that the force due to electromagnetic 
charges is cancelled by the force of the scalar charge, another charac­
teristic property of these solutions, which are said to be 'Bogomol'nyi­
Prasad-Sommerfield' (BPS)-saturated61 , 62. We shall encounter solutions 
with this sort of behaviour a number of times in what is to follow. 

Because of this property, the solution is easily generalised to include 
any number of Blons, at arbitrary positions, with positive and negative 
charges. The two choices of charge simply represents strings either leaving 
from, or arriving on the brane; see figure 5.1(b). 
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6 
D-brane tension and boundary states 

We have already stated that since the D-brane is a dynamical object, and 
couples to gravity, it should have a mass per unit volume. This tension 
will govern the strength of its response to outside influences which try to 
make it change its shape, absorb energy, etc. We have already computed a 
recursion relation (5.11) for the tension, whcih follows from the underlying 
T-duality which we used to discovere D-branes in the first place. 

In this chapter we shall see in detail just how to compute the value of 
the tension for the D-brane, and also for the orientifold plane. While 
the numbers that we will get will not (at face value) be as useful as the 
analogous quantities for the supersymmetric case, the structure of the 
computation is extremely important. The computation puts together many 
of the things that we have learned so far in a very elegant manner 
which lies at the heart of much of what will follow in more advanced 
chapters. 

Along the way, we will see that D-branes can be constructed and studied 
in an alternative formalism known as the 'boundary state' formalism, 
which is essentially conformal field theory with certain sorts of boundaries 
included33 . For much of what we will do, it will be a clearly equivalent 
way of formulating things which we also say (or have already said) based 
on the spacetime picture of D-branes. However, it should be noted that it 
is much more than just a rephrasing since it can be used to consistently 
formulate D-branes in many more complicated situations, even when a 
clear spacetime picture is not available. The method becomes even more 
useful in the supersymmetric situation, since it provides a natural way of 
constructing stable D-brane vacua of the superstring theories which do 
not preserve any supersymmetries, a useful starting point for exploring 
dualities and other non-perturbative physics in dynamical regimes which 
ultimately may have relevance to observable physics. 

141 
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6.1 The D-brane tension 

6.1.1 A n open string partition function 

Let us now compute the D-brane tension Tp. As noted previously, it is 
proportional to g;;l. We can in principle calculate it from the gravita­
tional coupling to the D-brane, given by the disk with a graviton vertex 
operator in the interior. However, it is much easier to obtain the absolute 
normalisation in the following manner. 

Consider two parallel Dp-branes at positions X'{L = 0 and X'{L = Y{L. 
These two objects can feel each other's presence by exchanging closed 
strings as shown in figure 6.1. This string graph is an annulus, with no 
vertex operators. It is therefore as easily calculated as our closed string 
one loop amplitudes done earlier in chapter 3. 

In fact, this is rather like an open string partition function, since the 
amplitude can be thought of as an open string going in a loop. We should 
sum over everything that goes around in the loop. Once we have computed 
this, we will then change our picture of it as an open string one-loop 
amplitude, and look at it as a closed string amplitude for propagation 
between one D-brane and another. We can take a low energy limit of 
the result to focus on the massless closed string states which are being 
exchanged. Extracting the poles from graviton and dilaton exchange (we 
shall see that the antisymmetric tensor does not couple in this limit) then 
give the coupling Tp of closed string states to the D-brane. 

Let us parametrise the string world-sheet as (0'2 = T,O'1 = 0') where 
now T is periodic and runs from 0 to 2'ITt, and 0' runs (as usual) from 0 
to 'IT. This vacuum graph (a cylinder) has the single modulus t, running 

--;-, 

t' rL ' ' , " 

a I 

--' .... 

o y 

Fig. 6.1. Exchange of a closed string between two D-branes. This is equiv­
alent to a vacuum loop of an open string with one end on each D-brane. 
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from 0 to 00. If we slice horizontally, so that 0'2 = T is world-sheet time, 
we get an open string going in a loop. If we instead slice vertically, so that 
0' is time, we see a single closed string propagating in the tree channel. 

Notice that the world-line of the open string boundary can be regarded 
as a vertex connecting the vacuum to the single closed string, i.e. a one­
point closed string vertex, which is a useful picture in a 'boundary state' 
formalism, which we will develop a bit further shortly. This diagram will 
occur explicitly again in many places in our treatment of this subject. 
String theory produces many examples where one-loop gauge/field theory 
results (open strings) are related to tree level geometrical/gravity results. 
This is all organised by diagrams of this form, and is the basis of much 
of the gauge theory/geometry correspondences to be discussed. 

Let us consider the limit t ----+ 0 of the loop amplitude. This is the 
ultra-violet limit for the open string channel, since the circle of the loop 
is small. However, this limit is correctly interpreted as an infrared limit 
of the closed string. (This is one of the earliest 'dualities' of string theory, 
discussed even before it was known to be a theory of strings.) Time-slicing 
vertically shows that the t ----+ 0 limit is dominated by the lowest lying 
modes in the closed string spectrum. This all fits with the idea that there 
are no 'ultra-violet limits' of the moduli space which could give rise to high 
energy divergences. They can always be related to amplitudes which have 
a handle pinching off. This physics is controlled by the lightest states, or 
the long distance physics. (This relationship is responsible for the various 
'UV /IR' relations which are a popular feature of current research315 .) 

One-loop vacuum amplitudes are given by the Coleman-Weinberg 35,36 

formula, which can be thought of as the sum of the zero point energies of 
all the modes (see insert 6.1): 

A = V; J dP+1k roo dt L e-2'ITo/t(k 2+Mj) (6.1) 
p+l (2'IT )p+1 Jo 2t I " . 

Here the sum I is over the physical spectrum of the string, i.e. the trans­
verse spectrum, and the momentum k is in the p + 1 extended directions 
of the D-brane world-sheet. 

The mass spectrum is given by a familiar formula 

M2 = ~ (f o;~no;~ - 1) + : ~ ~2' 
0; n=l 'IT 0; 

(6.2) 

where ym is the separation of the D-branes. The sums over the oscilla­
tor modes work just like the computations we did before (see insert 3.4 
(p. 92)), giving 

roo dt (p+l) Y Y / I 4 A = 2Vp+l Jo 2t (8'IT20;'t)--2-e- . t 2'ITa h(q)-2 . (6.3) 
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Insert 6.1. Vacuum energy 

The Coleman-Weinberg35, 36 formula evaluates the one-loop vacuum 
amplitude, which is simply the logarithm of the partition function 
A = Zvac for the complete theory: 

But since we can write 

we have 
A = VD J dDk t:oo dt e-(k2 +M2 )t/2, 

(2'JT)D Jo 2t 

Recall finally that (k 2 + M 2 )/2 is just the Hamiltonian, H, which in 
our case is just La/a' (see equation (2.64)). 

Here q = e-2'ITt, and the overall factor of two is from exchanging the two 
ends of the string. (See insert 6.2 for news of h(q).) 

In the present case (using the asymptotics derived in insert 6.2), 

The leading divergence is from the tachyon and is the usual bosonic string 
artifact not relevant to this discussion. The massless pole, from the second 
term, is 

(6.5) 

where Gd(Y) is the massless scalar Green's function in d dimensions: 

'JTd/2 (d ) 1 Gd(Y) = -r - - 1 --. 4 2 yd-2 (6.6) 

Here, d = 25 - p, the dimension of the space transverse to the brane. 
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Insert 6.2. Translating closed to open 

Compare our open string appearance of h(q), for q = e-27rt with the 
expressions for h (q), (q = e27rT ) defined in our closed string discus­
sion in (4.44). Here the argument is real. The translation between 
definitions is done by setting t = -1m T. From the modular transfor­
mations (4.46), we can deduce some useful asymptotics. While the 
asymptotics as t ----+ 00 are obvious, we can get the t ----+ 0 asymptotics 
using (4.46): 

h (e-27r/ S) = Vs h (e-27rs ), 13 (e-27r/ S) = 13( e-27rs ), 

h( e-27r/ S) = !4( e-2'TiS). 

6.1.2 A background field computation 

We must do a a field theory calculation to work out the amplitude for 
the exchange of the graviton and dilaton between a pair of D-branes. 
Our result can the be compared to the low energy string result above to 
extract the value of the tension. We need propagators and couplings as 
per the usual field theory computation. The propagator is from the bulk 
action (2.106) and the couplings are from the D-brane action (5.21), but 
we must massage them a bit in order to find them. 

In fact, we should work in the Einstein frame, since that is the appro­
priate frame in which to discuss mass and energy, because the dilaton and 
graviton don't mix there. We do this (recall equation (2.109)) by sending 
the metric GjJ,V to GjJ,V = exp(4(1>0 - 1»/(D - 2))GjJ,V, which gives the 
metric in equation (2.111). Let us also do this in the Dirac-Born-Infeld 
action (5.21), with the result: 

where <l> = 1> - 1>0 and Tp = Tpe-<I>o is the physical tension of the brane; 
it is set by the background value, 1>0, of the dilaton. 

The next step is to linearise about a fiat background, in order to extract 
the propagator and the vertices for our field theory. In fact, we have 
already discussed some of the logic of this in the introductory chapter, in 
section (1.2), where we came to grips with the idea of a graviton, so the 
reader is presumably aware that this is not really a daunting procedure. 
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We simply write the metric as G/LV ='7/LV + h/Lv(X), and this time expand 
up to second order in h/Lv. Also, if we do this with the action (6.7) as well, 
we see that the antisymmetric fields Bab + 2mx' Fab do not contribute at 
this order, and so we will drop them in what follows*. 

Another thing which we did in section (1.2) was to fix the gauge de­
gree of freedom (1.21) so that we would write the linearised (first order) 
Einstein equations in a nice gauge (1.22). We shall pick the same gauge 
here: 

(6.8) 

and introduce the gauge choice into the Lagrangian via the addition of a 
gauge fixing term: 

(6.9) 

The result for the bulk action is: 

Sbulk = - 2~2 / dDX { ~ [TJ/LPTJvO" + TJ/LO" TJvp - D ~ 2 TJ/LV TJPO"] h/LvfP hpO" 

+ D ~ 2 <1>82 <1> }, (6.10) 

and the interaction terms from the Dirac-Born-Infeld action are: 

Sbrane = -Tp / dP+1~ ( (2P; ~; 4) <1> - ~haa) , (6.11) 

where the trace on the metric was in the (p+ 1 )-dimensional world-volume 
of the Dp-brane. 

Now it is easy to work out the momentum space propagators for the 
graviton and the dilaton: 

2i~2 [ 2] 
- ---yz2'7/LP'7vO" +'7/LO"TJvp - D _ 2 TJ/LvTJpO" ; 

i~2(D - 2) 
4k2 (6.12) 

for momentum k. The reader might recognise the graviton propagator 
as the generalisation of the four dimensional case. If the reader has not 
encountered it before, the resulting form should be thought of as entirely 
consistent with gauge invariance for a massless spin two particle. 

* This fits with the intuition that the D-brane should not be a source for the antisym­
metric tensor field. The source for it is the fundamental closed string itself. We shall 
come back to this point many times much later. 
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All we need to do is compute two tree level Feynman diagrams, one for 
exchange of the dilaton and one for the exchange of the graviton, and add 
the result. The vertices are given in action (6.11). The result is (returning 
to position space) 

22 {D-2 (2P-D+4)2 
Amas81ess = Vp+1Tp K;OG25 - p(Y) -4- D - 2 

+~ [2(P+l)- D~2(P+l)2]} 
(6.13) 

and so after comparing to our result from the string theory computa­
tion (6.5) we have 

(6.14) 

This agrees rather nicely with the recursion relation (5.11). We can also 
write it in terms of the physical value of the D-brane tension, which 
includes a factor of the string coupling g8 = e<I>o, 

(6.15) 

where K; = K;ogs, and we shall use Tp this to denote the tension when we 
include the string coupling henceforth, and reserve T for situations where 
the string coupling is included in the background field e-<I>. (This will be 
less confusing than it sounds, since it will always be clear from the context 
which we mean.) 

As promised, the tension Tp of a Dp-brane is of order g;; 1, following 
from the fact that the diagram connecting the brane to the closed string 
sector is a disc diagram, and insert 2.4 (p. 57) shows reminds us that 
this is of order g;; 1. An immediate consequence of this is that they will 
produce non-perturbative effects of order exp( -1/ g8) in string theory, 
since their action is of the same order as their mass. This is consistent 
with anticipated behaviour from earlier studies of toy non-perturbative 
string theories100 . 

Formula (6.14) will not concern us much beyond these sections, since 
we will derive a new one for the superstring case later. 
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6.2 The orientifold tension 

The O-plane, like the D-brane, couples to the dilaton and metric. The 
most direct amplitude to use to compute the tension is the same as in 
the previous section, but with IPlJp'2 in place of the disc; i.e. a crosscap 
replaces the boundary loop. The orientifold identifies xm with - xm at 
the opposite point on the crosscap, so the crosscap is localised near one 
of the orientifold fixed planes. However, once again, it is easier to organise 
the computation in terms of a one-loop diagram, and then extract the 
parts we need. 

6.2.1 A nother open string partition function 

To calculate this via vacuum graphs, the cylinder has one or both of its 
boundary loops replaced by crosscaps. This gives the Mobius strip and 
Klein bottle, respectively. To understand this, consider figure 6.2, which 
shows two copies of the fundamental region for the Mobius strip. The lower 
half is identified with the reflection of the upper, and the edges (71 = 0, 'IT 

are boundaries. Taking the lower half as the fundamental region gives the 
familiar representation of the Mobius strip as a strip of length 2'ITt, with 
ends twisted and glued. Taking instead the left half of the figure, the line 
(71 = 0 is a boundary loop while the line (71 = 'IT /2 is identified with 
itself under a shift (72 -----+ (72 + 2'ITt plus reflection of (71: it is a crosscap. 
The same construction applies to the Klein bottle, with the right and left 
edges now identified. Another way to think of the Mobius strip amplitude 
we are going to compute here is as representing the exchange of a closed 
string between a D-brane and its mirror image, as shown in figure 6.3. 
The identification with a twist is performed on the two D-branes, turning 
the cylinder into a Mobius strip. The Mobius strip is given by the vacuum 

---------0>----------:---------->---------

2TCt ---------<----------:---------<----------

a2 

o ---------C>- --------:---------->--
o at TC 

Fig. 6.2. Two copies of the fundamental region for the Mobius strip. 
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-,-, 

t' rL " : 
a, 

--'-" 

-y o y 

Fig. 6.3. The Mobius strip as the exchange of closed strings between a 
brane and its mirror image. The dotted plane is the orientifold plane. 

amplitude 
A = V; J dP+ 1k reX) dt ~ °i e-2Tr1:x't(p2 +Mj) 

M p+l (2'IT)P+1 Jo 2t ~ 2 ' 
z 

(6.16) 

where OJ is the 0 eigenvalue of state i. The oscillator contribution to OJ is 
(_l)n from equation (2.94). Actually, in the directions orthogonal to the 
brane and orientifold there are two additional signs in OJ which cancel. 
One is from the fact that world-sheet parity contributes an extra minus 
sign in the directions with Dirichlet boundary conditions (this is evident 
from the mode expansions we shall list later, in equations (11.1)). The 
other is from the fact that spacetime reflection produces an additional 
sign. 

For the SO(N) open string the Chan-Paton factors have ~N(N + 1) 
even states and ~N(N - 1) odd for a total of +N. For USp(N) these 
numbers are reversed for a total of -N. Focus on a D-brane and its im­
age, which correspondingly contribute ±2. The diagonal elements, which 
contribute to the trace, are those where one end is on the D-brane and 
one on its image. The total separation is then ym = 2xm. Then, 

roo dt (pH) - - / ' AM = ±Vp+l Jo 2t (8'IT2o:/t)--2-e-2Y'Yt 'ITa 

X [q-2 IT (1 + q4k-2)-24(1 - q4k)-24]. 
k=l 

The factor in braces is 

13 (q2) -24 h (q2) -24 = (2t)1213 (e-'IT/2t)-24 h (e-'IT/2t)-24 

= (2t)12 (e'IT/2t - 24 + ... ). (6.17) 
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150 6 D-brane tension and boundary states 

One therefore finds a pole 

2P- 12 T T 37T (4 2 ') l1-PG (Y) =t= v pH 26 7T 0: 25-p· (6.18) 

This is to be compared with the field theory result 

(6.19) 

where T; is the O-plane tension. A factor of two as compared to the ear­
lier field theory calculation (6.13) comes because the spacetime boundary 
forces all the flux in one direction. Therefore the O-plane and D-brane 
tensions are related by 

(6.20) 

A similar calculation with the Klein bottle gives a result proportional 
to T;2. 

Noting that there are 225- p O-planes (recall that one doubles the num­
ber every time another new direction is T-dualised, starting with e single 
D25-brane), the total charge of an O-plane source must be =t=212Tp. Now, 
by Gauss's law, the total source must vanish because the volume of the 
torus TP on which we are working is finite and of course the flux must 
end on sinks and sources. 

So we conclude that there are 2(D-2)/2 = 212 D-branes (times two for 
the images) and that the gauge group37 is 80(213) = 80(2D/2). For this 
group the 'tadpoles' associated with the dilaton and graviton, representing 
violations of the field equations, cancel at order g;l. This has no special 
significance in the bosonic string due to the tachyon instability, but similar 
considerations will give a restriction on allowed Chan-Paton gauge groups 
in the superstring. 

6.3 The boundary state formalism 

The asymptotics (6.4) can be interpreted in terms of a sum over closed 
string states exchanged between the two D-branes. One can write the 
cylinder path integral in a Hilbert space formalism treating (71 rather 
than (72 as time. It then has the form 

(6.21) 

where the 'boundary state' IE) is the closed string state created by the 
boundary loop. 
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6.3 The boundary state formalism 151 

Let us unpack this formalism a little, seeing where it all comes from. 
Recall that a Dp-brane is specified by the following open string boundary 
conditions: 

o"XILI,,=o,'IT = 0, fL = 0, ... ,p; 

Xml,,=o,'IT = ym, m = p + 1, ... , D - 1. (6.22) 

Now we have to reinterpret this as a closed string statement. This involves 
exchanging T and 0'. So we write, focusing on the initial time: 

OTXILIT=O = 0, fL = 0, ... ,p; 

Xm IT=O = ym, m = p + 1, ... , D - 1. (6.23) 

Recall that in the quantum theory we pass to an operator formalism, and 
so the conditions above should be written as an operator statement, where 
we are operating on some state in the Hilbert space. This defines for us 
then the boundary state IE): 

OTXILIT=oIE) = 0, 

(XmIT=o - ym)IE) = 0, 

fL = 0, ... ,p; 
m=p+1, ... ,D-1. (6.24) 

As with everything we did in chapter 2, we can convert our equations 
above into a statement about the modes: 

(a~ + a~n)IE) = 0, 

(a~ - a~\JIE) = 0, 

pILlE) = 0, 

(xm - ym)IE) = 0, 

fL = 0, ... ,p; 
m=p+1, ... ,D-1; 

fL = 0, ... ,p; 
m = p + 1, ... , D - 1. (6.25) 

As before, we either use only D - 2 of the oscillator modes here (ignoring 
fL = 0,1) or we do everything covariantly and make sure that we include 
the ghost sector and impose BRST invariance. We shall do the former 
here. 

The solution to the condition above can we found by analogy with the 
(perhaps) familiar technology of coherent states in harmonic oscillator 
physics (see insert 6.3). 

IE) = Npfl(xm - ym) (IT e-~a-n.s.a-n) 10). 
n=l 

(6.26) 

The object S = (ryILV, _flmn) is just shorthand for the fact that the dot 
product must be the usual Lorentz one in the directions parallel to the 
brane, but there is a minus sign for the transverse directions. 
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Insert 6.3. The boundary state as a coherent state 

Let us recall that all we are playing with are creation and annihi­
lation operators with a slightly unusual normalisation, as noticed at 
the beginning of section 2.3. Working with one set of the standard 
operators, a and at, for the left and an independent set a and at for 
the right, in essence we are trying to solve the equation 

alb>= =fal b). 

Now recall how coherent states are made. We have 

alO) = 0, 

and so we can define a conjugation operation which shifts a by z, by 
defining 

It is easy to see that a(z) = a+z, since by elementary differentiation 
and the use of the commutator, we have 

3a(z) = 1 
3z . 

Therefore the state 
t 

Iz) = eza 10) 

is an eigenvalue of the annihilation operator a, since 

t _ t t t 
alz>= eza e za aeza 10) = eza (a + z)IO) = zlz). 

We can therefore use as a solution to our first equation above, the 
coherent state with the choice z = =fat, 

where N is a normalisation constant. 

The normalisation constant is determined by simply computing the 
closed string amplitude directly in this formalism. The closed string is 
prepared in a boundary state that corresponds to a D-brane, and it prop­
agates for a while, ending in a similar boundary state at position Y: 

A = (BI~IB), (6.27) 
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where ,6. is the closed string propagator. How is this object constructed? 
Well, we might expect that it is essentially the inverse of Hcl = 2(Lo+ Lo-
2)/ri, the closed string Hamiltonian, which we can easily represent as: 

,6. = ~/ 11 dppLo+Lo-3, 

and we must integrate over the modulus g = - log p of the cylinder from 
o to 00. We must remember, however, that a physical state I¢; is annihi­
lated by Lo - Lo, and so we can modify our propagator so that it only 
propagates such states: 

,6. = a/ r1 dp d¢ r2TI d¢ pLo+Lo-3eicj;(Lo-LoJ, 
2 Jo 27T Jo 27T 

which, after the change of variable to z = peicj;, gives 

;\ - a/ 1 dzdz Lo-I-Lo-l 
Ll- - --z Z 

47T Izl9 Izl2 . 

Computing the amplitude (6.27) by using this definition of the propagator 
is a straightforward exercise, similar in spirit to what we did in the open 
string sector. We get geometric sums over the oscillator modes resulting 
from traces, and integrals over the continuous quantities. If we make the 
choices Izl = e-TIS and dzdz = -7Te-2TIS dsd¢ for our closed string cylinder, 
the result is: 

A - Ar2V; a/7T(2 /)_25,-P 100 ds _25,-p -Y.Y/s2TICX'f ( )-24 
- JVo p+l-- 7Ta 2 -s 2 e 1 q . 

p 2 0 s 
(6.28) 

Here q = e- 2TI / s . 

Now we can compare to the open string computation, which is the result 
in equation (6.3). We must do a modular transformation s = -lit, and 
using the modular transformation properties given in insert 6.2, we find 
exactly the open string result if we have 

Np=~, 
where Tp is the brane tension (6.14) computed earlier. 

This is a very useful way of formulating the whole D-brane construc­
tion. In fact, the boundary state constructed above is just a special case of 
a sensible conformal field theory object. It is a state that can arise in the 
conformal field theory with boundary. Not all boundary states have such a 
simple spacetime interpretation as the one we made here. We see therefore 
that D-branes, if interpreted simply as resulting from the introduction of 
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154 6 D-brane tension and boundary states 

open string sectors into closed string theory, have a world-sheet formu­
lation which does not necessarily always have a spacetime interpretation 
as its counterpart. Similar things happen in closed string conformal field 
theory. There are very many conformal field theories which are perfectly 
good string vacua, which have no spacetime interpretation in terms of an 
unambiguous target space geometry. It is natural that this also be true 
for the open string sector. 
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7 
Supersymmetric strings 

The discussion of bosonic strings in the previous five chapters allowed 
us to uncover a great deal of the structure essential to understanding D­
branes and other background solutions, in addition to the basic concepts 
used in discussing and working with critical string theory. 

At the back of our mind was always the expectation that we would move 
on to include supersymmetry. Two of the main reasons are that we can 
remove the tachyon from the spectrum and that we will be able to use 
supersymmetry to endow many of our results with extra potency, since 
stability and non-renormalisation arguments will allow us to extrapolate 
beyond perturbation theory. 

Let us set aside D-branes and T-duality for a while and use the ideas we 
discussed earlier to construct the supersymmetric string theories which we 
need to carry the discussion further. There are five such theories. Three 
of these are the 'superstrings', while two are the 'heterotic strings '*. 

7.1 The three basic superstring theories 

7.1.1 Open superstrings: type I 

Let us go back to the beginning, almost. We can generalise the bosonic 
string action we had earlier to include fermions. In conformal gauge it is: 

where the open string world-sheet is the strip 0 < (J < 'IT, -00 < T < 00. 

* A looser and probably more sensible nomenclature is to call them all 'superstrings', 
but we'll choose the catch-all term to be the one we used for the title of this chapter. 
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156 7 Supersymmetric strings 

N.B. Recall that a' is the loop expansion parameter analogous to r~ 
on worldsheet. It is therefore natural for the fermions' kinetic terms 
to be normalised in this way. 

We get a modification to the energy-momentum tensor from before 
(which we now denote as TE , since it is the bosonic part): 

(7.2) 

which is now accompanied by a fermionic energy-momentum tensor: 

(7.3) 

This enlarges our theory somewhat, while much of the logic of what we 
did in the purely bosonic story survives intact here. Now, one extremely 
important feature which we encountered in section 4.7 is the fact that the 
equations of motion admit two possible boundary conditions on the world­
sheet fermions consistent with Lorentz invariance. These are denoted the 
'Ramond' (R) and the 'Neveu-Schwarz' (NS) sectors: 

R: 'ljJiL(O, T) = ~iL(O, T) 
NS: 1/;iL(O, T) = -~iL(O, T) 

1/;iL ( 'IT, T) = ~iL ( 'IT, T) 
1/;iL ( 'IT, T) = ~iL ( 'IT, T). (7.4) 

We have used the freedom to choose the boundary condition ~t, for exam­
ple the O"='IT end, in order to have a + sign, by redefinition of 1/;. The boun­
dary conditions and equations of motion are summarised by the 'doubling 
trick': take just left-moving (analytic) fields 1/;iL on the range ° to 2'IT and 
define ;j;iL(O", T) to be 1/;iL(2'IT - 0", T). These left-moving fields are periodic 
in the Ramond (R) sector and antiperiodic in the Neveu-Schwarz (NS). 

On the complex z-plane, the NS sector fermions are half-integer moded 
while the R sector ones are integer, and we have: 

'ljJiL 
n/,iL(z) - """ r where r E Z or r E Z + -21 
'f/ - ~ r+1/2' 

r z 
(7.5) 

and canonical quantisation gives 

{1/;~, 1/;~} = {;j;~, ;j;~} = ryiLV i5r+s' (7.6) 

Similarly we have 

as before, and 

""" Gr 1 TF(z) = ~ zr+3/2' where r E Z (R) or Z + "2 (NS). 
r 

(7.7) 
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7.1 The three basic superstring theories 157 

Correspondingly, the Virasoro algebra is enlarged, with the non-zero 
(anti)commutators being 

with 

[Lm, Lnl = (m - n)Lm+n + 1C~ (m3 - m)6m+n 
c 2 

{Gn Gs} = 2Lr+s + 12 (4r - 1)6r+s 

1 
[Lm, Grl = "2(m - 2r)Gm+n (7.8) 

1 1 
Lm = "2 L : am- n . am : +4 L(2r - m) : '!/Jm-r . '!/Jr : +a6m,0 

rn r 

Gr = Lan ·1/;r-n· 
n 

(7.9) 

In the above, c is the total contribution to the conformal anomaly, which 
is D + D /2, where D is from the D bosons while D /2 is from the D 
fermions. 

The values of D and a are again determined by any of the methods 
mentioned in the discussion of the bosonic string. For the superstring, it 
turns out that D = 10 and a = 0 for the R sector and a = -1/2 for 
the NS sector. This comes about because the contributions from the XO 
and Xl directions are cancelled by the Faddeev-Popov ghosts as before, 
and the contributions from the 1/;0 and 1/;1 oscillators are cancelled by the 
superghosts. Then, the computation uses the mnemonic/formula given in 
equation (2.80). 

NS sector: z.p.e = 8 ( - 214) + 8 ( - 418) = -1, 
R sector: z.p.e = 8 ( - 214) + 8 (214) = o. (7.10) 

As before, there is a physical state condition imposed by annihilating with 
the positive modes of the (super) Virasoro generators: 

Grl¢; = 0, r> 0; Lnl¢; = 0, n> 0; (Lo - a)I¢; = o. (7.11) 

The L o constraint leads to a mass formula: 

(7.12) 

In the NS sector the ground state is a Lorentz singlet and is assigned odd 
fermion number, i.e. under the operator (-l)F, it has eigenvalue -1. 
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158 7 Supersymmetric strings 

In order to achieve spacetime supersymmetry, the spectrum is pro­
jected on to states with even fermion number. This is called the 'GSO 
projectionm , and for our purposes, it is enough to simply state that this 
obtains spacetime supersymmetry, as we will show at the massless level. 
A more complete treatment - which gets it right for all mass levels -
is contained in the full superconformal field theory. The GSO projection 
there is a statement about locality with the gravitino vertex operator. 
Yet another way to think of its origin is as a requirement of modular 
mvanance. 

Since the open string tachyon clearly has (-l)F = -1, it is removed 
from the spectrum by GSO. This is our first achievement, and justifies 
our earlier practice of ignoring the tachyon's appearance in the bosonic 
spectrum in what has gone before. From what we will do for the rest of 
the this book, the tachyon will largely remain in the wings, but it (and 
other tachyons) do have a role to play, since they are often a signal that 
the vacuum wants to move to a (perhaps) more interesting place. 

Massless particle states in ten dimensions are classified by their SO(8) 
representation under Lorentz rotations, that leave the momentum invari­
ant: SO(8) is the 'little group' of SO(l, 9). The lowest lying surviving 
states in the NS sector are the eight transverse polarisations of the mass­
less open string photon, Aft, made by exciting the 'I/J oscillators: 

(7.13) 

These states clearly form the vector of SO(8). They have (_)F = 1 and 
so survive GSO. 

In the R sector the ground state energy always vanishes because the 
world-sheet bosons and their superconformal partners have the same mod­
ing. The Ramond vacuum has a 32-fold degeneracy, since the 'l/Ji{ take 
ground states into ground states. The ground states form a representa­
tion of the ten dimensional Dirac matrix algebra 

(7.14) 

(Note the similarity with the standard r-matrix algebra, {rft , rV} = 

2TJftv . We see that 'l/Ji{ == r ft / V2.) 
For this representation, it is useful to choose this basis: 

d± = _1_ (nl,2i ± inl,2i+l) 
t V2 'YO 'YO i=1, ... ,4 

± 1 (1 0) do = V2 'l/Jo =f>lj;o . 

In this basis, the Clifford algebra takes the form 

{ dt , dj} = l5ij . 

(7.15) 

(7.16) 
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The dt, i = 0, ... ,4 act as creation and annihilation operators, generating 
the 210/ 2 = 32 Ramond ground states. Denote these states 

1 50,81,82,53, 54} = IS} 

where each of the Si takes the values ±~, and where 

dil- ~,-~, -~, -~, -~} = 0 

(7.17) 

(7.18) 

while dt raises 8i from -~ to ~. This notation has physical meaning: the 
fermionic part of the ten dimensional Lorentz generators is 

(7.19) 

(recall equation (2.124)). The states (7.17) above are eigenstates of So = 

iSOl , Si = S2i,2i+1, with Si the corresponding eigenvalues. Since by con­
struction the Lorentz generators (7.19) always flip an even number of Si, 

the Dirac representation 32 decomposes into a 16 with an even number 
of -~s and 16/ with an odd number. 

The physical state conditions (7.11), on these ground states, reduce to 
Go = (2o:/)1/2pp,'l/Jt;. (Note that G6 rv La.) Let us pick the (massless) frame 
po = pI. This becomes 

(7.20) 

which means that 80 = ~, giving a 16-fold degeneracy for the physical 
Ramond vacuum. This is a representation of SO(8) which decomposes 
into 8s with an even number of - ~s and 8e with an odd number. One 
is in the 16 and the 16/, but the two choices, 16 or 16/, are physically 
equivalent, differing only by a spacetime parity redefinition, which would 
therefore swap the 8s and the 8 e . 

In the R sector the GSO projection amounts to requiring 

4 

L Si = 0 (mod 2), 
i=1 

(7.21 ) 

picking out the 8s. Of course, it is just a convention that we associated 
an even number of ~s with the 8s; a physically equivalent discussion with 
things the other way around would have resulted in 8 e . The difference 
between these two is only meaningful when they are both present, and at 
this stage we only have one copy, so either is as good as the other. 

The ground state spectrum is then 8vEB8s, a vector multiplet of D = 10, 
N = 1 spacetime supersymmetry. Including Chan-Paton factors gives 
again a U(N) gauge theory in the oriented theory and SO(N) or USp(N) 
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in the unoriented. This completes our tree-level construction of the open 
superstring theory. 

Of course, we are not finished, since this theory is (on its own) incon­
sistent for many reasons. One such reason (there are many others) is that 
it is anomalous. Both gauge invariance and coordinate invariance have 
anomalies arising because it is a chiral theory: e.g. the fermion Bs has 
a specific chirality in spacetime. The gauge and gravitational anomalies 
are very useful probes of the consistency of any theory. These show up 
quantum inconsistencies of the theory resulting in the failure of gauge 
invariance and general coordinate invariance, and hence must be absent. 
See insert 7.1 for more on anomalies. 

Another reason we will see that the theory is inconsistent is that, as we 
learned in chapter 4, the theory is equivalent to some number of space­
filling D9-branes in spacetime, and it will turn out later that these are 
positive electric sources of a particular 10-form field in the theory. The 
field equation for this field asks that all of its sources must simply vanish, 
and so we must have a negative source of this same field in order to cancel 
the D9-branes' contribution. This will lead us to the closed string sector 
i.e. one-loop, the same level at which we see the anomaly. 

Let us study some closed strings. We will find three of interest here. 
Two of them will stand in their own right, with two ten dimensional super­
symmetries, while the third will have half of that, and will be anomalous. 
This latter will be the closed string sector we need to supplement the 
open string we made here, curing its one-loop anomalies. 

7.1.2 Closed superstrings: type II 

Just as we saw before, the closed string spectrum is the product of two 
copies of the open string spectrum, with right- and left-moving levels 
matched. In the open string the two choices for the GSO projection were 
equivalent, but in the closed string there are two inequivalent choices, 
since we have to pick two copies to make a closed string. 

Taking the same projection on both sides gives the 'type lIB' case, 
while taking them opposite gives 'type lIA'. These lead to the massless 
sectors 

Type lIA: (Bv EEl Bs) Q9 (Bv EEl Be) 
Type lIB: (Bv EEl Bs) Q9 (Bv EEl Bs). (7.22) 

Let us expand out these products to see the resulting Lorentz (SO(8)) 
content. In the NS-NS sector, this is 

(7.23) 
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Insert 7.1. Gauge and gravitational anomalies 

The beauty of the anomaly is that it is both a UV and an IR tool: UV 
since it represents the failure to be able to find a consistent regulator 
at the quantum level and IR since it cares only about the massless 
sector of the theory: Any potentially anomalous variations for the 
effective action r = In Z should be written as the variation of a local 
term which allows it to be cancelled by adding a local counterterm. 
Massive fields always give effectively local terms at long distance. 

An anomaly in D dimensions arises from complex representations 
of the Lorentz group which include chiral fermions in general but also 
bosonic representations if D = 4k + 2, e.g. the rank 2k + 1 (anti)self­
dual tensor. The anomalies are controlled by the so-called 'hexagon' 
diagram which generalises the (perhaps more familiar) triangle of 
four dimensional field theory or a square in six dimensions. 

The external legs are either gauge bosons, gravitons, or a mixture. 
We shall not spend any time on the details53 , but simply state that 
consistency demands that the structure of the anomaly, 

is in terms of aD-form i D , polynomial in traces of even powers of 
the field strength two-forms F = dA + A2 and R = dw + w2. (Recall 
section 2.8.) It is naturally related to a (D+2)-form polynomial iD +2 

which is gauge invariant and written as an exact form i D+2 = diD+1 . 

The latter is not gauge invariant, but its variation is another exact 
form: OiD+! = diD. A key example of this is the Chern-Simons three­
form, which is discussed in insert 7.3, p. 167. See also insert 7.2 on 
p. 162 for explicit expressions in dimensions D = 4k + 2. We shall 
see that the anomalies are a useful check of the consistency of string 
spectra that we construct in various dimensions. 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


162 7 Supersymmetric strings 

Insert 7.2. A list of anomaly polynomials 

It is useful to list here some anomaly polynomials for later use. In 
ten dimensions, the contributions to the polynomial come from three 
sorts of field, the spinors 8 s ,c, the gravitinos 56c,s, and the fifth rank 
antisymmetric tensor field strength with its self-dual and anti-self­
dual parts. The anomalies for each pair within each sort are equal 
and opposite in sign, i.e. j~2 = - j~2' etc., and we have: 

A8 Tr(F6 ) I12 = - --'------
1440 

Tr( F4 )tr( R2) Tr( p2)tr( R4) Tr( F2) [tr( R2)F 
+ 2304 - 23040 - 18432 

ntr(R6) ntr(R4)tr(R2) n[tr(R2)]3 
+ 725760 + 552960 + 1327104 ; 

A56 tr(R6) tr(R4)tr(R2) [tr(R2)]3 
I12 c = - 495 725760 + 225 552960 - 63 1327104 ; 

j35+ = + 992 tr(R6 ) _ 448 tr(R4)tr(R2) + 128 [tr(R2)p 
12 725760 552960 1327104 

and n is the dimension of the gauge representation under which 
the spinor transforms, for which we use the trace denoted Tr. We 
also have suppressed the use of 1\, for brevity. For D = 6, there are 
anomaly eight-forms. We denote the various fields by their transfor­
mation properties of the D = 6 little group SO(4) rv SU(2) x SU(2): 

j(1,2) _ Tr(p4) _ Tr(p2)tr(R2) ntr(R4) n[tr(R2)F. 
8 - + 24 96 + 5760 + 4608 ' 

j(3,2) = + 245 tr(R4) _ 43 [tr(R2)F . 
8 5760 4608' 

j(3,1) _ 2 tr( R4) _ [tr( R2) F 
8 - + 8 5760 8 4608 

Note that the first two are for complex fermions. For real fermions, 
one must divide by two. For completeness, for D = 2 we list the three 
analogous anomaly four-forms: 

]3/2 = -23 tr(R2) 
4 48 ' 

jO = tr(R2) 
4 48· 

It is amusing to note that the anomaly polynomials can be written 
in terms of geometrical characteristic classes. This should be kept at 
the back of the mind for a bit later, in section 9.5. 
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In the R-R sector, the IIA and IIB spectra are respectively 

8s Q9 8e = [1] EEl [3] = 8v EEl 56t 

8s Q9 8s = [0] EEl [2] EEl [4]+ = 1 EEl 28 EEl 35+. (7.24) 

Here [n] denotes the n-times antisymmetrised representation of 50(8), 
and [4]+ is self-dual. Note that the representations [n] and [8 - n] are 
the same, as they are related by contraction with the eight dimensional 
E-tensor. The NS-NS and R-R spectra together form the bosonic compo­
nents of D = 10 IIA (nonchiral) and IIB (chiral) supergravity respectively; 
We will write their effective actions shortly. 

In the NS-R and R-NS sectors are the products 

8v Q9 8e = 8s EEl 56e 

8v Q9 8s = 8e EEl 56s · (7.25) 

The 56s ,e are gravitinos. Their vertex operators are made roughly by 
tensoring a NS field '1jJ1-' with a vertex operator Va = e-'P/2 S a , where the 
latter is a 'spin field', made by bosonising the diS of equation (7.15) and 
building: 

d . = e±iHi 
~ " . (7.26) 

(The factor e-'P/2 is the bosonisation (see section 4.7) of the Faddeev­
Popov ghosts (see insert 3.2), about which we will have nothing more to 
say here.) The resulting full gravitino vertex operators, which correctly 
have one vector and one spinor index, are two fields of weight (0,1) and 
(1,0), respectively, depending upon whether 1/J1-' comes from the left or 
right. These are therefore holomorphic and anti-holomorphic world-sheet 
currents, and the symmetry associated to them in spacetime is the super­
symmetry. In the IIA theory the two gravitinos (and supercharges) have 
opposite chirality, and in the IIB the same. 

Consider the vertex operators for the R-R states1 . This will involve a 
product of spin fields 74 , one from the left and one from the right. These 
again decompose into antisymmetric tensors, now of 50(9, 1): 

(7.27) 

with C the charge conjugation matrix. In the IIA theory the product is 
16 Q9 16' giving even n (with n ~ 10 - n) and in the IIB theory it is 
16 Q9 16 giving odd n. As in the bosonic case, the classical equations of 
motion follow from the physical state conditions, which at the massless 
level reduce to Go . V = Go . V = O. The relevant part of Go is just 
PI-'1/Jb and similarly for Go. The PI-' act by differentiation on G, while 1/Jb 
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acts on the spin fields as it does on the corresponding ground states: as 
multiplication by pt. Noting the identity 

(7.28) 

and similarly for right multiplication, the physical state conditions become 

dG=O d*G = O. (7.29) 

These are the Bianchi identity and field equation for an antisymmetric 
tensor field strength. This is in accord with the representations found: in 
the IIA theory we have odd-rank tensors of SO(8) but even-rank tensors 
of SO(9, 1) (and reversed in the IIB), the extra index being contracted 
with the momentum to form the field strength. It also follows that R­
R amplitudes involving elementary strings vanish at zero momentum, so 
strings do not carry R-R chargest . 

As an aside, when the dilaton background is nontrivial, the Ramond 
generators have a term iJ.>,{t chjJ{t, and the Bianchi identity and field strength 
pick up terms proportional to diJ.> /\ G and diJ.> /\ *G. The Bianchi identity 
is non-standard, so G is not of the form de. Defining G' = e-1>G removes 
the extra term from both the Bianchi identity and field strength. The field 
G' is thus decoupled from the dilaton. In terms of the action, the fields G 
in the vertex operators appear with the usual closed string e- 21> but with 
non-standard dilaton gradient terms. The fields we are calling G' (which 
in fact are the usual fields used in the literature, and so we will drop the 
prime symbol in the sequel) have a dilaton-independent action. 

The type IIB theory is chiral since it has different numbers of left mov­
ing fermions from right-moving. Furthermore, there is a self-dual R-R 
tensor. These structures in principle produce gravitational anomalies, and 
it is one of the miracles (from the point of view of the low energy theory) 
of string theory that the massless spectrum is in fact anomaly free. There 
is a delicate cancellation between the anomalies for the 8e and for the 
568 and the 35+. The reader should check this by using the anomaly 
polynomials in insert 7.2, (of course, put n = 1 and F = 0) to see that 

- 2]8 5 + 2]56c + ]35+ - 0 12 12 12 - , (7.30) 

which is in fact miraculous, as previously stated339 . 

t The reader might wish to think of this as analogous to the discovery that a moving 
electric point source generates a magnetic field, but of course is not a basic magnetic 
monopole source. 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


7.1 The three basic superstring theories 165 

7.1.3 T.1Jpe I from type JIB, the prototype orientifold 

As we saw in the bosonic case, we can construct an unoriented theory 
by projecting onto states invariant under world-sheet parity, O. In order 
to get a consistent theory, we must of course project a theory which is 
invariant under 0 to start with. Since the left and right moving sectors 
have the same GSa projection for type IIB, it is invariant under 0, so we 
can again form an unoriented theory by gauging. We cannot gauge 0 in 
type IIA to get a consistent theory, but see later. 

Projecting onto 0 = +1 interchanges left-moving and right-moving 
oscillators and so one linear combination of the R-NS and NS-R gravitinos 
survives, so there can be only one supersymmetry remaining. In the NS­
NS sector, the dilaton and graviton are symmetric under 0 and survive, 
while the antisymmetric tensor is odd and is projected out. In the R-R 
sector, by counting we can see that the 1 and 35+ are in the symmetric 
product of 8 s Q9 8s while the 28 is in the antisymmetric. The R-R state 
is the product of right- and left-moving fermions, so there is an extra 
minus in the exchange. Therefore it is the 28 that survives. The bosonic 
massless sector is thus 1 EEl 28 EEl 35, and together with the surviving 
gravitino, this give us the D = 10 N = 1 supergravity multiplet. 

Sadly, this supergravity is in fact anomalous. The delicate balance (7.30) 
between the anomalies from the various chiral sectors, which we noted pre­
viously, vanishes since one each of the 8e and 568 , and the 35+, have been 
projected out. Nothing can save the theory unless there is an additional 
sector to cancel the anomaly. 107 

This sector turns out to be N = 1 supersymmetric Yang-Mills theory, 
with gauge group 80(32) or Es xEs. Happily, we already know at least 
one place to find the first choice: We can use the low-energy (massless) 
sector of 80(32) unoriented open superstring theory. This fits nicely, since 
as we have seen before, at one loop open strings couple to closed strings. 
We will not be able to get gauge group Es x Es from perturbative open 
string theory (Chan-Paton factors can't make this sort of group), but we 
will see shortly that there is another way of getting this group, but from 
a closed string theory. 

The total anomaly is that of the gravitino, dilatino and the gaugino, 
the latter being charged in the adjoint of the gauge group: 

(7.31 ) 

Using the polynomials given in insert 7.2, it should be easily seen that 
there is an irreducible term 

tr(R6 ) 

(n - 496) 725760' (7.32) 
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which must simply vanish, and so n, the dimension of the group, must be 
496. Since SO(32) and Es x Es both have this dimension, this is encourag­
ing. That the rest of the anomaly cancels is a very delicate and important 
story which deserves some attention. We will do that in the next section. 

Finishing the present discussion, in the language we learned in sec­
tion 4.11, we put a single (space-filling) 09-plane into type IIB theory, 
making the type IIB theory into the unoriented N = 1 closed string 
theory. This is anomalous, but we can cancel the resulting anomalies by 
adding 16 D9-branes. 

Another way of putting it is that (as we shall see) the 09-plane has 
16 units of C lD charge, which cancels that of 16 D9-branes, satisfying the 
equations of motion for that field. 

We have just constructed our first (and in fact, the simplest) example 
of an 'orientifolding' of a superstring theory to get another. More compli­
cated orientifolds may be constructed by gauging combinations of D with 
other discrete symmetries of a given string theory which form an 'orien­
tifold group' Go under which the theory is invariant2s . Generically, there 
will be the requirement to cancel anomalies by the addition of open string 
sectors (i.e. D-branes), which results in consistent new string theory with 
some spacetime gauge group carried by the D-branes. In fact, these pro­
jections give rise to gauge groups containing any of U(n), USp(n) factors, 
and not just SO(n) sectors. 

7.1.4 The Green-Schwarz mechanism 

Let us finish showing that the anomalies of N = 1, D = 10 supergravity 
coupled to Yang-Mills do vanish for the groups SO(32) and Es xEs. 
We have already shown above that the dimension of the group must be 
n = 496. Some algebra shows that that the rest of the anomaly (7.31), 
for this value of n can be written suggestively as: 

I(n=496) 
12 

where 

(7.34) 
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Insert 7.3. The Chern-Simons three-form 

The Chern-Simons three-form is a very important structure which 
will appear in a number of places, and it is worth pausing a while to 
consider its properties. Recall from insert 2.5 that we can write the 
gauge potential, and the field strength as Lie Algebra-valued forms: 
A = ta A~d:x;IL, where the ta are generators of the Lie algebra. We 
can write the Yang-Mills field strength as a matrix-valued two-form, 
F = ta F:vdxIL 1\ dxv. We can define the Chern-Simons three-form as 

W3Y = Tr ( A 1\ F - t A 1\ A 1\ A) = Tr ( A 1\ dA + ~ A 1\ A 1\ A ) . 

One interesting thing about this object is that we can write: 

dW3Y = Tr (F 1\ F). 

Furthermore, under a gauge transformation 6A = dA + [A, A]: 

6W3Y = Tr(dAdA) = dW2, W2 = Tr(AdA). 

So its gauge variation, while not vanishing, is an exact three-form. 
Note that there is a similar structure in the pure geometry sector. 
From section 2.8, we recall that the potential analogous to A is 
the spin connection one-form wa b = wa blL dxIL , with a and b being 
Minkowski indices in the space tangent to the point xlL in spacetime 
and so w is an SO(D-1, 1) matrix in the fundamental representation. 
The curvature is a two-form Rab = dWab+Wacl\wcb = RabILVdxIL I\dxv, 
and the gauge transformation is now 6w = d8+[w, 8]. We can define: 

W3L = tr ( w 1\ dw + ~w 1\ w 1\ w ), 

with similar properties to W3Y, above. Here tr means trace on the 
indices a, b. 

On the face of it, it does not really seem possible that this can be cancelled, 
since the the gaugino carries gauge charge and nothing else does, and so 
there are a lot of gauge quantities which simply stand on their own. This 
seems hopeless because we have so far restricted ourselves to quantum 
anomalies arising from the gauge and gravitational sector. If we include 
the rank two R-R potential C(2) in a cunning way, we can generate a 
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mechanism for cancelling the anomaly. Consider the interaction 

BGS = 3 X 26~2'IT)5o:/ J C(2) /\ Xs. (7.35) 

It is invariant under the usual gauge transformations 

5A = dA + [A, Al; 5w = d8 + [w, 8], (7.36) 

since it is constructed out of the field strengths F and R. It is also invariant 
under the two-form potential's standard transformation 5C(2) = dA. Let 
us however give C(2) another gauge transformation rule. While A and w 

transform under (7.36), let it transform as: 

d (1 ) 5C(2) = 4 30 Tr(AF) - tr(8R) . (7.37) 

Then the variation of the action does not vanish, and is: 

5BGS = 3 X 2~(2'IT)5 J [310 Tr(AF) - tr(8R)] /\ Xs. 

However, using the properties of the Chern-Simons three-form discussed 
in insert 7.3, this classical variation can be written as descending via the 
consistency chain in insert 7.1 from precisely the 12-form polynomial given 
in the first line of equation (7.34), but with a minus sign. Therefore we 
cancel that offending term with this classical modification of the transfor­
mation of C(2). Later on, when we write the supergravity action for this 
field in the type I model, we will use the modified field strength: 

0(3) = dc(2) - ~ [310W3Y(A) - w3L(O)], (7.38) 

where because of the transformation properties of the Chern-Simons 
three-form (see insert 7.3), 0(3) is gauge invariant under the new trans­
formation rule (7.37). 

N.B. It is worth noting here that this is a quite subtle mechanism. 
We are cancelling the anomaly generated by a one loop diagram with 
a tree-level graph. It is easy to see what the tree level diagram is. 
The kinetic term for the modified field strength will have its square 
appearing, and so looking at its definition (7.38), we see that there 
is a vertex coupling C(2) to two gauge bosons or to two gravitons. 
There is another vertex that comes from the interaction (7.35) which 
couples C(2) to four particles, pairs of gravitons and pairs of gauge 
bosons, or a mixture. So the tree level diagram in figure 7.1 can mix 
with the hexagon anomaly of insert 7.1. 
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Fig. 7.1. The tree which cures the N = 1 D = 10 anomalies. A two-form 
field is exchanged. 

Somehow, the terms in the second line must cancel amongst themselves. 
Miraculously, they do for a number of groups, 80(32) and Es x Es in­
cluded. For the first group, it follows from the fact that for the group 
80(n), we can write: 

Tradj (t6 ) 

Tradj (t4 ) 

Tradj (t2 ) 

(n - 32)Trf(t6 ) + 15Trf(t2)Trf(t4 ); 

(n - 8)Trf(t4 ) + 3Trf(t2)Trf(t2); 

(n - 2)Trf(t2), (7.39) 

where the subscript 'f' denotes the fundamental representation. For E s, 
we have that 

Tradj (t6 ) 

Tradj (t4 ) (7.40) 

In checking these (which of course the reader will do) one should combine 
the traces as TrGlxG2 = TrGl + TrG2' etc. 

Overall, the results107 of this subsection are quite remarkable, and 
generated a lot of excitement which we now call the First Superstring 
Revolution. This excitement was of course justified, since the discovery 
of the mechanism revealed that there were consistent superstring theories 
with considerably intricate structures with promise for making contact 
with the physics that we see in Nature. 

7.2 The two basic heterotic string theories 

In addition to the three superstring theories briefly constructed above, 
there are actually two more supersymmetric string theories which live 
in ten dimensions. In addition, they have non-Abelian spacetime gauge 
symmetry, and they are also free of tachyons. These are the 'Heterotic 
Strings,2o. The fact that they are chiral, have fermions and non-Abelian 
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gauge symmetry meant that they were considered extremely attractive as 
starting points for constructing 'realistic' phenomenology based on string 
theory. It is in fact remarkable that one can come tantalisingly close to 
naturally realising many of the features of the Standard Model of particle 
physics by starting with, say, the Es x Es Heterotic String, while remaining 
entirely in the perturbative regime. This was the focus of much of the First 
Superstring Revolution. Getting many of the harder questions right led 
to the search for non-perturbative physics, which ultimately led us to the 
Second Superstring Revolution, and the realisation that all of the other 
string theories were just as important too, because of duality. 

One of the more striking things about the heterotic strings, from the 
point of view of what we have done so far, is the fact that they have non­
Abelian gauge symmetry and are still closed strings. The SO(32) of the 
type I string theory comes from Chan-Paton factors at the ends of the 
open string, or in the language we now use, from 16 coincident D9-branes. 

We saw a big hint of what is needed to get spacetime gauge symmetry 
in the heterotic string in chapter 4. Upon compactifying bosonic string 
theory on a circle, at a special radius of the circle, an enhanced SU(2)L x 
SU(2)R gauge symmetry arose. From the two dimensional world-sheet 
point of view, this was a special case of a current algebra, which we 
uncovered further in section 4.6. We can take two key things away from 
that chapter for use here. The first is that we can generalise this to a larger 
non-Abelian gauge group if we use more bosons, although this would seem 
to force us to have many compact directions. The second is that there were 
identical and independent structures coming from the left and the right to 
give this result. So we can take, say, the left hand side of the construction 
and work with it, to produce a single copy of the non-Abelian gauge group 
in spacetime. 

This latter observation is the origin of the word 'heterotic' which comes 
from 'heterosis'. The theory is a hybrid of two very different constructions 
on the left and the right. Let us take the right hand side to be a copy of 
the right hand side of the superstrings we constructed previously, and so 
we use only the right hand side of the action given in equation (7.1) (with 
closed string boundary conditions). Then the usual consistency checks give 
that the critical dimension is of course ten, as before: the central charge 
(conformal anomaly) is -26 + 11 = 15 from the conformal and supercon­
formal ghosts. This is cancelled by ten bosons and their superpartners 
since they contribute to the anomaly an amount 10 x 1 + 10 x ~ = 15. 
The left hand side is in fact a purely bosonic string, and so the anomaly 
is cancelled to zero by the - 26 from the conformal ghosts and there must 
be the equivalent of 26 bosonic degrees of freedom, contributing 26 x 1 to 
the anomaly. 
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How can the theory make sense as a ten dimensional theory? The an­
swer to this question is just what gives the non-Abelian gauge symmetry. 
Sixteen of the bosons are periodic, and so may be thought of as com­
pactified on a torus T16 '::::' (81)16 with very specific properties. Those 
properties are such that the generic U(I)16 one might have expected from 
such a toroidal compactification is enhanced to one of two special rank 16 
gauge groups: 80(32), or Es x E s , via the very mechanism we saw in 
chapter 4: the torus is 'self-dual'. The remaining ten non-compact bosons 
on the left combine with the ten on the right to make the usual ten 
spacetime coordinates, on which the usual ten dimensional Lorentz group 
80(1,9) acts. 

7.2.1 80(32) and Es x Es from self-dual lattices 

The requirements are simple to state. We are required to have a sixteen 
dimensional lattice, according to the above discussion, and so we can apply 
the results of chapter 4, but there is a crucial difference. Recalling what 
we learned there, we see that since we only have a left-moving component 
to this lattice, we do not have the Lorenzian signature which arose there, 
but only a Euclidean signature. But all of the other conditions apply: it 
must be even, in order to build gauge bosons as vertex operators, and it 
must be self-dual, to ensure modular invariance. 

The answer turns out to be quite simple. There are only two choices, 
since even self-dual Euclidean lattices are very rare (They only exist when 
the dimension is a multiple of eight). For sixteen dimensions, there is either 
rs x rs or r 16 . The lattice rs is the collection of points: 

with Li n; = 2. The integer lattice points are actually the root lattice of 
80(16), with which the 120 dimensional adjoint representation is made. 
The half-integer points construct the spinor representation of 80(16). 
A bit of thought shows that it is just like the construction we made of 
the spinor representations of 80(8) previously; the entries are only ±~ 
in eight different slots, with only an even number of minus signs appear­
ing, which again gives a squared length of two. There are 27 = 128 pos­
sibilities, which is the dimension of the spinor representation. The total 
dimension of the represetnation we can make is 120 + 128 = 248 which 
is the dimension of Es. The sixteen dimensional lattice is made as the 
obvious tensor product of two copies of this, giving gauge group Es xEs, 
which is 496 dimensional. 
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The lattice r I6 is extremely similar, in that it is: 

(nl,n2, ... ,nI6) or (nl+~,n2+~, ... ,nI6+~)' LniE22::, 

with Li nr = 2. Again, we see that the integer points make the root 
lattice of SO(32), but there is more. There is a spinor representation of 
SO(32), but it is clear that since 16 x 1/4 = 4, the squared length is twice 
as large as it need to be to make a massless vector, and so the gauge 
bosons remain from the adjoint of SO(32), which is 496 dimensional. 
In fact, the full structure is more than SO(32), because of this spinor 
representation. It is not quite the cover, which is Spin(32) because the 
conjugate spinor and the vector representations are missing. It is instead 
written as Spin(32)/2::2. In fact, SO(32) in the quotient of Spin(32) by 
another 2::2 . 

Actually, before concluding, we should note that there is an alternative 
construction to this one using left-moving fermions instead of bosons. This 
is easily arrived at from here using what we learned about fermionisation 
in section 4.7. From there, we learn that we can trade in each of the left­
moving bosons here for two left-moving Majorana-Weyl fermions, giving 
a fermionic construction with 32 fermions \[Ii. The construction divides 
the fermions into the NS and R sectors as before, which correspond to the 
integer and half-integer lattice sites in the above discussion. The difference 
between the two heterotic strings is whether the fermions are split into two 
sets with independent boundary conditions (giving Es x Es) or if they have 
all the same boundary conditions (SO(32)). In this approach, there is a 
GSO projection, which in fact throws out a tachyon, etc. Notice that in the 
R sector, the zero modes of the 32 \[Ii will generate a spinor and conjugate 
spinor 231 ttl 231 of SO(32) for much the same reasons as we saw a 16 ttl 16 
in the construction of the superstring. Just as there, a GSO projection 
arises in the construction, which throws out the conjugate spinor, leaving 
the sole massive spinor we saw arise in the direct lattice approach. 

7.2.2 The massless spectrum 

In the case we must consider here, we can borrow a lot of what we learned 
in section 4.5 with hardly any adornment. We have sixteen compact left­
moving bosons, Xi, which, together with the allowed momenta pi, define 
a lattice r. The difference between this lattice and the ones we considered 
in section 4.5 is that there is no second part coming from a family of right­
moving momenta, and hence it is only half the expected dimension, and 
with a purely Euclidean signature. This sixteen dimensional lattice must 
again be self-dual and even. This amounts to the requirement of modular 
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invariance, just as before. More directly, we can see what effect this has 
on the low-lying parts of the spectrum. 

Recall that the NS and R sector of the right hand side has zero point 
energy equal to -1/2 and 0, respectively. Recall that we then make, after 
the GSO projection, the vector 8v , and its superpartner the spinor 8 8 

from these two sectors. On the left hand side, we have the structure of the 
bosonic string, with zero point energy -1. There is no GSO projection on 
this side, and so potentially we have the tachyon, 10), the familiar massless 
states a~lIO), and the current algebra elements J11,lIO). These must be 
tensored together with the right hand side's states, but we must be aware 
that the level-matching condition is modified. To work out what it is we 
must take the difference between the correctly normalised ten dimensional 
lV£2 operators on each side. We must also recall that in making the ten 
dimensional }\;I2 operator, we are left with a remainder, the contribution 
to the internal momentum a' prj 4. The result is: 

, 2 { 1 a PL ---
--+N-1=N- 2 

4 ° ' 
where the choice corresponds to the NS or R sectors. 

Now we can see how the tachyon is projected out of the theory, even 
without a GSO projection on the left. The GSO on the right has thrown 
out the tachyon there, and so we start with N = ~ there. The left 
tachyon is N = 0, but this is not allowed, and we must have the even 
condition a'pfj2 = 2 which corresponds to switching on a current J11,l' 
making a massless state. If we do not have this state excited, then we can 
also make a massless state with N = 1, corresponding to a~lIO). 

The massless states we can make by tensoring left and right, respect­
ing level-matching are actually familiar. In the NS-NS sector, we have 
a~l 'ljJ~1/210), which is the graviton, G/LV antisymmetric tensor B/Lv and 
dilaton <I> in the usual way. We also have J11,1'1j;~1/210), which gives an 
Es x Es or 80(32) gauge boson, A/La. In the NS-R sector, we have a~lIO)a 
which is the gravitino, 'ljJ~. Finally, we have J11,lIO)a, which is the super­
partner of the gauge boson, A~. In the language we used earlier, we can 
write the left hand representations under 80(8) x G (where G is 80(32) 
or Es x Es) as (8 v , 1) or (1,496). Then the tensoring is 

(8v , 1) Q9 (8v + 88 ) = (1,1) + (35,1) + (28,1) + (568 ,1) + (8 8 ,1), 
(1,496) Q9 (8v + 88 ) = (8v , 496) + (88 ,496). 

So we see that we have again obtained the N = 1 supergravity multiplet, 
coupled to a massless vector. The effective theory which must result at low 
energy must have the same gravity sector, but since the gauge fields arise 
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at closed string tree level, their Lagrangian must have a dilaton coupling 
e2el>, instead of eel> for the open string where the gauge fields arise at open 
string tree level. 

7.3 The ten dimensional supergravities 

Just as we saw in the case of the bosonic string, we can truncate consis­
tently to focus on the massless sector of the string theories, by focusing on 
low energy limit ex' ----+ O. Also as before, the dynamics can be summarised 
in terms of a low energy effective (field theory) action for these fields, 
commonly referred to as 'supergravity'. 

The bosonic part of the low energy action for the type IIA string theory 
in ten dimensions may be written (d. equation (2.106)) as (the wedge 
product is understood) 1, 5, 75: 

BIIA = _1_ JdlOx( _G)1/2 {e-2el> [R + 4(\7<I»2 _ ~(H(3))2] 
2~6 12 

- ~(G(2))2 - ~(G(4))2} - _1_ J B(2)dC(3)dC(3). 
4 48 4~6 (7.41) 

As before GjJ,V is the metric in string frame, <I> is the dilaton, H(3) = dB(2) 
is the field strength of the NS-NS two form, while the Ramond-Ramond 
field strengths are G(2) = dC(l) and G(4) = dC(3) + H(3) 1\ C(1):!:. 

For the bosonic part in the case of type IIB, we have: 

BIIE = _1_ j'dlOx( _G)1/2 {e-2el> [R + 4(\7<I»2 _ ~(H(3))2] 
2~6 12 

_ ~(G(3) + C(O) H(3))2 _ ~(dC(0))2 _ _ 1_(G(5))2} 
12 2 480 

+ _1_ J (C(4) + ~ B(2) C(2)) G(3) H(3). (7.42) 
4~6 2 

Now, G(3) = dC(2) and G(5) = dC(4) + H(3)C(2) are R-R field strengths, 
and C(O) is the R-R scalar. (Note that we have canonical normalisations 
for the kinetic terms of forms: there is a prefactor of the inverse of -2 x p! 
for a p-form field strength.) There is a small complication due to the 
fact that we require the R-R four form C(4) to be self-dual, or we will 
have too many degrees of freedom. We write the action here and remind 
ourselves to always impose the self-duality constraint on its field strength 
F(5) = dC(4) by hand in the equations of motion: F(5) = *F(5). 

t This can be derived by dimensional reduction from the structurally simpler eleven di­
mensional supergravity action, presented in chapter 12, but at this stage, this relation 
is a merely formal one. We shall see a dynamical connection later. 
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7.3 The ten dimensional supergravities 

Equation (2.109) tells us that, in ten dimensions, we must use 

o - e(<Po-<P)/2G 
IW - " IW 

175 

(7.43) 

to convert these actions to the Einstein frame. As before (see discussion 
below equation(2.111)), Newton's constant will be set by 

(7.44) 

where the latter equality can be established by (for example) direct ex­
amination of the results of a graviton scattering computation. We will see 
that it gives a very natural normalisation for the masses and charges of 
the various branes in the theory. Also gs is set by the asymptotic value 
of the dilaton at infinity: gs == e<po. 

Those were the actions for the ten dimensional supergravities with 
thirty-two supercharges. Let us consider those with sixteen supercharges. 
For the bosonic part of type I, we can construct it by dropping the fields 
which are odd under 0 and then adding the gauge sector, plus a number 
of cross terms which result from cancelling anomalies, as we discussed in 
subsection 7.1.3: 

81 = 2~6 J dlOx( _G)1/2 { e-2<P [R + 4 (\7 <I> )2] 

_~(0(3))2 _ 0' e-<PTr (F(2))2}. (7.45) 
12 8 

Here, 0(3) is a modified field strength for the two-form potential, defined 
in equation (7.38). Recall that this modification followed from the require­
ment of cancellation of the anomaly via the Green-Schwarz mechanism. 

We can generate the heterotic low-energy action using a curiosity which 
will be meaningful later. Notice that a simple redefinition of fields: 

G ftv (type I) = e - <P G ftv (heterotic) 

<I>(type I) = -<I>(heterotic) 

0(3) (type I) = H(3) (heterotic) 

Aft (type I) = Aft (heterotic), 

takes one from the type I Lagrangian to: 

(7.46) 

(7.47) 
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where (renaming C(2) ---+ B(2)) 

~ (3) (2) at [ 1 ] H = dB - 4 30W3y(A) - w3L(D) . (7.48) 

This is the low energy effective Lagrangian for the heterotic string theo­
ries. Note that in (7.47), at is measured in heterotic units of length. 

We can immediately see two key features about these theories. The 
first was anticipated earlier: their Lagrangian for the gauge fields have a 
dilaton coupling e- 2iP , since they arise at closed string tree level, instead 
of e- iP for the open string where where the gauge fields arise at open 
string tree level. The second observation is that since from equation (7.46) 
the dilaton relations tell us that g8 (type I) = g; 1 (heterotic), there is a 
non-perturbative connection between these two theories, although they 
are radically different in perturbation theory. We are indeed forced to 
consider these theories when we study the type I string in the limit of 
strong coupling. 

7.4 Heterotic toroidal compactifications 

Much later, it will be of interest to study simple compactifications of the 
heterotic strings, and the simplest result from placing them on tori174, 175. 

Our interest here is not in low energy particle physics phenomenology, as 
this would require us to compactify on more complicated spaces to break 
the large amount of supersymmetry and gauge symmetry. Instead, we 
shall see that it is quite instructive, on the one hand, and on the other 
hand, studying various superstring compactifications with D-brane sec­
tors taken into account will produce vacua which are in fact strong/weak 
coupling dual to heterotic strings on tori. This is another remarkable con­
sequence of duality which forces us to consider the heterotic strings even 
though they cannot have D-brane sectors. 

Actually, there is not much to do. From our work in section 7.2 and from 
that in section 4.5, it is easy to see what the conditions for the consistency 
of a heterotic toroidal compactification must be. Placing some of the ten 
dimensions on a torus Td will give us the possibility of having windings, 
and right-moving momenta. In addition, the gauge group can be broken 
by introducing Wilson lines (see insert 4.4 and section 4.9.1) on the torus 
for the gauge fields AIL. This latter choice breaks the gauge group to the 
maximal Abelian subgroup, which is U(1)16. 

The compactification simply enlarges our basic sixteen dimensional 
Euclidean lattice from rs EEl rs or r 16 by two dimensions of Lorentzian 
signature (1,1) for each additional compact direction, for the reasons we 
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already discussed in section 4.5. So we end up with a lattice with signature 
(16 + d, d), on which there must be an action of O(d, 16 + d) generating 
the lattices. Again, we will have that there is a physical equivalence be­
tween some of these lattices, because physics only depends on PL and PA, 
and further, there will be the discrete equivalences corresponding to the 
action of a T-duality group, which is O(d, 16 + d, Z). 

The required lattices are completely classified, as a mathematical ex­
ercise. In summary, the space of inequivalent toroidal compactifications 
turns out to be: 

MTd = [O(d) x O(d + 16)]\0(d, d + 16)/0(d, d + 16, Z). (7.49) 

Notice, after a quick computation, that the dimension of this space is 
d2 + 16d. So in addition to the fields GjW , BjLv and <I>, we have that number 
of extra massless scalars in the N = 2, D = 6 low energy theory. The first 
part of the result comes, as before from the available constant components, 
Gmn and Bmn , of the internal metric and antisymmetric tensor on Td. The 
remaining part comes from the sixteen generic constant internal gauge 
bosons (the Wilson lines), Am for each circle. 

Let us compute what the generic gauge group of this compactified model 
is. There is of course the U (1) 16 from the original current algebra sector. 
In addition, there is a U(l) x U(l) coming from each compact dimension, 
since we have Kaluza-Klein reduction of the metric and antisymmetric 
tensor. Therefore, the generic gauge group is U(1)16+2d. 

To get something less generic, we must tune some moduli to spe­
cial points. Of course, we can choose to switch off some of the Wilson 
lines, getting non-Abelian gauge groups from the current algebra sector, 
restoring an Es x Es X U(1)2d or 80(32) X U(1)2d gauge symmetry. We 
also have the possibility of enhancing the Kaluza-Klein factor by tun­
ing the torus to special points. We simply need to make states of the 
form exp(ikL . XL)?,b~l,dO), where we can have left-moving momenta of 
c/pU2 = 2 (we are referring to the components of PL which are in the 
torus T d ). This will give any of the A-D-E series of gauge groups up to 
a rank 2d in this sector. 

The reader will have noticed that we only gave one family of lattices for 
each dimension d of the torus. We did not have one choice for the Es x Es 
string and another for the 80(32) string. In other words, as soon as we 
compactify one heterotic string on a circle, we find that we could have 
arrived at the same spectrum by compactifying the other heterotic string 
on a circle. This is of course T-duality. It is worth examining further, and 
we do this in section 8.1.3. 
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7.5 Superstring toroidal compactification 

The placement of the superstrings on tori is at face value rather less 
interesting than the heterotic case, and so we will not spend much time 
on it here, although will return to it later when we revisit T-duality, and 
again when we study U-duality in section 12.7. 

Imagine that we compactify one of our superstring theories on the 
torus Td. We simply ask that d of the directions are periodic with some 
chosen radius, as we did in section 4.5 for the bosonic string. This does not 
not affect any of our discussion of supercharges, etc., and we simply have 
a (10 - d)-dimensional theory with the same amount of supersymmetry 
as the ten dimensional theory which we started with. As discussed in sec­
tion 4.4, there is a large O(d, d, Z) pattern of T-duality groups available 
to us. There are also Kaluza-Klein gauge groups U(l?d coming from the 
internal components of the graviton and the antisymmetric tensor. In ad­
dition, there are Kaluza-Klein gauge groups coming from the possibility 
of some of the R-R sector antisymmetric tensors having internal indices. 
Note that there aren't the associated enhanced gauge symmetries present 
at special radii, since the appropriate objects which would have arisen 
in a current algebra, J~ l' do not give masses states in spacetime, and in 
any case level matching would have forbidden them from being properly 
paired with 'ljJ~lL2 to give a spacetime vector. 

To examine the possibilities, it is probably best to study a specific 
example, and we do the case of placing the type IIA string theory on T5. 

Let us first count the gauge fields. This can be worked out simply by 
counting the number of ways of wrapping the metric and the various p­
form potentials (with p odd) in the theory on the five circles of the T 5 to 
give a one-form in the remaining five non-compact directions. From the 
NS-NS sector there are five Kaluza-Klein gauge bosons and five gauge 
bosons from the antisymmetric tensor. There are 16 gauge bosons from 
the dimensional reduction of the various R-R forms: the breakdown is 
10+5+ 1 from the forms C(3), C(5) and C(l), respectively, since, for ex­
ample, there are ten independent ways of making two out of the three 
indices of C(3) be any two out of the five internal directions, and so on. 
Finally, in five dimensions, one can form a two form field strength from 
the Hodge dual * H of the three-form field strength of the NS-NS B/Lv, 
thus defining another gauge field. 

So the gauge group is generically U(1)27. There are in fact a number 
of massless fields corresponding to moduli representing inequivalent sizes 
and shapes for the T5. We can count them easily. We have the 52 = 25 
components coming from the graviton and antisymmetric tensor field. 
From the R-R sector there is only one way of getting a scalar from C(5), 
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and five and ten ways from e(l) and e(3), respectively. This gives 41 
moduli. Along with the dilaton, this gives a total of 42 scalars for this 
compactification. 

By now, the reader should be able to construct the very same five 
dimensional spectrum but starting with the type IIB string and placing 
it on T5. This is a useful exercise in preparation for later. The same 
phenomenon will happen with any torus, Td. Thus we begin to uncover the 
fact that the type IIA and type IIB string theories are (T-dual) equivalent 
to each other when placed on circles. We shall examine this in more detail 
in section 8.1, showing that the equivalence is exact. 

The full T-duality group is actually 0(5,5; Z). It acts on the different 
sectors independently, as it ought to. For example, for the gauge fields, it 
mixes the first ten NS-NS gauge fields among themselves, and the 16 R-R 
gauge fields among themselves, and leaves the final NS-NS field invari­
ant. Notice that the fields fill out sensible representations of 0(5,5; Z). 
Thinking of the group as roughly SO(10), those familiar with numerology 
from grand unification might recognise that the sectors are transforming 
as the 10, 16, and l. 

A little further knowledge will lead to questions about the fact that lOEB 
16 EB 1 is the decomposition of the 27 (the fundamental representation) 
of the group E6 , but we should leave this for a later time, when we come 
to discuss U-duality in section 12.7. 

7.6 A superstring orbifold: discovering the K3 manifold 

Before we go any further, let us briefly revisit the idea of strings propagat­
ing on an orbifold, and take it a bit further. Imagine that we compactify 
one of our closed string theories on the four torus, T4. Let us take the 
simple case where there the torus is simply the product of four circles, Sl, 
each with radius R. Let us choose that the four directions (say) x 6 , x 7 , x 8 

and x 9 are periodic with period 27T R. The resulting six dimensional theory 
has N = 4 supersymmetry. 

Let us orbifold the theory by the Z2 group which has the action 

R: (7.50) 

which is clearly a good symmetry to divide by. We can choose to let R 
be embedded in the SU(2)L which acts on the JPi.4 (see insert 7.4). This 
will leave an SU(2)R which descends to the six dimensions as a global 
symmetry. It is in fact the R-symmetry of the remaining D = 6, N = 2 
model. We shall use this convention a number of times in what is to come. 
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Insert 7.4. SU(2)L versus SU(2)R 

It is well worth pausing here to note a nice way of writing things, for 
later use. The space JPi.4 with coordinates (X6,X7,xS,xg) = (T,X,y,Z) 
has an obvious SO(4) symmetry. Note that SO(4) rv SU(2)L X 

SU(2)R, where the 'L' and 'R' labels denote left and right. What 
is the meaning of this? To see it, present two new sets of coordinates. 
Write JPi.4 with a radial coordinate r = (T2 + x2 + y2 + z2) 1/2, and 
Euler angles on an S3 (r, e, ¢, 'lj;), where 0 < e < TI, 0 < ¢ < 2TI, 
o < 'lj; < 4TI. The metric is: 

r 2 
ds2 = dT2 + d:x;2 + dy2 + dz2 = dr2 +"4 (de2 + d¢2 + &1jJ2 + 2 cos e&ljJd¢ ). 

Further define an element 9 E SU(2): 9 = (Tl - iT' i!)/r for Pauli 
matrices Ti (given, e.g. in equation (13.1), where they're called O"i): 

= ~ (T + iz 
9 r y + ix 

There are natural independent actions of h E SU(2) on this on the 
left, 9 ---+ hg, or on the right, 9 ---+ gh. It is really useful to ex­
tract certain natural 'Maurer-Cartan' one-forms from this. They are 
O"a = -iTr(Tag-1dg) and are clearly invariant under the SU(2)L. The 
(ja = -iTr( Tadgg-1) are SU(2)R invariant. Explicitly: 

20"1 = - sin 'lj;de + cos'lj; sin ed¢; 

20"2 = cos 'ljJde + sin 'lj; sin ed¢; 20"3 = d'lj; + cos ed¢, 

and they satisfy dO"a = EabcO"b /\ O"c. Note also that 4(O"r + O"§) is the 
standard round unit radius S2 metric, while O"r + O"§ + O"§ gives the 
same for S3. (The (ji can be obtained by sending '1jJ f-7 ¢.) Now, our 
metric on JPi.4 can be written as ds 2 = dr 2 + r2(O"r + O"§ + O"§). 

7.6.1 The orbifold spectrum 

We can construct the resulting six dimensional spectrum by first working 
out (say) the left-moving spectrum, seeing how it transforms under Rand 
then tensoring with another copy from the right in order to construct the 
closed string spectrum. 

Let us now introduce a bit of notation which will be useful in the future. 
Use the label x rn , m = 6,7,8,9 for the orbifolded directions, and use xM, 
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/L = 0, ... , 5, for the remaining. Let us also note that the ten dimensional 
Lorentz group is decomposed as 

80(1, 9) ~ 80(1,5) x 80(4). 

We shall label the transformation properties of our massless states in the 
theory under the 8U(2) x 8U(2) = 80(4) little group. Just as we did 
before, it will be useful in the Ramond sector to choose a labelling of 
the states which refers to the rotations in the planes (xO,x1), (x2,x3), 
etc., as eigenstates 80,Sl, ... ,S4 of the operator 8 01 ,823 , etc., (see equa­
tions (7.17) and (7.19) and surrounding discussion). 

With this in mind, we can list the states on the left that survive the 
GSO projection. 

I sector I state R charge I 80(4) charge I 

NS 'l/i'l 10; k) + (2,2) 
-

2 
'ljJrn1 10; k) - 4(1,1) 

-"2 

R 18 18 28 384); 81 = +82, 83 = -84 + 2(2,1) 

18 18 28 384); 81 = -82, 83 = +84 - 2(1,2) 

Crucially, we should also examine the 'twisted sectors' which will arise, 
in order to make sure that we get a modular invariant theory. The big 
difference here is that in the twisted sector, the moding of the fields in 
the xrn directions is shifted. For example, the bosons are now half-integer 
moded. We have to recompute the zero point energies in each sector in 
order to see how to get massless states (see (2.80)): 

NS sector: 4 ( - 214) + 4 ( - 418) + 4 (418) + 4 (214) = 0, 

R sector: 4 ( - 214) + 4 (214) + 4 (418) + 4 ( - 418) = O. (7.51) 

This is amusing; both the Ramond and NS sectors have zero vacuum 
energy, and so the integer moded sectors will give us degenerate vacua. 
We see that it is only states IS1s2) which contribute from the R sec­
tor (since they are half-integer moded in the xrn directions) and the 
NS sector, since it is integer moded in the xrn directions, has states 
18 384). 
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N.B. It is worth seeing in equation (7.51) how we achieved this ability 
to make a massless field in this case. The single twisted sector ground 
state in the bosonic orbifold theory with energy 1/48, was multiplied 
by four since there are four such orbifolded directions. Combining this 
with the contribution from the four unorbifolded directions produced 
just the energy needed to cancel the contribution from the fermions. 

The states and their charges are as follows (after imposing GSO). 

I sector I state I R charge I SO(4) charge I 

NS 18 3 8 4); 83 = -84 + 2(1,1) 

R I S 1s2); Sl = -S2 - (1,2) 

Now we are ready to tensor. Recall that we could have taken the oppo­
site GSO choice here to get a left moving with the identical spectrum, but 
with the swap (1,2) +--+ (2,1). Again we have two choices: tensor together 
two identical GSO choices, or two opposite. In fact, since six dimensional 
supersymmetries are chiral, and the orbifold will keep only two of the four 
we started with, we can write these choices as (0,2) or (1,1) supersym­
metry, resulting from type IIB or IIA on K3. It is useful to tabulate the 
result for the bosonic spectra for the untwisted sector. 

sector 80(4) charge 

NS-NS (3,3) + (1,3) + (3,1) + (1, 1) 
10(1,1) + 6(1, 1) 

R-R (IIB) 
2(3,1) + 4(1, 1) 
2(1,3) + 4(1, 1) 

R-R (IIA) 
4(2,2) 
4(2,2) 

This is the result for the twisted sector. 

sector 

NS-NS 

R-R (IIB) 
R-R (IIA) 

80( 4) charge 

3(1,1) + (1,1) 

(1,3) + (1,1) 
(2,2) 

Recall now that we have two twisted sectors for each orbifolded circle, 
and hence there are 16 twisted sectors in all, for T 4/7/.,2. Therefore, to 
make the complete model, we must take sixteen copies of the content of 
the twisted sector table above. 
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Now let identify the various pieces of the spectrum. The gravity multi­
plet G/1V + B/1V + <I> is in fact the first line of our untwisted sector table, 
coming from the NS-NS sector, as expected. The field B can be seen to 
be broken into its self-dual and anti-self-dual parts Btu and BMU , trans­
forming as (1,3) and (3,1). There are sixteen other scalar fields, ((1,1)), 
from the untwisted NS-NS sector. The twisted sector NS-NS sector has 
4x16 scalars. Not including the dilaton, there are 80 scalars in total from 
the NS-NS sector. 

Turning to the R-R sectors, we must consider the cases of lIA and lIB 
separately. For type lIA, there are eight one-forms (vectors, (2, 2)) from 
the untwisted sector and 16 from the twisted, giving a total of 24 vectors, 
and have a generic gauge group U(1?4. 

For type lIB, the untwisted R-R sector contains three self-dual and 
three anti-self-dual tensors, while there are an additional 16 self-dual ten­
sors (1,3). We therefore have 19 self-dual etu and three anti-self-dual 
eMU' There are also eight scalars from the untwisted R-R sector and 16 
scalars from the twisted R-R sector. In fact, including the dilaton, there 
are 105 scalars in total for the type lIB case. 

7.6.2 Another miraculous anomaly cancellation 

This type lIB spectrum is chiral, as already mentioned, and in view of 
what we studied in earlier sections, the reader must be wondering whether 
or not it is anomaly-free. It actually is, and it is a worthwhile exercise to 
check this, using the polynomials in insert 7.2. 

The cancellation is so splendid that we cannot resist explaining it in 
detail here. To do so we should be careful to understand the N = 2 
multiplet structure properly. A sensible non-gravitational multiplet has 
the same number of bosonic degrees of freedom as fermionic, and so it 
is possible to readily write out the available ones given what we have 
already seen. (Or we could simply finish the tensoring done in the last 
section, doing the NS-R and R-NS parts to get the fermions.) Either way, 
table 7.1 has the multiplets listed. 

The 16 components of the supergravity bosonic multiplet is accom­
panied by two copies of the 16 components making up a gravitino and a 
dilatino. These two copies are the same chirality for type lIB and opposite 
for type lIA. 

The next thing to do is to repackage the spectrum we identified earlier 
in terms of these multiplets. First, notice that the supergravity multiplet 
has one (1,1), four (2,1)s and one (1,3). With four other scalars, we 
can make a full tensor multiplet. (The other (3,1), which is an anti-self­
dual piece makes up the rest of BJLu,) That gives us 19 complete self dual 
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Table 7.1. The structure of the N = 2 multiplets in D = 6 

multiplet bosons fermions 

vector (2,2)+4(1,1) 2(1,2)+2(2,1) 
SD tensor (1,3)+5(1,1) 4(2,1) 

ASD tensor (3,1)+5(1,1) 4(2,1) 

su pergravi ty (3,3) + (3,1) + (1,3) + (1,1) 
2(3,2) + 2(2, 1) 

or 2(2,3) + 2(1, 2) 

tensor multiplets in total and two complete anti-self-dual ones since the 
last one is not complete. Since there are five scalars in a tensor multiplet 
this accounts for the 105 scalars that we have. 

So we can study the anomaly now, knowing what (anti- ) self-dual ten­
sors, and fermions we have. Consulting insert 7.2 (p. 162), we note that 
the polynomials listed for the fermions are for complex fermions, and so 
we must divide them by two to get the ones appropriate for the real com­
ponents we have counted in the orbifolding. Putting it together according 
to what we have said above for the content of the spectrum, we have: 

191(1,3) + 19 x 41(2,1) + 21(3,1) + 2 x 41(2,1) + 21(3,2) + 1(3,1) = 0 (752) 
8 8 8 8 8 8 ,. 

where we have listed, respectively, the contribution of the 19 self-dual ten­
sors, the two anti-self-dual tensors, the two gravitinos, and the remaining 
piece of the supergravity multiplet. That this combination of polynomials 
vanishes is amazing109. 

7.6.3 The K3 manifold 

Quite remarkably, there is a geometrical interpretation of all of those data 
presented in the previous subsections in terms of compactifying type II 
string theory on a smooth manifold. The manifold is K3. It is a four 
dimensional manifold containing 22 independent two-cycles, which are 
topologically two-spheres more properly described as the complex surface 
Cpl (see insert 16.1), in this context. Correspondingly the space of two­
forms which can be integrated over these two cycles is 22 dimensional. So 
we can choose a basis for this space. Nineteen of them are self-dual and 
three of them are anti-self-dual, in fact. The space of metrics on K3 is in 
fact parametrised by 58 numbers. 

In compactifying the type II superstrings on K3, the ten dimensional 
gravity multiplet and the other R-R fields gives rise to six dimensional 
fields by direct dimensional reduction, while the components of the fields 
in the K3 give other fields. The six dimensional gravity multiplet arises by 
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direct reduction from the NS-NS sector, while 58 scalars arise, parametris­
ing the 58 dimensional space of K3 metrics which the internal parts of 
the metric, G mn , can choose. Correspondingly, there are 22 scalars arising 
from the 19+3 ways of placing the internal components of the antisym­
metric tensor, Bmn on the manifold. A commonly used terminology is 
that the form has been 'wrapped' on the 22 two-cycles to give 22 scalars. 

In the R-R sector of type IIB, there is one scalar in ten dimensions, 
which directly reduces to a scalar in six. There is a two-form, which pro­
duces 22 scalars, in the same way as the NS-NS two-form did. The self­
dual four-form can be integrated over the 22 two cycles to give 22 two 
forms in six dimensions, 19 of them self-dual and three anti-self-dual. Fi­
nally, there is an extra scalar from wrapping the four-form entirely on K3. 
This is precisely the spectrum of fields which we computed directly in the 
type IIB orbifold. 

Alternatively, while the NS-NS sector of type IIA gives rise to the same 
fields as before, there is in the R-R sector a one-form, three-form and 
five-form. The one-form directly reduces to a one-form in six dimensions. 
The three-form gives rise to 22 one-forms in six dimensions while the 
five-form gives rise to a single one-form. We therefore have 24 one-forms 
(generically carrying a U(I) gauge symmetry) in six dimensions. This also 
completes the smooth description of the type IIA on K3 spectrum, which 
we computed directly in the orbifold limit. See insert 7.5 for a significant 
comment on this spectrum. 

7.6.4 Blowing up the orbifold 

The connection between the orbifold and the smooth K3 manifold is as 
follows 78 : K3 does indeed have a geometrical limit which is T4/7/.,2, and it 
can be arrived at by tuning enough parameters, which corresponds here 
to choosing the vev's of the various scalar fields. Starting with the T4 17/.,2, 
there are 16 fixed points which look locally like ]R4 17/.,2, a singular point of 
infinite curvature. It is easy to see where the 58 geometric parameters of 
the K3 metric come from in this case. Ten of them are just the symmetric 
Gmn constant components, on the internal directions. This is enough to 
specify a torus T 4 , since the hypercube of the lattice in ]R4 is specified by 
the ten angles between its unit vectors, em . en. Meanwhile each of the 
16 fixed points has three scalars associated to its metric geometry. (The 
remaining fixed point NS-NS scalar in the table is from the field B, about 
which we will have more to say later.) 

The three metric scalars can be tuned to resolve or 'blow-up' the fixed 
point, and smooth it out into the Cpl which we mentioned earlier. (This 
accounts for 16 of the two-cycles. The other six correspond to the six 7/.,2 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


186 7 Supersymmetric strings 

Insert 7.5. Anticipating a string-string duality in D = 6 

We have seen that for type IIA we have an N = 2, D = 6 supergravity 
with 80 additional scalars and 24 gauge bosons with a generic gauge 
group U(l )24. The attentive reader will have noticed an apparent 
coincidence between the result for the spectrum of type IIA on K3 and 
another six dimensional spectrum which we obtained earlier. That 
was the spectrum of the heterotic string compactified on T 4 , obtained 
in section 7.4 (put d = 4 in the results there). The moduli space of 
compactifications is in fact 

0(20,4, :2:)\0(20, 4)/[0(20) x 0(4)] 

on both sides. We have seen where this comes from on the heterotic 
side. On the type IIA side it arises too. Start with the known 

0(19,3, :2:)\0(19, 3)/[0(19) x 0(3)] 

for the standard moduli space of K3s (you should check that this has 
57 parameters; there is an additional one for the volume). It acts on 
the 19 self-dual and three anti-self-dual two-cycles. This classical ge­
ometry is supplemented by stringy geometry arising from B/w , which 
can have fluxes on the 22 two-cycles, giving the missing 22 param­
eters. We will not prove here that the moduli space is precisely as 
above, and hence the same as globally and locally as the heterotic 
one, but it will become apparent later in chapters 12 and 16. 

Perturbatively, the coincidence of the spectra must be an accident. 
The two string theories in D = 10 are extremely dissimilar. One 
has twice the supersymmetry of the other and is simpler, having no 
large gauge group, while the other is chiral. We place the simpler 
theory on a complicated space (K3) and the more complex theory 
on a simple space T4 and result in the same spectrum. The theories 
cannot be T -dual since the map would have to mix things which are 
unrelated by properties of circles. The only duality possible would 
have to go beyond perturbation theory. This is what we shall see 
later in chapter 16. Note also that there is something missing. At 
special points in the heterotic moduli space we have seen that it is 
possible to get large enhanced non-Abelian gauge groups. There is 
no sign of that here in how we have described the type IIA string 
theory using conformal field theory. In fact, we shall see how to go 
beyond conformal field theory and describe these special points using 
D-branes in chapter 13. 
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invariant forms dXm /\ dXn on the four-torus.) The smooth space has a 
known metric, the 'Eguchi-Hanson' metric84 , which is locally asymptotic 
to JR4 (like the singular space) but with a global Z2 identification. Its 
metric is: 

ds' ~ (1 -(~n -1 dr' +,' (1- (~n a.l + r'(al + aD, (7.5:1) 

where the eri are defined in terms of the 53 Euler angles (e, ¢, ?j;) in in­
sert 7.4. From there we learn that 4( err + er~) = de2 + sin2 ed¢2. The point 
r = a is an example of a 'bolt' singularity. Near there, the space is topo­
logically JR;1j; x 5~¢, with the 52 of radius a/2, and the singularity is a 
coordinate one provided ?j; has period 27T. (See insert 7.6, (p. 188).) Since 
on 53, '1jJ would have period 47T, the space at infinity is 5 3/Z2, just like 
an JR4/Z2 fixed point. For small enough a, the Eguchi-Hanson space can 
be neatly slotted into the space left after cutting out the neighbourhood 
of the fixed point. The bolt is in fact the CCpl of the blow-up mentioned 
earlier. The parameter a controls the size of the CCpl, while the other two 
parameters correspond to how the JR2 (say) is oriented in JR4. 

The Eguchi-Hanson space is the simplest example of an 'Asymptoti­
cally Locally Euclidean' (ALE) space, which K3 can always be tuned to 
resemble locally. These spaces are classified85 according to their identifi­
cation at infinity, which can be any discrete subgroup86, r, of the 5U(2) 
which acts on the 53 at infinity, to give 5 3/r. These subgroups have been 
characterised by McKay87, and have an A-D-E classification which we 
shall study more in chapter 13. The metrics on the A-series are known 
explicitly as the Gibbons-Hawking metrics91 , which we shall display later, 
and Eguchi-Hanson is in fact the simplest of this series, corresponding92 

to A 1. We shallla ter use a D-brane as a probe of string theory on a JR 4/ Z2 
orbifold, an example which will show that the string theory correctly re­
covers all of the metric data (7.53) of these fixed points, and not just the 
algebraic data we have seen here. 

For completeness, let us compute one more thing about K3 using this 
description. The Euler characteristic, in this situation, can be written in 
two ways82 

(7.54) 

Even though no explicit metric for K3 has been written, we can compute X 
as follows80, 82. If we take a manifold lVI, divide by some group G, remove 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


188 7 Supersymmetric strings 

Insert 7.6. A closer look at the Eguchi-Hanson space 

Let us establish some of the properties claimed in the main body of 
the text, while uncovering a useful technique. The S3 s in the met­
ric (7.53) are the natural 3D 'orbits' of the SU(2) action. The S2 of 
(B, ¢) is a special 2D 'invariant submanifold'. To examine the poten­
tial singularity at r = a, look near r = a. Choose, if you will, r = a+G 
for small G, and: 

ds2 = 4aG [dG2 + I~G2 (&1jJ + cos Bd¢)2] + ~(a2 + 2aG)dn~, 

which as G ---+ 0 is obviously topologically looking locally like 
lR;,1P x SJ,cf;' where the S2 is of radius a/2. (Globally, there is a fibred 
structure due to the d'ljJd¢ cross term.) Incidentally, this is perhaps 
the quickest way to see that the Euler number or 'Euler charachter­
istic' of the space has to be equal to that of an S2, which is two. 
There is a potential 'bolt' singularity at r = a. It is a true singularity 
for arbitrary choices of periodicity 6.1/; of 1/;, since there is a conical 
deficit angle in the plane. In other words, we have to ensure that as 
we get to the origin of the plane, G = 0, the 1/;-circles have circum­
ference 27T, no more or less. Infinitesimally, we make those measures 
with the metric, and so the condition is: 

which gives 6.1/; = 27T. So in fact, we must spoil our S3 which was a 
nice orbit of the SU(2) isometry, by performing an 2::2 identification 
on 1/;, giving it half its usual period. In this way, the 'bolt' singularity 
r = a is just a harmless artifact of coordinates83 , 82. Also, we are 
left with an SO(3) = SU(2)/2::2 isometry of the metric. The space at 
infinity is S3/2::2. 

some fixed point set F, and add in some set of new manifolds N, one at 
each point of F, the Euler characteristic of the new manifold is 

(7.55) 

Here, G = R == 2::2, and the Euler characteristic of the Eguchi-Hanson 
space is equal to two, from insert 7.6 (p. 188). That of a point is one, and 
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of the torus is zero. We therefore get 

16 
X(K3) = -2 + 16 x 2 = 24, (7.56) 

which will be of considerable use later on. 
So we have constructed the consistent, supersymmetric string propa­

gation on the K3 manifold, using orbifold techniques. We shall use this 
manifold to illustrate a number of beautiful properties of D-branes and 
string theory in the rest of these lectures. 

7.6.5 Some other K3 orbifolds 

We can construct K3 in its orbifold limits using other tlw group actions. 
We begin with the space ]]{4 == C2 , with complex coordinates zI = x 6 + ix 7 

and z2 = x 8 + ix9, upon which we make the identifications zi rv zi + 1 rv 

zi+i, for N=2 or 4, and zi rv zi+1 rv zi+ exp(TIi/3) for N=3 or 6. These 
lattices define for us the torus T 4 , upon which the discrete rotations 7lw , 
acts naturally as 

(7.57) 

for j3 = exp(2TIi/N). 
We may therefore define a new space by identifying points under the 

action of 7lw. This is the orbifold T4 /7lw, which is a smooth surface except 
at fixed points, which are invariant under tlw or some non-trivial subgroup 
of it. For N E {2, 3, 4, 6}, this procedure produces a family of compact 
spaces which are also orbifold limits of the K3 surface. 

The smooth K3 manifold is obtained from these limits by blowing up 
the orbifold points, removing each of the points and replacing it by a 
smooth space, just as we did in the previous section. The neighbourhood 
of a fixed point is ]]{4/ZM' where N 2: M E {2, 3, 4, 6}, which is the 
asymptotic region of the A-series ALE space with which we replace the 
excised point. Note that the Euler characteristic of the An ALE space is 
n+l. 

Let us denote the generator of ZN by aN The group elements are then 
the powers aN' for m E {a, 1, ... , N - I}. In fact the number, PM, of 

points fixed under the ZM subgroup of ZN, (generated by a~/M) is simply 
FM = 16 sin4 '!:t, where M is a divisor of N. 

For T 4 /Z2 , as we have already seen, we have 16 points fixed under 
the action of a2, each of which are replaced by the Al ALE space in 
order to resolve to smooth K3. For T 4 /Z3 there are nine fixed points of 
a3, which are each replaced by the A2 ALE space to make the blow-up. 
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From formula (7.55), we get 

9 
X(K3) = -3 + 9 x 3 = 24. 

The case T4 I7/.,4 has 16 fixed points. Four of them are fixed under the 
action of 0:4, while the other 12 are only fixed under o:~. Under 0:4, these 
12 7/.,2 points transform as six doublets. Consequently, the blow-up is car­
ried out by first constructing the 7/.,4-invariant region by identifying these 
pairs of fixed points. One can then replace each of the original four 7/.,4 
fixed points by an A3 ALE space and the six pairs by an AI. From for­
mula (7.55), we get 

16 
X(K3) = - 4 + 4 x 4 + 6 x 2 = 24. 

For T4 I7/.,6 the situation is similar. There are 24 fixed points altogether. 
There is only one point fixed under 0:6. It is replaced by the A5 ALE space 
to make the blow-up. There are eight points fixed under the 7/.,3 subgroup, 
generated by o:~, which transform as doublets under the action of 0:6. 

They are therefore replaced by four copies of the A2 ALE space. There 
are 15 points fixed under o:~, which transform as triplets under the action 
of 0:6. Consequently, they are replaced by five copies of the Al space in 
performing the blow-up surgery. Once again, we get the correct value of 
the Euler number: 

24 
X(K3) = -6 + 5 x 2 + 4 x 3 + 1 x 6 = 24. 

We can go a lot further and recover other geometric properties of the 
K3 in each case. For example, as we shall see later in chapter 13, the 
An ALE space is generically like n + 1 CpIs (i.e. S2s) intersecting in a 
particular pattern. There is in fact a self-dual cycle associated to n of 
these. So its contribution to the K3s count of (19,3) cycles is (n, 0). It s 

Table 7.2. Recovering some properties of the K3 geometry in orbifold limits 

T4 ALE T4 ALE 
case 

parameters forms forms parameters 
7/.,2 10 16 x 3 = 48 (3,3) 16 x (1,0) 
7/.,3 4 18 x 3 = 54 (1,3) 9 x (2,0) 
7/.,4 4 18 x 3 = 54 (1,3) 6 x (1,0) + 4 x (3,0) 
7/.,6 4 18 x 3 = 54 (1,3) (5,0) + 5 x (1,0) + 4 x (2,0 
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useful to combine this with the contribution from the torus to compute 
the result for K3, and table 7.2 has a list of the arithmetic in each case. 
The origin of the 58 metric parameters can similarly be computed, using 
the fact that some come from the torus and some from the parameters 
(three for each CCpl in fact) of the ALE spaces. This is also given in 
table 7.2. We've listed the :232 case which we already computed in the 
previous subsection. Notice that it is in some sense more special than the 
others. In both forms and metric parameters, the bare torus contributes 
more than in the other cases. This is because it is more symmetric than 
the others. This is traceable to the fact that the T4 is written naturally 
in terms of the complex parameters ZI = X6 + iX7 and Z2 = Xs + iXg, and 
the form of the action on it is given by equation (7.57). It is only for :232 

that ;3 = 1/;3, and thus there is more symmetry between the xms. 
Therefore of the 6 forms (made from dxm /\ dxn) and 10 scalars one 

can make, only four survive in each non-:232 case. (This can be worked 
out most easily by working directly with ZI and Z2. Then the forms are 
dZ1 /\ dz2 , dZ1 /\ dz2 , etc., but, for example, dZ1 /\ dZ2 is clearly not invariant 
since it transforms as ;32.) 

7.6.6 Anticipating D-manifolds 

We've just made some traditional superstring compactifications by in­
cluding in the internal space the pure geometry of K3, resulting in a six 
dimensional vacuum. Later we will see that it is possible to construct a 
whole new class of string 'compactification' vacua by including D-branes 
in the spectrum in such a way that their contribution to spacetime anoma­
lies, etc., combines with that of the pure geometry in a way that is crucial 
to the consistency of the model. This gives the idea of a 'D-manifold'116. 

An analogue of the orbifold method for making these supersymmet­
ric vacua is the generalised 'orientifold' construction already mentioned. 
There are constructions of 'K3 orientifolds' which follow the ideas pre­
sented in this section, combined with D-brane orbifold techniques to be 
developed in chapter 14131 . We shall also encounter K3 in its orbifold 
limits in chapter 16, where we use our knowledge gained here to ex­
plore properties of remarkable non-perturbative type IIB vacua made 
using F-theory. D-branes will be present there too, but in a somewhat 
different way. 
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Supersymmetric strings and T-duality 

8.1 T-duality of supersymmetric strings 

We noticed in section 7.5, when considering the low energy spectrum of 
the type II superstrings compactified on tori, that there is an equivalence 
between them. We saw much the same things happen for the heterotic 
strings in section 7.4 too. This is of course T-duality, as we should examine 
it further here and check that it is the familiar exact equivalence. Just 
as in the case of bosonic strings, doing this when there are open string 
sectors present will uncover D-branes of various dimensions. 

8.1.1 T-duality of type II superstrings 

T-duality on the closed oriented Type II theories has a somewhat more 
interesting effect than in the bosonic case12, 8. Consider compactifying a 
single coordinate X 9 , of radius R. In the R ----+ 00 limit the momenta are 
p~ = pI, while in the R ----+ 0 limit p~ = -PI. Both theories are 50(9,1) 
invariant but under different 50(9, l)s. T-duality, as a right-handed parity 
transformation (see (4.18)), reverses the sign of the right-moving X 9 (z); 
therefore by superconformal invariance it does so on (;9(z). Separat~the 
Lorentz generators into their left- and right-moving parts MJ-LV + MJ-Lv. 

Duality reverses all terms in MJ-L9, so the p,9 Lorentz generators of the 
T-dual theory are MJ-L9 - MJ-L9. In particular this reverses the sign of the 
he Ii city .94 and so switches the chirality on the right-moving side. If one 
starts in the IIA theory, with opposite chiralities, the R ----+ 0 theory has the 
same chirality on both sides and is the R ----+ 00 limit of the lIB theory, and 
vice versa. In short, T -duality, as a one-sided spacetime parity operation, 
reverses the relative chiralities of the right- and left-moving ground states. 
The same is true if one dualises on any odd number of dimensions, whilst 
dualising on an even number returns the original type II theory. 

192 
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Since the IIA and IIB theories have different R-R fields, T9 duality 
must transform one set into the other. The action of duality on the spin 
fields is of the form 

(8.1 ) 

for some matrix P9, the parity transformation (nine-reflection) on the 
spinors. In order for this to be consistent with the action {;9 ----+ _{;9, P9 

must anticommute with r9 and commute with the remaining rM. Thus 
P9 = r9rll (the phase of P9 is determined, up to sign, by hermiticity of 
the spin field). Now consider the effect on the R-R vertex operators (7.27). 
The rll just contributes a sign, because the spin fields have definite chi­
rality. Then by the r-matrix identity (7.28), the effect is to add a 9-index 
to G if none is present, or to remove one if it is. The effect on the potential 
C (G = dC) is the same. Take as an example the type IIA vector Cw The 
component C9 maps to the IIB scalar C, while the fL i- 9 components 
map to CM9. The remaining components of CMV come from CMv9, and so 
on. 

Of course, these relations should be translated into rules for T-dualising 
the spacetime fields in the supergravity actions (7.41) and (7.42). The NS­
NS sector fields' transformations are the same as those shown in equations 
(5.4),(5.6), while for the R-R potentials77 : 

d n - 1) G 
C- (n) _ C(n-1) _ ( _ 1) [M· .. vI9 la]9 

M· .. va9 - M· .. va n G99 
(8.2) 

8.1.2 T-duality of type I superstrings 

Just as in the case of the bosonic string, the action of T -duality in the open 
and unoriented open superstring theory produces D-branes and orientifold 
planes. Having done it once (say on X 9 with radius R), we get a T9-
dual theory on the line interval 5 1/7/.,2, where 7/.,2 acts as the reflection 
X 9 ----+ _X9 . The 51 has radius R' = a'/R). There are 16 D8-branes and 
their mirror images (coming from the 16 D9-branes), together with two 
orientifold 08-planes located at X 9 = 0, 'ITR'. This is called the 'type 1/' 
theory (and sometimes the 'type lA' theory, and then the usual open 
string is 'type IB'), about which we will have more to say later as well. 

Starting with the type IB theory, i.e. 16 D9-branes and one 09-plane, we 
can carry this out n times on n directions, giving us 16 D(9 - n) and their 
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mirror images through 2n 0(9 - 17)-planes arranged on the hypercube of 
fixed points of Tn /Z2, where the Z2 acts as a reflection in the 17 directions. 
If 17 is odd, the bulk theory away from the planes and branes is type IIA 
string theory, while we are back in type IIB otherwise. 

Let us focus here on a single D-brane, taking a limit in which the other 
D-branes and the O-planes are very far away and can be ignored. Away 
from the D-brane, only closed strings propagate. The local physics is that 
of the type II theory, with two gravitinos. This is true even though we 
began with the unoriented type I theory which has only a single gravitino. 
The point is that the closed string begins with two gravitinos, one with 
the spacetime supersymmetry on the right-moving side of the world-sheet 
and one on the left. The orientation projection of the type I theory leaves 
one linear combination of these. However in the T -dual theory, the ori­
entation projection does not constrain the local state of the string, but 
relates it to the state of the (distant) image gravitino. Locally there are 
two independent gravitinos, with equal chiralities if 17, (the number of 
dimensions on which we dualised) is even and opposite if 17 is odd. 

This is all summarised nicely by saying that while the type I string 
theory comes from projecting the type IIB theory by 0, the T-dual string 
theories come from projecting type II string theory compactified on the 
torus Tn by Orrm[Rm(-l)F], where the product over m is over all the 
17 directions, and Rm is a reflection in the mth direction. This is indeed 
a symmetry of the theory and hence a good symmetry with which to 
project. So we have that T-duality takes the orientifold groups into one 
another: 

(8.3) 

This is a rather trivial example of an orientifold group, since it takes 
type II strings on the torus Tn and simply gives a theory which is sim­
ply related to type I string theory on Tn by 17 T-dualities. Nevertheless, 
it is illustrative of the general constructions of orientifold backgrounds 
made by using more complicated orientifold groups. This is a useful piece 
of technology for constructing string backgrounds with interesting gauge 
groups, with fewer symmetries, as a starting point for phenomenological 
applications. 

8.1.3 T-duality for the heterotic strings 

As we noticed in section 7.4, there is a T-duality equivalence between 
the heterotic strings once we compactify on a circle. Let us uncover it 
carefully. 
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We can begin by compactifying the SO(32) string on a circle of radius 
R, with Wilson line: 

. 1 {1 1 } A~ = 27TR diag 2'···2,0, ... ,0 , (8.4) 

with eight ~s and eight Os breaking down the gauge group to SO(16) x 
SO(16). We can compute the mass spectrum of the nine dimensional 
theory which results from this reduction, in the presence of the Wilson 
line. This is no harder than the computations which we did in chapter 4. 
The Wilson line simply shifts the contribution to the spectrum coming 
from the PL momenta. We can focus on the sector which is uncharged 
under the gauge group, i.e. we switch off the pt. The mass formula is: 

(n + 2m) 2mR 
IlL = R ± --,-, 

R 0: 

where we see that the allowed windings (coming in units of two) are 
controlled by the integer m, and the momenta are controlled by m and n 
in the combination n + 2m. 

We could instead have started from the Es x Es string on a circle of 
radius R', with Wilson line 

. 1 
A~ = --diag{l, 0 ... 0,1,0, ... , O}, 

27TR' 
(8.5) 

again in two equal blocks of eight. This also breaks down the gauge group 
to SO(16) x SO(16). A computation of the spectrum of the neutral states 
gives: 

, (n' + 2m') 2m'R' 
PL = R' ± --,-, 

R 0: 

for integers n' and m'. We see that if we exchange n + 2m with m' and 
m with n' + 2m' then the spectrum is invariant if we do the right handed 
parity identification PL +--+ p~, PR +--+ -p~, provided that the circles' radii 
are inversely related as R' = 0:' j(2R). 

We shall see that this relation will result in some very remarkable 
connections between non-perturbative string vacua much later, in 
chapters 12 and 16. 

8.2 D-branes as BPS solitons 

Let us return to the type II strings, and the D-branes which we can place 
in them. While there is type II string theory in the bulk (i.e. away from the 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


196 8 Supersymmetric strings and T-duality 

branes and orientifolds), notice that the open string boundary conditions 
are invariant under only one supersymmetry. In the original type I theory, 
the left-moving world-sheet current for spacetime supersymmetry ja(z) 
flows into the boundary and_the right-moving current Ja(Z) flows out, so 
only the total charge Qa + Qa of the left- and right-movers is conserved. 
Under T-duality this becomes 

(8.6) 

where the product of reflections Pm runs over all the dualised dimensions, 
that is, over all directions orthogonal to the D-brane. Closed strings couple 
to open, so the general amplitude has only one linearly realised supersym­
metry. That is, the vacuum without D-branes is invariant under N = 2 
supersymmetry, but the state containing the D-brane is invariant under 
only N = 1: it is a BPS state265 , 93. 

BPS states must carry conserved charges. In the present case there 
is only one set of charges with the correct Lorentz properties, namely 
the antisymmetric R-R charges. The world volume of a p-brane natu­
rally couples to a (p + I)-form potential C(p+1) , which has a (p + 2)­
form field strength G(p+2). This identification can also be made from the 
g;;l behaviour of the D-brane tension: this is the behaviour of an R-R 
soliton94, 96 as will be developed further later. 

The IIA theory has Dp-branes for p = 0, 2, 4, 6, and 8. The vertex 
operators (7.27) describe field strengths of all even ranks from zero to 
ten. The n-form and (10 - n)-form field strengths are Hodge dual to one 
another*, so a p-brane and (6 - p)-brane are sources for the same field, 
but one magnetic and one electric. The field equation for the ten-form 
field strength allows no propagating states, but the field can still have a 
physically significant energy density 265, 97, 98. 

The IIB theory has Dp-branes for p = -1, 1,3,5,7, and 9. The vertex 
operators (7.27) describe field strengths of all odd ranks from one to 
nine, appropriate to couple to all but the nine-brane. The nine-brane 
does couple to a non-trivial potential, as we will see below. 

A (-1 )-brane is a Dirichlet instanton, defined by Dirichlet conditions 
in the time direction as well as all spatial directions99 . Of course, it is 
not clear that T -duality in the time direction has any meaning, but one 
can argue for the presence of ( -1)-branes as follows. Given zero-branes in 
the IIA theory, there should be virtual zero-brane world-lines that wind 
in a purely spatial direction. Such world-lines are required by quantum 
mechanics, but note that they are essentially instantons, being localised in 
time. A T-duality in the winding direction then gives a (-I)-brane. One 

* This works at the level of vertex operators via a r -matrix identity. 
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of the first clues to the relevance of D-branes25 , was the observation that 
D-instantons, having action g;;l, would contribute effects of order e- 1/ 9s 

as expected from the behaviour of large orders of string perturbation 
theorylOO. 

The D-brane, unlike the fundamental string, carries R-R charge. This is 
consistent with the fact that they are BPS states, and so there must be a 
conserved charge. A more careful argument, involving the R-R vertex op­
erators, can be used to show that they must couple thus, and furthermore 
that fundamental strings cannot carry R-R charges (see also insert 8.1). 

8.3 The D-brane charge and tension 

The discussion of section 5.3 will supply us with the world-volume action 
(5.21) for the bosonic excitations of the D-branes in this supersymmetric 
context. Now that we have seen that Dp-branes are BPS states, and couple 
to R-R sector (p + I)-form potential, we ought to compute the values of 
their charges and tensions. 

Focusing on the R-R sector for now, supplementing the spacetime su­
per gravity action with the D-brane action we must have at least (recall 
that the dilaton will not appear here, and also that we cannot write this 
for p = 3): 

s = -2\ jG(P+2)*G(P+2) + /Lp] C(pH) , (8.7) 
/'Co Mp+l 

where /Lp is the charge of the Dp-brane under the (p + I)-form C(pH). 
MpH is the world-volume of the Dp-brane. 

Now the same vacuum cylinder diagram as in the bosonic string, as we 
did in chapter 6. With the fermionic sectors, our trace must include a 
sum over the NS and R sectors, and furthermore must include the GSO 
projection onto even fermion number. Formally, therefore, the amplitude 
looks like265 : 

A -1OOdtT {l+(-l)F - 2TrtLO} - rNS+R e. ° 2t 2 
(8.8) 

Performing the traces over the open superstring spectrum gives 

where again q = e-2Trt , and we are using the definitions given in chapter 4, 
when we computed partition functions of various sorts. Insert 14.1, p. 327, 
uncovers more of the properties of the f -functions. 
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Insert 8.1. A summary of forms and branes 

Common to both type IIA and IIB are the NS-NS sector fields 

The latter is a rank two antisymmetric tensor potential, and we have 
seen that the fundamental closed string couples to it electrically by 
the coupling 

where VI = (21Ta') -1, M2 is the world sheet, with coordinates ea , 

a = 1,1. B(2) = Babdeade, and Bab is the pullback of B/Lv via (5.8). 
By ten dimensional Hodge duality, we can also construct a six form 
potential B(6)' by the relation dB(6) = *dB(2)' There is a natural 
electric coupling V5 fM6 B(6)' to the world-volume M6 of a five di­
mensional extended object. This NS-NS charged object, which is 
commonly called the 'NS5-brane' is the magnetic dual of the fun­
damental string72 , 73. It is in fact, in the ten dimensional sense, the 
monopole of the U(I) associated to B(2)' We shall be forced to discuss 
it by strong coupling considerations in section 12.3. 

The string theory has other potentials, from the R-R sector: 

type IIA: C(l), C(3) , C(5), C(7) 

type IIB: C(O) , C(2) , C( 4), C(6) , C(8) 

where in each case the last two are Hodge duals of the first two, and 
C(4) is self dual. (A p-form potential and a rank q-form potential are 
Hodge dual to one another in D dimensions if p + q = D - 2.) 

Dp-branes are the basic p-dimensional extended sources which cou­
ple to all of these via an electric coupling of the form: 

to their p + I-dimensional world volumes M p+1 . 

The three terms in the braces come from the open string R sector 
with ~ in the trace, from the NS sector with ~ in the trace, and the NS 
sector with ~ (_I)F in the trace; the R sector with ~ (_I)F gives no net 
contribution. In fact, these three terms sum to zero by Jacobi's abstruse 
identity ('aequatio identico satis abstrusa', see insert 14.2, p. 328) as they 
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ought to since the open string spectrum is supersymmetric, and we are 
computing a vacuum diagram. 

What does this result mean? Recall that this vacuum diagram also 
represents the exchange of closed strings between two identical branes. 
the result A = 0 is simply a restatement of the fact that D-branes are 
BPS states: the net forces from the NS-NS and R-R exchanges cancel. 
A = 0 has a useful structure, nonetheless, and we can learn more by 
identifying the separate NS-NS and R-R pieces. This is easy, if we look 
at the diagram afresh in terms of closed string: In the terms with (-l)F, 
the world-sheet fermions are periodic around the cylinder thus correspond 
to R-R exchange. Meanwhile the terms without (-l)F have antiperiodic 
fermions and are therefore NS-NS exchange. 

Obtaining the t ---+ 0 behaviour as before (use the limits in insert 6.2 
(p. 145)) gives 

Comparing with field theory calculations runs just as it did in chapter 6, 
with the result265 : 

(8.11) 

Finally, using the explicit expression (7.44) for K, in terms of string theory 
quantities, we get an extremely simple form for the charge: 

and (8.12) 

(For consistency with the discussion in the bosonic case, we shall still 
use the symbol Tp to mean Tpgs , in situations where we write the action 
with the dilaton present. It will be understood then that e-<I> contains the 
required factor of g;; 1.) 

It is worth updating our bosonic formula (5.27) for the coupling of the 
Yang-Mills theory which appears on the world-volume of Dp-branes with 
our superstring result above, to give: 

(8.13) 

a formula we will use a lot in what is to follow. 
Note that our formula for the tension (8.12) gives for the D1-brane 

1 
(8.14) 
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which sets the ratios of the tension of the fundamental string, Tf == T = 

(27TCx')-1 , and the D-string to be simply the string coupling g8' This is a 
very elegant normalisation and is quite natural. 

D-branes that are not parallel feel a net force since the cancellation is no 
longer exact. In the extreme case, where one of the D-branes is rotated by 
'IT, the coupling to the dilaton and graviton is unchanged but the coupling 
to the R-R tensor is reversed in sign. So the two terms in the cylinder 
amplitude add, instead of cancelling, as Jacobi cannot help us. The result 
IS: 

(8.15) 

where f(t) approaches zero as t ----+ O. Differentiating this with respect to 
Y to extract the force per unit world-volume, we get 

(8.16) 

The point to notice here is that the force diverges as y2 ----+ 2'ITa'. This 
is significant. One would expect a divergence, of course, since the two 
oppositely charged objects are on their way to annihilating101 . The in­
teresting feature it that the divergence begins when their separation is 
of order the string length. This is where the physics of light fundamental 
strings stretching between the two branes begins to take over. Notice that 
the argument of the exponential is tU2 , where U = Yj(2a') is the energy 
of the lightest open string connecting the branes. A scale like U will ap­
pear again, as it is a useful guide to new variables to D-brane physics at 
'substringy' distances102, 103, 104 in the limit where a' and Y go to zero. 

8.4 The orientifold charge and tension 

Orientifold planes also break half the supersymmetry and are R-R and 
NS-NS sources. In the original type I t~eory the orientation projection 
keeps only the linear combination Qa + Qa. In the T-dualised theory this 
becomes Qa + (TIm Pm)Qa just as for the D-branes. The force between an 
orientifold plane and a D-brane can be obtained from the Mobius strip as 
in the bosonic case; again the total is zero and can be separated into NS­
NS and R-R exchanges. The result is similar to the bosonic result (6.18), 

(8.17) 

where the plus sign is correlated with SO(n) groups and the minus with 
USp(n). Since there are 29 - p orientifold planes, the total O-plane charge 
is =r=16ILp, and the total fixed-plane tension is =r=16Tp. 
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8.5 Type I from type lIB, revisited 

A non-zero total tension represents a source for the graviton and dilaton, 
for which the response is simply a time dependence of these background 
fields 105 . A non-zero total R-R source is more serious, since this would 
mean that the field equations are inconsistent: there is a violation of 
Gauss's Law, as R-R flux lines have no place to go in the compact space 
T 9 -p. So our result tells us that on T 9 -p, we need exactly 16 D-branes, 
with the 50 projection, in order to cancel the R-R G(p+2) form charge. 
This gives the T-dual of 50(32), completing our simple orientifold story. 

The spacetime anomalies for G # 50(32) (see also section 7.1.3) are 
thus accompanied by a divergence107 in the full string theory, as promised, 
with inconsistent field equations in the R-R sector: as in field theory, the 
anomaly is related to the ultra-violet limit of a (open string) loop graph. 
But this ultraviolet limit of the annulus/cylinder (t ----+ (0) is in fact the 
infrared limit of the closed string tree graph, and the anomaly comes from 
this infrared divergence. From the world-sheet point of view, as we have 
seen in the bosonic case, inconsistency of the field equations indicates that 
there is a conformal anomaly that cannot be cancelled. This is associated 
to the presence of a 'tadpole' which is simply an amplitude for creating 
quanta out of the vacuum with a one-point function, which is a sickness 
of the theory which must be cured. 

The prototype of all of this is the original D = 10 type I theory31. The 
N D9-branes and single 09-plane couple to an R-R ten-form, and we can 
write its action formally as 

(8.18) 

The field equation from varying C lO is just G = 50(32). 

8.6 Dirac charge quantisation 

We are of course studying a quantum theory, and so the presence of 
both magnetic and electric sources of various potentials in the theory 
should give some cause for concern. We should check that the values of 
the charges are consistent with the appropriate generalisation of114 the 
Dirac quantisation condition. The field strengths to which a Dp-brane and 
D(6 - p)-brane couple are dual to one another, G(p+2) = *G(8-p). 

We can integrate the field strength *G(p+2) on an (8 - p)-sphere sur­
rounding a Dp-brane, and using the action (8.7), we find a total flux 
<I> = /Lp. We can write *G(p+2) = G(8-p) = dC(7_p) everywhere except on 
a Dirac 'string' (see also insert 9.2; here it is really a sheet), at the end of 
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which lives the D(6 - p) 'monopole'. Then 

<I> = 212 r *G(p+2) = 212 r C(7-p) , 
K:o J sS-p K:o J S7-p 

(8.19) 

where we perform the last integral on a small sphere surrounding the 
Dirac string. A (6 - p)-brane circling the string picks up a phase eiJ1G - p iJ>. 

The condition that the string be invisible is 

(8.20) 

The D-branes' charges (8.11) satisfy this condition with the mzmmum 
quantum n = 1. 

While this argument does not apply directly to the case p = 3, as the 
self-dual five-form field strength has no covariant action, the result follows 
by the T-duality recursion relation (5.11) and the BPS property. 

8.7 D-branes in type I 

As we saw in section 7.1.3, the only R-R potentials available in type I 
theory are the two-form and its dual, the 6-form, and so we can have D1-
branes in the theory, and D5-branes, which are electromagnetic duals of 
each other. The overall 16 d9-branes carry an 50(32) gauge group, as we 
have seen from many points of view. Let us remind ourselves of how this 
gauge group came about, since there are important subtleties of which we 
should be mindful132 . 

The action of 0 has representation 10' which acts on the Chan-Paton 
indices, as discussed in chapter 4: 

where '1jJ represents the vertex operator which makes the state in ques­
tion, and O'lj; is the action of 0 on it. The reader should recall that we 
transposed the indices because 0 exchanges the endpoints of the string. 
We can consider the square of 0: 

(8.21) 

and so we see that we have the choice 

If 10 is symmetric, the with n branes we can write it as I 2n , the 2n x 2n 
identity matrix. Since the 99 open string vertex operator is 8t X J1 , it has 
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(as we have seen a lot in chapter 4) n = -1. Therefore we do have the 
symmetric choice since, as we tacitly assumed in equation (8.21) n2 = 1, 
and so we conclude that the Chan-Paton wavefunction is antisymmetric. 
Since n = 16, we have gauge group SO(32). 

If '0 was antisymmetric, then we could have written it as 

iIn) 
o ' 

and we would have been able to have gauge group U Sp(2n). In fact, 
we shall have to make this choice for D5-branes. Let us see why. Let 
us place the D5-branes so that they are pointlike in the directions X rn , 
m = 6,7,8,9, and aligned in the directions Xfl, fL = 0,1, ... ,5. 

Consider the 5-5 sector, i.e. strings beginning and ending on D5-branes. 
Again we have n = -1 for the vectors 3t Xfl, and the opposite sign for 
the transverse scalars 3n xrn. In general, other sectors can have different 
mode expansions. Generically the mode for a fermion is 'I/Jr and n acts 
on this as ±(-It = ±ei7Tr (see chapter 11 for more discussion of these 
possible modings). In the NS sector they are half-integer and since GSO 
requires them to act in pairs in vertex operators, their individual ±is give 
n = ±1, with a similar result in the R sector by supersymmetry. 

The 59 sector is more subtle132 . The xrn are now half-integer moded 
and the 'ljJrn are integer moded. The ground states of the latter therefore 
form a representation of the Clifford algebra and we can bosonise them 
into a spin field, as we did in chapter 7 in a similar situation: eiH3 rv 

'ljJ6 + i'l/J 7, and eiH4 rv '1/J8 + i'ljJ9. In fact, the vertex operator (the part of it 
relevant to this discussion) in that sector is 

Now consider the square of this operator. It has parts which are either in 
the 55 sector or the 99 sector, and is of the form 

So it has n = -1, since each 'l/J-l/2 gives ±i. So n2 = -1 for V59 for 
consistency. 

Returning to our problem of the choices to make for the Chan-Paton 
factors we see that we have an extra sign in equation (8.21), and so 
must choose the antisymmetric condition ,,[; = -'0. Therefore, in type I 
string theory, n D5-branes have gauge group USp(2n). Notice that this 
means that a single one has SU(2), and the Chan-Paton wavefunction 
can be chosen as the Pauli matrices. The Chan-Paton wavefunction for 
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the scalars for transverse motion must simply be 8ij , since we have an­
other sign. This simply means that the two D5-branes (corresponding to 
the two index choices) are forced to move with each other as one unit. 

Notice that this fits rather nicely with our charge quantisation com­
putation of the previous section132 . The orientifold projection will halve 
the force between D1-branes and between D5-branes in the charge calcu­
lation, and so their effective charges would be reduced by y'2, violating 
the Dirac quantisation condition by a factor of a half. However, the fact 
that the D5-branes are forced to move as a pair restores a factor of two 
in the quantisation condition, and so we learn that D-branes are still the 
smallest consistent charge carries of the R-R sector. 

We can augment the argument above for Dp branes in type I in general, 
and obtain132 

For p = 3 and p = 7, we see that simply gives an inconsistency, which is 
itself consistent with the fact that there is no R-R four-forms or eight­
form for a stable D3-brane or D7-brane to couple to. For p = 1 we recover 
the naively expected result that they have an SO(2n) gauge group. 

In chapter 14 we shall see that when we combine the orientifold action 
with other spacetime orbifold symmetries, we can recover extra phase 
factors by means analogous to what we have uncovered here in order to 
discover other choices for D5- and D9-brane gauge groups. 
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9 
World-volume curvature couplings 

We've now seen that we can construct D-branes which, in superstring 
theory, have important extra properties. Much of what we have learned 
about them in the bosonic theory is still true here of course, a key re­
sult being that the world-volume dynamics is governed by the dynamics 
of open strings, etc. Still relevant is the Dirac-Born-Infeld action (equa­
tion (5.21)) for the coupling to the background NS-NS fields, 

SDBI = -Tp J dP+le e-<1> det l / 2(Gab + Bab + 2mx' Fab ), (9.1) 
MpH 

and the non-Abelian extensions mentioned later in chapter 5. 
As we have seen in the previous chapter, for the R-R sector, they are 

sources of C(p+l)' We therefore also have the Wess-Zumino-like term 

Swz = /-Lp J . C(p+l)' 
Mp+l 

(9.2) 

Perhaps not surprisingly, there are other terms of great importance, 
and this chapter will uncover a number of them. In fact, there are many 
ways of deducing that there must be other terms, and one way is to use 
the fact that D-branes turn into each other under T-duality. 

9.1 Tilted D-branes and branes within branes 

There are additional terms in the action involving the D-brane gauge field. 
Again these can be determined from T-duality. Consider, as an example, 
a D 1-brane in the 1-2 plane. The action is 

/-Ll / dxo dx l (COl + 8l X2C02). (9.3) 

205 
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Under a T-duality in the x 2-direction this becomes 

(9.4) 

We have used the T-transformation of the C fields as discussed in sec­
tion 8.1.1, and also the recursion relation (5.11) between D-brane tensions. 

This has an interesting interpretation. As we saw before in section 5.2.1, 
a Dp-brane tilted at an angle e is equivalent to a D(p + 1)-brane with 
a constant gauge field of strength F = (1/27TCi) tan e. Now we see that 
there is additional structure: the flux of the gauge field couples to the R-R 
potential C(p). In other words, the flux acts as a source for a D(p - 1)­
brane living in the world-volume of the D(p+ 1)-brane. In fact, given that 
the flux comes from an integral over the whole world-volume, we cannot 
localise the smaller brane at a particular place in the world-volume: it is 
'smeared' or 'dissolved' in the world-volume. 

In fact, we shall see when we come to study supersymmetric combina­
tions of D-branes that supersymmetry requires the DO-brane to be com­
pletely smeared inside the D2-brane. It is clear here how it manages this, 
by being simply T-dual to a tilted Dl-brane. We shall see many conse­
quences of this later. 

9.2 Anomalous gauge couplings 

The T -duality argument of the previous section can be generalised to dis­
cover more terms in the action, but we shall take another route to discover 
such terms, exploiting some important physics in which we already have 
invested considerable time. 

Let us return to the type I string theory, and the curious fact that we 
had to employ the Green-Schwarz mechanism (see section 7.1.4, where we 
mixed a classical and a quantum anomaly in order to achieve consistency). 
Focusing on the gauge sector alone for the moment, the classical coupling 
which we wrote in equation (7.35) implies a mixture of the two-form C(2) 

with gauge field strengths: 

We can think of this as an interaction on the world-volume of the D9-
branes showing a coupling to a Dl-brane, analogous to that which we saw 
for a DO-brane inside a D2-brane in equation (9.4). This might seem a bit 
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of a stretch, but let us write it in a different way: 

8 - J (21TCx')4 C ( Tradj (F4) _ [Tradj (F2)F) 
- /L9 3 X 26 (2) 3 900 

J (21TCx')4 4 
= /L9 4! C(2)Tr(F), (9.6) 

where, crucially, in the last line we have used the properties (7.39) of the 
traces for 80(32) to rewrite things in terms of the trace in the funda­
mental. 

Another exhibit we would like to consider is the kinetic term for the 
modified three-form field strength, G(3), which is 

1 J ~ ~ 
8=--2 G(3)I\*G(3)· 

4K:o 
(9.7) 

Since dW3Y = Tr(F I\F) and dW3L = Tr(RI\R), this gives, after integrating 
by parts and, dropping the parts with R for now: 

(9.8) 

again, we have converted the traces using (7.39), we've used the rela­
tion (7.44) for K:o and we've recalled the definition (7.38). 

Upon consideration of the three examples (9.4), (9.6), and (9.8), it 
should be apparent that a pattern is forming. The full answer for the 
gauge sector is the result 118, 119 

j ['" C ] T 21Ta' F+B /Lp L-p (pH) 1\ r e , 
Mp+l 

(9.9) 

(We have included non-trivial B on the basis of the argument given in 
section 5.2.) So far, the gauge trace (which is in the fundamental) has 
the obvious meaning. We note that there is the possibility that in the full 
non-Abelian situation, the C can depend on non-commuting transverse 
fields Xi, and so we need something more general. We will return to this 
later. The expansion of the integrand (9.9) involves forms of various rank; 
the notation means that the integral picks out precisely the terms whose 
rank is (p + 1), the dimension of the Dp-brane's world-volume. 

Looking at the first non-trivial term in the expansion of the exponential 
in the action we see that there is the term that we studied above corre­
sponding to the dissolution of a D(p - 2)-brane into the sub two-plane 
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in the Dp-brane's world volume formed by the axes Xi and X j , if field 
strength components Fij are turned on. 

At the next order, we have a term which is quadratic in F which we 
could rewrite as: 

s = 7;;24 J C(p-3) 1\ Tr(F 1\ F). (9.10) 

We have used the fact that /-Lp-4/ /-Lp = (27Tyci)4 . Recall that there are 
non-Abelian field configurations called 'instantons' for which the quan­
tity JTr(F 1\ F)/87T2 gives integer values. (See, for example, insert 9.4.) 
Interestingly, we see that if we excite an instanton configuration on a four 
dimensional sub-space of the Dp-brane's world-volume, it is equivalent to 
precisely one unit of D(p - 4)-brane charge, which is remarkable. 

In trying to understand what might be the justification (other than 
T-duality) for writing the full result (9.9) for all branes so readily, the 
reader might recognise something familiar about the object we built the 
action out of. The quantity exp(iF/(27T)), using a perhaps more familiar 
normalisation, generates polynomials of the Chern classes of the gauge 
bundle of which F is the curvature. It is called the Chern character. In 
the Abelian case we first studied, we had non-vanishing first Chern class 
TrF /(27T), which after integrating over the manifold, gives a number which 
is in fact quantised. For the non-Abelian case, the second Chern class 
Tr(F I\F)/(87T2 ) computes the integer known as the instanton number, and 
so on. 

These numbers, being integers, are topological invariants of the gauge 
bundle. By the latter, we mean the fibre bundle of the gauge group over 
the world-volume, for which the gauge field A is a connection. 

A fibre bundle is a rule for assigning a copy of a certain space (the 
fibre: in this case, the gauge group G) to every point of another space (the 
base: here, the world-volume). The most obvious case of this is simply a 
product of two manifolds (since one can be taken as the base and then 
the product places a copy of the other at every point of the base), but 
this is awfully trivial. More interesting is to have only a product space 
locally. Then, the whole structure of the bundle is given by a collection of 
such local products glued together in an overlapping way, together with 
a set of transition functions which tell one how to translate from one 
local patch to another on the overlap. In the case of a gauge theory, this 
is all familiar. The transition rule is simply a G gauge transformation, 
and we are allowed to use the term 'vector bundle' in this case. For the 
connection or gauge field this is: A ----+ gAg-l + gdg- 1 . So the gauge field 
is not globally defined. Perhaps the most familiar gauge bundle is the 
monopole bundle corresponding to a Dirac monopole. See insert 9.1. 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


9.2 Anomalous gauge couplings 209 

Insert 9.1. The Dirac monopole as a gauge bundle 

A gauge bundle is sometimes called a principal fibre bundle. Perhaps 
everybody's favourite gauge bundle is the Dirac monopole. Take a 
sphere S2 as our base. We will fibre a circle over it. Recall that S2 
cannot be described by a global set of coordinates, but we can use 
two, the Northern and the Southern hemisphere, with overlap in the 
vicinity of the Equator. Put standard polar coordinates (e, ¢) on S2, 
where e = 'IT /2 is the Equator. Put an angular coordinate ei'I/J on the 
circle. We will use ¢+ in the North and 'I/J- in the South. 
So our bundle is a copy of two patches which are locally S2 x Sl, 

+Patch: {e, ¢, ei'I/J+}; - Patch: {e, ¢, ei'I/J-}, 

together with a transition function which relates them. 

N(+) 

--:=---

S(-) 

The relation between the two can be chosen to be 

where n is an integer, since as we go around the equator, ¢ ----+ ¢+2'IT, 
the gluing together of the fibres must still make sense. 
The boring case n = 0 is sensible, but it simply gives the trivial 
bundle S2 x Sl. The case n = 1 is the familiar Hopf fibration, which 
describes the manifold S3 as a circle bundle over S2. It is a Dirac 
monopole of unit charge. Higher values of n give charge n monopoles. 
The integer n is characteristic of the bundle. It is in fact (minus) the 
integral of the first Chern class. 

The reader who found this a little dry might turn straight to 
insert 9.2 where we describe the connection on the bundle and com­
pute the first Chern class explicitly. 
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Insert 9.2. The first Chern class of the Dirac bundle 

Following what we did in insert 9.1, we can uncover more features, 
which will be useful later on. A natural choice for the connection 
one-form (gauge potential) in each patch is simply 

+ Patch: A+ + d?/;+; -Patch: A_ + d?/;_, 

so that the transition function defined in insert 9.1 allows us to con­
nect the two patches, defining the standard U(l) gauge transforma­
tion 

Here are the gauge potentials which are standard in this example: 

A (±1 - cos 0) dA. 
± = n 2 ,+" 

which, while being regular almost everywhere, clearly have a singular­
ity (the famous Dirac string) in the =f patch. The curvature two-form 
is simply 

F = dA = ~ sin OdO 1\ d¢. 

This is a closed form, but it is not exact, since there is not a unique 
answer to what A can be over the whole manifold. According to what 
we describe in the text, we can compute the first Chern number by 
integrating the first Chern class to get: 

j·F (F jF 
S2 21T = J+ 21T + _ 21T = n. 

9.3 Characteristic classes and invariant polynomials 

The topology of a particular fibration can be computed by working out 
just the right information about its collection of transition functions. For 
a gauge bundle, the field strength or curvature two-form F = dA + A 1\ A 
is a nice object with which to go and count, since it is globally defined 
over the whole base manifold. When the group is Abelian, F = dA and 
so dF = O. If the bundle is not trivial, then we can't write F as dA 
everywhere and so F is closed but not exact. Then F is said to be an 
element of the cohomology group H2(B, JPi.) of the base, which we'll call B. 
The first Chern class F /21T defines an integer when integrated over B, 
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Insert 9.3. The Yang-Mills instanton as a gauge bundle 

A favourite non-Abelian example120 is the SU(2) Yang-Mills instan­
ton. The base is S4, with coordinates (r,(),rp,'I/J), which is lR4 with 
the point at infinity added. A metric on it for radius p/2 is: 

ds' ~ (1+ ~:f (dr' + r'(al + a; + all) 

The gauge group (fibre) is G = SU(2), which also happens to be 
the manifold S3. By analogy with what we saw in insert 9.1, we can 
divide the S4 into Northern and Southern hemispheres. The equator 
is in fact an S3 and that is where we define the overlap region. Recall 
that there is a natural SU(2) favoured writing of the coordinates, 
defining an element h((), rp, 'I/J) E SU(2) as in insert 7.4. We can define 
similar Euler angles (a, (3, I) as coordinates on the fibre g, for the 
North (+) and South (-) patches, giving: 

+Patch: {(),rp,'I/J,a+,{J+'I+}; -Patch: {(),rp,'I/J,a_,{L,I_}. 

Our transition functions at the equator, taking us from the North to 
the South fibres are again parametrised by an integer, k: 

Again k = 0 is trivial. The case k = 1 is the Hopf fibration of S7 as 
an S3 over S4. It is the one instanton solution. Other k are the multi­
instantons. Also k will give the second Chern class of the bundle. 

telling us to which topological class F belongs; this integer is a topological 
invariant. 

For the non-Abelian case, F is no longer closed, and so we don't have 
the first Chern class. However, the quantity Tr(F I\F) is closed, since as we 
know from insert 7.3 (p. 167), it is actually dW3Y. So if the Chern-Simons 
three-form W3Y is not globally defined, we have a non-trivial bundle, and 
Tr(F I\F), being closed but not exact, defines an element of the cohomol­
ogy group H4(B, lR). The second Chern class Tr(F 1\ F)/8'IT2 integrated 
over B gives an integer which says to which topological class F belongs. 
See insert 9.4. 

As we have said above, D-branes appear to compute certain topological 
features of the gauge bundle on their world-volumes, corresponding here 
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Insert 9.4. The BPST one-instanton connection 

Just as with the Dirac monopole case, we can write the connection 
I-form for each patch: 

P h -lA -ld - atc : 9_ -9- + 9- 9-, 

so that the transition function defined in insert 9.3 allows us to con­
nect the two patches with a gauge transformation 

The k = 1 solution can be written quite simply: 

where the O"n are the left-invariant one-forms. This solution is smooth 
everywhere except at a singularity at r = O. The South pole solution 
is obtained by gauge transformation: 

2 2 

A_ = hA+h- 1 + hdh- 1 = - 2 P 2 dhh- 1 = 2 P 2 iTnijn, 
p +r p +r 

where the ijn are the right-invariant one-forms. This solution is sin­
gular at r = 00. The curvature two-form is best described using the 
veilbiens {eO,el,e2,e3} = (1 +rlp)-2{dr,rO"l,r0"2,r0"3}: 

_ A A A _. 2 (0 k 1 i j) F+ - d + 1\ - 7Tk p2 e 1\ e + 2Ekije 1\ e . 

Of course, F_ = hF+h- 1 . It is worth checking that this solution is 
self dual, i.e. * F = F, with anti-self duality made by O"n +--+ ijn. The 
instanton number is (minus) the second Chern class integrated over 
the S4: 

where in the latter we have used that the volume of the S4 is 1T2 p4 16. 
Here, p has the interpretation as the 'core size' of the instanton. 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


9.3 Characteristic classes and invariant polynomials 213 

to the Chern classes of the cohomology. As we shall see, they compute 
other topological numbers as well, and so let us pause to appreciate a 
little of the tools that they employ, in order to better be able to put them 
to work for us. 

The first and second Chern classes shall be denoted Cl (F) and C2 (F) 
and so on, cj(F) for the jth Chern class. Let us call the gauge group G, 
and keep in mind U(n) (we will make appropriate modifications to our 
statements to include O(n) later). We'd like to know how to compute the 
cj(F). The remarkable thing is that they arise from forming polynomials 
in F which are invariant under G. Forget that F is a two-form for now, 
and just think of it as an nXn matrix. The cj(F) are found by expanding 
a natural invariant expression in F as a series in t: 

det tI + _7 = L cn-j(F)tj . ( ·F) n 

21T j=O 
(9.11) 

(Here, we use the i in F to keep the expression real, since U (N) gener­
ators are anti-Hermitean.) The great thing about this is that there is an 
excellent trick for finding explicit expressions for the CjS which will allow 
us to manipulate them and relate them to other quantities. Assume that 
the matrix iF /2'IT has been diagonalised. Call this diagonal matrix X, 
with n distinct non-vanishing eigenvalues Xi, i = 1, ... ,n. Then we have 

n n 

(9.12) 
i=l j=O 

and we find by explicit computation that the CjS are symmetric polyno­
mials: 

Co = 1, 

n 

Cj = 

n 

C2 = L Xil Xi2' 

il <i2 

(9.13) 

Now rewrite the expressions on the eigenvalues back as matrix expressions 
in terms of X, and then replace X by iF/2'IT, to get: 

7 
Co (F) = 1, Cl (F) = 2'IT Tr F, 

- _7 [TrF /\ TrF - Tr(F /\ F)], 1 ( . )2 
2 2'IT 

cn(F) (2~) n det F. (9.14) 
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In the case of SU(N), the generators are traceless, and so 

1 
c2(F) = -2 Tr(F 1\ F), 

87T 

the expression we saw before. The cj(F) are rank 2j forms, so of course, 
the largest one that gives a meaningful quantity is the one for which 
dim (B) = 2j. 

The natural object which D-branes seem to have on their world-volume 
is in fact the Chern character, ch(F) = Trexp(iF/27T). This computes a 
specific combination of the Chern classes, and we can compute this by 
using our symmetric polynomial expressions in (9.13). Working with the 
diagonal X again we have 

(9.15) 

The Chern character is to be thought of as an important generating func­
tion of the Chern classes and in fact it is a powerful tool, in that it is well 
behaved in the sense that for bundle E and a bundle F, the relations 

ch(E EEl F) = ch(E) + ch(F) and ch(E ® F) = ch(E) 1\ ch(F) (9.16) 

are true. This is part of an important technology to doing 'algebra' on 
bundles allowing one to perform operations which compare them to each 
other, etc. 

For the case G = O(n), the characteristic classes are called Pontryagin 
classes. We may think of the bundle as a real vector bundle. Now we have 

( F) n . 
det tI + - = LPn-j(FW. 

27T j=O 
(9.17) 

Again, consider having diagonalised to X. We can't quite diagonalise, but 
can get it into the block diagonal form: 

o Xl 

-Xl 0 

X= (9.18) 
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Now we have the relation: 

det (tI + X) = det (tI + XT) = det (tI - X), 

and so we see that the pj(F) must be even in F. A bit of work similar to 
that which we did above for the Chern classes gives: 

1 ( 1 )2 pl(F) = -"2 27T TrF2, 

1 ( 1 ) 4 [ 2 2 4] P2(F) ="8 27T (TrF) - 2TrF , ... , etc., 

( 1 )n 
P[il'l (F) = 27T det F, (9.19) 

where [n/2] = n/2 if n is even or (n - 1)/2 otherwise. 
Now an important case of orthogonal groups is of course the tangent 

bundle to a manifold of dimension n. Using the veilbiens formalism of sec­
tion 2.8, the structure group is O(n). The two-form to use is the curvature 
two-form R. Then we have, e.g. 

(9.20) 

The Euler class is naturally defined here too. For an orient able even 
dimensional n = 2k manifold M, the Euler class class e(M) is defined via 

e(X)e(X) = Pk(X). 

We write X here and not the two-form R, since we would have a 4k-form 
which vanishes on M. However, e(R) makes sense as a form since its rank 
is n, which is the dimension of M. For an example, see insert 9.5. 

Two other remarkable generating functions of importance are the A 
('A-roof') or Dirac genus: 

(9.21) 

and the Hirzebruch i-polynomial 

(9.22) 
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Insert 9.5. The Euler number of the sphere 

Lets test this out for the two-sphere S2. Using the formalism of 
section 2.8, the curvature two-form can be computed as Re¢ 

sin ()d() /\ d¢. Then we can compute 

1 ( 1 )2 PI (S2) = --2 TrR /\ R = - sin ()d() /\ d¢ 
81T 21T 

So we see that 
e(S2) = ~ sin ()d() /\ d¢. 

21T 
The integral of this from over the manifold given the Euler number: 

a result we know well and have used extensively. 

where the Bn are the Bernoulli numbers, BI = 1/6, B2 = 1/30, B3 = 

1/42, .... These are very important characteristics as well, and again have 
useful algebraic properties for facilitating the calculus of vector bundles 
along the lines given by equations (9.16). As we shall see, they also play 
a very natural role in our story here. 

9.4 Anomalous curvature couplings 

So we seem to have wandered away from our story somewhat, but in fact 
we are getting closer to a big part of the answer. If the above formula (9.9) 
is true, then D-branes evidently know how to compute the topological 
properties of the gauge bundle associated to their world-volumes. This is 
in fact a hint of a deeper mathematical structure underlying the structure 
of D-branes and their charge, and we shall see it again later. 

There is another strong hint of what is going on based on the fact that 
we began to deduce much of this structure using the terms we discovered 
were needed to cancel anomalies. So far we have only looked at the terms 
involving the curvature of the gauge bundle, and not the geometry of 
the brane itself which might have non-trivial R associated to its tangent 
bundle. Indeed, since the gauge curvature terms came from anomalies, we 
might expect that the tangent bundle curvatures do too. Since these are so 
closely related, one might expect that there is a very succinct formula for 
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those couplings as well. Let us look at the anomaly terms again. The key 
terms are the curvature terms in (7.35) and the curvature terms arising 
from the modification (7.38) of the field strength of C(3) to achieve gauge 
invariance. The same deduction we made to arrive at (9.8) will lead us 
to TrR2 terms coupling to C(6)' Also, if we convert to the fundamental 
representation, we can see that there is a term 

This mixed anomaly type term can be generated in a number of ways, but 
a natural guess 110, 111, 112 (motivated by remarks we shall make shortly) 
is that there is a VA term on the world volume, multiplying the Chern 
characteristic. In fact, the precise term, written for all branes, is: 

(9.23) 

Working with this expression, using the precise form given in (9.21) 
will get the mixed term precisely right, but the C(6) tr R2 will not have the 
right coefficient, and also the remaining fourth order terms coupling to 
C(2) are incorrect, after comparing the result to (7.35). 

The reason why they are not correct is because there is another crucial 
contribution which we have not included. There is an orientifold 09-plane 
of charge -32f-Lg as well. As we saw, it is crucial in the anomaly cancel­
lation story of the previous chapter and it must be included here for 
precisely the same reasons. While it does not couple to the 50(32) gauge 
fields (open strings), it certainly has every right to couple to gravity, and 
hence source curvature terms involving R. Again, as will be clear shortly, 
the precise term for Op-planes of this type is 125: 

(9.24) 

where £(R) is defined above in equation (9.22). Remarkably, expand­
ing this out will repair the pure curvature terms so as to give all of 
the correct terms in Xs to reproduce (7.35), and the C(6) coupling is 
precisely: 

(9.25) 
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Beyond just type I, it is worth noting that the R 1\ R term will play an 
important role on the world volumes of branes. It can be written in the 
form: 

(9.26) 

By straightforward analogy with what we have already observed about 
instantons, another way to get a D(p - 4)-brane inside the world-volume 
of a Dp-brane is to wrap the brane on a four dimensional surface of non­
zero Pl(R). Indeed, as we saw in equation (7.54), the K3 surface has 
PI = -2X = -48, and so wrapping a Dp-brane on K3 gives D(p - 4)­
brane charge of precisely -1. This will be important to us later115, 121. 

9.5 A relation to anomalies 

There is one last amusing fact that we should notice, which will make 
it very clear that the curvature couplings that we have written above 
are natural for branes and O-planes of all dimensionalities. The point 
is that the curvature terms just don't accidentally resemble the anomaly 
polynomials we saw before, but are built out of the very objects which can 
be used to generate the anomaly polynomials that we listed in insert 7.2. 

In fact, we can use them to generate anomaly polynomials for dimension 
D = 4k + 2. We can pick out the appropriate powers of the curvature two 
forms by using the substitution 

2k+l 1 L x;m = -(-1)mtrR2m. 
i=l 2 

Then in fact the polynomial 11/2 is given by the A genus: 

(9.27) 
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where 
2k+1 1 ( l)m 

Y2m = L y;m = - -- trR2m. 
i=1 2 4 

The trick is then to simply pick out the piece of the expansion which 
fits the dimension of interest, remembering that the desired polynomial 
is of rank D + 2. So for example, picking out the order 12 terms will give 
precisely the 12-form polynomial in insert 7.2, etc. 

The gravitino polynomials come about in a similar way. In fact, 

( 
2k+1 ) 

13/ 2 = h/2 -1 + 2 L coshxi 
)=1 

= h/2 (D - 1 + 4Y2 + ~ Y4 + 485 Y6 + ... ). 

Also, the polynomials for the antisymmetric tensor come from 

1 1 2k+1 . 
A ""' x) 1A = --£(R) = -- ~ 

8 8 j=1 tanh Xj 

= -~ - ~Y2 + (~- ~y2) 
8 6 45 9 2 

1 ( 3 ) + 2835 -496Y6 + 588Y2Y4 - 140Y2 + .... 

(9.28) 

(9.29) 

Finally, it is easy to work out the anomaly polynomial for a charged 
fermion. One simply multiplies by the Chern character: 

(9.30) 

Now it is perhaps clearer what must be going on111 , 112. The D-branes 
and O-planes, and any intersections between them all define sub­
spacetimes of the ten dimensional spacetime, where potentially anoma­
lous theories live. This is natural, since as we have already learned, and 
shall explore much more, there are massless fields of various sorts living 
on them, possibly charged under any gauge group they might carry. 

As the world-volume intersections may be thought of as embedded in 
the full ten dimensional theory, there is a mechanism for cancelling the 
anomaly which generalises that which we have already encountered. For 
example, since the Dp-brane is also a source for the R-R sector field 
C(p+2), it modifies it according to 

(9.31) 
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where the delta functions are chosen to localise the contribution to the 
world-volume of the brane, extended in the directions xo, Xl, ... , xp. Also 
/-Lp is the Dp-brane (or Op-plane) charge, and the polynomial :F must 
be chosen so that the classically anomalous variation 8C(p+l) required 
to keep C(p+2) gauge invariant can cancel the anomaly on the branes' 
intersection. Following this argument to its logical conclusion, and using 
the previously mentioned fact that the possible anomalies are described 
in terms of the characteristic classes exp(iF), A(R) and £(R), reveals 
that :F takes the form of the couplings that we have already written. 
We see that the Green-Schwarz mechanism from type I is an example of 
something much more general, involving the various geometrical objects 
which can appear embedded in the theory, and not just the fundamental 
string itself. 

Arguments along these lines also uncover the feature that the normal 
bundle also contributes to the curvature couplings as well. The full ex­
pressions, for completeness, are: 

and 

A( 47T2a' RT) 

A( 47T2a' RN ) , 

£( 7T 2a' RT ) 

£( 7T2a' RN ) , 

(9.32) 

(9.33) 

where the subscripts 'T', 'N' denote curvatures of the tangent and the 
normal frame, respectively. 

9.6 D-branes and K-theory 

In fact, the sort of argument above is an independent check on the precise 
normalisation of the D-brane charges, which we worked out by direct 
computation in previous sections. As already said before, the close relation 
to the topology of the gauge and tangent bundles of the branes suggests 
a connection with tools which might uncover a deeper classification. This 
tool is called 'K-theory'. K-theory should be thought of as a calculus for 
working out subtle topological differences between vector bundles, and as 
such makes a natural physical appearance here113, 18. 

This is because there is a means of constructing a D-brane by a mech­
anism known as 'tachyon condensation' on the world-volume of higher 
dimensional branes. Recall that in chapter 8 we observed that a Dp-brane 
and an anti-Dp-brane will annihilate. Indeed, there is a tachyon in the 
spectrum of pp strings. Let us make the number of branes be N, and the 
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number of anti-branes be N. Then the tachyon is charged under the gauge 
group U(N) x U(N). The idea is that a suitable choice of the tachyon can 
give rise to topology which must survive even if all of the parent branes 
annihilate away. For example, if the tachyon field is given a topologically 
stable kink (see insert 1.4, p. 18) as a function of one of the dimensions 
inside the brane, then there will be a p-l dimensional structure left over, 
to be identified with a D(p - 1)-brane. This idea is the key to seeing how 
to classify D-branes, by constructing all branes in this way. 

Most importantly, we have two gauge bundles, that of the Dp-branes, 
which we might call E, and that of the Dp-branes, called F. To classify the 
possible D-branes which can exist in the world volume, one must classify 
all such bundles, defining as equivalent all pairs which can be reached by 
brane creation or annihilation: If some number of Dp-branes annihilate 
with Dp-branes (or if the reverse happens, i.e. creation of Dp-Dp pairs), 
the pair (E, F) changes to (E EEl G, F EEl G), where G is the gauge bundle 
associated to the new branes, identical in each set. These two pairs of 
bundles are equivalent. The group of distinct such pairs is (roughly) the 
object called K(X), where X is the spacetime that the branes fill (the base 
ofthe gauge bundles). Physically distinct pairs have non-trivial differences 
in their tachyon configurations which would correspond to different D­
branes after complete annihilation had taken place. So K-theory, defined 
in this way, is a sort of more subtle or advanced cohomology which goes 
beyond the more familiar sort of cohomology we encounter daily. 

The technology of K-theory is beyond that which we have room for 
here, but it should be clear from what we have seen in this chapter 
that it is quite natural, since the world-volume couplings of the charge 
of the branes is via the most natural objects with which one would 
want to perform sensible operations on the gauge bundles of the branes 
like addition and subtraction: the characteristic classes, exp( iF), A( R) 
and i(R). Actually, this might have been enough to simply get the re­
sult that D-brane charges were classified by cohomology. That it is in 
fact K-theory (which can compute differences between bundles that co­
homology alone would miss) is probably related to a very important 
physical fact about the underlying theory which will be more manifest 
one day. 

9.7 Further non-Abelian extensions 

One can use T-duality to go a bit further and deduce a number of non­
Abelian extensions of the action, being mindful of the sort of complications 
mentioned at the beginning of section 5.5. In the absence of geometrical 
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curvature terms it turns out to be51 , 52: 

I/. 1 Tr ([e27TCii1>i1> '" C ] e 27TOCI F +B) rp L-p (p+1) . 
p-brane 

(9.34) 

Here, we ascribe the same meaning to the gauge trace as we did previ­
ously (see section 5.5). The meaning of ix is as the 'interior product' in 
the direction given by the vector <I>i, which produces a form of one degree 
fewer in rank. For example, on a two form C(2) (<I» = (lj2)Cij (<I»dXi dXj, 
we have 

. . 1·· 
iq,iq,C(2)(<I» = <I>J<I>%Cij(<I» = "2 [<I> \ <I>JjCij(<I», 

(9.35) 

where we see that the result of acting twice is non-vanishing when we 
allow for the non-Abelian case, with C having a non-trivial dependence 
on <I>. We shall see this action work for us to produce interesting physics 
later. 

9.8 Further curvature couplings 

We deduced geometrical curvature couplings to the R-R potentials a 
few subsections ago. In particular, such couplings induce the charge of 
lower p branes by wrapping larger branes on topologically non-trivial sur­
faces. 

In fact, as we saw before, if we wrap a Dp-brane on K3, there is induced 
precisely -1 units of charge of a D(p - 4)-brane. This means that the 
charge of the effective (p - 4)-dimensional object is 

(9.36) 

where VK3 is the volume of the K3. However, we can go further and notice 
that since this is a BPS object of the six dimensional N = 2 string theory 
obtained by compactifying on K3, we should expect that it has a tension 
which is 

Vi -1 
T = Tp K3 - Tp-4 = 98 fL· (9.37) 

If this is indeed so, then there must be a means by which the curvature 
of K3 induces a shift in the tension in the world-volume action. Since 
the part of the action which refers to the tension is the Dirac-Born­
Infeld action, we deduce that there must be a set of curvature couplings 
for that part of the action as well. Some of them are given by the 
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following122, 128: 

S = -Tp J dP+1e e-<Pdet1/2(Gab+:Fab)(1- 3 x ~87T2 X 

( Rabed R abed - R a(3ab Ra(3ab + 2Ra(3 R a(3 - 2Rab R ab) + 0 ( 0:/4 ) ) , 

(9.38) 

where Rabed = (47T 20:/)Rabed, etc., and a, b, c, d are the usual tangent space 
indices running along the brane's world-volume, while 0:, {3 are normal 
indices, running transverse to the world-volume. 

Some explanation is needed. Recall that the embedding of the brane 
into D-dimensional spacetime is achieved with the functions X /L (ea ), 

(a = 0, ... , Pi /L = 0, ... , D - 1) and the pull-back of a spacetime field 
F/L is performed by soaking up spacetime indices /L with the local 'tan­
gent frame' vectors oaX/L, to give Fa = F/LoaX/L. There is another frame, 
the 'normal frame', with basis vectors (~, (0: = P + 1, ... , D - 1). Or­
thonormality gives (~(5G/Ll/ = Da(3 and also we have (~oaXl/G/Ll/ = 0. 

We can pull back the spacetime Riemann tensor R/LI/K,A in a number 

of ways, using these different frames, as can be seen in the action. R 
with two indices are objects which were constructed by contraction of the 
pulled-back fields. They are not the pull-back of the bulk Ricci tensor, 
which vanishes at this order of string perturbation theory anyway. 

In fact, for the case of K3, it is Ricci flat and everything with normal 
space indices vanishes and so we get only RabedRabcd appearing, which 
alone computes the result (7.54) for us, and so after integrating over K3, 
the action becomes: 

(9.39) 

where again we have used the recursion relation between the D-brane 
tensions. So we see that we have correctly reproduced the shift in the 
tension that we expected on general grounds for the effective D(p - 4)­
brane. We will use this action later. 
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10 
The geometry of D-branes 

As we have seen, branes of various sorts are solutions of string theory 
which are localised to some extent, and have well-defined mass and charge 
per unit volume. Since these masses and charges are measured at infinity, 
meaning that the branes are sources of fields from the massless sector, we 
might expect that they must be actually be solutions of the low energy 
equations of motion: the gravity sector and other fields such as the various 
antisymmetric tensor fields, and possibly the dilaton. These field configu­
rations can be thought of as representing interesting backgrounds in which 
the string can propagate. It has become increasingly important in many 
recent research areas to consider the details of such solutions, and we shall 
begin exploring this highly developed technology in the present chapter. 

10.1 A look at black holes in four dimensions 

Before we launch into a description of the solutions associated to branes, 
it is a good idea to start with something more familiar in order to gain 
some intuition about how the solutions work. We will start in four di­
mensions with a familiar system: Einstein's gravity coupled to Maxwell's 
electromagnetism. The more advanced reader may wish to skip directly to 
section 10.2 if the following is too elementary, but beware, since we shall 
be uncovering and emphasising probably less familiar features in order to 
prepare for analogous properties of branes in higher dimensions. 

10.1.1 A brief study of the Einstein-Maxwell system 

Let us consider the Einstein-Hilbert action for gravity coupled to the 
Maxwell system: 

S = 16~G / d4x (_g)1/2 [R - GFJ-LvFfW ], (10.1) 

224 
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where 
p{tv = 3{lAv - 3vAw 

The equations of motion for this system resulting from varying with re­
spect to g{lV are of course: 

(10.2) 

where 

(10.3) 

A particularly interesting spherically symmetric solution of this system, 
(see insert 10.1) representing a source of mass M and electric charge Q 
is, for the metric: 

2 ( 2MG Q2) 2 ( 2MG Q2)-1 2 2 2 ds = - 1 - -- + - dt + 1 - -- + - dr + r d02, 
r r2 r r2 

(10.4) 
where dO§ == de2 + sin2 edrj} , is the metric on a round 52 in standard 
polar coordinates, and 

Let us note some of the key properties of these solutions. 

10.1.2 Basic properties of Schwarzschild 

We begin with the case Q = 0, an empty-space solution (i.e. a solution 
of pure Einstein gravity), which is the Schwarz schild solution. The first 
thing to take note of is that the solution has various obvious symmetries. 
Notice that the metric components do not depend on t or ¢. So there is 
a pair of symmetries coming from invariance under translations in these 
coordinates. In other words, the solution is static, and symmetric about 
the ¢ axis. Well, of course it is manifestly spherically symmetric as well. 
In a more sophisticated language, we would say that there are 'Killing 
vectors' k, of this solution satisfying 

\7 {lkv + \7 Vk{l = 0, 

where \7 {l is the covariant derivative. Our two obvious ones are: 

e{l = (:t){l = (1,0,0,0); 

TJ{l = (:¢) {l = ( 0, 0, 0, 1), 

(10.7) 

(10.8) 

(10.9) 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


226 10 The geometry of D-branes 

Insert 10.1. Checking the Reissner-Nordstrom solution 

It is worthwhile listing some of the objects that the diligent reader 
would have computed if checking by hand that equation (10.4) is a 
solution. They will be useful later. The non-vanishing components of 
the 'affine' or 'metric' connection are: 

Mr-Q2. (r2-2Mr+Q2)(Mr-Q2) 
r~t = --'-----------=----'----'----------'--

r (r2 - 2 M r + Q2)' r 5 

M r - Q2 r2 - 2 M r + Q2 ----,----,;-_____ ---;:-.,--. rr = _ . 
r (r2 - 2 M r + Q2)' ee r' 

(r2 - 2 M r + Q2) sin2e 

r 
1 r¢ -_. 

r¢ - r' 
¢ cose 

re¢ = sine' 
e 1 

r¢e =-, 
r 

(10.5) 

remembering that it is symmetric in its lower components. Taking 
some more derivatives to make the Riemann-Christoffel tensor, and 
then contracting gives the non-vanishing components of the Ricci 
tensor: 

Q2 
Rrr = - r2 (r2 _ 2 M r + Q2); 

(10.6) 

from which it is easy to see that its trace, the Ricci scalar R, actually 
vanishes. Computing the stress tensor gives the result that T/Lv = 

R/Lv/8Tr, proving that it is a solution. 

in an obvious notation *. To see the full spherical symmetry, it is in fact 
better to change variables to the 'isotropic coordinates', so called because 
it makes the spatial part of the metric conformal to fiat space, which 
means that all distances measured are rescaled by an overall factor, but 
the locally measured angles between vectors are preserved. Changing to 

* Here, and in many other places, we will use the fact that in curved spacetime it is 
very useful to define vectors as differential operators. 
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a new coordinate p defined by 

r=p(l+~r, 
the metric becomes t 

(1_M)2 M 4 

ds 2 = - 2p 2 dt2 + (1 + -) (dx2 + dy2 + dz2), 
(1 + ~n 2p 

(10.10) 

where p2 = x2 + y2 + z2. Then the Killing vectors corresponding to spher­
ical symmetry are 

a a a a a a 
L3 = x ay - y ax' LI = y az - z ay , L2 = z ax - x az . 

One can check that they satisfy the Al (i.e. 50(3)) Lie algebra: [Li' L j ] = 

EijkLk. It is worth knowing that the existence of Killing vectors guarantees 
certain important properties of the solutions, helping to exhibit certain 
conserved physical quantities. For example, a/at, being timelike, ensures 
that the geometry is static, since Killing's equation results in agMv / at = O. 

Recall that a vector (or more properly a vector field in curved space­
time) define a curve, by being the tangent to it at every point. In fact, 
along a curve generated by a Killing vector k, the combination u . k is a 
conserved quantity, which will be useful later on. Notice that e and 'r/, as 
defined above, define for us (respectively) a conserved energy and angular 
momentum per unit rest mass. 

Now, it is of course a familiar feature of the solution that the spherical 
surface r = rH = 2M is an horizon, since we can see that, for example, 
gtt vanishes there. While looking at the vanishing of gtt is a quick way 
of reading off the location horizon, for the general geometry (10.4), it is 
misleading in general. We should characterise it as follows: 

The spherical surface at radius r = R has a unit normal vector to it, il, 

given by (see insert 10.2) 

1 ( a)M 
n M 

= Jlgrr I ar 
(10.11) 

In fact, the norm n2 = nMnM takes the value +1 for r > rH and -1 
for r < rH, while for r = rH, it is zero. So the spherical surface cor­
responding to the horizon is a 'null hypersurface'. For r > rH, had we 

t It is worth checking that this can be done for non-zero Q also, solving for the new 
radial coordinate via (r2 - 2Jvlr+ Q2) -1/2dr = p-1dp. More generally, any spherically 
symmetric solution can be written in isotropic form, with sufficient effort. 
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approached this spacetime in a spaceship, we can blast our rockets and 
avoid the horizon if we choose, so any hypersurface this side of it is time­
like, while any hypersurface the other side of it is spacelike, since we have 
to encounter them. Why do we have to encounter them? Well, looking 
back at the metric we see that in fact the role of t and r have exchanged 
roles for r < rHo This is because it is now the coefficient of dr 2 which 
is negative, and so it is really a time coordinate. So once we are in the 
region r < rH, all smaller values of r are in the inevitable future. The 
'singularity' at r = 0 is a special case of one the inevitable spacelike hy­
persurfaces, so it is in our future as soon as we cross the horizon. In other 
words, Schwarzschild has a spacelike singularity, which is an important 
fact. 

10.1.3 Basic properties of Reissner-Nordstrom 

Let us consider the case of Q i- 0, the charged black hole geometry. 
The set of spacelike Killing vectors representing spherical symmetry is 
similar to the case we had before, and there is again a timelike Killing 
vector arising form the t-invariance of the metric components, showing 
that the solution is static. When we come to look at the horizon structure, 
things get interesting. There are two, since there are two places where the 
hypersurface normal in equation (10.11) can go null: 

It should be clear that there is a singularity at r = 0 again. Very inter­
estingly, we can can see by looking at n that the singularity is timelike, 
and so it is in fact avoidable with sufficient effort, if one were moving in 
the geometry. 

We have tacitly assumed that M ~ Q, or there will be no horizons, 
and the singularity at r = 0 will be a 'naked singularity', which is not 
allowed by the cosmic censors, it is believed292 . That this is a strict and 
physical bound makes a lot of sense when we study this solution further, 
especially in a supersymmetric context, which we should do next. 

10.1.4 Extremality, supersymmetry, and the BPS condition 

There is a very important special case arising when we saturate the lower 
bound on M, making it equal to Q. Then we see that both horizons 
coincide at r = Q. Let us change coordinates to R = r - Q, giving: 
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Insert 10.2. A little hypersurface technology 

Let us formulate the idea of hypersurfaces within the parent geometry 
a bit more generally. This is a natural thing to consider in a text 
emphasising branes as hypersurfaces, and it shall be very useful to 
us later. Our spacetime M has coordinates xIL, and a metric GIL!!' A 
general hypersurface 2; within M deserves its own coordinates ea , 

and so it is specified by an equation of the form j(xIL(ea)) = O. We 
have already met that there is natural metric induced on 2;, which is 
the 'pull-back' of the spacetime metric: 

axIL axl/ 
Gab = aea aeb GILI/' 

and we can define other useful quantities too. For example, the unit 
vector normal to this hypersurface is then specified as 

± aj 
nIl = ±cr-a ' 

I" x lL 
where cr = IGILI/ aj aj 1-1/2 

axIL ax!! 
(10.12) 

In the simple case where 2; is, say, a spherical hypersurface of ra­
dius R, of one dimension fewer than M (with radial coordinate r), the 
equation specifying 2; is just j = r - R = O. We can use the remain­
ing angular coordinates of M as coordinates on 2;. Now, aj jar = 1, 
giving (note the contravariant index): 

nIL - ± -1 (a)IL 
- ~ ar 

A final useful thing we shall need is the extrinsic curvature or 'second 
fundamental form' of the surface, which is given by the pull-back of 
the covariant derivative of the normal vector: 

(10.13) 

Like the induced metric, this is a tensor in the spacetime 2;. This 
might seem to be a daunting expression, but (like many things) it 
simplifies a lot in simple symmetric cases. So in our spherical exam­
ple, using r = R, and the coordinates ea = x a , we get the simple 
expreSSIOn: 

± _ 1 IL aGab 
Kab - -n±-a--' 

2 x lL 
(10.14) 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


230 10 The geometry of D-branes 

and the reader should notice that the metric is in a very special isotropic 
form. It is worth emphasising that the whole solution has a nice form, 
and can be written as: 

ds 2 = _e2U dt2 + e-2U (dR2 + R2dO~); 

A = - (e- U - 1) dt, where e-u = 1 + ~. (10.16) 

This special form and generalisations of it (involving higher dimensions, 
extended objects, and the presence of other fields) will appear many times 
in what we study later, and so this is a good place to admire it properly 
before things get more complicated. 

A very important reason why the extremal Reissner-Nordstrom solu­
tion is quite special is because it behaves very much like a BPS object, 
where M 2: Q is the BPS bound. This is worth looking at very carefully, 
since it is an important theme that we have already visited, and we shall 
see many times again. To see the BPS properties, we can think of our 
Einstein-Maxwell action as the bosonic part of an N = 2 supersymmet­
ric theory of gravity. N = 2 supergravity in four dimensions has three 
important types of massless multiplet. The gravity multiplet itself con­
tains the graviton, two gravitinos and a vector called the graviphoton. So 
the bosonic content of our Einstein-Maxwell theory matches this nicely. 
We need only include a pair of spin ~ ('Rarita-Schwinger') fields 1.lf to 
play the role of the gravitino. The other two multiplets are the massless 
vector multiplet which contains a vector, a scalar and two spin ~ parti­
cles, and the hypermultiplet which contains two spin ~ particles and four 
scalars. The supersymmetry variations take bosonic fields into fermionic 
ones and vice versa, and the algebra can be written as: 

{Q~,QY} = 21~~P{l8ij, 

{Q~, Q~} = 2Ea~zij, (10.17) 

where the supercharges are written as Weyl spinors Q~, (0: = 1,2, i = 

1,2), with QY being the Hermitian conjugate. The quantity Zij is anti­
symmetric, and commutes with everything else in the algebra. It is the 
central charge. Let us consider massive representations of the superalge­
bra. We can choose a basis in which P{l = (M, 0, 0, 0). The little group is 
80(3). Writing the Z eigenvalue as simply Z12 = Z, we get 

{Q~, QY} = M8ij , 

{Q~, Q~} = Ea~lzIEij, 
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which, after taking linear combinations, we can write in terms of two fam­
ilies of fermionic creation and annihilation operators, aa, at and ba, bt: 

{aa, at} = (M + IZI)8ij , 

{ba , bt} = (M -IZI)8ij . 

We can build representations of the algebra by starting with a Lorentz 
representation of some 80(3) spin, s. We can write a ground state Is), 
which is defined as being annihilated by at and bt, and then we can 
proceed make 24 states by acting with the aa and ba. For example, starting 
with spin 1, one can make a massive vector multiplet whose content is 
the sum of the vector and hypermultiplet above. This the generic 'long' 
massive multiplet63 . 

Since we must make unitary representations, the left hand side of the 
algebra above must be positive, and so we find that there is a bound 

M~IZI· (10.18) 

The only way to saturate this bound is if the state is annihilated by the 
bt s, which is to say the state is invariant under half of the supersymmetry 
algebra. Then we only have the aas acting to make our multiplets and 
they are half the size. These are the special 'short' massive multiplets63, 64. 

There is a vector and a hyper of the same content mentioned above for 
the massless case, except that these can have any mass M. 

The key point about extremal Reissner-Nordstrom is that it is part of 
a short hypermultiplet65, 69. This comes about in two stages. First, it has 
no fermion fields, and so the variation of all of the bosonic fields vanish 
when evaluated on this solution. This would be true for any old bosonic 
solution, of course. The remaining property is of course that the fermionic 
variations vanish for some choice of infinitessimal spinor fa generating 
the variation. Of course, it must be that only some of the spinors do this, 
otherwise we would be in a trivial situation. Setting the variation of the 
gravitino to zero, asks that there exists a spinor which solves: 

(10.19) 

where Ft-v = ~(F{w ± i*F{lv) , and recall from equation (2.125) that the 
covariant derivative on the spinor involves the spin connection, wab {l 
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This is asking for the existence of a 'covariantly constant', or 'Killing', 
spinoL It is a useful exercise to show that there are indeed such spinors. 
In fact, the problem reduces to just one differential equation which is 
satisfied everywhere by half of the available spinor components, matching 
the result above that half of the supersymmetries annihilate the solution. 

In terms of the mass and the charge, things match as well. The gravipho­
ton embedded in the gravity multiplet is a U(l) gauge field whose charge is 
in fact the central charge. (There are gauge symmetries associated to the 
central charge operator which are local symmetries in supergravity67.) So 
in fact, Z is the integral of the field strength two-form: Z = (J F)/4Tr = Q, 
in the normalisation we are using. This matches with the property of our 
black hole solution. 

10.1.5 Multiple black holes and multicentre solutions 

It is important to note that there is a simple generalisation of the extremal 
solution to a case representing N distinct black holes of the same type: 

A = - (e- U - 1) dt, 

(10.20) 

where, in this 'multicentre' solution, iii is a three-vector giving the lo­
cation of the centre of the ith black hole with mass mi = qi. The total 
charge sourced by the whole configuration is, by Gauss's Law, simply 
Q = LI~l qi, which, by the BPS bound, is also equal to the total mass. 
This implicitly tells us that there is also a no-force condition applying 
to our black holes, since the total mass-energy is simply the sum of the 
individual mass-energies - there is no binding energy, coming from work 
against interaction forces. 

The quickest way to see that this form arises as a solution is to rewrite 
the equation for the present Killing spinor as a condition on the solution 
written in the form in the first line of equation (10.20). We can do it for 
the slightly more general form where dR2 + R 2dO§ is replaced by dx· dx. 
The resulting equation is simply that the e-u be an harmonic function 
on the transverse space ]R3, for which after normalising it to be unity 
at infinity, we can choose for it to be written in the multicentre form. 
These are in general known as the Majumdar-Papapetrou solutions66, 

and the spherical cases we've been looking at here are a special subclass 
corresponding to Reissner-Nordstrom. 
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10.1.6 Near horizon geometry and an infinite throat 

It is particularly interesting to look closely at the horizon of the charged 
black hole in the extremal limit. Let us look at equation (10.15) in the 
neighbourhood of R = 0, the horizon, where we have 

(10.21) 

The spatial part of the solution has degenerated into the product of an 
infinitely long tube or 'throat' of topology]]{ x S2 with fixed radius set by 
the charge. The whole geometry, called the 'Bertotti-Robinson' universe 
is actually AdS 2 x S2, a two dimensional 'anti-de Sitter' spacetime being 
the (t, R) part. Anti-de Sitter spacetime is the most symmetric 'vacuum' 
solution to two dimensional Einstein's equations with a negative cosmo­
logical constant. This pleasingly simple near-horizon geometry is a sign 
of something more general which will occur in all its glory in chapter 18 
and so it is worthwhile understanding the toy example presented here, 
and also worthwhile digressing on solutions of Einstein's equations in the 
presence of cosmological constant, for later use. 

This has special meaning for the supersymmetric discussion above as 
well. At infinity, the solution is of course fiat space, which has all eight of 
the maximum set of available Killing spinors. At arbitrary radius, there 
are four, as mentioned above. It turns out that the Bertotti-Robinson ge­
ometry also has eight Killing spinors, and so is also a maximally supper­
symmetric vacuum of the theory, just like fiat space. In this sense we see 
that the extremal Reissner-Nordstrom solution is akin to a soliton65 , since 
it behaves as an interpolating solution between two vacua (see insert 1.4). 
Much the same thing will be true for some of the extremal brane solutions 
which we shall encounter later68. 

10.1.7 Cosmological constant; de Sitter and anti-de Sitter 

In General Relativity, the Einstein tensor GjJ,V == RjLl/ - ~gjLl/R is arrived 
at by asking that the field equations be written in terms of the unique 
symmetric, rank two covariantly conserved object constructed out of the 
metric and its derivatives which has Minkowski space as a vacuum solu­
tion. If we wish to relax that final condition somewhat, we have a slightly 
more general choice. Of course, the metric itself is a symmetric rank two 
tensor, and since \7 jLgjLl/ = 0, so it is also a candidate. We can add it in 
with an arbitrary constant, to give 

(10.22) 
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for which the generalisation of the Einstein-Hilbert Lagrangian is 

£ = (_g)1/2(R - 2A). 

Recall from General Relativity292 the form of the stress tensor for a perfect 
fluid of scalar density and pressure p and p: 

(10.23) 

We see that the 'cosmological constant' A acts like an intrinsic universal 
pressure. A > 0 is a cosmological repulsion, while A < 0 is an attraction. 

While Minkowski space is no longer a solution, there are highly sym­
metric solutions analogous to it in the presence of non-zero A. Actually, 
the type of solutions we are looking for are called 'maximally symmetric' 
and satisfy the condition 

2 
R )..jUeV = =t= £2 (g )..",g {W - g)..v 9 "'{l) , 

2A 
or Rjw = ± (D _ 2)g{W 

where £2 = _ (D - 11lD - 2). (10.24) 

Already familiar are the signature (+ + + ... ) spaces which satisfy equa­
tion (10.24) with the plus sign, the round spheres SD. In fact, for signature 
( - + + ... ) the spaces of interest here may be written as: 

d8' ~ - (1 -± ~:) dt' + (1 -± ~: r dr' + r'dnj,_" (10.25) 

where dfl'b_2 is the metric on a unit round D - 2 sphere. 
The cosmological constant sets a length scale, £. The larger the cosmo­

logical constant, the smaller the scale. The limit r « £ therefore returns us 
locally to Minkowski space, since if we fall below the length scale set by A, 
we simply do not notice, locally, that we have a cosmological constant, A. 
For r '::::' £ or greater we cannot ignore the effect of the cosmological 
constant. 

10.1.8 de-Sitter spacetime and the sphere 

For instance, notice that for the case of the plus sign, de Sitter space, 
there is an horizon at r = £. Since r cannot exceed £, we might as well 
write r = £sine. A little algebra shows that, if we analytically continue 
time via it = £1/;, we get the metric 

ds2 = £2(de2 + cos2e d1/;2 + sin2 e dOb-2), (10.26) 

which is the metric on a round sphere SD, with radius £, if 1/; and e have 
the appropriate periodicities. 
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10.1. 9 Anti-de Sitter in various coordinate systems 

The case of anti-de Sitter, the minus sign, we can instead take r = f! sinh p, 
and get 

(10.27) 

which is a useful form which we will see much later. Notice that we can 
view this as an analytic continuation of the metric of the sphere SD, given 
in equation (10.26). 

There is a useful form of the metric to present which can be thought of 
as the r » f! limit. In this case, drop the 1 from (1 + r2 / f!2), and work with 
local coordinates. So write f!2dSlb_2' the metric on the SD-2 of radius f! 
embedded in lRD - 1 in Cartesian coordinates 

f}2d,,2 d 2 d 2 d 2 (X1 dx1 + X2 dx2 + ... + XD_2 dxD_2)2 
1'- HD-2 = Xl + X2+"'+ XD-2+ 2 , 

xD-1 

where Xb-1 = f!2- L~11 xT- Then we can work in the local neighbourhood 
of Xi rv 0, XD-1 rv f!, giving 

Choosing these local coordinates is equivalent to the large radius limit of 
the sphere, and the rest of the geometry therefore takes the form: 

r2 dr2 
ds2 = - (-dt2 + dx2 + ... + dx2 ) + f!2_ f!2 '1 'D-2 r2 ' (10.28) 

which is known as the 'Poincare' form of the metric, which arose already 
as part of the throat (10.21) of the Reissner-Nordstrom solution, and 
it shall arise again later. The radial coordinate R used there should be 
compared to r here, and the infinite line lR coordinatised by t should be 
compared to the lRD - 1 coordinatised by (t, Xl, ... ,XD-2). Notice that the 
metric on that subspace (obtained by radial slices of constant r) is actually 
that of D - 1 dimensional Minkowski, a fact which will be important for 
us later. The horizon at R = 0 compares to an horizon at r = 0 here, 
which is an important clue as to where anti-de Sitter will arise in later 
sections and chapters. 

Actually, we can write another metric for AdS as follows: 

2 r 2 r 2 2 ~2 ( 2) ( 2)-1 ds = - -1 + f!2 dt + -1 + f!2 dr + r d:::..D- 2, 

where d'2b_2 is the 'unit' metric on aD - 2 dimensional hyperbolic space 
JH[D-2. This metric can be obtained by analytically continuing dSlb_2' For 
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this case, the radial slices are lHID - 2 x ]]{ instead of D - 1 Minkowski space 
for the previous form (10.28) or SD-2 x]]{ for the form in equation (10.25). 
Just as before, we can do a hyperbolic change to a new coordinate r = £ 
cosh p, and get 

ds 2 = - sinh2pdt2 + £2dp2 + £2 cosh2pd2 b_2)' 

In summary, we have AdS D in the following metrics: 

<is' ~ - (u ~:) <it' + (k :~) + ~:dLi.D-2' 
where the (D - 2)-dimensional metric dL,~,D_2 is 

{ 
£2dDb_2 for k = +1 

dL,~,D_2 = L~12 dxr for k = 0 
£2d2b_2 for k = -1, 

(10.29) 

(10.30) 

The k = 0 form can be thought of as the local physics in all three cases. 
Anti-de Sitter space in D dimensions has an SO(2, D - 1) isometry, of 

which a subgroup SO(I, 1) x ISO(I, D - 2) is manifest as 

(t, U, Xl, ... ,XD-2) ----+ (At, A -lu, AXl, ... ,AxD-2), 

for the first factor, and the Poincare group (i.e. Lorentz boosts and trans­
lations) acting on the Minkowski part. The group SO(2, D - 1) is the 
conformal group in D -I-dimensional Minkowski space, and the SO(I, 1) 
is the dilation part of it. The reader may recall that we met this group all 
the way back in chapter 3, and its appearance here will be given physical 
significance in terms of a duality in chapter 18. 

10.1.10 Anti-de Sitter as a hyperbolic slice 

It is worth noting that AdS D has a very natural geometrical represen­
tation. Start with the (D + I)-dimensional spacetime with signature 
(-, -, +, +," .), with metric: 

D-l 

ds 2 = - dX6 - dX'b + L dxl· (10.31) 
i=l 

Notice that the isometry group of this homogeneous and isotropic space­
time is SO(2, D -1). Now consider the hyperboloid within this spacetime, 
given by the equation 

D-l 

X6 + x'b - L xl = £2. 
i=l 
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A solution of this equation is 

Xo = J! cosh p cos T / J!, XD = J! cosh p sin T / J!, Xi = J!Di sinh p, 

where the angles Di are chosen such that L~11 Di = 1. We can substitute 
this solution into the metric (10.31) in order to find the metric on this hy­
perboloid, and we find the global AdSD metric given in equation (10.27). 
With 0 ~ T ~ 27T and 0 ~ p, our solution covers the entire hyperboloid 
once, and this is why these are called the 'global' coordinates on AdS. 
The time T is usually taken not as a circle (which gives closed timelike 
curves) but on the real line, -00 ~ T + 00 giving the universal cover of 
the hyperboloid. 

Another solution to the hyperboloid equation is: 

Xo = 21r (1+r2(J!2+ x2- t2)), 

1 ( 2 (2 ~2 2)) XD-l = 2r 1-r J! -x +t , 

which defines coordinates which cover a half of the hyperboloid. The re­
sulting metric after substitution into equation (10.31) is the Poincare form 
exhibited in equation (10.28). These are the 'local' coordinates. 

10.1.11 Revisiting the extremal solution 

How did constant curvature spaces, and negative cosmological constant 
become relevant to the Reissner-Nordstrom solution near the horizon at 
extremality? Well, it is worth examining the Ricci tensor in the extremal 
limit, in the coordinate R = r - Q, in the neighbourhood of the horizon 
r = Q: 

1 
Rrr = - R2; Ree = 1; 

and so we see that, upon comparing to equation (10.21): 

1 
R/Lv = - Q2 g/LV; for IL, 1/ = torr; 

1 
R/Lv = + Q2 g/LV; for IL, 1/ = e or ¢. 

(10.32) 

(10.33) 

Since the Maxwell stress tensor essentially obeys the same relations, giv­
ing something proportional to the metric tensor, it can be seen that the 
flux due to the charge carried by the hole is what is responsible for supply­
ing the effective cosmological constant. It is worth noting that we could 
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have formulated the same sort of features in terms of magnetic fields. 
In that case, we would have traded in the electric two form components 
for magnetic components F = QE2' where E2 = sin BdB /\ d¢ is the vol­
ume form of S2. In this form, the decomposition of the throat solution 
by dualising the electric source into a magnetic source will generalise 
into something called the 'Freund-Rubin' ansatz in higher dimensional 
supergravity19. 

10.2 The geometry of D-branes 

Now let us return to the full ten dimensional equations of motion of the 
type IIA and type IIB supergravity equations (7.41) and (7.42), where 
we have additional fields coming from the R-R sector and the NS-NS 
sector. 

10.2.1 A family of 'p-brane' solutions 

There is an interesting family of ten dimensional solutions, which source 
gravity, the dilaton, and the R-R potentials, and can be written as 
follows94, 95: 

dS2 = Z;;1/2(r) ( - K(r )dt2 + t, dX;) + Zi/2(r) (:~:) + r2dOLp) , 

(10.34) 
where dO§_p is the metric on a unit round S8-p sphere, and 

In the above 

Zp (r) = 1 + O:p (r; ) 7 -p , 

K(r) = 1- (r;)7-P, 

2 <I> 2 (3-p) 
e = 9sZp(r) 2 , 

C(p+1) = 9;;1 [Zp(r)-l - 1] dxo /\ ... /\ dxp. 

7-p _ d (2 )p-2 N 1(7-p)/2 r p - p 7T 98 0: , 

(10.35) 

(10.36) 
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One should not be intimidated by the form of these solutions. They rep­
resent p-dimensional extended objects called 'p-branes', and as such, are 
localised in the 9 - p directions transverse to them. Since we have rota­
tional symmetry in those directions, we can use polar coordinates with a 
radial coordinate r, and the angles on an (8 - p)-sphere. The branes are 
aligned along the (xl, x 2 , ... ,xP ) directions, and move in time, so they 
have a (p + 1) dimensional world volume, with geometry jRP+ I, generalis­
ing the worldline of the black hole solutions we studied earlier. It is useful 
to observe how the solution is split between the transverse and parallel co­
ordinates and then look at, say, the Schwarzschild or Reissner-Nordstrom 
solution (10.4) and see that the analogue of this is happening in that solu­
tion too. There, the world-volume is replaced by a simple world-line, the 
space jR coordinatised by t. The rest of the solution concerns the trans­
verse part of the spacetime. Since there is rotational symmetry it has a 
simple presentation in terms of the radius r and the two angles on the 
round 52. From our analysis of the black hole solutions, it should be clear 
that these solutions have an horizon at radius r = rH, and a singularity 
at r = O. 

10.2.2 The boost form of solution 

Actually there is another way of writing the solution which is instructive 
and useful for later. We could instead write: 

Zp(r) = 1 + o;p (;:) 7-p (r;) 7-p = 1 + sinh2 (-Jp (r;) 7-P, 

where, given the nice form of o;p in equation (10.36), we can write 

( rp )7-P _ o;p -
rH 

and hence 

1 
-+ 
4 

rp . 2 ( 7-P) 2 1 
-- - - = smh {3 7-p 2 p, rH 

1 
cosh2 {3p = - + 

2 

1 
-+ 
4 

(r;-P) 2 

7-p rH 

The tension and charge can be written in terms of these nicely as: 

( ) 
7-p 

rH N 1 2 
Tp = - - (-- + cosh (-Jp ) , 

rp g8 7 - P 

( )7-P 
Qp = N ~: sinh {3p cosh {3p = N. (10.37) 
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So we see that in fact the solutions above are normalised such that they 
carry N units of the basic D-brane R-R charge /-Lp, where N is an integer. 
Observe that the mass is larger than the charge, in a manner analogous 
to the Reissner-Nordstrom solution. 

Notice that when the parameter {3p goes to zero, the solution simpli­
fies drastically, becoming uncharged. The function Zp becomes unity, the 
dilaton becomes constant, and the solution simply becomes a (10 - p)­
dimensional Schwarzschild black hole, with horizon at r = rH, times the 
space lPi.p . 

10.2.3 The extremal limit and coincident D-branes 

Just like in the case of the charged black hole solution, there are extremal 
limits of these solutions. The extremal cases are BPS solutions of the 
ten dimensional supersymmetry algebra, as we shall see. For now, the 
similarity with the detailed case study of Reissner-Nordstrom black holes 
in earlier sections should be borne in mind, although there are differences 
which will become apparent shortly. The extremal limit is simply O:p = 1, 
where the solutions are: 

ds2 = H;1/2rJflV dxfldxv + H,j/2dxi dx i , 

2<I> 2H (3-p) 
e = gs P 2 , 

C(p+1) = -(Hp -1 - l)g;ldx O 1\ ... 1\ dxP, (10.38) 

where /-L = 0, ... , p, and i = p + 1, ... ,9, and the harmonic function Hp is 

( )
7-P 

Hp = 1 + r; , (10.39) 

where rp is still given in equation (10.36). In the boost form mentioned 
at the end of the last subsection, it is the limit of infinite boost, {3p ----+ 00, 

combined with sending the horizon parameter rH to zero while holding 
fixed the combination r~-P)e2(3p /4 = r;-p. 

It is worth comparing this to the form in equation (10.16), where the 
extremal black hole is written in isotropic form analogous to what we 
have here. Furthermore, it should be clear that there is a multicentre 
generalisation of this solution, where we write for the harmonic function 

~ r;-P 
Hp = 1 + ~ I~_ ~.17-p· 

i=l r r t 

(10.40) 

This represents N different branes located at arbitrary positions given 
by the vectors ri. A clear sign that the solution is a BPS object made 
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of lots of smaller such objects is the fact that the mass computed for 
this solution is just the sum of the individual masses and is equal to the 
total charge. There is no binding energy since the interaction forces are 
zero. 

It is clear that in all cases (except p = 3) the horizon, located at r = 0, 
is a singular place of zero area, since the radius of the S8-p vanishes there. 
In the p = 3 case, however, the inverse quartic power of r appearing in 
the harmonic function means that the square root yields a cancellation 
between the vanishing of the horizon size and the divergence of the metric, 
leaving an horizon of finite size r~/2 = ex' (4'ITgsN) 1/2. Some simple algebra 
shows that the geometry is simply AdS5 x S5, with the sizes of each 
factor set byr~/2. The dilaton is constant, and the R-R field is F(5) = 

dC(4) + *dC(4) , where dC(4) = r3E(5) where E(5) is the volume form on S5. 
Note again the sharp analogy with the case of Reissner-Nordstrom. The 

appearance of this simple smooth near-horizon geometry is interesting, 
and we will explore this much later, in chapter 18. 

More complicated supergravity solutions preserving fewer supersym­
metries (in the extremal case) can be made by combining these simple 
solutions in various ways, by intersecting them with each other, boosting 
them to finite momentum, and by wrapping, and/or warping them on 
compact geometries. This allows for the construction of finite area hori­
zon solutions, corresponding to R-R charged Reissner-Nordstrom black 
holes, and generalisations thereof. We shall in fact do this in chapter 17. 

These solutions are R-R charged with N units of Dp-brane charge, but 
we have already established to all orders in string perturbation theory 
that Dp-branes actually are the basic sources of the R-R fields. It is nat­
ural to suppose that there is a connection between these two families of 
objects: perhaps the solution (10.38) is 'made of D-branes' in the sense 
that it is actually the field due to N Dp-branes, all located at r = O. This 
is precisely how we are to make sense of this solution as a supergravity 
soliton solution. We must do so, since (except for p = 3 as we have seen) 
the solution is actually singular at r = 0, and so one might have sim­
ply discarded them as pathological, since solitons 'ought to be smooth'. 
However, string duality, which we shall encounter in chapter 12, forces 
us to consider them, since smooth NS-NS solitons of various extended 
sizes (which can be made by wrapping or warping NS5-branes (see sec­
tion 12.3 for their entry into our story) in an arbitrary compactification) 
are mapped165 into these R-R solitons under it, generalising what we 
have already seen in ten dimensions. With the understanding that there 
are D-branes 'at their core', which fits with the fact that they are R-R 
charged, they make sense of the whole spectrum of extended solitons in 
string theory. 
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Let us build up the logic of how they can be related to D-branes. Re­
call that the form of the action of the ten dimensional supergravity with 
NS-NS and R-R field strengths Hand G respectively is, roughly: 

(10.41) 

There is a balance between the dilaton dependence of the NS-NS and 
gravitational parts, and so the mass of a soliton solution95 carrying 
NS-NS charge (like the NS5-brane) scales like the action: TNS rv e-2<I> rv 

9;;2. An R-R charged soliton has, on the other hand, a mass which goes 
like the geometric mean of the dilaton dependence of the R-R and gravi­
tational parts: TR rv e-<I> rv 9;;1. This is just the behaviour we saw for the 
tension of the Dp-brane, computed in string perturbation theory, treating 
them as boundary conditions. 

We have so far treated Dp-branes as point-like (in their transverse di­
mensions) in an otherwise fiat spacetime. We were able to study an ar­
bitrary number of them by placing the appropriate Chan-Paton factors 
into amplitudes. However, the solutions (10.38) have non-trivial spacetime 
curvature, and is only asymptotically fiat. How are these two descriptions 
related? 

Well, for every Dp-brane which is added to a situation, another bound­
ary is added to the problem, and so a typical string diagram has a factor 
9sN since every boundary brings in a factor 9s and there is the trace over 
the N Chan-Paton factors. So open string perturbation theory is good 
as long as 9sN < 1. Notice that this is the regime where the supergrav­
ity solution (10.38) fails to be valid, since the typical squared curvature 
invariant behaves as 

On the other hand, for 9sN > 1, the supergravity solution has its curva­
ture weakened, and can be considered as a workable solution. This regime 
is where the open string perturbation theory, on the other hand, breaks 
down. 

So we have a fruitful complementarity between the two descriptions. In 
particular, since we only derived the supergravity equations of motion in 
string perturbation theory, i.e. g8 < 1, for most computations, we can work 
with the supergravity solution with the interpretation that N is very large, 
such that the curvatures are small. Alternatively, if one restricts oneself to 
studying only the BPS sector, then one can work with arbitrary N, and 
extrapolate results - computed with the D-brane description for small 
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gs - to the large g8 regime (since there are often non-renormalisation 
theorems which apply), where they can be related to properties of the 
non-trivial curved solutions. This is the basis of the successful statistical 
enumeration of the entropy of black holes, for cases where the solutions 
(10.38) are used to construct R-R charged black holes. We shall do this 
in chapter 17. 

In summary, for a large enough number of coincident D-branes or for 
strong enough string coupling, one cannot consider them as points in 
fiat space: they deform the spacetime according to the geometry given 
in equation (10.38). Given that D-branes are also described very well 
at low energy by gauge theories, this gives plenty of scope for finding a 
complementarity between descriptions of non-trivially curved geometry 
and of gauge theory. This is the basis of what might be called 'gauge 
theory / geometry' correspondences. In some cases, when certain conditions 
are satisfied, there is a complete decoupling of the supergravity description 
from that of the gauge theory, signalling a complete duality between the 
two. This is the basis of the AdS/eFT correspondence, which we shall 
come to in chapter 18. 

10.3 Probing p-brane geometry with Dp-branes 

In the previous section, we argued that the spacetime geometry given 
by equations (10.38) represents the spacetime fields produced by N Dp­
branes. We noted that as a reliable solution to supergravity, the product 
gsN ought be be large enough that the curvatures are small. This corre­
sponds to either having N small and gs large, or vice versa. Since we are 
good at studying situations with g8 small, we can safely try to see if it 
makes sense to make N large. 

10.3.1 Thought experiment: building p with Dp 

One way to imagine that this spacetime solution came about at weak 
coupling was that we built it by bringing in N Dp-branes, one by one, 
from infinity. If this is to be a sensible process, we must study whether 
it is really possible to do this. Imagine that we have been building the 
geometry for a while, bringing up one brane at a time from r = 00 to 
r = O. Let us now imagine bringing the next brane up, in the background 
fields created by all the other N branes. Since the branes share p common 
directions where there is no structure to the background fields, we can 
ignore those directions and see that the problem reduces to the motion of 
a test particle in the transverse 9 - p spatial directions. What is the mass 
of this particle, and what is the effective potential in which it moves? 
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We can answer this sort of question using the toolbox which com­
bines the fact that at low energy we know the world-volume action of the 
D-brane, describing how it interacts with the background fields with the 
fact that the probe brane is a heavy object which can examine many 
distance scales in the theory106. 

10.3.2 Effective Lagrangian from the world-volume action 

We can find the answers to all of the above questions by deriving an effec­
tive Lagrangian for the problem which results from the world-volume ac­
tion of the brane. We can exploit the fact that we have spacetime Lorentz 
transformations and world-volume reparametrisations at our disposal to 
choose the work in the 'static gauge'. In this gauge, we align the world­
volume coordinates, ~a, of the brane with the spacetime coordinates such 
that: 

~o = x O = t; 
~i = xi; i = 1, ... ,p, 

~m = ~m(t); m = p + 1, ... ,9. (10.42) 

The Dirac-Born-Infeld part of the action (5.21) requires the insertion of 
the induced metric derived from the metric in question. In static gauge, 
it is easy to see that the induced metric becomes: 

Goo + Lmn Gmnvmvn 0 0 0 

0 Gll 0 

[Glab = (10.43) 

0 0 0 Gpp 

where Vm == dxm /d~o = i;m. 
In our particular case of a simple diagonal metric, the determinant 

turns out as 

(p+l) ( 9) (p+l) 
det[-Gabl = H;-2- 1- Hp L v;;' = H;-2- (1- H pv2 ). 

m=p+1 
(10.44) 

The Wess-Zumino term representing the electric coupling of the brane is, 
in this gauge: 

J C - J dP+ 1 ~ caoal· .. ap [C 1 ox{!O OX{!l ... ox{!p 
/Lp (pH) - /Lp (pH) {!O{!l .. .{!p o~ao o~al o~ap 

= /Lp Vp J dt [Hp-1 - 1] g;;l, (10.45) 
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where Vp = I dPx, the spatial world-volume of the brane. Now, we are 
going to work in the approximation that we bring the branes slowly up the 
the main stack of branes so we keep the velocity small enough such that 
only terms up to quadratic order in v are kept in our computation. We can 
therefore the expand the square root of our determinant, and putting it all 
together (not forgetting the crucial insertion of the background functional 
dependence of the dilaton from (10.38)) we get that the action is: 

S = /Lp Vp J dt ( _g;;l Hp-1 + 2~s v2 + g;;l Hp-1 _ g;;l) 

= J dt£ = J dt (tm p v2 - m p ), (10.46) 

which is just a Lagrangian for a free particle moving in a constant po­
tential, (which we can set to zero) where mp = Tp Vp is the mass of the 
particle. 

This result has a number of interesting interpretations. The first is sim­
ply that we have successfully demonstrated that our procedure of 'build­
ing' our geometry (10.38) by successively bringing branes up from infinity 
to it, one at a time, makes sense. There is no non-trivial potential in the 
effective Lagrangian for this process, so there is no force required to do 
this; correspondingly there is no binding energy needed to make this sys­
tem. 

That there is no force is simply a restatement of the fact that these 
branes are BPS states, all of the same species. This manifests itself here as 
the fact that the R -R charge is equal to the tension (with a factor of 1/ g8), 
saturating the BPS bound. It is this fact which ensured the cancellation 
between the r-dependent parts in (10.46) which would have otherwise re­
sulted in a non-trivial potential U(r). (Note that the cancellation that we 
saw only happens at order v 2 - the slow probe limit. Beyond that order, 
the BPS condition is violated, since it really only applies to statics.) 

10.3.3 A metric on moduli space 

All of this is pertinent to the world-volume field theory as well. Recall 
that there is a U(N) (p + I)-dimensional gauge theory on a family of N 
Dp-branes. Recall furthermore that there is a sector of the theory which 
consists of a family of (9 - p) scalars, <I>m, in the adjoint. Geometrically, 
these are the collective coordinates for motions of the branes transverse to 
their world-volumes. Classical background values for the fields, (defining 
vacua about which we would then do perturbation theory) are equivalent 
to data about how the branes are distributed in this transverse space. 
Well, we have just confirmed that there is a 'moduli space' of inequivalent 
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vacua of the theory corresponding to the fact that one can give a vacuum 
expectation value to a component of a <I>m, representing a brane moving 
away from the clump of N branes. That there is no potential translates 
into the fact that we can place the brane anywhere in this transverse 
clump, and it will stay there. 

It is also worth noting that this metric on the moduli space is fiat; 
treating the fields <I>m as coordinates on the space jR9-p , we see (from the 
fact that the velocity squared term in (10.46) appears as v 2 = omnvmvn) 
that the metric seen by the probe is simply 

(10.47) 

This flatness is a consequence of the high amount of supersymmetry (16 
supercharges). For the case of D3-branes (whether or not they are in the 
AdS5 x S5 limit, to be described later), this result translates into the fact 
there that there is no running of the gauge coupling g?M of the supercon­
formal gauge theory on the brane, (since in this example, and in the case 
of eight supercharges, supersymmetry relates the coupling to the kinetic 
term). This is read off from the prefactor gY~f = T3(27Ta/)2 = (27Tgs )-1 in 
the metric. The supersymmetry ensures that any corrections which could 
have been generated are zero. We shall later see less trivial versions, where 
we have nontrivial metrics in the case of eight supercharges and even four 
supercharges. Before we do that, we have to go back to studying D-branes 
as boundary conditions, in order to see how to put together multiple 
D-branes, and branes of different types. 

10.4 T-duality and supergravity solutions 

In principle, nothing stops us from studying the action of T-duality on 
the Dp-branes, now starting with their representation as a supergrav­
ity solution, and correspondingly using the background field T-duality 
rules given in equation (5.4) for the NS-NS sector, and equations (8.2) 
for the R-R sector. One should expect to get the supergravity solution 
of a D(p + l)-brane or D(p - l)-brane, depending upon whether one 
T-dualised in a direction containing the Dp-brane's world-volume or not. 
This expectation is indeed borne out to some extent, but we must be 
careful. Let us discuss the subtlety by example. 

10.4.1 D(p + 1) from Dp 

Start with the case of T-dualising in a direction transverse to a Dp-brane, 
lying in directions Xl, ... , X p . What this really means, recall, is that we 
must place the branes on a circle of radius R, and find an equivalent 
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representation for the system on a dual circle of radius R' = ex' / R. We 
can represent this as an infinite array of identical branes on the line with 
coordinate X p+1, a distance 2 'IT R apart, identifying Xp+l ;v Xp+1 + 2 'IT R. 
We can easily write a supergravity solution for this, since the branes are 
BPS, and so the multibrane harmonic function in equation (10.40) can be 
employed here. Let us write the radius in the directions transverse to the 
Dp-brane in terms of Xp+l and a radius in the remaining directions: 

in terms of which the appropriate harmonic function including all of the 
images is: 

+00 r 7-p 
Harray = 1 + '"""' -----, ____ ----'--P __ -----,-----,-,-_-,----,-,--

P n~oo If2 + (XP+l - 27T17.R) 2 I (7-p)/2 . 
(10.48) 

If the circle's radius is very small, then the sum in the above can be 
replaced by an integral, to a good approximation, since the difference 
between each term in the sum is small. Defining a new variable u via 
fu = 2n'ITR - Xp+1, we get: 

Harray 1 P U r7- p 1 /00 d 
P ;v + 2'ITR f6-p -00 (1 + u2)(7-p)/2' (10.49) 

where we have used f8u = 2'ITR8n to get the measure right. The integral 
is: 

/

00 du for [~(6 - p)] 
-00 (1 + u 2)(7-p)/2 - r [~(7 - p)] , 

and so looking at the definition of the constant r;-P given m equa­
tion (10.36), we see that 

/Cl 7-(p+l) 
Harray ;v H _ ex rp+l 1 

p p+l - 1 + R f 7-(p+1) , (10.50) 

which is the correct form of the harmonic function for a D(p + l)-brane. 
We should check normalisations here. If we had started with a single 

brane on the array, i.e. with N = 1, then we get the new number of branes 
as f.r = /Cl / R. So if R = /Cl, then we have the correct normalisation for 
a single brane on_the dual side also. Better perhaps is to have N = R/ /Cl, 
giving a single N = 1 as the T -dual. This has the interpretation in the 
original theory as R/ /Cl for each 2 'IT R of length, or 2'IT/Cl branes per 
unit length. 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


248 10 The geometry of D-branes 

We can work on the full Dp-brane metric with the T-duality rules (5.4), 
treating X p+ 1 as the isometry direction. Following the rules through, we 
see that the transformation will invert the metric function Gp+1,p+1, which 
will indeed convert the metric for a p-brane to that of a (p + 1)-brane. So 
the new dilaton is, according to the rules in equation (5.4), 

which after replacing Hp by H;rray , which becomes Hp+1 as we have shown 
above, gives the dilaton for the D(p + 1 )-brane supergravity solution. 
Similarly, equations (8.2) give the correct R-R potential. 

This works very well because it is easy to soften the power of r which 
appears in the denominator of the harmonic function, as needed for a 
larger brane. 

10.4.2 D(p - 1) from Dp 

Harder to get is the increase of the power of r in the dependence of 
the harmonic function, which we would need for a D(p - l)-brane, if we 
T-dualised in a world-volume direction, say XP. Clearly the powers of the 
harmonic function itself will in the metric, dilaton and R-R potential, 
using the rules (5.4) and (8.2). The problem is that we would get 

(10.51) 

This is not really what we want. We can, however, interpret this as the 
result of 'smearing' the brane in the direction XP, i.e. the result of inte­
grating a uniform density of branes (with the correct 1/r(8-p ) behaviour) 
over XP. This will indeed yield the behaviour given in (10.51). We shall en­
counter such smeared solutions, or 'brane distributions' in later chapters. 
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11 
Multiple D-branes and bound states 

In chapter 5, we saw a number of interesting terms arise in the Dp-brane 
world-volume action which had interpretations as smaller branes. For ex­
ample, a U(l) flux was a D(p - 2)-brane fully delocalised in the world­
volume, while for the non-Abelian case, we saw a D(p - 4)-brane arise as 
an instanton in the world-volume gauge theory. Interestingly, while the 
latter breaks half of the supersymmetry again, as it ought to, the former 
is still half BPS, since it is T-dual to a tilted D(p + l)-brane. 

It is worthwhile trying to understand this better back in the basic 
description using boundary conditions and open string sectors, and this 
is the first goal of this chapter. After that, we'll have a closer look at the 
nature of the BPS bound and the superalgebra, and study various key 
illustrative examples. 

11.1 Dp and Dp' from boundary conditions 

Let us consider two D-branes, Dp and Dp', each parallel to the coordinate 
axes. (We can of course have D-branes at angles129 , but we will not con­
sider this here.) An open string can have both ends on the same D-brane 
or one on each. The p - p and pi - pi spectra are the same as before, but 
the p - pi strings are new if pi-p'. Since we are taking the D-branes to be 
parallel to the coordinate axes, there are four possible sets of boundary 
conditions for each spatial coordinate Xi of the open string, namely NN 
(Neumann at both ends), DD, ND, and DN. What really will matter is 
the number v of ND plus DN coordinates. AT-duality can switch NN 
and DD, or ND and DN, but v is invariant. Of course v is even because 
we only have p even or p odd in a given theory in order to have a chance 
of preserving supersymmetry. 

249 
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250 11 Multiple D-branes and bound states 

The respective mode expansions are 

NN: 

DN,ND: 

DD: 

In particular, the DN and ND coordinates have half-integer moding. The 
fermions have the same moding in the Ramond sector (by definition) and 
opposite in the Neveu-Schwarz sector. The string zero point energy is 0 
in the R sector as always, and using (2.80) we get: 

(8 - v) (-~ - ~) + v (~ + ~) = -~ + ~ 
24 48 48 24 2 8 

(11.2) 

in the NS sector. 
The oscillators can raise the level in half-integer units, so only for v 

a multiple of four is degeneracy between the Rand NS sectors possible. 
Indeed, it is in this case that the Dp-Dp' system is supersymmetric. We 
can see this directly. As discussed in sections 8.1.1 and 8.2, a D-brane 
leaves unbroken the supersymmetries 

(11.3) 

where P acts as a reflection in the direction transverse to the D-brane. 
With a second D-brane, the only unbroken supersymmetries will be those 
that are also of the form 

(11.4) 

with pi the reflection transverse to the second D-brane. Then the unbro­
ken supersymmetries correspond to the + 1 eigenvalues of p-l P'. In DD 
and NN directions this is trivial, while in DN and ND directions it is a net 
parity transformation. Since the number v of such dimensions is even, we 
can pair them as we did in section 7.1.1, and write p-l pi as a product 
of rotations by 'IT, 

(11.5) 
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11.1 Dp and Dp' from boundary conditions 251 

In a spinor representation, each ei'IT J has eigenvalues ±i, so there will be 
unbroken supersymmetry only if v is a multiple of four as found above*. 

For example, type I theory, besides the D9-branes, will have D1-branes 
and D5-branes. This is consistent with the fact that the only R-R field 
strengths are the three-form and its Hodge-dual seven-form. The D5-
brane is required to have two Chan-Paton degrees of freedom (which can 
be thought of as images under f?) and so an SU(2) gauge group130, 132. 

When v = 0, p-1 pi = 1 identically and there is a full ten-dimensional 
spinor of supersymmetries. This is the same as for the original type I 
theory, to which it is T-dual. In D = 4 units, this is N = 4, or sixteen 
supercharges. For v = 4 or v = 8 there is D = 4 N = 2 supersymmetry. 

Let us now study the spectrum for v = 4, saving v = 8 for later. 
Sometimes it is useful to draw a quick table showing where the branes are 
located. Here is one for the (9,5) system, where the D5-brane is pointlike 
in the x 6 , x 7, x 8 , x 9 directions and the D9-brane is (of course) extended 
everywhere. 

• • • • 

A dash under xi means that the brane is extended in that direction, while 
a dot means that it is pointlike there. 

Continuing with our analysis, we see that the NS zero-point energy is 
zero. There are four periodic world-sheet fermions ?j;i, namely those in the 
ND directions. The four zero modes generate 24/ 2 or four ground states, 
of which two survive the GSO projection. In the R sector the zero-point 
energy is also zero; there are four periodic transverse ?j;, from the NN and 
DD directions not counting the directions /L = 0,1. Again these generate 
four ground states of which two survive the GSO projection. The full 
content of the p - pi system is then is half of an N = 2 hypermultiplet. 
The other half comes from the pi - P states, obtained from the orientation 
reversed strings: these are distinct because for v i- ° the ends are always 
on different D-branes. 

Let us write the action for the bosonic p - pi fields XA , starting with 
(p,p') = (9,5). Here A is a doublet index under the SU(2)R of the N = 2 
alge bra. The field XA has charges (+ 1, -1) under the U (1) x U (1) gauge 
theories on the branes, since one end leaves, and the other arrives. The 

* We will see that there are supersymmetric bound states when 1/ = 2. 
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minimally coupled action is then 

J d6e (tl(aa+iAa-iA~)xI2+(4 21 + 4 21 )i)XtT1 X)2) , 
a=O gYM,p gYM,p' 1=1 

(11.6) 

with Aa and A~ the brane gauge fields, gYM,p and gYM,p' the effective 
Yang-Mills couplings (8.13), and T1 the Pauli matrices. The second term 
is from the N = 2 D-terms for the two gauge fields. It can also be written 
as a commutator Tr [¢i, ¢JF for appropriately chosen fields ¢i, showing 
that its form is controlled by the dimensional reduction of an p2 pure 
Yang-Mills term. See section 13.1 for more on this. 

The integral is over the five-brane world-volume, which lies in the nine­
brane world-volume. Under T-dualities in any of the ND directions, one 
obtains (p,p') = (8,6), (7,7), (6,8), or (5,9), but the intersection of the 
branes remains (5 + 1 )-dimensional and the p - pi strings live on the inter­
section with action (11.6). In the present case the D-term is non-vanishing 
only for XA = 0, though more generally (say when there are several co­
incident p and pi -branes), there will be additional massless charged fields 
and fiat directions arise. 

Under T-dualities in T NN directions, one obtains (p, pi) = (9 - T, 5 - T). 
The action becomes 

(11. 7) 

The second term, proportional to the separation of the branes, is from 
the tension of the stretched string. 

11.2 The BPS bound for the Dp-Dp' system 

The ten dimensional N = 2 supersymmetry algebra (in a Majorana 
basis) is 

{Qa, Q~} 

{Qa, Q~} 

{Qa, Q~} 

2(rOrtL)a~(PtL + Q~s /2Tr(y') 

2(rOrtL)a~(PtL - Q~s /2Trc/) 

2 L ;~ (rOrm1 ... rmp)a~Q~l .. mp· 
p 

(11.8) 
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11.2 The BPS bound for the Dp-Dp' system 253 

Here QNS is the charge to which the NS-NS two-form couples, it is es­
sentially the winding of a fundamental string stretched along M 1: 

QNS == QNS r dX{!. with QNS = _1_ r e-2<I> * H(3) (11.9) 
{! VI JMl' VolS7 JS7 

and the charge QNS is normalised to one per unit spatial world-volume, 
VI = L, the length of the string. It is obtained by integrating over the 8 7 

which surrounds the string. The QR are the R-R charges, defined as a 
generalisation of winding on the space Mp: 

QR == Q: j dX{!l /\ ... dX{!p with {!l ... {!p , 
QR = 1 r *C(p+2). 

p Vol 8 8-p J S8-p vp Mp 
(11.10) 

The sum in (11.8) runs over all orderings of indices, and we divide by p! 
Of course, p is even for IIA or odd for IIB. The R-R charges appear in 
the product of the right- and left-moving supersymmetries, since the cor­
responding vertex operators are a product of spin fields, while the NS-NS 
charges appear in right-right and left-left combinations of supercharges. 

As an example of how this all works, consider an object of length L, 
with the charges of p fundamental strings CF-strings', for short) and q 
Dl-branes CD-strings') in the IIB theory, at rest and aligned along the 
direction Xl. The anticommutator implies 

q/ g8] L(rOr1 )aj3 . 

-p 27Ta' 

(11.11) 

The eigenvalues of rOr1 are ±1 so those of the right hand side are }\;I ± 
L(p2 + q2 / g2)1/2 /27Ta'. The left side is a positive matrix, and so we get 
the 'BPS bound' on the tension 133 

Quite pleasingly, this is saturated by the fundamental string, 
(1,0), and by the D-string, (p, q) = (0,1). 

(11.12) 

(p, q) = 

It is not too hard to extend this to a system with the quantum numbers 
of Dirichlet p and p' branes. The result for v a multiple of four is 

lVI :2 TpVp + Tp'Vp' 
and for v even but not a multiple of four it is t 

M :2 VTJV~ + T;,V;,. 

(11.13) 

(11.14) 

t The difference between the two cases comes from the relative sign of rM (rM')T and 
r M ' (rM)T. 
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254 11 Multiple D-branes and bound states 

The branes are wrapped on tori of volumes vp and v~ in order to make 
the masses finite. 

The results (11.13) and (11.14) are consistent with the earlier results 
on supersymmetry breaking. For lJ a multiple of four, a separated p-brane 
and p'-brane do indeed saturate the bound (11.13). For lJ not a multiple 
of four, they do not saturate the bound (11.14) and cannot be supersym­
metric. 

11.3 Bound states of fundamental strings and D-strings 

Consider a parallel Dl-brane (D-string) and a fundamental string 
(F -string) lying along Xl. The total tension 

-1 + 1 gs 
TDI + TFI = 2 / 

'ITa 
(11.15) 

exceeds the BPS bound (11.12) and so this configuration is not super­
symmetric. However, it can lower its energy26 as shown in figure 11.1. 
The F -string breaks, its endpoints attached to the D-string. The end­
points can then move off to infinity, leaving only the D-string behind. Of 
course, the D-string must now carry the charge of the F -string as well. 
This comes about because the F-string endpoints are charged under the 
D-string gauge field, so a flux runs between them; this flux remains at the 
end. Thus the final D-string carries both the NS-NS and R-R two-form 
charges. The flux is of order gs, its energy density is of order g8, and so the 
final tension is (g;;l + O(gs)) /2'ITa/. This is below the tension of the sepa­
rated strings and of the same form as the BPS bound (11.12) for a (1,1) 
string. A more detailed calculation shows that the final tension saturates 

(a) 

J 

j 
(b) (c) 

Fig. 11.1. (a) A parallel D-string and F-string, which is not supersymmet­
ric. ( b) The F -string breaks, its ends attaching to the D-string, resulting 
in (c) the final supersymmetric state, a D-string with flux. 
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11.4 The three-string junction 255 

the bound118 , so the state is supersymmetric. In effect, the F-string has 
dissolved into the D-string, leaving flux behind. 

We can see quite readily that this is a supersymmetric situation using 
T -duality. We can choose a gauge in which the electric flux is FOl =.fb. 
T-dualising along the xl direction, we ought to get a DO-brane, which we 
do, except that it is moving with constant velocity, since we get Xl = 

27TOOl fb. This clearly has the same supersymmetry as a stationary DO­
brane, having been simply boosted. 

To calculate the number of BPS states we should put the strings in a 
box of length L to make the spectrum discrete. For the (1,0) F-string, 
the usual quantisation of the ground state gives eight bosonic and eight 
fermionic states moving in each direction for 162 = 256 in all. This is 
the ultrashort representation of supersymmetry: half the 32 generators 
annihilate the BPS state and the other half generate 28 = 256 states. The 
same is true of the (0,1) D-string and the (1,1) bound state just found, 
as will be clear from the later duality discussion of the D-string. 

It is worth noting that the (1,0) F-string leaves unbroken half the su­
persymmetry and the (0, 1) D-string leaves unbroken a different half of the 
supersymmetry. The (1,1) bound state leaves unbroken not the intersec­
tion of the two (which is empty), but yet a different half. The unbroken 
symmetries are linear combinations of the unbroken and broken super­
symmetries of the D-string. 

All the above extends immediately to p F-strings and one D-string, 
forming a supersymmetric (p, 1) bound state. The more general case of 
p F -strings and q D-strings is more complicated. The gauge dynamics 
are now non-Abelian, the interactions are strong in the infrared, and no 
explicit solution is known. When p and q have a common factor, the 
BPS bound makes any bound state only neutrally stable against falling 
apart into subsystems. To avoid this complication let p and q be relatively 
prime, so any supersymmetric state is discretely below the continuum 
of separated states. This allows the Hamiltonian to be deformed to a 
simpler supersymmetric Hamiltonian whose supersymmetric states can 
be determined explicitly, and again there is one ultrashort representation, 
256 states. It is left to the reader to consult the literature26 , I for the 
details. 

11.4 The three-string junction 

Let us consider further the BPS saturated formula derived and studied in 
the two previous subsections, and write it as follows: 

(11.16) 
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An obvious solution to this is 

Tp,q SIn GO = qTO,l, Tp,q cos GO = PT1,o. (11.17) 

with tan GO = q/ (pgs). Recall that these are tensions of strings, and there­
fore we can interpret the equations (11.17) as balance conditions for 
the components of forces. In fact, it is the required balance for three 
strings137, 135, and we draw the case of p = q = 1 in figure 11.2. 

Is this at all consistent with what we already know? The answer is yes. 
An F-string is allowed to end on a D-string by definition, and a (1,1) 
string is produced, due to flux conservation, as we discussed above. The 
issue here is just how we see that there is bending. The first thing to 
notice is that the angle GO goes to 'IT /2 in the limit of zero string coupling, 
and so the D-string appears in that case to run straight. This had better 
be true, since it is then clear that we simply were allowed to ignore the 
bending in our previous weakly coupled string analysis. (This study of 
the bending of branes beyond zero coupling has important consequences 
for the study of one-loop gauge theory data139 . We shall study some of 
this later on.) 

Parenthetically, it is nice to see that in the limit of infinite string cou­
pling, GO goes to zero. The diagram is better interpreted as aD-string 
ending on an F -string with no resulting bending. This fits nicely with 
the fact that the D- and F-strings exchange roles under the strong/weak 
coupling duality (,S-duality') of the type IIB string theory, as we shall see 
in chapter 12. 

When we wrote the linearised Blon equations in section 5.7, we ignored 
the 1+1 dimensional case. Let us now include that part of the story here 

(0,1) 

(a) 

(1,0) 

(b) 

(1,0) 

(0,1) 

Fig. 11.2. (a) When an F-string ends on a D-string it causes it to bend at 
an angle set by the string coupling. On the other side of the junction is 
a (1,1) string. This is in fact a BPS state. (b) Switching on some amount 
of the R-R scalar can vary the other angle, as shown. 
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11.4 The three-string junction 257 

as a 1+1 dimensional gauge theory discussion. There is a flux P01 on the 
world-volume, and the end of the F -string is an electric source. Given that 
there is only one spatial dimension, the F -string creates a discontinuity 
on the flux, such that e.g. 140, 60: 

F01 = {gS' 
0, 

so we can choose a gauge such that 

Ao = {gSXI, 
0, 

:rl > 0 
:rl < 0' 

Xl> 0 
Xl < O' 

(11.18) 

(11.19) 

Just as in section 5.7, this is BPS if one of the eight scalars <[>m is also 
switched on so that 

(11.20) 

How do we interpret this? Since (27Ta/)<[>2 represents the x2 position of 
the D-string, we see that for xl < 0 the D-string is lying along the xl 

axis, while for xl > 0, it lies on a line forming an angle tan- I (I/gs ) with 
h I' t ex, aXIS. 

Recall the Tl-dual picture we mentioned in the previous section, where 
we saw that the flux on the D-string (making the (1,1) string) is equivalent 
to a DO-brane moving with velocity (27Ta/)F01' Now we see that the DO­
brane loses its velocity at xl = O. This is fine, since the apparent impulse 
is accounted for by the momentum carried by the F-string in the T-dual 
picture. (One has to tilt the diagram in order to T -dualise along the (1,1) 
string in order to see that there is F-string momentum.) 

Since we have seen many times that the presence of flux on the world­
volume of a Dp-brane is equivalent to having a dissolved D(p - 2)-brane, 
i.e. non-zero C(p-l) source, we can modify the flux on the :rl < 0 part 
of the string this way by turning on the R-R scalar Co. This means that 
<[>2 (:rl) will be linear there too, and so the angle {-J between the D- and F­
strings can be varied too (see figure 11. 2 ( b) ). It is interesting to derive the 
balance conditions from this, and then convert it into a modified tension 
formula, but we will not do that herel40 . 

It is not hard to imagine that given the presence we have already de­
duced of a general (p, q) string in the theory that there are three-string 
junctions to be made out of any three strings such that the (p, q)-charges 
add up correctly, giving a condition on the angles at which they can 
meet. This is harder to do in the full non-Abelian gauge theories on their 
world-volumes, but in fact a complete formula can be derived using the 
underlying 5L(2, Z) symmetry of the type IIB string theory. We will have 
more to say about this symmetry later. 
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General three-string junctions have been shown to be important in a 
number of applications, and there is a large literature on the subject which 
we are unfortunately not able to review here. 

11.5 Aspects of D-brane bound states 

Bound states of p-branes and pl-branes have many applications. Some of 
them will appear in our later lectures, and so it is worth listing some of 
the results here. Here we focus on pi = 0, since we can always reach it 
from a general (p, pi) using T -duality. 

11.5.1 0-0 bound states 

The BPS bound for the quantum numbers of n O-branes is nTo, so any 
bound state will be at the edge of the continuum. What we would like 
to know is if there is actually a true bound state wave function, i.e. a 
wavefunction which is normalisable. To make the bound state counting 
well defined, compactify one direction and give the system momentum 
m/ R with m and n relatively prime141 . The bound state now lies discretely 
below the continuum, because the momentum cannot be shared evenly 
among unbound subsystems. 

This bound state problem is T-dual to the one considered in section 
11.3. Taking the T-dual, the n DO-branes become D1-branes, while the 
momentum becomes winding number, corresponding to m F-strings. There 
is therefore one ultrashort multiplet of supersymmetric states when m and 
n are relatively prime141 . This bound state should still be present back in 
infinite volume, since one can take R to be large compared to the size of 
the bound state. There is a danger that the size of the wavefunction we 
have just implicitly found might simply grow with R such that as R ----+ 00 

it becomes non-normalisable again. More careful analysis is needed to 
show this. It is sufficient to say here that the bound states for arbitrary 
numbers of DO-branes are needed for the consistency of string duality, 
so this is an important problem. Some strong arguments have been pre­
sented in the literature (n = 2 is proven), but the general case is not yet 
proven142 . 

11.5.2 0-2 bound states 

Now the BPS bound (expression (11.14)) puts any bound state discretely 
below the continuum. One can see a hint of a bound state forming by 
noticing that for a coincident DO-brane and D2-brane the NS 0-2 string 
has a negative zero-point energy (11.2) and so a tachyon (which survives 
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the GSO projection), indicating an instability towards forming something 
else. In fact the bound state (one short representation) is easily described: 
the DO-brane dissolves in the D2-brane, leaving flux, as we have seen 
numerous times. The brane R-R action (expression (9.9)) contains the 
coupling C(l)F, so with the flux the D2-brane also carries the DO-brane 
charge143 . There is also one short multiplet for n DO-branes. This same 
bound state is always present when 1/ = 2. 

11.5.3 0-4 bound states 

The BPS bound (11.13) makes any bound state marginally stable, so the 
problem is made well-defined as in the 0-0 case by compactifying and 
adding momentum144 . The interactions in the action (11.7) are relevant 
in the infrared so this is again a hard problem, but as before it can be 
deformed into a solvable supersymmetric system. Again there is one mul­
tiplet of bound states144 . Now, though, the bound state is invariant only 
under ~ of the original supersymmetry, the intersection of the supersym­
metries of the DO-brane and of the D4-brane. The bound states then lie 
in a short (but not ultrashort) multiplet of 212 states. 

For two DO-branes and one D4-brane, one gets the correct count as 
follows 145 . Think of the case that the volume of the D4-brane is large. 
The 16 supersymmetries broken by the D4-brane generate 256 states that 
are delocalised on the D4-brane. The eight supersymmetries unbroken by 
the D4-brane and broken by the DO-brane generate 16 states (half bosonic 
and half fermionic), localised on the DO-brane. The total number is the 
product 212. Now count the number of ways two DO-branes can be put 
into their 16 states on the D4-brane: there are eight states with both DO­
branes in the same (bosonic) state and ~ 16 ·15 states with the D-branes in 
different states, for a total of 8 ·16 states. But in addition, the two-branes 
can bind, and there are again 16 states where the bound state binds to the 
D4-brane. The total, tensoring again with the D4-brane ground states, is 
9·16·256. 

For n DO-branes and one D4-brane, the degeneracy Dn is given by the 
generating functional 145 (see insert 3.4, p. 92): 

00 00 (1+ k)8 L qn Dn = 256 II 1 _ q k ' 

n=O k=l q 
(11.21) 

where the term k in the product comes from bound states of k DO-branes 
then bound to the D4-brane. Some discussion of the DO-D4 bound state, 
and related issues, can be found in the references146 . 
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11.5.4 0-6 bound states 

The relevant bound is (11.14) and again any bound state would be below 
the continuum. The NS zero-point energy for 0-6 strings is positive, so 
there is no sign of decay. One can give DO-brane charge to the D6-brane 
by turning on flux, but there is no way to do this and saturate the BPS 
bound. So it appears that there are no supersymmetric bound states. 
Notice that, unlike the 0-2 case, the 0-6 interaction is repulsive, both at 
short distance and at long. 

11.5.5 0-8 bound states 

The case of the D8-brane is special, since it is rather big. It is a domain 
wall, because there is only one spatial dimension transverse to it. In fact, 
the D8-brane on its own is not really a consistent object. Trying to put 
it into type IIA runs into trouble, since the string coupling blows up a 
finite distance from it on either side because of the nature of its coupling 
to the dilaton. To stop this happening, one has to introduce a pair of 
08-planes, one on each side, because they (for SO groups) have negative 
charge (-8 times that of the D8-brane) and can soak up the dilaton. We 
therefore should have 16 D8-branes for consistency, and so we end up in 
the type I' theory, the T-dual of type 1. The bound state problem is now 
quite different, and certain details of it pertain to the strong coupling 
limit of certain string theories, and their 'matrix,157 formulation147, 148. 
We shall revisit this in section 12.5. 
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Strong coupling and string duality 

One of the most striking results of the mid-1990s was the realisation that 
all of the superstring theories are in fact dual to one another at strong 
coupling149 . This also brought eleven dimensional supergravity into the 
picture and started the search for M-theory, the dynamical theory within 
which all of those theories would fit as various effective descriptions of 
perturbative limits. All of this is referred to as the 'Second Superstring 
Revolution'. Every revolution is supposed to have a hero or heroes. We 
shall consider branes to be cast in that particular role, since they (and 
D-branes especially) supplied the truly damning evidence of the strong 
coupling fate of the various string theories. 

We shall discuss aspects of this in the present section. We simply study 
the properties of D-branes in the various string theories, and then trust 
to that fact that as they are BPS states, many of these properties will 
survive at strong coupling. 

12.1 Type lIB/type lIB duality 

12.1.1 D1-bmne collective coordinates 

Let us first study the D1-brane. This will be appropriate to the study of 
type IIB and the type I string by O-projection. Its collective dynamics 
as a BPS soliton moving in fiat ten dimensions is captured by the 1+1 
dimensional world-volume theory, with 16 or 8 supercharges, depending 
upon the theory we are in. (See figure 12.1(a).) 

It is worth first setting up a notation and examining the global symme­
tries. Let us put the D1-brane to lie along the xl direction, as we will do 
many times in what is to come. This arrangement of branes breaks the 

261 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


262 12 Strong coupling and string duality 

Lorentz group up as follows: 

SO(I, 9) ~ SO(I, 1)01 x SO(8h-9. (12.1) 

Accordingly, the supercharges decompose under (12.1) as 

(12.2) 

where ± subscripts denote a chirality with respect to SO(I, 1). 
For the 1-1 strings, there are eight Dirichlet-Dirichlet (DD) directions, 

the Neveu-Schwarz (NS) sector has zero point energy -1/2. The massless 
excitations form vectors and scalars in the 1 + 1 dimensional model. For the 
vectors, the Neumann-Neumann (NN) directions give a gauge field Aft. 
Now, the gauge field has no local dynamics, so the only contentful bosonic 
excitations are the transverse fluctuations. These come from the eight 
Dirichlet-Dirichlet (DD) directions xm , m = 2, ... ,9, and are 

Aom( 0 1). '+' x,x . (12.3) 

The fermionic states ~ from the Ramond (R) sector (with zero point 
energy 0, as always) are built on the vacua formed by the zero modes 
?/Jb, i=O, ... ,9. This gives the initial 16. The GSa projection acts on the 
vacuum in this sector as: 

(12.4) 

A left- or right-moving state obeys rOr1~± = ±~±, and so the projection 
onto (-1) F ~ =~ says that left- and right-moving states are odd and (re­
spectively) even under r2 ... r9, which is to say that they are either in 
the 8s or the 8c . So we see that the GSa projection simply correlates 
world-sheet chirality with spacetime chirality: ~_ is in the 8e of SO(8) 
and ~+ is in the 8s . 

So we have seen that for a Dl-brane in type IIB string theory, the 
right-moving spinors are in the 8s of SO(8), and the left-moving spinors 
in the 8 c . These are the same as the fluctuations of a fundamental IIB 
string, in static gauge26 , and here spacetime supersymmetry is manifest. 
(!t is in 'Green-Schwarz' form 108 .) There, the supersymmetries Qa and 
Qa have the same chirality. Half of each spinor annihilates the F-string 
and the other half generates fluctuations. Since the supersymmetries have 
the same SO(9, 1) chirality, the SO(8) chirality is correlated with the 
direction of motion. 

So far we have been using the string metric. We can switch to the 
Einstein metric, g1~) = e-iJ:>/2g1~), since in this case gravitational action 
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has no dependence on the dilaton, and so it is invariant under duality. 
The tensions in this frame are: 

F -string: g~/2 /2'ITci 
D-string: g;1/2/27W'. (12.5) 

Since these are BPS states, we are able to trust these formulae at arbitrary 
values of g8' 

Let us see what interpretation we can make of these formulae. At weak 
coupling the D-string is heavy and the F -string tension is the lightest scale 
in the theory. At strong coupling, however, the D-string is the lightest ob­
ject in the theory (a dimensional argument shows that the lowest dimen­
sional branes have the lowest scale150), and it is natural to believe that 
the theory can be reinterpreted as a theory of weakly coupled D-strings, 
with g~ = g;;l. One cannot prove this without a non-perturbative defi­
nition of the theory, but quantising the light D-string implies a large 
number of the states that would be found in the dual theory, and self­
duality of the IIB theory seems by far the simplest interpretation - given 
that physics below the Planck energy is described by some specific string 
theory, it seems likely that there is a unique extension to higher energies. 
This agrees with the duality deduced from the low energy action and other 
considerations149, 164. In particular, the NS-NS and R-R two-form poten­
tials, to which the D- and F -strings respectively couple, are interchanged 
by this duality. 

This duality also explains our remark about the strong and weak cou­
pling limits of the three string junction depicted in figure 11.2. The roles 
of the D- and F -strings are swapped in the g8 ----+ 0, 00 limits, which fits 
with the two limiting values 0: ----+ 'IT /2, O. 

12.1.2 S-duality and SL(2, Z) 

The full duality group of the D = 10 type IIB theory is expected to be 
5L(2,Z)151, 153. This relates the fundamental string not only to the R-R 
string but to a whole set of strings with the quantum numbers of p 
F -strings and q D-strings for p and q relatively prime133 . The bound states 
found in section 11.3 are just what is required for SL(2, Z) duality26. 
As the coupling and the R-R scalar are varied, each of these strings be­
comes light at the appropriate point in moduli space. We shall study this 
further in section 16.1, on the way to uncovering 'F-theory', a tool for 
generating very complicated type IIB backgrounds by geometrising the 
5L(2, Z) symmetry. 
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12.2 SO(32) Type I/heterotic duality 

12.2.1 D 1-brane collective coordinates 

Let us now consider the Dl-brane in the type I theory. We must modify 
our previous analysis in two ways. First, we must project onto O-even 
states. 

As in section 2.6, the U(I) gauge field A is in fact projected out, 
since at is odd under O. The normal derivative an, is even under 0, and 
hence the <I>m survive. Turning to the fermions, we see that 0 acts as 
ei1T (Sl +S2+S 3+S 4) and so the left-moving 8e is projected out and the right­
moving 8s survives. 

Recall that D9-branes must be introduced after doing the 0 projection 
of the type IIB string theory. These are the SO(32) Chan-Paton factors. 
This means that we must also include the massless fluctuations due to 
strings with one end on the Dl-brane and the other on a D9-brane (see 
figure 12.1(b)). The zero point energy in the NS sector for these states is 
1/2, and so there is way to make a massless state. The R sector has zero 
point energy zero, as usual, and the ground states come from excitations 
in the xO, xl direction, since it is in the NN sector that the modes are 
integer. The GSa projection (_)F = rOrl will project out one of these, 
A_, while the right-moving one will remain. The 0 projection simply 
relates 1-9 strings to 9-1 strings, and so places no constraint on them. 
Finally, we should note that the 1-9 strings, as they have one end on a 
D9-brane, transform as vectors of SO(32). 

Now, by the argument that we saw in the case of the type IIB string, 
we should deduce that this string becomes a light fundamental string in 
some dual string theory at strong coupling. We have seen such a string 
before in section 7.2. It is the 'heterotic' string, which has (0,1) spacetime 
supersymmetry, and a left-moving family of 32 fermions transforming 
as the 32 of SO(32). They carry a current algebra which realises the 

(a) (b) 
Fig. 12.1. Dl-branes (a) in type IIB theory its fluctuations are described 
by 1-1 strings; ( b) in type I string theory, there are additional contribu­
tions from 1-9 strings. 
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50(32) as a spacetime gauge symmetry. The other ten dimensional het­
erotic string, with gauge group Es x E s , has a strong coupling limit which 
we will examine shortly, using the fact that upon compactifying on a circle, 
the two heterotic string theories are perturbatively related by T-duality 
(see section 8.1.3) 173, 174. 

We have obtained the 50(32) string here with spacetime supersymme­
try and with a left-moving current algebra 50(32) in fermionic form 162 . 
As we learned in section 7.2, we can bosonise these into the 16 chiral 
bosons which we then used to construct the heterotic string in the first 
instance. This also fits rather well with the fact that we had already 
noticed that we could have deduced that such a string theory might ex­
ist just by looking at the supergravity sector in section 7.3. This is just 
how type I/heterotic duality was deduced first 153, 164 and then D-brane 
constructions were used to test it more sharply162. We shall see that con­
siderations of the strong coupling limit of various other string theories 
will again point to the existence of the heterotic string. We have already 
seen hints of that in chapter 7, as discussed in insert 7.5. Of course, the 
heterotic strings were discovered by direct perturbative construction, but 
it is amusing to thing that, in another world, they may be discovered by 
string duality. 

We end with a brief remark about some further details that we shall 
not pursue. Recall that it was mentioned at the end of section 7.2, the 
fermionic 50(32) current algebra requires a GSO projection. By consid­
ering a closed D1-brane we see that the [2 projection removes the U(l) 
gauge field, but in fact allows a discrete gauge symmetry: a holonomy ±1 
around the D1-brane. This discrete gauge symmetry is the GSO projec­
tion, and we should sum over all consistent possibilities. The heterotic 
strings have spinor representations of 50(32), and we need to be able to 
make them in the Type I theory, in order for duality to be correct. In the R 
sector of the discrete D 1-brane gauge theory, the 1-9 strings are periodic. 
The zero modes of the fields Wi, representing the massless 1-9 strings, 
satisfy the Clifford algebra {wb, Wb} = oij, for i, j = 1, ... ,32, and so just 
as for the fundamental heterotic string we get spinors 2 31 ttl 231. One of 
them is removed by the discrete gauge symmetry to match the spectrum 
with a single massive spinor which we uncovered directly using lattices in 
section 7.2.1. 

12.3 Dual branes from 10D string-string duality 

There is an instructive way to see how the D-string tension turns into 
that of an F-string. In terms of supergravity fields, part of the duality 
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transformation (7.46) involves 

<I> ----+ - <I> , (12.6) 

where the quantities on the right, with tildes, are in the dual theory. This 
means that in addition to gs = g;;l, for the relation of the string coupling 
to the dual string coupling, there is also a redefinition of the string length, 
VIa 

which is the same as 

/ --1 - / a = gs a, 

/ -1 -/ a g8 = a. 

Starting with the D-string tension, these relations give: 

1 1 F 
T1 = ----+ - T 2 / -2 -/ - 1, 'lTa g8 'lTa 

precisely the tension of the fundamental string in the dual string theory, 
measured in the correct units of length. 

One might understandably ask the question about the fate of other 
branes under S-dualities165 . For the type IIB's D3-brane: 

1 1 
T3 = ----+ = T3 

(2'lT)3a'2gs (2'lT)3 0/2gs ' 

showing that the dual object is again a D3-brane. For the D5-brane, in 
either type IIB or type I theory: 

1 1 F 
T5 = ----+ = T5 (2'lT)5a /3gs (2'lT)5ij:'3g; . 

This is the tension of a fivebrane which is not a D5-brane. This is inter­
esting, since for both dualities, the R-R two-form C(2) is exchanged for 
the NS-NS two-form B(2), and so this fivebrane is magnetically charged 
under the latter. It is in fact the magnetic dual of the fundamental string. 
Its g;;2 behaviour identifies it as a soliton of the NS-NS sector. 

So we conclude that there exists in both the type IIB and SO(32) het­
erotic theories such a brane, and in fact such a brane can be constructed 
directly as a soliton solution. They should perhaps be called 'F5-branes', 
since they are magnetic duals to fundamental strings or 'F1-branes', but 
this name never stuck. They go by various names like 'NS5-brane', since 
they are made of NS-NS sector fields, or 'solitonic fivebrane', and so on. 
As they are constructed completely out of closed string fields, T-duality 
along a direction parallel to the brane does not change its dimensionality, 
as would happen for a D-brane. We conclude therefore that they also exist 
in the T-dual type IIA and Es x Es string theories. Let us study them a 
bit further. 
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12.3.1 The heterotic NS-fivebrane 

For the heterotic cases, the soliton solution also involves a background 
gauge field, which is in fact an instanton. This follows from the fact that 
in type I string theory, the D5-brane is an instanton of the D9-brane gauge 
fields as we saw with dramatic success in section 9.2. We shall have even 
more to say about this later, when we uncover more properties of how 
to probe branes with branes. As we saw there and in chapter 7, through 
equation (7.38), Tr(F 1\ F) and tr(R 1\ R) both magnetically source the 
two-form potential C(2), since by taking one derivative: 

By strong/weak coupling duality, this must be the case for the NS-NS 
two form B(2). To leading order in a', we can make a solution of the 
heterotic low energy equation of motion with these clues quite easily as 
follows. Take for example an SU(2) instanton (the very object described 
in insert 9.4 when we reminded ourselves about non-trivial second Chern 
class) embedded in an SU(2) subgroup of the SO(4) in the natural de­
composition: SO(32) ~ SO(28) x SO(4). As we said, this will source 
some dH, which in turn will source the metric and the dilaton. In fact, 
to leading order in a', the corrections to the metric away from fiat space 
will not give any contribution to tr(R 1\ R), which has more derivatives 
than Tr(F 1\ F), and is therefore subleading in this discussion. The result 
should be an object which is localised in ]]{4 with a finite core size (the 
'dressed' instanton), and translationally invariant in the remaining 5 + 1 
directions. This deserves to be called a fivebrane. A solution realising this 
logic can be found, and it can be written as72 , 73: 

(12.7) 

showing its structure as an SU(2) instanton localised in x 6 , x 7 , x S, x 9 , with 
core size p. As before, r2 is the radial coordinate, and dO§ is a metric on 
a round S3. 

Once we have deduced the existence of this object in the SO(32) het­
erotic string, it is straightforward to see that it must exist in the Es x Es 
heterotic string too. We simply compactify on a circle in a world-volume 
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direction where there is no structure at all. Shrinking it away takes us to 
the other heterotic theory, with an NS5-brane of precisely the same sort 
of structure as above. Alternatively, we could have just constructed the 
fivebrane directly using the ideas above without appealing to T-duality 
at all. 

12.3.2 The type JIA and type JIB NS5-brane 

As already stated, similar reasoning leads one to deduce that there must 
be an NS5-brane in type II string theory*. We can deduce its supergravity 
fields by using the ten dimensional S-duality transformations to convert 
the case p = 5 of equations (10.38), (10.39), to give72 , 73: 

ds 2 = -dt2 + (dx 1 )2 + ... + (dx 5 )2 + Z5 (dr r + r2dO~) 

e2~ = g; Z 5 = g; (1 + O!:~), 
~-1 0 5 

B(6) = (Z5 - l)gsdx /\ ... /\ dx . (12.8) 

This solution has N units of the basic magnetic charge of B(2), and is a 
point in x 6 , x 7, x 8 , x 9 . Note that the same sort of transformation will give 
a solution for the fields around a fundamental IIB string, by starting with 
the p = 1 case of (10.38)163, 164. We shall do this in chapter 16. 

For the same reasons as for the heterotic string, once we have made 
an NS5-brane for the type IIB string, it is easy to see that we can use 
T-duality along a world-volume direction (where the solution is trivial) 
in order to make one in the type IIA string theory as well. 

A feature worth considering is the world-volume theory describing the 
low energy collective motions of these type II branes. This can be worked 
out directly, and string duality is consistent with the answer: from the 
duality, we can immediately deduce that the type IIB's NS5-brane must 
have a vector multiplet, just like the D5-brane. Also as with D5-branes, 
there is enhanced SU(N) gauge symmetry when N coincide160 , the extra 
massless states being supplied by light D1-branes stretched between them. 
(See figure 12.2.) The vector multiplet can be read off from table 7.1 as 
(2,2)+4(1,1)+2(1,2)+2(2,1). There are four scalars, which are the four 
transverse positions of the brane in ten dimensions. The fermionic content 
can be seen to be manifestly non-chiral giving a (1,1) supersymmetryon 
the world-volume. 

* In the older literature, it is sometimes called a 'symmetric fivebrane', after its left­
right symmetric CT-model description, in constrast to that of the heterotic NS5-brane. 
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NS5-branes 

/ ~ 

Dl-brane 

Fig. 12.2. D1-branes stretched between NS5-branes in type IIB string 
theory will give extra massless vectors when the NS5-branes coincide. 

For the type IIA NS5-brane, things are different. Following the T­
duality route mentioned above, it can be seen that the brane actually 
must have a chiral (0,2) supersymmetry. So it cannot have a vector mul­
tiplet any more, and instead there is a six dimensional tensor multiplet 
on the brane. So there is a two-form potential instead of a one-form po­
tential, which is interesting. The tensor multiplet can be read off from 
table 7.1 as (1,3) + 5(1,1) + 4(2, 1), with a manifestly chiral fermionic 
content. There are now five scalars, which is suggestive, since in their in­
terpretation as collective coordinates for transverse motions of the brane, 
there is an implication of an eleventh direction. This extra direction will 
become even more manifest in section 12.4. 

There is an obvious U(l) gauge symmetry under the transformation 
B~) -----+ B~) + dA(l), and the question arises as to whether there is a 
non-Abelian generalisation of this when many branes coincide. On the 
D-brane side of things, it is clear how to construct the extra massless 
states as open strings stretched between the branes whose lengths can 
shrink to zero size in the limit. Here, there is a similar, but less well­
understood phenomenon. The tensor potential on the world-volume is 
naturally sourced by six dimensional strings, which are in fact the ends of 
open D2-branes ending on the NS5-branes. The mass or tension of these 
strings is set by the amount that the D2-branes are stretched between 
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NS5-branes 

/ ~ 

D2-brane 

Fig. 12.3. D2-branes stretched between NS5-branes in type IIA string 
theory will give extra massless self-dual tensors when the NS5-branes 
coincide. 

two NS-branes, by precise analogy with the D-brane case. So we are led 
to the interesting case that there are tensionless strings when many NS5-
branes coincide, forming a generalised enhanced gauge tensor multiplet. 
(See figure 12.3.) These strings are not very well understood, it must be 
said. They are not sources of a gravity multiplet, and they appear not to 
be weakly coupled in any sense that is understood well enough to develop 
an intrinsic perturbation theory for them t. 

However, the theory that they imply for the branes is apparently well­
defined. The information about how it works fits well with the dualities 
to better understood things, as we have seen here, and as we will see 
later when we shall say a little more about it in chapter 18, since it can 
be indirectly defined using the AdS/eFT correspondence. It should be 
noted that we do not have to use D-branes or duality to deduce a number 
of the features mentioned above for the world-volume theories on the 
NS5-branes. That there is either a (1,1) vector multiplet or a (0,2) tensor 
multiplet was first uncovered by direct analysis of the collective dynamics 
of the NS5-branes as supergravity solitons in the type II theories159 . 

t The cogniscenti will refer to theories of non-Abelian 'gerbes' at this point. The reader 
should know that these are not small furry pets, but well-defined mathematical ob­
jects. They are (reportedly) a generalisation of the connection on a vector bundle, 
appropriate to two-form gauge fields90 . 
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12.4 Type IIA/M-theory duality 

Let us turn our attention to the type IIA theory and see if at strong 
coupling we can see signs of a duality to a useful weakly coupled theory. 
In doing this we will find that there are even stranger dualities than just a 
string-string duality (which is strange and beautiful enough as it is!), but 
in fact a duality which points us firmly in the direction of the unexplored 
and the unknown. 

12.4.1 A closer look at DO-branes 

Notice that, in the IIA theory, the DO-brane has a mass TO = a,-1/2gs, as 
measured in the string metric. As gs ----+ 00, this mass becomes light, and 
eventually becomes the lightest scale in the theory, lighter even than that 
of the fundamental string itself. 

We can trust the extrapolation of the mass formula done in this way 
because the DO-brane is a BPS object, and so the formula is protected 
from, for example, levelling off to some still not-too-light scale by loop 
corrections, etc. So we are being shown new features of the theory here, 
and it would be nice to make sense of them. Notice that in addition, we 
have seen in section 11.5 that n DO-branes have a single supersymmetric 
bound state with mass nTo. So in fact, these are genuine physical particles, 
charged under the U(I) of the R-R one-form C(l), and forming an evenly 
spaced tower of mass states which is become light as we go further to 
strong coupling. How are we to make sense of this in ten dimensional 
string theory? 

In fact, the spectrum we just described is characteristic of the appear­
ance of an additional dimension 152, 153, where the momentum (Kaluza­
Klein) states have masses n/ R and form a continuum is R ----+ 00. Here, 
R = a11/2gs, so weak coupling is small R and the theory is effectively ten 
dimensional, while strong coupling is large R, and the theory is eleven 
dimensional. We saw such Kaluza-Klein behaviour in section 4.2. The 
charge of the nth Kaluza-Klein particle corresponds to n units of mo­
mentum 1/ R in the hidden dimension. In this case, this U(I) is the R-R 
one form of type IIA, and so we interpret DO-brane charge as eleven di­
mensional momentum. 

12.4.2 Eleven dimensional supergravity 

In this way, we are led to consider eleven dimensional supergravity as the 
strong coupling limit of the type IIA string. This is only for low energy, 
of course, and the issue of the complete description of the short distance 
physics at strong coupling to complete the 'M-theory', is yet to be settled. 
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It cannot be simply eleven dimensional supergravity, since that theory 
(like all purely field theories of gravity) is ill-defined at short distances. 
A most widely examined proposal for the structure of the short distance 
physics is 'Matrix Theory,157, and we shall briefly discuss it in chapter 16. 

In the absence of a short distance theory, we have to make do with the 
low-energy effective theory, which is a graviton, and antisymmetric 3-form 
tensor gauge field A(3)' and their superpartners. Notice that this theory 
has the same number of bosonic and fermionic components as the type II 
theory. Take type IIA and note that the NS-NS sector has 64 bosonic 
components as does the R-R sector, giving a total of 128. Now count the 
number of physical components of a graviton, together with a three-form 
in eleven dimensions. The answer is 9 x 10/2 -1 = 44 for the graviton and 
9 x 8 x 7/(3 x 2) = 84 for the three-form. The superpartners constitute the 
same number of fermionic degrees of freedom, of course, giving an N = 1 
supersymmetry in eleven dimensions, equivalent to 32 supercharges. In 
fact, a common trick to be found in many discussions for remembering how 
to write the type IIA Lagrangian5 is simply to dimensionally reduce the 
eleven dimensional supergravity Lagrangian. Now we see that a physical 
reason lies behind it. The bosonic part of the action is: 

SIID = ~ jdllXV-G (R - 41 (F(4))2) - ~ jA(3) 1\ F(4) 1\ F(4), 
2K:11 8 12K:ll 

(12.9) 
and we shall work out 2K:Il = 161TGU shortly. 

To relate the type IIA string coupling to the size of the eleventh di­
mension we need to compare the respective Einstein-Hilbert actions153 , 
ignoring the rest of the actions for now: 

(12.10) 

The string and eleven dimensional supergravity metrics are equal up to 
an overall rescaling, 

GS/LV = (2G ll /L v (12.11) 

and so (8 = 21T RK:6g;, / K:Il. The respective masses are related n/ R = 

mll = (ms = n(To or R = a,1/2gs /(. Combining these with the re­
sult (7.44) for K:o, we obtain 

(12.12) 

and the radius in eleven dimensional units is: 

R - 2/3 [2-7/ 9 -8/9 2/9] - gs 1T K: ll · (12.13) 
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In order to emphasise the basic structure we hide in braces numerical 
factors and factors of 1\;11 and ex'. The latter factors are determined by di­
mensional analysis, with "11 having units of (llD supergravity length9/ 2 ) 

and 0' (string theory length2 ). We are free to set ( = 1, using the same 
metric and units in M-theory as in string theory. In this case 

and then R = gs£s. (12.14) 

The reason for not always doing so is that when we have a series of 
dualities, as below, there will be different string metrics. For completeness, 
let us note that if we define Newton's constant via 21\;I1 = 161TGU, then 
we have: 

£ = gl/3 r;;; = gl/3 £ p s v 0' s s' (12.15) 

See insert 12.1 for more about the Kaluza-Klein reduction. 

12.5 Es x Es heterotic string/M-theory duality 

We have deduced the duals of four of the five ten dimensional string 
theories. Let us study the final one, the Es x Es heterotic string, which 
is T-dual to the 50(32) string173, 174. 

Compactify on a large radius RHA and turn on a Wilson line which 
breaks Es x Es to 50(16) x 50(16). As we learned in section 8.1.3, this is 
T-dual to the 50(32) heterotic string, again with a Wilson line breaking 
the group to 50(16) x 50(16). The couplings and radii are related 

£2 
RHB = -RS , 

HA 

£s 
gs,HB = gs,HA -R . 

HA 
(12.16) 

Now use type I/heterotic duality to write this as a type I theory with153 

3/2 
-1/2 -1/2 £s 

RIB = gs,HB RHB = gs.HA R 1/ 2 ' 
HA 

-1 
gs,IB = gs,HB (12.17) 

The radius is very small, so it is useful to make another T-duality, to the 
'type I" or 'type lA' theory. The compact dimension is then a segment of 
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Insert 12.1. Kaluza-Klein relations 

It is amusing to work out the relationship between the metric in 
Einstein frame, and the metric and scalar in one dimension fewer, in 
either Einstein or another frame. The general case might be useful, 
so we will work it out, bearing in mind that for the eleven to ten case, 
the scalar is the type IIA dilaton <I>, but in other cases it is simply an 
additional modulus (there may already be a dilaton). We want to get 
to D dimensions, reducing on xD, and the higher dimensional metric 
shall be written in Kaluza-Klein form: 

Gfji/)dxMdxN = e2ael> (G~~)dxJ-LdxV + e2el>(dxD + AJ-LdxJ-L) 2) , 

where we have included the possibility that we will have to do a 
rescaling to change frames in the lower dimensions, by multiplying 
by e2ael>. This results in the Ricci scalar of the new metric being 
multiplied by e-2ael>. The determinant of the original metric becomes 
e2a (D+1)el>e2el> det[-G(D)], and so the reduced action is 

J dDx ea (D+1)el> eel> ded [_G(D)]e- 2a el> R(D). 

The total power of eel> which appears is o:(D + 1) + 1 - 20: = 1+ 
o:(D - 1). So now we can dial up whatever frame we desire. String 
frame would have an e-2el> , and so we get 1 + o:(D - 1) = -2, i.e. 
0: = -3/(D -1). For the case the D = 10, 0: = -1/3 and this means 
that 

length 'TrRIA with eight D8-branes and 08-planes at each end, and 

R - £~ - 1/2 R 1/ 2 £1/2 
IA - R - gs,HA HA 8 , 

IB 
3/2 

£8 -1/2 RHA 
98,IA = gs,IB R /C}2 = 9 s ,HA 3/2 /C}. 

IBV L. £s v 2 
(12.18) 

It is worth drawing a picture of this arrangement, and it is displayed in 
figure 12.4. Notice that since the charge of an 08-plane is precisely that 
of eight D8-branes, the charge of the R-R sector is locally cancelled at 
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Fig. 12.4. The type IA configuration of two groups of eight D8-branes 
and 08-planes resulting from a 50(16) x 50(16) Wilson line. 

each end. There is therefore no R-R flux in the interior of the interval and 
so crucially, we see that the physics between the ends of the segment is 
given locally by the IIA string. Now we can take RHA -----t 00 to recover the 
original ten dimensional theory (in particular the Wilson line is irrelevant 
and the original E8 x E8 restored). Both the radius and the coupling of 
the type IA theory become large. Since the bulk physics is locally that of 
the IIA string:!:, the strongly coupled limit is eleven dimensional. Taking 
into account the transformations (12.11) and (12.13), the radii of the two 
compact dimensions in M-theory units are 

R - ;--lR - 2/3 [2-11/18 -8/9 2/9] 9 - "IA IA - gs 7T i'C11 

R - 2./3 [2-7/9 -8/9 2/9] _ -.1/3R [2-10/9 -8/9 1-1/2 2/9] 
10 - gsJA 7T i'C11 - gs.HA HA 7T 0: i'C 11 · 

(12.19) 

Again, had we chosen (IA = 1, we would have 

RIO = RHA2- 1/ 3 , R9 = gsfs21/6. (12.20) 

+ Notice that this is not the case if the DS-branes are placed in a more general arrange­
ment where the charges are not cancelled locally. For such arrangements, the dilaton 
and R-R nine-form is allowed to vary piecewise linearly between neighbouring DS­
branes. The supergravity between the branes is the 'massive' supergravity considered 
by Romans97 . This is a very interesting topic in its own right, which we shall not 
have room to touch upon here. A review of some aspects, with references, is given in 
the bibliography181. 
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As R ---+ 00, RlO ---+ 00 also, while R9 remains fixed and (for gs large) 
large compared to the Planck scale. This suggests that in the strongly 
coupled limit of the ten dimensional Es x Es heterotic string an eleventh 
dimension again appears: it is a line segment of length R9 , with one Es 
ninebrane factor on each endpoint169 . 

We have not fully completed the argument, since we only have argued 
for SO(16) at each end. One way to see how the Es arises is to start 
from the other end and place eleven dimensional supergravity on a line 
segment. This theory is anomalous, but the anomaly can be cancelled 
by having 248 vector fields on each ten dimensional boundary169. So the 
120 of SO(16) is evidently joined by 128 new massless states at strong 
coupling. As we saw in section 7.2 in the decomposition of Es to SO(16), 
the adjoint breaks up as 248 = 120 EEl 128, where the 128 is the spinor 
representation of SO(16). Now we see why we could not construct this in 
perturbative type IA string theory. Spinor representations of orthogonal 
groups cannot be made with Chan-Paton factors. However, we can see 
these states as massive DO-D8 bound states, T-dual to the D1-D9 spinors 
we were able to make in the SO(32) case in section 12.2. Now, with SO(16) 
at each end, we can make precisely the pair of 128s we need. 

12.6 M2-branes and M5-branes 

12.6.1 Supergravity solutions 

Just as in the other supergravities, we can make extended objects in 
the theory. The most natural one to consider first, given what we have 
displayed as the content of the theory is one which carries the charge 
of the higher rank gauge field, A(3). This is a two dimensional brane 
(a membrane) which we shall call the 'M2-brane', and the solution is166 : 

where the eleven dimensional Planck length Rp is given by equation (12.15). 
By eleven dimensional Hodge duality, it is easy to see that there is 

another natural object, a fivebrane which is magnetically dual to the M2-
brane, called the 'M5-brane'167: 

ds 2 = 15-1/ 3 (-dt2 + (dx 1)2 + ... + (dx5 )2) + 1;/3 (dr2 + r2dO~) 

_ ( 327T2 NRg) 15 - 1 + 6 ,A(6) = 151dt 1\ dx 1 1\ . .. 1\ dx5 . (12.22) 
r 
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The tensions of the single (i.e. N = 1) M2- and M5-branes of eleven 
dimensional supergravity are: 

M = (2 )-5 0 -6 T5 7T t-p' (12.23) 

The product of the M-branes' tensions gives 

M M - 2 (2 )-80-9 - ~ T2 T5 - 7T 7T {'p - 2 
2K:11 

(12.24) 

and so is the minimum allowed by the quantum theory, in close analogy 
with what we know for D-branes from equation (8.20). 

12.6.2 From D-branes and NS5-branes to M-branes and back 

It is interesting to track the eleven dimensional origin of the various 
branes of the IIA theory154. The DO-branes are, as we saw above, are 
Kaluza-Klein states153 . The F1-branes, the IIA strings themselves, are 
wrapped M2-branes of M -theory. The D2-branes are M2-branes transverse 
to the eleventh dimension X lO . The D4-branes are M5-theory wrapped 
on X lO , while the NS5-branes are M5-branes transverse§ to X lO . The 
D6-branes, being the magnetic duals of the DO-branes, are Kaluza-Klein 
monopoles168, 152 (we shall see this directly later in section 15.2). As men­
tioned before, the D8-branes have a more complicated fate. To recapitu­
late, the point is that the D8-branes cause the dilaton to diverge within 
a finite distance162 , and must therefore be a finite distance from an ori­
entifold plane, which is essentially a boundary of spacetime as we saw in 
section 4.11. As the coupling grows, the distance to the divergence and 
the boundary necessarily shrinks, so that they disappear into it in the 
strong coupling limit: they become part of the gauge dynamics of the 
nine dimensional boundary of M -theory169, used to make the E8 x E8 
heterotic string, as discussed in more detail above. This raises the issue 
of the strong coupling limit of orientifolds in general. There are various 
results in the literature, but since the issues are complicated, and because 
the techniques used are largely strongly coupled field theory deductions, 
which take us well beyond the scope of this book, except for an 06-plane 
in section 15.3 and the 07-plane in sections 16.1.11 and 16.1.12, we will 
have to refer the reader to the literature235 . 

One can see further indication of the eleventh dimension in the world­
volume dynamics of the various branes. We have already seen this in 

§ The reader might like to check, using the Kaluza-Klein relations given at the end of 
insert 12.1, that the D2-brane and NS5-brane metrics can be obtained from the M2-
and M5-brane metrics and vice versa by reduction or the reverse, 'oxidation'. 
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section 12.3.2 where we saw that the type IIA NS5-brane has a chiral 
tensor multiplet on its world-volume, the five scalars of which are indica­
tive of an eleven dimensional origin. We saw in the above that this is 
really a precursor of the fact that it lifts to the M5-brane with the same 
world-volume tensor multiplet, when type IIA goes to strong coupling. 
The world-volume theory is believed to be a 5+ 1 dimensional fixed point 
theory (see insert 3.1). Consider as another example the D2-brane. In 
2 + 1 dimensions, the vector field on the brane is dual to a scalar, through 
Hodge duality of the field strength, *F2 = d¢. This scalar is the eleventh 
embedding dimension155 . It joins the other seven scalars already defining 
the collective modes for transverse motion to show that there are eight 
transverse dimensions. Carrying out the duality in detail, the D2-brane 
action is therefore found to have a hidden eleven dimensional Lorentz in­
variance. We shall see this feature in certain probe computations later on 
in section 15.2. So we learn that the M2-brane, which it becomes, has a 
2+ 1 dimensional theory with eight scalars on its world-volume. The exis­
tence of this theory may be inferred in purely field theory terms as being 
an infra-red fixed point (see insert 3.1) of the 2+1 dimensional gauge 
theory180. 

12.7 V-duality 

A very interesting feature of string duality is the enlargement of the non­
perturbative duality group under further toroidal compactification. There 
is a lot to cover, and it is somewhat orthogonal to most of what we 
want to do for the rest of the book, so we will err on the side of brevity 
(for a change). The example of the type II string on a five-torus T 5 is 
useful, since it is the setting for the simplest black hole state counting 
that we'll study in chapter 17, and we have already started discussing it 
in section 7.5. 

12.7.1 Type II strings on T 5 and E6(6) 

As we saw in section 7.5, the T-duality group is 0(5,5, Z). The 27 gauge 
fields split into 10+ 16+ 1 where the middle set have their origin in the R-R 
sector and the rest are NS-NS sector fields. The 0(5,5; Z) representations 
here correspond directly to the 10, 16, and 1 of 50(10). There are also 
42 scalars. 

The crucial point here is that there is a larger symmetry group of the 
supergravity, which is in fact E6,(6)' It generalises the SL(2,lR) (SU(l, 1)) 
S-duality group of the type IIB string in ten dimensions. In that case 
there are two scalars, the dilaton <I> and the R-R scalar c(O) , and they 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


12.7 U-duality 279 

take values on the coset space 

SL(2, JR) rv SU(l,l) 
U(l) - SO(2) . 

The low energy supergravity theory for this compactification has a con­
tinuous symmetry, E6(6) which is a non-compact version176 of E 6. (See 
insert 12.2.) 

The gauge bosons are in the 27 of E6(6) (Z), which is the same as the 27 
of E6(6)' The decomposition under SO(10) rv 0(5,5; Z) is familiar from 
grand unified model building: 27 ----+ 10 + 16 + 1. Another generalisation 
is that the 42 scalars live on the coset 

E6,(6) 

USp(8) . 

In the light of string duality, just as the various branes in type IIB string 
theory formed physical realisations of multiplets of SL(2, Z), so do the 
branes here. A discrete subgroup E6(6) (Z) is the 'U-duality' symmetry. 
The particle excitations carrying the 10 charges are just the Kaluza­
Klein and winding strings. The U-duality requires also states in the 16. 
These are just the various ways of wrapping Dp-branes to give D-particles 
(10 for D2, 5 for D4 and 1 for DO). Finally, the state carrying the 1 charge 
is the NS5-brane, wrapped entirely on the T5. 

In fact, the U-duality group for the type II strings on Td is Ed+1,(d+1) ' 

where for d = 4,3,2,1,0 we have that the definition of the appropriate 
E-group is SO(5, 5), SL(5), SL(2) x SL(3), SL(2) x JR+, SL(2). These 
groups can be seen with similar embedding of Dynkin diagrams to what 
we have done in insert 12.2. 

12.7.2 U-duality and bound states 

It is interesting to see how some of the bound state results from chap­
ter 11 fit the predictions of U-duality. We will generate U-transformations 
as a combination of T mn ... p , which is a T-duality in the indicated direc­
tions, and S, the IIB strong/weak coupling transformation. The former 
switches between Nand D boundary conditions and between momentum 
and winding number in the indicated directions. The latter interchanges 
the NS-NS and R-R 2-duals but leaves the R-R four-dual invariant, and 
acts correspondingly on the solitons carrying these charges. We denote by 
Dmn ... p a D-brane extended in the indicated directions, and similarly for 
F m a fundamental string and Pm a momentum-carrying BPS state. 

The first duality chain is 

(Dg, Fg) ~ (D789, Fg) ~ (D789, Dg) ~ (D78, D0)' 
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Insert 12.2. Origins of E6,(6) and other V-duality Groups 

One way of seeing roughly where E6,(6) comes from is as follows: 
The naive symmetry resulting from a T 5 compactification would be 
SL(5, lR), the generalisation of the SL(2, lR) of the T2 to the higher 
dimensional torus. There are two things which enlarge this somewhat. 
The first is an enlargement to SL(6, lR), which ought to be expected, 
since the type IIB string already has an SL(2, lR) in ten dimensions. 
This implies the existence of an an extra circle, enlarging the naive 
torus from T 5 to T6. This is of course something we have already dis­
covered in section 12.4: at strong coupling, the type IIA string sees 
an extra circle. Below ten dimensions, T-duality puts both type II 
strings on the same footing, and so it is most efficient to simply think 
of the problem as M-theory (at least in its eleven dimensional super­
gravity limit) compactified on a T6. Another enlargement is due to 
T-duality. As we have learned, the full T-duality group is 0(5,5, Z), 
and so we should expect a classical enlargement of the naive SL(5, lR) 
to 0(5,5). That E6,(6) contains these two enlargements can be seen 
quite efficiently in the following Dynkin diagrams181 . 

• • • • 
/ 5L(5) 

I • • • • • • • • 
0(5,5) 5L(6) 

I / 
• • • • 

E6,(6) 

(Actually, the above embedding is not unique, but we are not at­
tempting a proof here; we are simply showing that E6,(6) as is not un­
reasonable, given what we already know.) The notation E6,(6) means 
that by analytic continuation of some of the generators, we make a 
non-compact version of the group (much as in the same way as we 
get SL(2, lR) from SU(2)). The maximal number of generators for 
which this is possible is the relevant case here. 
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(The last symbol denotes a DO-brane, which is of course not extended 
anywhere.) Thus the D-string-F-string bound state is U-dual to the 0-2 
bound state, as previously indicated in sections 11.3 and 11.5. 

The second chain is 

The bound states of n DO-branes and m D4-branes are thus U-dual to 
fundamental string states with momentum n and winding number m. 
The bound state degeneracy (11.21) for m = 1 precisely matches the 
fundamental string degeneracy177, 144, 178. 

For m > 1 the same form (11.21) should hold but with n ----+ mn. This 
is believed to be the case, but the analysis (which requires the instanton 
picture described in the next section) does not seem to be complete178. 

A related issue is the question of branes ending on other branes 179, 
and we shall see more of this later. An F -string can of course end on a 
D-string, so from the first duality chain it follows that a Dp-brane can 
end on a D(p + 2)-brane. The key issue is whether the coupling between 
spacetime forms and world-brane fields allows the source to be conserved, 
as with the NS-NS two-dual source in figure 11.1. Similar arguments can 
be applied to the extended objects in M-theory179, 143. 
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D-branes and geometry I 

In previous chapters we became increasingly aware of the intimate rela­
tion of D-branes to both spacetime geometry and to gauge theory, via 
the collective description of their low energy dynamics. In fact, we have 
already seen that we can reinterpret many aspects of the spacetime ge­
ometry in which the brane moves by reference to the vevs of scalars in 
the world-volume gauge theory. In this chapter we explore this in much 
more detail, by using D-branes to probe a number of string theory back­
grounds, and find that they allow us to get a new handle on quite detailed 
properties of the geometry. In addition, we will find that D-branes can 
take on the properties of a variety of familiar objects, such as monopoles 
and instantons, depending upon the situation. 

13.1 D-branes as probes of ALE spaces 

One of the beautiful results which we uncovered soon after constructing 
the type II strings was that we can 'blow-up' the 16 fixed points of the 
T4/7L2 'orbifold compactification' to recover string propagation on the 
smooth hyper-Kahler manifold K3. (We had a lot of fun with this in 
section 7.6.) Strictly speaking, we only recovered the algebraic data of 
the K3 manifold this way, and it seemed plausible that the full metric 
geometry of the space is recovered, but how can we see this directly? 

We can recover the metric data by using a brane as a short distance 
'probe' of the geometry. This is a powerful technique, which has many 
useful applications as we shall see in numerous examples as we proceed. 

13.1.1 Basic setup and a quiver gauge theory 

Let us focus on a single orbifold fixed point, and the type IIB the­
ory. The full string theory is propagating on JPi.6 x (JPi.4/7L2), which arises 

282 
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from imposing a symmetry under the reflection R: (x6, x 7, x 8, x 9) ----+ 

(-x6, -x7, -x8, -x9), which we used before in section 7.6. Now we can 
place a D1-brane in this plane at x 2 , ... ,x9 = O. Let's draw a little table 
to help keep track of where everything is. 

xO xl x 2 x 3 x4 x 5 x 6 x 7 x 8 x 9 

D1 - - • • • • • • • • 
ALE - - - - - - • • • • 

(We have represented the ]R4 I7/.,2 (ALE) space as a sort of five dimensional 
extended object in the table, since it only has structure in the directions 
x 6, x 7, x 8, x 9.) 

The D1-brane can quite trivially sit at the origin and respect the sym­
metry R, but if it moves off the fixed point, it will break the 7/.,2 symmetry. 
In order for it to be able to move off the fixed point there also needs to 
be an image brane moving to the mirror image position. We therefore 
need two Chan-Paton indices: one for the D1-brane and the other for its 
7/.,2 image. So (to begin with) the gauge group carried by our D1-brane 
system living at the origin appears to be U(2), but this will be modified 
by the following considerations. Since R exchanges the D1-brane with its 
image, it can be chosen to act on an open string state as the exchange 
I = (Jl, and we shall use the Pauli matrices 

(J0 == (~ ~ ), (Jl == (~ ~ ), (J2 == (~ ~i ), (Jl == (~ ~ 1 ). 

(13.1) 

So we can write the representation of the action of R as: 

RI1jJ,ij) = Iii' IR1jJ,i'j')ry], that is, 

RI1jJ, ij) = (Jii'IR1jJ, i' j')(Jy]. (13.2) 

So it acts on the oscillators in the usual way but also switches the 
Chan-Paton factors for the brane and its image. The idea132 is that we 
must choose an action of the string theory orbifold symmetry on the 
Chan-Paton factors when there are branes present and make sure that 
the string theory is consistent in that sector too. Note that the action on 
the Chan-Paton factors is again chosen to respect the manner in which 
they appear in amplitudes, just as in section 2.5. 

We can therefore compute what happens. In the NS sector, the massless 
R-invariant states are, in terms of vertex operators: 

8t X M(J0,1, /L = 0,1 

i = 2,3,4,5 

m = 6,7,8,9. (13.3) 
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The first row is the vertex operator describing a gauge field with U(l) x 
U(l) as the gauge symmetry. The next row constitutes four scalars in the 
adjoint of the gauge group, parametrising the position of the D1-brane 
within the six-plane ]R6, and the last row is four scalars in the 'bifunda­
mental' charges (±1, =r=1) of the gauge group the transverse position on 
x 6 , x 7, x 8 , x 9 . Let us denote the corresponding D-string fields Aft, Xi, X m , 

all 2 x 2 matrices. We may draw a 'quiver diagram,188 displaying this 
gauge and matter content (see figure 13.1). 

Such diagrams have in general an integer m inside each node, repre­
senting a factor U(m) in the gauge group. An arrowed edge of the dia­
gram represents a hypermultiplet transforming as the fundamental (for 
the sharp end) and antifundamental (for the blunt end) of the two gauge 
groups corresponding to the connected nodes. The diagram is simply a 
decorated version of the extended Dynkin diagram associated to AI. This 
will make even more sense shortly, since there is geometric meaning to 
this. Finally, note that one of the U(l)s, (the 0"0 one) is trivial: nothing 
transforms under it, and it simply represents the overall centre of mass of 
the brane system. 

The bosonic action for the fields is the D = 10 U(2) Yang-Mills action, 
dimensionally reduced and Z2-projected (which breaks the gauge symme­
try to U(l) x U(l)). This dimensional reduction is easy to do. There are 
kinetic terms: 

and potential terms: 

(13.5) 

where by using (8.13), we have g?M = (27T)-la/-1/ 2gs . (Another poten­
tially non-trivial term disappears since the gauge group is Abelian.) 

Fig. 13.1. A diagram showing the content of the probe gauge theory. The 
nodes give information about the gauge groups, while the links give the 
amount and charges of the mattter hypermultiplets. 
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The resulting theory has N = (4,4) supersymmetry in D = 2, which 
has an SU(2) R-symmetry, and can be thought of as the SU(2)R left 
over from parametrising the Z2 as an action in the SU(2)L of the natural 
SO(4). See insert 7.4. 

13.1.2 The moduli space of vacua 

The important thing to realise is that there are large families of vacua 
(here, U = 0) of the theory. The space of such vacua is called the 'moduli 
space' of vacua, and they shall have an interesting interpretation. The 
moduli space has two branches. 

On one, the 'Coulomb Branch', xm = 0 and Xi = ui(J"0 + vi(J"l. This 
corresponds to two D-branes moving independently in the ]]{6, with posi­
tions ui ± vi, but staying at the origin of the ]]{4. The gauge symmetry is 
unbroken, giving independent U(l)s on each D-brane. 

On the other, the 'Higgs Branch', xm is non-zero and Xi = ui(J"o. 
The (J"l gauge invariance is broken and so we can make the gauge choice 
xm = wm (J"3. This corresponds to the D 1-brane moving off the fixed plane, 
the string and its image being at (ui , ±wm). We see that this branch has 
the geometry of the ]]{6 x ]]{4/Z2 which we built in. 

Now let us turn on twisted-sector fields which we uncovered in sec­
tion 7.6, where we learned that they give the blow-up of the geometry. 
They will appear as parameters in our D-brane gauge theory. Define com­
plex qm by xm = (J"3Re(qm) + (J"2Im(qm) , and define two doublets of the 
SU(2)R: 

(13.6) 

These have charges ±1 respectively under the (J"l U(l). The three NS-NS 
moduli can be written as a vector ~ of the SU(2)R' and the potential is 
proportional to 

(13.7) 

where the Pauli matrices are now denoted TI to emphasise that they act in 
a different space. They are assembled into a vector 'T = (Tl, T2, T 3 ). (The 
vector J.L is called a 'moment map' in the mathematical understanding of 
this construction, which we shall discuss later.) Its form is determined by 
supersymmetry, and it should be checked that it reduces to the second 
term of the earlier potential (13.5) when ~ = O. The entire potential 
arises in supersymmetric constructions using superfields as a 'D-term', 
and its vanishing to find the vacua is the 'D-fiatness condition'. The vector 
~ enters as a 'Fayet-Iliopoulos' term222 in the D-term, and is allowed 
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whenever there is an Abelian factor in the gauge group. The SU(2)R 
symmetry requires that the FI term and the entire D-term come as a 
vector. These are all of the facts we will need about such supersymmetry 
techniques. Unfortunately, a fuller discussion of these matters will take us 
too far afield, and we refer to reader to the literature223 . 

Notice that equation (13.7) implies a coupling between the open string 
sector and the twisted sector fields. This can be checked directly by a disc 
computation, where a twist field is in the interior of the disc and the open 
string fields are on the edge184 . 

For ~ 0:1 0 the orbifold point is blown up. The moduli space of the gauge 
theory is simply the set of possible locations of the probe i.e., the blown 
up ALE space. (Note that the branch of the moduli space with vi 0:1 0 is 
no longer present.) 

Let us count parameters and constants. The xrn contain eight scalar 
fields. Three of them are removed by the '~-fiatness' condition that the 
potential vanishes, and a fourth is a gauge degree of freedom, leaving 
the expected four moduli. In terms of supermultiplets, the system has 
the equivalent of D = 6 N = 1 supersymmetry. The D-string has two 
hypermultiplets and two vector multiplets, which are Higgsed down to 
one hypermultiplet and one vector multiplet. 

13.1.3 ALE space as metric on moduli space 

The idea184 is that the metric on this moduli space, as seen in the kinetic 
term for the D-string fields, should be the smoothed ALE metric. Given 
the fact that we have eight supercharges, it should be a hyper-Kahler 
manifold 185, and the ALE space has this property. Let us explore this187 . 

Three coordinates on our moduli space are conveniently defined as 
(there are dimensionful constants missing from this normalisation which 
we shall ignore for now): 

y = <I>br<I>o. (13.8) 

The fourth coordinate, z, can be defined 

(13.9) 

The ~-fiatness condition implies that 

(13.10) 

and <I>o and <I>1 are determined in terms of y and z, up to a gauge choice. 
The original metric on the space of hypermultiplet vevs is just the 

fiat metric ds 2 = d<I>bd<I>o + d<I>l d<I>l. We must project this onto the space 
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orthogonal to the U(l) gauge transformation. This is performed (for ex­
ample) by coupling the <I>o, <I>1 for two dimensional gauge fields according 
to their charges, and integrating out the gauge field. The result is 

(13.11) 

with 
(13.12) 

We can express the metric in terms of y and t using the identity: 

for SU(2) arbitrary doublets a,;3, /, 6. This gives: 

<I>6<I>0 = Iyl, <I> 1 <I> 1 = Iy + ~I, 
dy·dy = lyld<I>6d<I>0-w6 = ly+~ld<I>td<I>l-wi, (13.13) 

and we find that our metric can be written as the N = 2 case of the 
Gibbons-Hawking metric: 

ds2 = V- 1 (dz - A· dy)2 + Vdy· dy 
N-1 1 

V = L ,VV = V x A, 
i=O IY-Yil 

(13.14) 

which is in fact a 'hyper-Kahler' metric, as we shall see. 
Up to an overall normalisation (which we will fix later), we have Yo = 0, 

Y1 = ~, and the vector potential is 

(13.15) 

and the field strength is readily obtained by taking the exterior derivative 
and using the identity 

Under a change of variables92 , this metric (for N = 2) becomes the 
Eguchi-Hanson metric, (7.53) which we first identified as the blow-up of 
the orbifold point. The three parameters in the vector Y1 = ~ are the 
NS-NS fields representing the size and orientation of the blown up Cpl. 

It is easy to carry out the generalisation to the full AN -1 series, and 
get the metric (13.14) on the moduli space for a D1-brane probing a 
7lw orbifold. The gauge theory is just the obvious generalisation derived 
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from the extended Dynkin diagram: U(l)N, with N + 1 bifundamental 
hypermultiplets with charges (1, -1) under the neighbouring U(l)s. (See 
figure 13.2.) 

There will be 3(N - 1) NS-NS moduli which will become the N - 1 
differences Yi - Yo in the resulting Gibbons-Hawking metric (13.14). 
Geometrically, these correspond to the size and orientation of N - 1 
separate CCpl's which can be blown up. In fact, we see that the there 
is another meaning to be ascribed to the Dynkin diagram: each node 

-------(D- 1 Ak 

" I 
V 
Ie 

Dk 

" I 
V 

k-3 

3 -CD--(D E6 

3 -----<D------® E 7 

Es 

Fig. 13.2. The extended Dynkin diagrams for the A-D-E series. As quiver 
diagrams, they give the gauge and matter content for the probe gauge 
theories which compute the resolved geometry of an ALE space. At the 
same time they also denote the actual underlying geometry of the ALE 
space, as each node denotes a CCpl, with the connecting edge representing 
a non-zero intersection. 
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(except the trivial one) represents a CIP'I in the spacetime geometry that 
the probe sees on the Higgs branch. We shall expand upon this intriguing 
picture in section 13.2. 

13.1.4 D-branes and the hyper-Kahler quotient 

This entire construction which we have just described is a 'hyper-Kahler 
quotient', a powerful technique189 for describing hyper-Kahler metrics of 
various types, and which has been used to prove the existence of the 
full family of ALE metrics190 . Hyper-Kahler spaces are complex 
4k-dimensional manifolds (k E Z) which admit not just one complex struc­
ture, but three, and they transform under an SU(2) symmetry which, 
for us, will often become and SU(2) R-symmetry of some system with 
eight supercharges. In fact, the complex structure becomes a quaternionic 
structure for such manifolds. Flat JR4, presented in the manner done in 
insert 7.4, is a simple example, and the SU(2) is either ofthe SU(2) isome­
tries manifest there. The ALE spaces are non-trivial examples, as is the 
K3 manifold. Two other important four dimensional examples we shall 
encounter later are the Taub-NUT space and the Atiyah-Hitchin space. 
Multi-instanton and BPS multi-monopole moduli spaces2I8 are higher di­
mensional cases which we shall also meet. 

The hyper-Kahler quotient technique is a powerful mathematical me­
thod for showing the existence of (and sometimes exhibiting explicitly) 
such spaces. It is remarkable that using D-branes we can encounter this 
construction, physically realised in terms of supersymmetric gauge theory 
variables-precisely the same variables which appear in the mathematical 
description of the construction. We shall see this connection arising a 
number of other times in these pages19I . Just as we got a U(1)2 gauge 
theory from the Al example, and U(l)N for the AN-I, the rest of the 
A-D-E series gives a family of associated gauge theories on the brane 
as well. These families, and the correspondence to the A-D-E classifica­
tion arises as follows81 (see figure 13.2). We start with D-branes on JR4 jr, 
where r is any discrete subgroup of SU(2) (the cover of the SO(3) which 
acts as rotations at fixed radii). It turns out that the r are classified in 
an 'A-D-E classification', as shown by McKay87. The ZN are the AN - I 

series. For the DN and E6,7,8 series, we have the binary dihedral (DN-2), 
tetrahedral (T), octahedral (0) and icosahedral (I) groups. Let us list 
them . 

• The Ak series (k2: 1). This is the set of cyclic groups of order k+ 1, 
denoted Zk+I. Their action on the zi is generated by 

e k +1 g= ( 

2iTI 

o _ qiTI ). 
e k+l 

(13.16) 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


290 13 D-branes and geometry I 

• The Dk series (k~4). This is the binary extension of the dihedral 
group, of order 4(k-2), denoted Dk - 2. Their action on the zi is 
generated by 

( 0 i) and B = i 0 . (13.17) 

In this representation the central element is Z=-1(=A2=B2=(AB)2). 
Note that the generators A form a cyclic subgroup Z2k-4 . 

• The E6,7,8 series. These are the binary tetrahedral (T), octahedral 
(0) and icosahedral (I) groups of order 24, 48 and 120, respectively. 

The group T is generated by taking the elements of D2 and combining 
them with 

(13.18) 

where E: is an eighth root of unity. 
The group 0 is generated by taking the elements of T and combining 

them with 

(13.19) 

Finally I is generated by 

and (13.20) 

where TJ is a fifth root of unity. 
Given the action of these groups, in order to have the D-branes form a 

faithful representation on the covering space of the quotient, we need to 
start with a number equal to the order Irl of the discrete group. This was 
two previously, and we started with U(2). So we now start with a gauge 
group U(lrI), and then project, as before. 

After projecting U(lrI), the gauge group turns out to be191 : 

where i labels the irreducible representations Ri of dimension Tli. Picto­
rially (see figure 13.2), the gauge group associated with a D-string on 
a ALE singularity is simply a product of unitary groups associated to 
the extended A-D-E Dynkin diagram, with a unitary group coming from 
each vertex190 . In the Dynkin diagrams, each vertex represents an irre­
ducible representation of r. The integer in the vertex denotes its dimen­
sion. The special vertex with the' x' sign is the trivial representation, the 
one dimensional conjugacy class containing only the identity. The specific 
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connectivity of each graph encodes the information about the following 
decomposition: 

Q Q9 Ri = EB aijRj , (13.21) 
j 

where Ri is the ith irreducible representation and Q is the defining two 
dimensional representation. Here, the aij are the elements ofthe adjacency 
matrix A of the simply laced extended Dynkin diagrams. 

Turning to the hypermultiplets, as stated before, we trivially have 
dim (F) hypermultiplets transforming in the adjoint of F. These come 
from the ;x;2, ;x;3, ;xA, ;x;5 sector. They are simply the internal components of 
the six dimensional vectors after dimensional reduction. 

More interestingly, we have hypermultiplets coming from the ;x;6, ;x; 7 , ;x;8, 

x 9 sector. These hypermultiplets transform in the fundamentals of the 
unitary groups, according to the representations 

(13.22) 

Pictorially, the hypermultiplets are simply the links of the extended 
Dynkin diagrams. These hypermultiplets together with the D-flatness 
conditions, etc., are precisely the variables and algebraic condition which 
appear in Kronheimer's constructive proof of the existence of the smooth 
ALE metrics190, 191. The hyper-Kahler quotient is a more general method 
for constructing manifolds, and this is a well-known example. Another 
is the construction of moduli spaces of instantons, and we shall see that 
D-branes capture that rather explicitly in chapter 15. 

For example, the simplest model in the D-series is V 4 , which would re­
quire eight D1-branes on the covering space. The final probe gauge theory 
after projecting is F = U(2)xU(1)4, with four copies of a hypermultipet 
in the (2,1) of this group. 

Unfortunately, it is a difficult and unsolved problem to obtain explicit 
metrics for the resolved spaces in the D and E cases. This is in a certain 
sense closely related to the problem of finding an explicit metric on K3, a 
long-standing goal which the D-brane technique described here implicitly 
gives a recipe to tackle. We leave it as an exercise to the reader to apply 
these methods, and suggest that they publish the result if successful. 

13.2 Fractional D-branes and wrapped D-branes 

13.2.1 Fractional branes 

Let us pause to consider the following. In the previous section, we noted 
that in order for the probe brane to move off the fixed point, we needed to 
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make sure that there were enough copies of it (on the covering space) to 
furnish a representation of the discrete symmetry r that we were going to 
orbifold by. After the orbifold, we saw that the Higgs branch corresponds 
to a single D-brane moving off the fixed point to non-zero position in 
x 6 , x 7 , ;x;8, ;x;9. It is made up of the Ir! D-branes we started with on the 
cover, which are now images of each other under r. We can blow up 
the fixed point to a smooth surface by setting the three NS-NS fields € 
non-zero. 

When € = 0, there is a Coulomb branch. There, the brane is at the 
fixed point x 6 , x 7 , x 8 , x 9 = 0. The Ir! D-branes are free to move apart, 
independently, as they are no longer constrained by r projection. So in 
fact, we have (as many as *) Ir! independent branes, which therefore have 
the interpretation as a fraction of the full brane. None of these individual 
fractional branes can move off. They have charges under the twisted sector 
R-R fields. Twisted sector strings have no zero mode, as we have seen, 
and so cannot propagate. 

For an arbitrary number of these fractional branes (and there is no 
reason not to consider any number that we want) a full Ir! of them must 
come together to form a closed orbit of r, in order for them to move off 
onto the Higgs branch as one single brane. This fits with the pattern of 
hypermultiplets and subsequent Higgs-ing which can take place. There 
simply are not the hypermultiplets in the model corresponding to the 
movement of an individual fractional brane off the fixed point, and so they 
are 'frozen' there, while they can move within it 182 , in the ;x;2, x 3 , x4, x 5 

directions. 

13.2.2 Wrapped branes 

Notice that when the ALE space is blown-up, we don't see the fractional 
branes. The fancy language often used at this point is that the Coulomb 
branch is 'lifted', which is to say it is no longer a branch of degenerate 
vacua whose existence is protected by supersymmetry. While it is possible 
to blow-up the point with the separated fractional branes, it is not a 
supersymmetric operation. We shall see why presently. First, let us set up 
the geometry of this description. 

As we have already mentioned, each node (except for the extended 
one) in a Dynkin diagram corresponds to a CIP'I which can be blown-up 
in the smooth geometry. This is in fact a cycle on which a D3-brane can be 
wrapped in order to make a Dl-brane on ]]{6. For the AN_I-series, where 

* In the D and E cases, some of the branes are in clumps of size n (according to the 
nodes in figure 13.2) and carry non-Abelian U(n). 
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things are simple, there are N - 1 such cycles, giving that many different 
species of D1-brane. This matches with the picture of the previous section, 
and extends to the whole A-D-E case, since r is the number of CCPIs. 

Where exactly is this CCpl in the metric (13.14)7 Notice that the 47T 
periodic variable z, while actually a circle, has a radius that depends 
upon the prefactor v-I, which varies with y in a way that is set by 
the parameters ('centres') Yi. When Y = Yi, the z-circle shrinks to zero 
size. There is a CCpl between successive YiS, which is the minimal surface 
made up of the locus of z-circles which start out at zero size, grow to 
some maximum value, and then shrink again to zero size, where a CCpl 
then begins again as the neighbouring cycle, having intersected with the 
previous one in a point. The straight line connecting this will give the 
smallest cycle, and so the area is 47TIYi - Yj I for the CCpl connecting 
centres Yi,j' See figure 13.3. This is just like the case of wrapping a closed 
string on a circle, as we saw in chapter 4. Winding number is conserved. 
We saw that even if the circle shrinks away to zero size, the string cannot 
be pulled off. We worked in T -dual variables and saw that the winding 
survives as a conserved momentum. Similarly, a closed brane wrapped on 
a cycle is stuck there, even if the cycle shrinks away. If we don't use some 
sort of dual description using a large cycle, we need to find a remnant of 
the wrapped brane after the cycle has shrunk away completely. 

Perhaps this is responsible for the fractional brane description. Let us 
get it to work for a single cyclel87, 201 (crucially, we need to get rid of the 

- - - -,'"',- -I' 
.... ,.., I \ / 

.... I \ \ 1/ 

~/ \ \ ~I 
_ -< _ - - - 7~ - - - _ _ ,.. /~ \ \,,.'" 

< - I \ I,' ', .... _ .... "" .... ~\ ~ .,' ___ _ ... ..." .... 
.... ~~) I I ,. __ 

.......... \ J '>, ..... 
--_~ ... ..L_--

4» Y, 

Fig. 13.3. The circles fibred above the ]R3 in which lies the centres of the 
ALE space metric. The collapsing of the circles above the centres results 
in a network of CCpl cycles. Their possible intersections are isomorphic to 
the A-D-E Dynkin diagrams. 
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total D3-brane charge), and the entire A-D-E series of ALE spaces will 
follow from what we've already said. 

Imagine202 a D3-brane with some non-zero amount of B + 21Ta' F on its 
world-volume. Recall that this corresponds to some Dl-brane dissolved 
into the worldvolume. We deduced this from T-duality in sections 5.2.1 
and 9.1. (We did it with pure F, but we can always gauge in some B.) 
Since we need a total D3-brane charge of zero in our final solution, let us 
also consider a D3-brane with opposite charge, and with some non-zero 
B + 21TCi F on its world-volume. We write F to distinguish it from the F 
on the other brane's worldvolume, but the Bs are the same, since this is 
a spacetime background field. So we have a worldvolume interaction: 

fL3 / C(2) /\ {(B + 21Ta' F) - (B + 21Ta' F) } , (13.23) 

where we are keeping the terms separate for clarity. Our net D3-brane 
charge is zero. Now let us choose 21Ta' (fI; F - F) = fLii fL3, and 1> B == 
(fL3/ fLI) J~ B = 1/2 for some two dimensional spatial subspace ~ of the 
three-volume. (Note that 1> B ;v 1> B + 1.) This gives a net Dl-brane charge 
of 1/2 + 1/2 = 1. The two halves shall be our fractional branes. Right 
now, they are totally delocalised in the world-volume of the D3-anti D3 
system. We can make the DIs more localised by identifying ~ (the parts 
of the three-volume where Band F are non-zero) with the CCpI of the 
ALE space. The smaller the CCpI is, the more localised the DIs are. In 
the limit where it shrinks away we have the orbifold fixed point geometry. 
(Note that we still have 1> B = 1/2 on the shrunken cycle. Happily, this is 
just the value needed to be present for a sensible conformal field theory 
description of the orbifold sector89 , described for example in section 7.6). 

Once the DIs are completely localised in x 6 , x 7 , x 8 , x 9 from the shrink­
ing away of the CCpI, then they are free to move supersymmetrically in 
the x 2 , x 3 , ;rA, ;r;5 directions. This should be familiar as the general facts 
we uncovered in chapter 11 about the Dp-D(p + 2) bound state system: 
if the D(p + 2) is extended, the Dp cannot move out of it and preserve 
supersymmetry. This is also T-dual to a single brane at an angle and we 
shall see this next. 

13.3 Wrapped, fractional and stretched branes 

There is yet another useful way of thinking of all the of the above physics, 
and even more aspects of it will become manifest here. It requires ex­
ploring a duality to another picture altogether. This duality is a T­
duality, although since it is a non-trivial background that is involved, 
we should be careful. It is best trusted at low energy, as we cannot be 
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sure that the string theories are completely dual at all mass levels without 
further analysis. We will study only the massless fields, so we should prob­
ably claim only that the backgrounds give the same low energy physics. 
Nevertheless, once we arrive at our dual, we can forget about where it 
came from and study it directly in its own right. Recent work, using exten­
sions of the techniques of this chapter, has directly proven the duality 340. 

13.3.1 NS5-branes from ALE spaces 

Up to a change of variables, in the supergravity background (13.14), y 
can be taken to be the vector y = (x7 , x 8 , x9 ) while we will take x6 to 
be our periodic coordinate z. (There are some dimensionful parameters 
which were left out of the derivation of (13.14), for clarity, and we shall 
put them in by hand, and try to fix the pure numbers with T -duality.) 

Then, using the T-duality rules (5.4) we can arrive at another back­
ground (note that we have adjoined the flat transverse spacetime JR6 to 
make a ten dimensional solution, and restored an a' for dimensions): 

5 

ds 2 = -dt2 + L dxmdxm + V(y) (dx6d;x;6 + dy . dy) 
m=l 

2 <I> ~l VC1 
e = V(y) = ~ I _ -I' 

i=O Y y% 
(13.24) 

which is also a ten dimensional solution if taken with a non-trivial back­
ground field203, 204 Hmns = Emn/Or <I> , which defines the potential B6i 

(i = 7,8,9) as a vector Ai that satisfies 'V'V = 'V'xA. Non-zero B6i arose 
because the T-dual solution had non-zero G6i . 

In fact, this is not quite the solution we are looking for. What we 
have arrived at is a solution which is independent of the :r6 direction. 
This is necessary if we are to use the operation (5.4). In fact, we expect 
that the full solution we seek has some structure in :r6, since translation 
invariance is certainly broken there. This is because the :r6-circle of the 
ALE space has N places where something special happens to the winding 
states, since the circle shrinks away there. So we expect that the same 
must be true for momentum in the dual situation205 . A simple guess for 
a solution which is localised completely in the :r6 ,;x; 7, x 8 , x 9 directions is 
to simply ask that it be harmonic there. We simply take x = (x 6 , y) to 
mean a position in the full JR4, and replace V (y) by: 

N-l , 

V(:r) = 1 + L ( a )2 
i=O x - Xi 

(13.25) 

We have done a bit more than just delocalised. By adding the 1 we have 
endowed the solution with an asymptotically flat region. However, adding 
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Ca) (b) 

Fig. 13.4. (a) This configuration of two NS5-branes on a circle with D2-
branes stretched between them is dual to a D1-brane probing an Al ALE 
space. (b) The Coulomb branch where the D2-brane splits into two 'frac­
tional branes'. 

the 1 is consistent with V(x) being harmonic in :r6 , ;];7, x 8 , x 9 , and so it is 
still a solution. 

The solution we have just uncovered is made up of a chain of N objects 
which are pointlike in ]]{4 and magnetic sources of the NS-NS potential 
B/Lv. They are in fact the 'NS5-branes' we discovered by various arguments 
in chapter 12, with the result (12.8). Here, the NS5-branes are arranged 
in a circle on x6 , and distributed on the rest of]]{4 according to the centres 
Xi, i = 0, ... ,N - 1. 

13.3.2 Dual realisations of quivers 

Recall that we had a D1-brane lying along the xl direction, probing the 
ALE space. By the rules of T -duality on a D-brane, it becomes a D2-brane 
probing the space, with the extra leg of the D2-brane extended along the 
compact x 6 direction. The D2-brane penetrates the two NS5-branes as it 
winds around once. The point at which it passes through an NS5-brane 
is given by four numbers Xi for the ith brane. The intersection point can 
be located anywhere within the fivebrane's worldvolume in the directions 
x2 , x3 ,:xA , :r5 . (See figure 13.4 (a).) 

In the table below, we show the extension of the D2 in the x 6 direction 
as a I - I to indicate that it may be of finite extent, if it were ending on 
an NS5-brane. 

xO xl x 2 X 
3 x4 x 5 x 6 x 7 x 8 x 9 

D2 - - • • • • I-I • • • 
NS5 - - - - - - • • • • 
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This arrangement, with the branes lying in the directions which we have 
described, preserves the same eight supercharges we discussed before. 
Starting with the 32 supercharges of the type IIA supersymmetry, the 
NS5-branes break a half, and the D2-brane breaks half again. The infi­
nite part of the probe, an effective one-brane (string), has a U(l) on its 
worldvolume, and its tension is p, = 2TIf!p,2, where f! is the as yet unspeci­
fied length of the new x 6 direction. However, just as in the discussion in 
section 10.4, we may consider different values of f! if we allow ourselves to 
consider different densities of branes in the dual picture. Let us focus on 
N = 2. If the two fivebranes (with positions Xl, X2; we can set Xo to zero) 
are located at the same y = (x7 , x 8 , x 9 ) position, then the D2-brane can 
break into two segments, giving a U(l) x U(l) (one from each segment) 
on the one-brane part stretched in the infinite xl direction. The two seg­
ments can move independently within the NS5-brane worldvolume, while 
still remaining parallel, preserving supersymmetry. 

N.B. It makes sense that the D2-brane can end on an NS5-brane, 
as already discussed in section 12.6.2. There is a 2-form potential in 
the world-volume for which the string-like end can act as an electric 
source. 

This is the precise analogue of the Coulomb branch of the D1-brane 
probing the ALE space that we saw earlier. The hypermultiplets of the 
U(l) x U(l) theory are made here by stretching fundamental strings 
across the NS5-branes in :r6 to make a connection between the D-brane 
segments206 . The three differences Yl - Y2 are the T -dual of the NS-NS 
parameters representing the size and orientation of the ALE space's Cpl. 
The x 6 separation of the NS5-branes is dual to the fiux 2TIf!<I> B. This is 
the length of one segment while 2TIf!(1 - <I> B) is the length of the other. 
(Note that the symmetry <I> B rv <I> B + 1 is preserved, as it just swaps the 
segments.) Notice also that there is an interesting duality between the 
quiver diagram and the arrangement of branes in the dual picture. (See 
figure 13.5.) 

The original setup had the lengths equal, but we can change them at 
will, and this is dual to changing <I> B. There is the possibility of one of 
the lengths becoming zero. The NS-branes become coincident, and at the 
same time a fractional brane becomes a tensionless string, and we get an 
Al enhancement of the gauge symmetry carried by the two-form potential 
which lives on the type IIA NS5-brane160 . If we had D1-branes stretched 
between NS5s in type IIB instead, we would get massless particles, and 
an enhanced SU(2) gauge symmetry. 
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Fig. 13.5. There is a duality between the extended Dynkin diagram which 
gives the probe gauge theory and the diagram representing D-branes 
stretched between NS5-branes. The nodes in one are replaced by links 
in the other. In particular, the number inside the Dynkin nodes become 
the number of D-branes in the links in the dual diagram. The hyper­
multiplets associated with links in the Dynkin diagram arise from strings 
connecting the D-brane fragment ending on one side of an NS5-brane with 
the fragment on the other. 

N.B. This fits nicely with the discovery we made in insert 7.5 that 
the type IIA string on K3 was dual to the heterotic string on T4. 
There are indeed enhanced gauge symmetries on the type IIA side 
as well. They are not visible in the usual conformal field theory ap­
proach because there the flux <I> B is non-zero and fixed. But now 
we see that if it is tuned to zero, we can then get the enhanced 
A-D-E symmetries161 , corresponding to wrapped D2-branes becom­
ing shrunk to zero size with no remaining flux, or D1-brane segments 
shrinking to zero length. 

If the segments are separated, and thus attached to the NS5-branes, 
then when we move the NS5-branes out to different :r789 positions, the 
segments must tilt in order to remain stretched between the two branes. 
They will therefore be oriented differently from each other and will break 
supersymmetry. This is how the Coulomb branch is 'lifted' in this lan­
guage. (See figure 13.6( c).) A segment at an orientation gives a contri­
bution V(27T£<I>B)2 + (Yl - Y2)2 to the D1-brane's tension. This formula 
should be familiar: it is of the form for the more general formula for a D 1-
D3 bound state (see section 11.2), to which this tilted D2-brane segment 
is T-dual. 

For supersymmetric vacua to be recovered when the NS5-brane are 
moved to different positions (the dual of smoothing the ALE space) the 
branes segments must first rejoin with the other (Higgs-ing), giving the 
single D-brane. Then it need not move with the NS5-branes as they sep­
arate in y, and can preserve supersymmetry by remaining stretched as 
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a single component. (See figure 13.6 ( d) .) Its y position and an x 6 Wil­
son line constitute the Higgs branch parameters. Evidently the metric on 
these Higgs branch parameters is that of an ALE space, since the 1 + 1 
dimensional gauge theory is the same as the discussion in section 13.1, 
and hence the moduli spaces match. It is worth sharpening this into a 
field theory proof of the low energy validity of the T-duality, but we will 
not do that here. 

It is worth noting here that once we have uncovered the existence of 
fractional D-branes with a modulus for their separation, there is no reason 
why we cannot separate them infinitely far from each other and consider 
them in their own right. We also have the right to take a limit where 
we focus on just one segment with a finite separation between two NS5-
branes, but with a non-compact :r6 direction. This is achievable from what 
we started with here by sending <I> B ----+ 0, but changing to scaled variables 
in which there is still a finite separation, and hence a finite gauge coupling 
on the brane segment in question. (U-duality will then give us various 
species of branes ending on branes which we will discuss later.) 

Fractional branes, and their duals the stretched brane segments, are 
useful objects since they are less mobile than a complete D-brane, in that 

X71 

~ ~ 0 

X71 

~ • 0 x6 x6• 
2~Q 

l>-

2~Q 0 nQ 0 
(a) (b) 

X71 ~ X71 • 0 

: 0 

x6 • x6 • 
I 

2~Q 
. 

2~Q 0 0 
(c) (d) 

Fig. 13.6. Possible deformations of the brane arrangements, and their 
gauge theory interpretation. (a) The configuration dual to the standard 
orbifold limit with the traditional 'half unit' of B-flux. (b) Varying the 
distribution of B-flux between segments. Sending it to zero will make the 
NS5-brane coincide and give an enhanced gauge symmetry. (c) Switching 
on a deformation parameter (an FI term in gauge theory) 'lifts' the 
Coulomb branch: if there are separated D-brane fragments, supersym­
metry cannot be retained. (d) First Higgs-ing to make a complete brane 
allows smooth movement onto the supersymmetric Higgs branch. 
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they cannot move in some directions. One use of this is the study of 
gauge theory on branes with a reduced number of supersymmetries and a 
reduced number of charged hypermultiplets a la Hanany-Witten,206, 212. 
This has many applications213 , some of which we will consider later. 

13.4 D-branes as instantons 

Consider a DO-brane and N coincident D4-branes. There is a U(I) on 
the DO and U(N) on the D4's, which we shall take to be extended in the 
x 6 , x 7 , ;x;8, ;x;9 directions. The potential terms in the action are 

t 5 3 
XiXi "( )2 1 "( t I )2 

(2 ')2 ~ Xa - Ya + 4 2 ~ Xi T Xi . 
7TOO a=l go I=l 

(13.26) 

Here a runs over the dimensions transverse to the D4-brane, and Xa and 
Ya are respectively the DO-brane and D4-brane positions, and for now we 
ignore the position of the DO-brane within the D4-branes' world-volume. 
This is the same action as in the earlier case (11.7), but here the D4-branes 
have infinite volume and so their D-term drops out relative to that of the 
DO-brane. We have also written the 0-4 hypermultiplet field X with a D4-
brane index i. (The SU(2)R index is suppressed.) The potential (13.26) 
is exact on grounds of N = 2 supersymmetry. The first term is the N = 2 
coupling between the hypermultiplets X and the vector multiplet scalars 
X, Y. The second is the U(I) D-term. 

For N > 1 there are two branches of moduli space, in direct analogy 
with the ALE case. The Coulomb branch is (X i- Y, X = 0), which is 
simply the position of the DO-brane transverse to the D4-branes. There 
is a mass for X and so its vev is zero. The Higgs branch (X = Y, xi- 0) 
represents the physics of the DO-brane being stuck on the world-volume 
of the D4-branes. The non-zero vev of X Higgses away the U(I) and some 
of the U(N). 

Let us count the dimension of moduli space. There are 4N real de­
grees of freedom in X. The vanishing of the U(I) D-term imposes three 
constraints, and moding by the (broken) U(I) removes another degree 
of freedom leaving 4N - 4. There are four moduli for the position of the 
DO-brane inside the the D4-branes, giving a total of 4N moduli. This is in 
fact the correct dimension of moduli space for an SU(N) instanton when 
we do not mod out also the SU(N) identifications. For k instantons this 
dimension becomes 4N k. 

Another clue that the Higgs branch describes the DO-brane as a D4-
brane gauge theory instanton is the fact that the Ramond-Ramond cou­
plings include a term fL4C(1) /\ Tr(F/\F). As shown in section 9.2, when 
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--------------- -e t -------------

(a) (b) 

Fig. 13.7. Instantons and the Dp-D(p + 4) system. (a) The Coulomb 
branch of the Dp-brane theory represents a pointlike brane away from 
the D(p + 4)-brane. (b) The Higgs branch corresponds to it being stuck 
inside the D(p+4)-brane as a finite sized instanton of the D(p+4)-brane's 
gauge theory. 

there is an instanton on the D4-brane it carries DO-brane charge. The 
position of the instanton is given by the 0-0 fields, while the 0-4 fields 
should give the size and shape (see figure 13.7). 

13.4.1 Seeing the instanton with a probe 

Actually, we can really see the resulting instanton gauge fields by using a 
D-brane as a probe. We will use a D9-D5 system 130 instead ofD4-DO, and 
so we won't have the Coulomb branch, since D9-branes fill all of spacetime, 
and so the D5-branes cannot move out of them. We will us a Dl-brane 
to probe the D9-D5 system184 . It breaks half of the supersymmetries left 
over from the 9-5 system, leaving four supercharges overall. The effective 
1+1 dimensional theory is (0,4) supersymmetric and is made of 1-1 fields, 
which has two classes of hypermulitplets. One represents the motions of 
the probe transverse to the D5, and the other parallel. The 1-5 and 1-9 
fields are also hypermultiplets, while the 9-5 and 5-5 fields are parameters 
in the model. 

In what follows, we shall borrow a lot of the notation of the original 
papers on the subject 130, 184. Let us place the D5-branes such that they 
are pointlike in the :r6 ,;x: 7, x 8 , x 9 directions. The D 1-brane probe will lie 
along the :r1 direction, as usual. 

:ro xl ;x;2 x 3 ;xA x 5 ;x;6 x 7 ;x;8 x 9 

Dl - - • • • • • • • • 
D5 - - - - - - • • • • 
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This arrangement of branes breaks the Lorentz group up as follows: 

80(1, 9) ~ 80(1,1)01 x 80(4h345 X 80(4)6789, (13.27) 

where the subscripts denote the sub-spacetimes in which the surviving 
factors act. We may labe1207, 184 the world-sheet fields according to how 
they transform under the covering group: 

~ , 
[8U(2)' x 8U(2) 12345 x [8U(2)R X 8U(2)L]6789, (13.28) 

with doublet indices (A', A', A, Y), respectively. 
The analysis that we did for the D1-brane probe in the type I string 

theory in section 12.2 still applies, but there are some new details. Now 
e- is further decomposed into e~ and e, where superscripts 1 and 2 
denote the decomposition into the (2345) sector and the (6789) se~:tor, 
respectively. So we have that the fermion e~ (hereafter called ?j;~A') )s 
the right-moving superpartner of the four component scalar field bA' A', 

while e (called ?j;~'Y) is the right-moving superpartner of bAY. The su­
persymmetry transformations are: 

r5bA' A' = iEABrt~' A?j;l!A' 

'bAY - "E 'nAA' oi,B'Y u - "A'B"'+ 'f/- . (13.29) 

In the 1-5 sector, there are four DN coordinates, and four DD coordi­
nates giving the NS sector a zero point energy of zero, with excitations 
coming from integer modes in the 2345 directions, giving a four component 
boson. The R sector also has zero point energy of zero, with excitations 
coming from the 6789 directions, giving a four component fermion X. 

The GSO projections in either sector reduce us to two bosonic states ¢A' 
and decomposes the spinor X into left- and right-moving two component 
spinors, X~ and X~, respectively. We see that X~ is the right-moving 
superpartner of ¢A!. Taking into account the fact that there is a D5-
brane index for these fields, we can display the components (¢A'rn, X~rn) 
which are related by supersymmetry: 

r5~A'rn = iE 'n A' AXBrn 
'f/ -AB,,+ -, (13,30) 

and the (0,4) supersymmetry parameter is denoted by rtf A. Here, m is 
a D5-brane group theory index. Also, X~ has components X~rn, 

The supersymmetry transformation relating them to the left-moving 
fields are: 

"M AA'CM u/\+ = rt+ AA' 
r5XY rn - 'nAA' C Y rn + - ',+ AA" (13.31) 
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where C%~, and ClAi shall be determined shortly. They will be made of 
the bosonic 1-1 fields and other background couplings built out of the 
5-5 and 5-9 fields. 

The 5-5 and 5-9 couplings descend from the fields in the D9-D5 sector. 
There are some details of those fields which are peculiarities of the fact 
that we are in type I string theory. First, the gauge symmetry on the 
D9-branes is 50(32). Also, for k coincident D5-branes, there is a gauge 
symmetry U5p(2k)130, since there is an extra -1 in the action of 0 on 
D5-brane fields, as explained already132 in section 8.7. The 5-5 sector 
hypermultiplet scalars (fluctuations in the transverse x 6,7,8,9 directions) 
transform in the antisymmetric of U5p(2k), which we call X~~, matching 
the notation in the literature184 . Meanwhile, the 5-9 sector produces a 
(2k, 32), denoted htr, with m and lVI as in D5- and D9-brane labels. 

Using the form of the transformations (13.31) allows us to write the 
non-trivial part of the (0,4) supersymmetric 1 + 1 dimensional Lagrangian 
containing the 'Yukawa' couplings and the potential of the (0,4) model: 

i J 2 [ M ( BD 8crIB' B'Y B'D' 8cffB' Bm) 
£tot = £kinetic - '4 d (J' A+ E 8bDY 1/;- + E 8¢D'm x-

Ym ( BD 8C};flt "i,B'Y B'D' 8C};flt Bm) + X+ E 8bDY '1/- + E 8¢D'mX-

1 AB A' B' (M M Y m Y m )] +"2E E CAA,CBB' + CAA,CBB' . (13.32) 

This is the most genera1207 (0,4) supersymmetric Lagrangian with these 
types of multiplets, providing that the C satisfy the D-flatness condition: 

C M CM + cYmcYm + C M C M + cYmcYm ° AA' BB' AA' BB' BA' AB' BA' AB' = , (13.33) 

where £kinetic contains the usual kinetic terms for all of the fields. Notice 
that the fields bAt A' and 1/;~A' are free. 

Now equation (13.32) might appear somewhat daunting, but is in fact 
mostly notation. The trick is to note that general considerations can allow 
us to fix what sort of things can appear in the matrices C AA'. The distance 
between the Dl-brane and the D5-branes should set the mass of the 1-5 
fields, ¢A'm and its fermionic partners X~m, X~m. So there should be terms 
of the form: 

(13.34) 

where the term in brackets is the unique translation invariant combination 
of the appropriate 1-1 and 5-5 fields. There are also 1-5-9 couplings, 
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which would be induced by couplings between 1-9, 1-5 and 5-9 fields, in 
the form At! X~-hAM· 

In fact, the required Cs which satisfy the requirements (13.33) and give 
us the coupling which we expect are184 . 

CM hMmJ. 
AA' = A 'PA'm 

CYm J.n (XYm bY £m) AA' = 'PA' An - AUn . (13.35) 

The (0,4) D-flatness conditions (13.33) translate directly into a series of 
equations for the D5-brane hypermultiplets to act as data specifying an 
instanton via the 'ADHM description,208. The crucial point is207 that the 
vacua of the sigma model gives a space of solutions which is isomorphic 
to those of ADHM. 

One can see that one has the right number of parameters as follows: 
The potential is of the form V = ¢2((X - b)2 + h2). So the term in 
brackets acts as a mass term for ¢. The potential vanishes for ¢ = 0, 
leaving this space of vacua to be parametrised by X and h, with b giving 
the position of the Dl-brane in the four transverse directions. Let us write 
XAY =(XAY -bAY) as the centre of mass field. 

Notice that for these vacua (¢ = 0), the Yukawa couplings are of the 
form 2:a X+-BAmX~m where BAm = 3CAB,j3¢B'm, and the index a is 
the set (M, Y, m). There are 4k fermions in x- and so this pairs with 4k 
fermions in the set X+- = (X~m, A~), leaving a subspace of 32 massless 
modes describing the non-trivial gauge bundle. 

The idea is to write the low energy sigma model action for these massless 
fields. This is done as follows: a basis of massless components is given 
by vf (i = 1, ... ,32) defined by 2:a v~BAm = 0, and we choose it to be 
orthonormal: 2:a vfvj = 6ij. The basis vf depends on X. SO substituting 
Aa = '\'·VaA~ into the kinetic eneray aives207 . + L..-% ~ + b b . 

At3-At = 2: { A+i (6ij 3- + 3_X{l A{l,ij) A+j }, 
t,J 

(13.36) 

where 

(13.37) 

we have used the :r6 , x 7, x 8 , x 9 spacetime index /L on our 1-1 field X BY 

instead of the indices (B, Y), for clarity. 
So we see that the second term in (13.36) shows the sigma model cou­

plings of the fermions to a background gauge field A{l. Since we have 
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generically 

B1rn: (.KAY, h:¥rn) , (13.38) 

the orthonormal basis vi is 

(13.39) 

and from (13.37), it is clear that the background gauge field is indeed of 
the form of an instanton: the 5-9 field h indeed sets the scale size of the 
instanton, and the 5-5 field X sets its position. 

13.4.2 Small instantons 

Notice that this model gives a meaning to the instanton when its size, 
set by h, drops to zero130 . This limit of the instanton is simply singu­
lar in field theory. Here we see that the size is just the vev of a 9-5 
field, for which zero is a perfectly fine value. Generically, in the Dp-D 
(p+4) description, zero scale size is the place where the Higgs branch joins 
onto the Coulomb branch representing the Dp-brane becoming pointlike 
(getting an enhanced gauge symmetry on its world-volume), and moves 
out of the world-volume of the parent brane. (For p = 5 this branch is 
not present, but the connection is clear via T-duality.) 

This supplies a method for making rather different sorts of gauge group 
for the heterotic or type I string theory, beyond the perturbative SO(32) 
that we are used to130 . The inclusion of k type I D5-branes allows for 
additional SU(2)k if they are all separated, or if m are coincident, a 
USp(2m) x SU(2)k-rn, as we have seen in section 8.7. In a compact model, 
the number, k, of D5-branes is restricted by Gauss's law, and we shall see 
some examples of this in chapter 14. On the heterotic side, we see that this 
origin of the gauge group is not visible in any perturbative description, 
and so the description is best done at strong coupling, in terms of type I 
strings with D5-branes. 

Recall from section 12.5 that the chain of dualities involving T -duality 
between the heterotic strings and type I/heterotic duality leads to the 
picture of the strongly coupled Es x Es heterotic string as eleven di­
mensional supergravity on a line interval. The same reasoning leads to 
a picture of small instantons in that case to0341 . They are simply M5-
branes in a special situation. An ordinary instanton would be embedded 
in one or other E s , and this corresponds to the M5-brane being located 
at one or other end of the interval. In the intermediate picture denoted 
in figure 12.4, there is a D4-brane which lives inside the worldvolume of 
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the eight D8-branes located at the 08-plane, at one end or the other. 
The 4-8 strings can take vevs and allow them to fatten up into fully 
fledged instantons of the 80(16) which will be enhanced with the spinor 
representation become the Es as they become M5-branes when the extra 
dimension opens up. Setting the 4-8 strings' vev (vacuum expectation 
value) to zero allows them to give vevs to the 4-4 strings which can move 
them away from the ends of the interval into the interior. In the fully 
eleven dimensional picture, this is the M5-brane moving into the interior. 
The Es x Es is restored, but there is something extra from the M5-brane, 
just as in the 80(32) case there was something extra from the D5-branes. 
In this case, it is not an extra N = 2 six dimensional vector multiplet, 
(2,2) + 4(1,1) giving extra gauge symmetry, but an extra N = 2 tensor 
multiplet, (3,1) + 5(1,1). Even after the return to the weakly coupled 
Es x Es string by shrinking the interval, this structure remains as the 
result of shrinking an Es instanton to zero size. 

This is a rather nice result, for many reasons. One is that we see that 
the number of scalars in the multiplet reflect the fact that the brane (and 
hence the instanton) indeed has an eleven dimensional origin, representing 
its strongly coupled roots even after the return to the weakly coupled 
heterotic string. The other is that the intermediate picture in type IA 
allows us to use the result that upon dimensional reduction from six to 
five dimensions (which happens to the 80(32) D5-brane on its way to 
becoming an M5-brane), a vector multiplet and a tensor multiplet both 
reduce to the same multiplet (a vector), and so it is possible to make 
transitions between these multiplets by making a dimension compact and 
then decompactifying one afterwards341 . 

13.5 D-branes as monopoles 

Consider the case of a pair of parallel D3-branes, extended in the direc­
tions xl, x 2, x3, and separated by a distance L in the x6 direction. Let us 
now stretch a family of k parallel D1-branes along the x 6 direction, and 
have them end on the D3-branes. (This is U-dual to the case of D2-branes 
ending on NS5-branes, as stated earlier in section 13.3.) Let us call the 
x 6 direction s, and place the D3-branes symmetrically about the origin, 
choosing our units such that they are at s = ±1. 

xO xl x2 x3 x4 x5 x6 x7 xs x9 

D1 - • • • • • I-I • • • 
D3 - - - - • • • • • • 
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This configuration preserves eight supercharges, as can be seen from our 
previous discussion of fractional branes. Also, a T6-duality yields a pair 
of D4-branes (with a Wilson line) in :rl, :1;2, :1;3, x 6 with k (fractional) DO­
branes. (We naively expect that this construction should be related to 
our previous discussion of instantons, but instead of on ]]{4, they are on 
]]{3 x Sl.) We can see it directly from the fact that the presence of the 
D3- and Dl-branes world-volumes place the following constraints on the 
available supercharges: 

(13.40) 

which taken together give eight supercharges, satisfying the condition 

(13.41 ) 

The 1-1 massless fields are simply the (1+1 )-dimensional gauge field 
AtL(t, s) and eight scalars <I>m(t, s) in the adjoint of U(k), the latter rep­
resenting the transverse fluctuations of the branes. There are fluctuations 
in xl, x 2, x 3 and others in x4, x 5, X 7, x 8 , x 9 . We shall really only be in­
terested in the motions of the Dl-brane within the D3-brane's directions 
xl, x 2 , x 3 , which is the Coulomb branch of the Dl-brane moduli space. So 
of the <I>m, we keep only the three for m = 1,2,3. There are additionally 
1-3 fields transforming in the (±1, k). They form a complex doublet of 
SU(2)R and are 1 x k matrices. Crucially, these flavour fields are massless 
only at s = ±1, the locations where the Dl-branes touch the D3-branes. If 
we were to write a Lagrangian for the massless fields, there will be a delta 
function r5 (s =f 1) in front of terms containing those. The structure of the 
Lagrangian is very similar to the one written for the p - (p + 4) system, 
with the additional features of U(k) non-Abelian structure. Asking that 
the D-terms vanish, for a supersymmetric vacuum, we get: 209 

d<I>i _ [A <I>i] + ~Eijk [<I>j <I>k] = 0 
ds s, 2 ' , (13.42) 

where we have ignored possible terms on the right hand side supported 
only at s = ±l. These would arise from the interactions induced by mass­
less 1-3 fields there210 . We shall derive those effects in another way by 
carefully considering the boundary conditions in a short while. 

If we choose the gauge in which As = 0, our equation (13.42) can 
be recognised as the N ahm equations216 , known to construct the mod­
uli space218 of N SU(2) monopoles, via an adaptation of the ADHM 
construction208 . The covariant form As i- 0, is useful for actually solv­
ing for the metric on the moduli space of monopole solutions and for the 
spacetime monopole fields themselves, as we shall show211 . 
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If our k Dl-branes were reasonably well separated, we would imag­
ine that the boundary condition at 8 = ±1 is clearly 21To:/<I>i(s = 1)) = 

diag{ :rL :r2' ... ,:rk}, where :r~p i = 1,2,3 are the three coordinates of the 
end of the nth Dl-brane (similarly for the other end). In other words, the 
off-diagonal fields corresponding to the 1-1 strings stretching between the 
individual Dl-branes are heavy, and therefore lie outside the description of 
the massless fields. However, this is not quite right. In fact, it is very badly 
wrong. To see this, note that the Dl-branes have tension, and therefore 
must be pulling on the D3-brane, deforming its shape somewhat. In fact, 
the shape must be given, to a good approximation, by the following de­
scription. The function s(x) describing the position of the D3-brane along 
the x 6 direction as a function of the three coordinates xi should satisfy 
the equation \72s(x) = 0, where \72 is the three dimensional Laplacian. 
A solution to this is 

c 
s = 1 + 1 I' X-Xo 

(13.43) 

where 1 is the position along the s direction and c and Xo are constants. 
So, far away from Xo, we see that the solution is s = 1, telling us that we 
have a description of a fiat D3-brane. Nearer to Xo, we see that 8 increases 
away from 0, and eventually blows up at Xo. 

We sketch this shape in figure 13.8( b). It is again our BIon-type solu­
tion, described before in section 5.7. The D3-brane smoothly interpolates 
between a pure Dl-brane geometry far away and a spiked shape resem­
bling Dl-brane behaviour at the centre. A multi-centred solution is easy 
to construct as a superposition of harmonic solutions of the above type. 

xiL (a) (b) 

s 

Fig. 13.8. (a) A D3-brane (vertical) with a Dl-brane ending on it 
(horizontal) is actually pulled ( b) into a smooth interpolating shape. 
(c) Finitely separated Dl-branes can only be described with non­
commutative coordinates (see text) 
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Considering two of them, we see that in fact for any finite separation of 
the Dl-branes (as measured far enough along the s-direction), by time 
we get to s = 1, they will be arbitrarily close to each other (see figure 
13.8( b)). We therefore cannot forget 213 about the off-diagonal parts of <I>i 
corresponding to 1-1 strings stretching between the branes, and in fact 
we are forced to describe the geometry of the branes' endpoints on the 
D3-brane using non-Abelian <I>i. This is another example of the 'natural' 
occurrence of a non-commutativity arising in what we would have naively 
interpreted as ordinary spacetime coordinates. 

We can see precisely what the boundary conditions must be, since we 
are simply asking that there be a pole in <I>i(s) as s ----+ ±1: 

(13.44) 

and placing this into (13.42), we see that the kxk residues must satisfy 

["i "j] _ 2· .. "k 
L.. ,L.. - ZEzJkL.. • (13.45) 

In other words, they must form a k-dimensional representations of SU(2) 
(in an unusual normalisation). This representation must be irreducible, 
as we have seen. Otherwise it necessarily captures only the physics of m 
infinitely separated clumps of Dl-branes, for the case where the represen­
tation is reducible into m smaller irreducible representations. 

13.5.1 Adjoint Higgs and monopoles 

The problem we have constructed is that of k monopoles214 , 215 of SU(2) 
spontaneously broken to U(I) via an adjoint Higgs field217 H = Hata. 
Ignoring the centre of mass of the D3-brane pair, this SU(2) is on their 
world-volume, and the separation is set by the vacuum expectation value 
(vev) , v'HaHa = h of the Higgs field. In our problem, we have (2'Trci)h = 

L/2, where L is the separation of our D3-branes, where we label the 
positions of the branes with L(J3/2, with a factor of 2'Tra' to convert the 
Higgs field to a length, as we have done before. 

Generically, such a model is given by the following effective Lagrangian: 

1 1 
£ = -4Tr(FlwFtLV) - 2Tr(DtLHDtLH) - V(H), (13.46) 

FtLv = atLAv - avAtL + e[AtL, Av], DtLH = atLH + e[AtL, H], 

where H is valued in the adjoint of the gauge group, and there is the 
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usual gauge invariance (g(x) E 5U(2)): 

Aft ----+ g-l Aftg + g-l 0ftg ; H ----+ g-l Hg. (13.47) 

N.B. Note that we have put explicitly a coupling e into the model so 
that we can see how the physics depends on it. Our usual conventions 
do not have that coupling there, but this is for convenience. We will 
remove it at a later juncture. 

The potential V is taken to be positive (but see later), and a typical choice 
is V rv A(Tr(H . H)j2 - h2). We can imagine a non-zero vev for H which 
breaks the 5U(2) to U(l), such as H = hrJ3, or, in an 50(3) language, 
jj = (0,0, h). The U(l) left over is the rJ3 generator, or just a rotation 
about the x3 axis. Notice that the family of values of H which minimise 
V form an 52 of radius h, each point on the 52 being equivalent, as they 
can be reached by an 5U(2) rotation from any other point. This 52 is the 
coset space 5U(2)jU(1). 

More interestingly, we shall seek static solutions with configurations of 
H and A which have non-trivial dependence on the spatial coordinate 
x = (:r1' X2, X3). Let us work in a gauge in which Ao = 0, and seek static 
configurations of finite energy. The Lagrangian reduces to a potential 
energy density: 

(13.48) 

Each term, being positive define, must give a finite value as the result 
for integrating it over all space. In particular, V requires us to have that 
H approaches a constant value, h at infinity. We can think of the choice 
of H(x) at infinity as a map from the sphere at infinity to the vacuum 
manifold. This map can in fact wind the 52 of H-vacua around the 52 at 
infinity k times, where k is an integer. (The fancy way of saying this is that 
7T2(5U(2)jU(1)) = Z.) This will give a stable solution whose magnetic 
charge will turn out to be a fixed number times k. 

A standard choice for k = 1 is that of 't Hooft and Polyakov214 

as r ----+ ex) , and 
x j 

Aai ----+ Eaij -2 ' 
r 

(13.49) 

where r2 = XI + x§ + x§. To seek lowest energy configurations, a spherical 
ansatz 

x· 
Aai = Eaij-.2G(r), 

r 
(13.50) 
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where finite energy requires that P(r) and G(r) tend to unity as r ---+ 00 

and P'(r) ---+ 0 in the limit. 
The gauge field strength can then be seen to go at infinity as 

If we pick a gauge where the unbroken U(l) is in the three-direction, we 
see that, since the magnetic field vector is 

the magnetic charge is given by 

(13.51) 

which fixes the relation between the magnetic charge and the winding 
solution. It is possible to show that higher winding, which is a topological 
invariant, will simply give integers times lie, but we will not do that here, 
and refer the reader instead to the literature. 

A special class of solutions to this model are the Bogomol 'nyi-Prasad­
Summerfeld solutions61 , 62, which have the smallest energy that such a 
solution can posses, the lower bound being set by the magnetic charge 
and the potential V. In supersymmetric cases, V actually vanishes, and 
we recover the familiar situation which we have been seeing all through 
this book, which is a supersymmetric solution whose mass is essentially 
equal to its charge (in appropriate units). See insert 13.1 for a discussion. 

13.5.2 BPS monopole solution from Nahm data 

In fact, we can construct the Higgs field and gauge field of BPS monopole 
solutions of the 3+ 1 dimensional gauge theory directly from the N ahm 
data as follows. Given kxk Nahm data (<[>1, <[>2, <[>3) = 2'Tro:'(Tl' T2 , T3 ) 

solving equation (13.42), there is an associated differential equation for a 
2k component vector v(s): 

There is a unique solution normalisable with respect to the inner product 
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Insert 13.1. The prototype BPS object 

Let us see why BPS monopoles are BPS in the sense that we have 
been using in many places in this book. This is in fact the orig­
inal BPS solution. The energy density that we presented in equa­
tion (13.48) can be written in a suggestive way: 

1 2 
[. = "4 (Faij ± EijkDkHa) ± EijkFaijDkHa + V(H), 

as can be checked by direct reexpansion (we've just completed the 
square). The second term in this form can be written as 

1 
±EijkDk(FaijHa) = ±2EijkOk(FaijHa), 

where we have used the Bianchi identity for the electromagnetic field 
strength. Since we are interested in the total energy, observe that if 
we integrate the second term, we get: 

±~Eijk J d3xok(FaijHa) = ±~Eijk r FaijHadSk, 
2 2 JS2 

but this just integrates the magnetic field at infinity, in the U (1) 
picked out by H a , (which we can choose, as before, to be in the 
three-generator), and so the integral gives ±4Tig h. Since all of the 
other terms are manifestly positive, we have the bound on the total 
energy 

E ~ 4Tilglh. 

Well, it is easy to see how to saturate this bound. We can make the 
first term vanish with the Bogomol 'nyi condition: 

and then choose to make V as small as we can, which means that 
). « e. In fact, we know that in supersymmetric cases, we have that 
V vanishes for supersymmetry preserving vacua, and so we can satu­
rate the bound precisely in such a situation, giving an energy (mass) 
for the monopole which is equal to the charge, in appropriate units. 
Actually, putting the condition above directly into the ansatz (13.50) 
gives a soluble first order differential equation, with solution written 
in equations (13.54) and (13.55). We will obtain this solution directly 
from Nahm data in the next section. 
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In fact, the space of normalisable solutions to the equation is four dimen­
sional, or complex dimension two. Picking an orthonormal basis VI, V2, 
we construct the Higgs and gauge potential as: 

(13.52) 

The reader may notice a similarity between this means of extracting the 
gauge and Higgs fields, and the extraction (13.36)(13.37) of the instanton 
gauge fields in the previous section. This is not an accident. The Nahm 
construction is in fact a hyper-Kahler quotient which modifies the ADHM 
procedure. The fact that this arrangement of branes is T -dual to that of 
the p-(p + 4) system is the physical realisation of this fact, showing that 
the basic families of hypermultiplet fields upon which the construction is 
based (in the brane context) are present here too. 

It is worth studying the case k = 1, for orientation, and since we can get 
an exact solution for this value. In this case, the solutions Ti are simply 
real constants (27Ta')<I>i = -iad2, having the meaning of the position of 
the monopole at x = (aI, a2, a3). Let us place it at the origin. Further­
more, as this situation is spherically symmetric, we can write x = (0,0, r). 
Writing components v = (WI, W2), we get a pair of simple differential 
equations with solution 

(13.53) 

An orthonormal basis is given by 

VI: (C1=0,C2=Ve2rr_1} v2 (C2=0,C1=V1_:-2r ) 

and the Higgs field is simply: 

A r(r) 
H(r) = XWi--, with 

r 

r(r) = r J1 sersds = r coth r - 1, 
(e 2r - 1) -1 

while the gauge field is: 

A sinh r - r 
Ai(r) = Eijk(JjXk 2 . h . 

r sm r 

(13.54) 

(13.55) 

This is the standard one-monopole solution of Bogomol'nyi, Prasad and 
Sommerfield, the prototypical 'BPS monopole,61, 62. (See insert 13.1.) 
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Fig. 13.9. A slice through part of two (horizontal) D3-branes with a (ver­
tical) D1-brane acting as a single BPS monopole. This is made by plotting 
the Higgs field of the exact BPS solution. 

We can insert the required dimensionful quantities: 

'P(r) -----t 'P (Lr/4'IT00/) , 

to get the Higgs field: 

(73 (Lr) H= -'P --
r 4'IT00' 

L 
------+ -4 / (73 , 

'IT 00 
as r -----t 00, 

(13.56) 

(13.57) 

showing the asymptotic positions of the D3-branes to be ±L/2, after 
multiplying by 2 'IT 00/ to convert the Higgs field (which has dimensions of 
a gauge field) to a distance in x 6 . A picture of the resulting shape59, 220 

of the D3-brane is shown in figure 13.9. 
There is also a simple generalisation of the purely magnetic solution 

which makes a 'dyon', a monopole with an additional n units of electric 
charge221 . It interpolates between the magnetic monopole behaviour we 
see here and the spike electric solution we found in section 5.7. It is 
amusing to note47 that an evaluation of the mass of the solution gives 
the correct formula for the bound state mass of a D1-string bound to n 
fundamental strings, as it should, since an electric point source is in fact 
the fundamental string. 

13.6 The D-brane dielectric effect 

13.6.1 Non-Abelian world-volume interactions 

Consider the familiar non-Abelian term in the D-brane's world-volume 
action corresponding to the familiar scalar potential of the Yang-Mills 
theory. This of course appears in the Yang-Mills theory in the usual way, 
and can be thought of as resulting from the reduction of the ten dimen­
sional Yang-Mills theory. It also arises as the leading part of the expansion 
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of the det(Q;) term in the non-Abelian Born-Infeld action, in the case 
when the brane is embedded in the trivial fiat background GfW = 17{!v, as 
discussed in section 5.6: 

where i = p + 1, ... ,9. As we have discussed in a number of cases before, 
the simplest solution ext remising V is that the <I>i all commute, in which 
case we can write them as diagonal matrices <I>i = (27TOO') -1 Xi, where 
Xi = diag( xl, x~, ... , x}y). The interpretation is that x~! is the coordinate 
of the nth Dp-brane in the Xi direction; we have N parallel fiat Dp­
branes, identically oriented, at arbitrary positions in a fiat background, 
lPi.9- p . The centre of mass of the Dp-branes is at xt = Tr(Xi)jN. The 
potential is N Tp , which is simply the sum of all of the rest energies of the 
branes. We shall discard it in much of what follows. 

When we look for situations with non-zero commutators, things be­
come more complicated in interesting ways, giving us the possibility of 
new interesting extrema of the potential in the presence of non-trivial 
backgrounds. This is because the commutators appear in many parts of 
the worldvolume action, and in particular appear in couplings to the R-R 
fields, as we have seen in section 9.7. Furthermore, the background fields 
themselves depend upon the transverse coordinates Xi even in the Abelian 
case, and so will expected to depend upon their non-Abelian generalisa­
tion. 

In general, this is all rather complicated, but we shall focus on one of 
the simpler cases as an illustration of the rich set of physical phenomena 
waiting to be uncovered51 . Imagine that we have N Dp-branes in a con­
stant background R-R (p + 4)-form field strength G(P+4) = dC(p+3) , with 
non-trivial components: 

GOl ... pijk == Gtijk = -2jcijk i,j,k E {1,2,3}. (13.59) 

(We have suppressed the indices 1, ... , p, as there is no structure there, 
and will continue to do so in what follows.) Let the Dp-brane be point like 
in the directions xi (i = 1,2,3), and extended in p other directions. None 
of these Dp-branes in isolation is an electric source of this R-R field 
strength. Recall, however, that there is a coupling of the Dp-branes to 
the R-R (p + 3)-form potential in the non-Abelian case, as shown in 
equation (9.34). We will assume a static configuration, choosing static 
gauge 

for f.l = 1, ... ,p, (13.60) 
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and get (see equation (9.34)): 

(2'TrO:'){Lp J Tr P [iq,iq,C] 

= (2'TrO:'){Lp J dtTr [<I>j<I>i (Cijt(<I>, t) + (2'Tro:/)Cijk (<I>, t) Dt<I>k)]. 

We can now do a 'non-Abelian Taylor expansion,48, 253 of the background 
field about <I>i. Generally, this is defined as: 

. ~ (2'Tro:')n.. . 
F(<I>Z) = ~ ,<I>t1 ••• <I>ZnOxil ... OxinF(Xt)lx=o, 

n=O n. 
(13.61) 

and so: 

(13.62) 

Now since Cijt(t) does not depend on <I>i, the quadratic term containing 
it vanishes, since it is antisymmetric in (ij) and we are taking the trace. 
This leaves the cubic parts: 

(2'Tro:/)2{Lp J dt Tr (<I>j<I>i [<I>kokCijt(t) + Cijk(t) Dt<I>k]) 

= ~(2'Tro:/)2{Lp J dtTr (<I>i<I>j<I>k) Gtijk(t), (13.63) 

after an integration by parts. Note that the final expression only depends 
on the gauge invariant field strength, G(P+4). Since we have chosen it to be 
constant, this interaction (13.63) is the only term that need be considered, 
since of the higher order terms implicit in equation (13.62) will give rise 
to terms depending on derivatives of G. 

13.6.2 Stable fuzzy spherical D- branes 

Combining equation (13.63) with the part arising in the Dirac-Born-Infeld 
potential (13.58) yields our effective Lagrangian. This is a static configu­
ration, so there are no kinetic terms and so £: = -V (<I», with 

V(<I» = - (2'Tr~)2TPTr([<I>i, <I>j]2) - ~(2'Tro:/)2{LpTr (<I>i<I>j<I>k) Gtijk(t). 

(13.64) 
Let us substitute our choice of background field (13.59). The Euler­
Lagrange equations 6V (<I» / 6<I>i = 0 yield 

(13.65) 
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Now of course, the situation of N parallel static branes, [<I>i, <I>j] = 0 is still 
a solution, but there is a far more interesting one51 . In fact, the non-zero 
commutator: 

i· k [<I> ,<I>J] = 1 E"ijk<I> , 

is a solution. In other words we can choose 

;hi _ . 1 "i 
'±' - -z - L.; 

2 

(13.66) 

(13.67) 

where 2;i are any N x N matrix representation of the SU(2) algebra (we 
have chosen a non-standard normalisation for convenience) 

["i "j] _ 2· "k 
L.; ,L.; - Z Eijk L.; • (13.68) 

The N x N irreducible representation of SU(2) has 

i 2 1 2 (2;) = 3(N - l)INxN for i = 1,2,3, (13.69) 

where I NxN is the identity. Now the value of the potential (13.64) for this 
solution is 

VN = - Tp(2'lTa') 2 p :t Tr[(<I>i)2] = _ (2'lT)-P+2a'~ 14 N(N2 - 1). 
6 i=l 12g 

(13.70) 
So our non-commutative solution solution has lower energy than the com­
muting solution, which has V = 0 (since we threw away the constant rest 
energy). This means that the configuration of separated Dp-branes is un­
stable to collapse to the new configuration. 

What is the geometry of this new configuration? Well, the <I>s are the 
transverse coordinates, and so we should try to understand their geometry, 
despite the fact that they do not commute. In fact, the choice (13.67) 
with the algebra (13.68) is that corresponding to the non-commutative or 
'fuzzy' two-sphere252 . The radius of this sphere is given by 

(13.71) 

and so at large N: RN '::::' 'lTa' 1 N. The fuzzy sphere construction may be 
unfamiliar, and we refer the reader to the references for the details252 . It 
suffices to say that as N gets large, the approximation to a smooth sphere 
improves. 

Note that the irreducible N x N representation is not the only solu­
tion. A reducible N x N representation can be made by direct product 
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of k smaller irreducible representations. Such a representation gives a 
Tr[(L;i)2] which is less than that for the irreducible representation (13.66), 
and therefore yields higher values for their corresponding potential. There­
fore, these smaller representations representations, corresponding geomet­
rically to smaller spheres, are unstable extrema of the potential which 
again would collapse into the single large sphere of radius RN . It is amus­
ing to note that we can adjust the solution representing an sphere of size n 
by 

(13.72) 

This has the interpretation of shifting the position of its centre of mass 
by xi. 

What we have constructed is a D(p + 2)-brane with topology ]RP x 52. 
The]RP part is where the N Dp-branes are extended and the 52 is the fuzzy 
sphere. There is no net D(p + 2)-brane charge, as each infinitesimal ele­
ment of the spherical brane which would act as a source of C(p+3) potential 
has an identical oppositely oriented (and hence oppositely charged) part­
ner. There is therefore a 'dipole' coupling due to the separation of these 
oppositely oriented surface elements. This type of construction is use­
ful in matrix theory (described in chapter 16), where one can construct 
for example, spherical D2-brane backgrounds in terms of N DO-branes 
variables253, 254, 255. 

13.6.3 5table smooth spherical D-branes 

One way59, 51 to confirm that we have made a spherical brane at large N, is 
to start with a spherical D(p+2)-brane, (topology ]RPx 52) and bind N Dp­
branes to it, aligned along an ]RP. We can then place it in the background 
R-R field we first thought of and see if the system will find a static 
configuration keeping the topology ]RP x 52, with radius RN . Failure to 
find a non-zero radius as a solution of this probe problem would be a sign 
that we have not interpreted our physics correctly. 

Let us write the ten dimensional fiat space metric with spherical polar 
coordinates on the part where the sphere is to be located (xl,:r2,:r3): 

9 

ds2 = -dt2 + dr 2 + r2 (de2 + sin2 e drj}) + L:(d:x;i)2. 
i=4 

(13.73) 

Our constant background fields in these coordinates is (again, suppressing 
the 1, ... ,p indices): 

Gtre¢ = -2fr2 sin e 2 3 . 
and so Cte¢ = 3 fr sm e. (13.74) 
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As we have seen many times before, N bound Dp-branes in the D(p + 2)­
brane's world-volume correspond to a fiux due to the coupling: 

(13.75) 

where C(p+l) is the R-R potential to which the Dp-branes couple, and is 
not to be confused with the C(p+3) we are using in our background, in 
(13.74). We need exactly N Dp-branes, so let us determine what 
F-fiux we need to achieve this. If we work again in static gauge, with 
the D(p + 2)-brane's world-volume coordinates in the interesting direc­
tions being: 

(13.76) 

then 
N 

Pe¢ = 2 sine, (13.77) 

is correctly normalised magnetic field to give our desired fiux. 
We now have our background, and our N bound Dp-branes, so let us 

seek a static solution of the form 

r = R and xi = 0, for i = 4, ... , 9. (13.78) 

The world volume action for our D(p + 2)-brane is: 

S = -Tp+2 J dt de d¢ e-ip det ~ (-Gab + 2'ITOO' Fab) + ILp+2 J C(p+3)· (13.79) 

Assuming that we have the static trial solution (13.78), inserting the fields 
(13.74), a trivial dilaton, and the metric from (13.73), the potential energy 
is: 

V(R) = - J ded¢£ 

~ 4~Tp+2 ([ It + (2m,j' N2 ]1 - ~{ R') 
2Tp 4 4Tp 3 

= NTp + (2'IToo/)2NR - 3(2'IToo,/R + .... (13.80) 

In the above we expanded the square root assuming that 2R2 /(2'ITOO' N) 
~ 1, and kept the first two terms in the expansion. As usual we have 
substituted Tp = 4'IT2OO/Tp+2. 

The constant term in the potential energy corresponds to the rest en­
ergy of N Dp-branes, and we discard that as before in order to make 
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our comparison. The case V = 0 corresponds to R = 0, the solution 
representing fiat Dp-branes. Happily, there is another extremum: 

To leading order in liN, we see that we have recovered the radius (and 
potential energy) of the non-commutative sphere configuration which we 
found in equations (13.71) and (13.70). It is appropriate that it only 
matches at large N, since the fuzzy geometry only approximates a smooth 
one in this limit. 

As noted before, this spherical D(p + 2)-brane configuration carries no 
net D(p+2)-brane charge, since each surface element of it has an antipodal 
part of opposite orientation and hence opposite charge. However, as the 
sphere is at a finite radius, there is a finite dipole coupling. 

There is one major limitation of this whole discussion which is worth re­
marking upon. There is no such solution as a constant fiux in fiat space. So 
the analysis above need to be taken with a pinch of salt. Actually, this sort 
of brane expansion mechanism was anticipated in an earlier supergravity 
study before the identification of the precise world-volume mechanisms 
behind it 59 and so it is worthwhile revisiting the supergravity technology. 
A fiux would create a gravitational back-reaction and so the fiat metric 
that we've been using should really be replaced by some other metric. The 
prototype such solution of four dimensional Einstein-Maxwell gravity is 
the Melvin solution224 , which has an infinite magnetic fiux threading a 
four dimensional universe. 

This is the sort of solution which we need, with the fiux identified with 
the R-R sector. There is a Kaluza-Klein version of the Melvin solution 225 

and this fact has been used226 to make a e(l) R-R fiux solution oftype IIA 
using a reduction from eleven dimensions, and other related solutions. 
Doing this with a twist allows one to include M5-branes, which upon 
reduction give a solution representing D4-branes expanding dielectrically 
into D6-branes via the dielectric mechanism in the magnetic e(l) fiux. 

All of this that we have described here is the D-brane analogue51 of 
the dielectric effect in electromagnetism. If we place Dp-branes in a back­
ground R-R field under which the Dp-branes would normally be regarded 
as neutral, the external field 'polarises' the Dp-branes, making them puff 
out into a (higher dimensional) non-commutative world-volume geome­
try. Just as in electromagnetism, where an external field may induce a 
separation of charges in neutral materials, the D-branes respond through 
the production of electric dipole and possibly higher multi pole couplings 
via the non-zero commutators of the world-volume scalars. 
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There is clearly a rich set of physical phenomena to be uncovered by con­
sidering non-commuting <I>s. Already there have been applications of this 
mechanism to the understanding of a number of systems, such as large N 
gauge theory via the AdS/eFT correspondence and other gauge/gravity 
duals. 256 

The phenomena of branes being able to deform their shape and change 
their dimensionality, turning into other branes, etc., is a very important 
direction to explore further. This represents a quite mature physical arena, 
but currently we are limited to only a few solutions, and quite indirect 
description. It is possible that we need a whole new language to efficiently 
describe this physics, which may well be formulated directly in terms of 
non-commutative variables at the outset. 
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14 
K3 orientifolds and compactification 

In section 7.6, we constructed type IIA and IIB compactifications on K3 
with pure geometrical orbifolds. In that same chapter, we met the pro­
totype orientifold, which constructs the type I string theory from the 
type IIB string theory. Now that we have understood the behaviour of 
D-branes in the neighbourhood of orbifold fixed points, we are in a good 
position to revisit the orbifold construction of K3 compactification, by 
combining our ideas with those about the orientifold to make K3 com­
pactifications of type I string theory. There are many models that can be 
made, and we will present only a small sample of them here236 , in order 
to illustrate the key ideas. 

14.1 tlw orientifolds and Chan-Paton factors 

Let us consider constructing K3 in its orbifold limits using the space­
time symmetry group 'lLN, which acts as described in subsection 7.6.5, 
which the reader should consult. Recall that we denoted the genera­
tor of 'lLN by aN' the group elements being the powers a'N, for k E 
{a, 1,2, ... , N - I}. There are spacetime symmetries, acting on ]R4 with 
coordinates (x 6 , x 7 , x 8 , x 9 ). 

We now define what might be called the 'orientifold group', combining 
both spacetime and world-sheet symmetries, which contains the elements 
a'N and also 0 . a'N (which we shall sometimes denote Ok), where 0 is 
world-sheet parity. Gauging the action of a'N (i.e. projecting onto states 
invariant under it) will require the introduction of the familiar closed 
string twisted sectors for the orbifold part, while gauging Ok will result 
in unoriented world-sheets, as described in section 2.6. 

At this level, we have a choice as to the elements we wish to consider 
in our orientifold group, the only constraint being closure. There are two 
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distinct choices of ZN orientifold group, which we can denote* as Z~ and 
Z~. One choice is to have 

Z~={l,O,o:~,Oj}, k,j=1,2, ... ,N-l. (14.1 ) 

A second choice (only available for N even) is 

. N 
k,] = 1,2, ... '~. (14.2) 

Both of these orientifold groups close under group multiplication since 
0 2 = l. 

Let us consider the presence of D-branes in this situation, introducing 
Chan-Paton factors, A. As in section 2.6, an open string state will be 
denoted Aij 1'ljJ, ij), where 'ljJ is the state of the world-sheet fields and i 
and j label the endpoint states. Note that there should be no non-zero 
elements of the Chan-Paton matrices, A, which connect D-branes which 
are at different points in spacetime. 

The action of an orientifold group element 9 E Z:';B on this complete 
set will be represented by the unitary matrices denoted Ig. We have for 
example, generalising expressions in section 2.6: 

o:~: l'lj;, ij) ----+ (rk )ii'lo:~· 'Ij;, i'j') (r;l)jlj (14.3) 

while for 0 . o:~ == Ok, 

Ok: 1'ljJ, ij) ----+ (rOk)ii/IOk· 'ljJ,j'i')(rr;;)jlj. (14.4) 

As before, when the group element includes 0, the ends of the string are 
transposed. Composing various actions of the group elements, we see that 
since (o:~)N = 1, then 

(14.5) 

and so 
If: = ±l. 

Similarly, since 0 2 = 1 

(14.6) 

resulting in 

10 = ±I~· (14.7) 

Other examples of such conditions will be put to explicit use later. 

* Here A and B have nothing to do with the A and B of the type II strings. 
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14.2 Loops and tadpoles for ALE 'lLM singularities 

14.2.1 One-loop diagrams and tadpoles 

In open and/or unoriented string theory, certain divergences arise at the 
one-loop level, which may be interpreted31 as inconsistencies in the field 
equations for the R-R potentials in the theory. They manifest themselves 
as 'tadpoles': amplitudes for emission of quanta from the vacuum. We 
must ensure that these are absent from the theory, and the way to do 
this is to cancel them against each other, possibly form different sectors 
of the theory. We saw this in the prototype orientifold, constructing the 
50(32) type I theory from the type IIB superstring. Converting the earlier 
language of chapter 7 to the one we use here, the tadpoles are of two 
types, disc tadpoles and lRP2 tadpoles. They are perhaps best visualised 
as the process of emitting an R-R closed string state from a Dp-brane 
(for the disc), or from an orientifold plane (for lRp2 ). In that prototype 
case the disc and lRP2 produce a divergence proportional to (217.9-32)2 for 
50(217.9) Chan-Paton factors (i.e. there are 17.9 D9-branes) and (217.9+32)2 
for U5p(2n9). Cancellation of the divergences therefore requires gauge 
group 50(32) (i.e. 16 D9-branes). Here, the orientifold group is simply 
{l,O}, as there are no spacetime symmetries to consider. The tadpole 
cancellation ensures consistency of the ten-form potential's field equation. 

Just as in the example of computing the D-brane and orientifold ten­
sions in chapter 7, the most efficient way of computing the divergent con­
tribution of the tadpoles is to compute the one-loop diagrams (the Klein 
bottle (KB), Mobius strip (MS) and cylinder (C)) and then to take a limit 
which extracts the divergent pieces. The fact that these diagrams yield 
the disc and lRP2 tadpoles in terms of the sums of three different prod­
ucts means that the requirement of factorisation of the final expression is 
a strong consistency check on the whole computation. 

The three types of diagram which can be drawn, labelled by the possible 
elements of the orientifold group under consideration, are depicted in 
figure 14.1. In the figure, the crosscaps show the action of Om as one goes 
half way around the open string channel (around the cylinder). (Recall 
that the the crosscap is a disc with the edges identified. See figure 2.13, 

k=2m=2n 

Fig. 14.1. One-loop diagrams from which we will extract the tadpoles. 
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page 56.) Going around all the way picks up another action of Om, yielding 
the ZN element O;! = a'Jvm which is the twist which propagates in the 
closed string channel (along the cylinder). If there is a crosscap with On 
at the other end, forming a Klein bottle, then O;! = aJ::! should yield the 
same twist in the closed string channel, i.e. 2n = 2m. For ZN with N 
odd, there is only one solution to this: m = n mod N. When N is even 
however, we can have also the solution n = m + N /2 mod N. 

14.2.2 Computing the one-loop diagrams 

We may parametrise the surfaces as cylinders with length 2TIl and cir­
cumference 2TI with either boundaries or crosscaps on their ends with 
boundary conditions on a generic field ¢( 0- 1,0-2) (and its derivatives): 

KB : ¢(O, TI + 0-2) = Om . ¢(O, 0- 2) 

¢(2TIl, TI + 0-2) = On . ¢(2TIl, 0-2) 

¢(o-\ 2TI + 0-2) = a'Jv . ¢(o-\ 0-2); k = 2m = 2n; 

MS : ¢(2TIl, 0-2) E M j 

¢(O, TI + 0-2) = Om . ¢(O, 0-2) 

¢(o-\ 2TI + 0- 2) = a'Jv . ¢(o-\ 0-2); k = 2m; 

C : ¢(O, 0- 2 ) E Mi 

¢(2TIl, TI + 0-2) E NIj 

¢(o-\ 2TI + 0-2) = a'Jv . ¢(o-\ 0-2). (14.8) 

In computing the traces to yield the one-loop expressions, it is convenient 
to parametrise the Klein bottle and Mobius strip in the region ° ~ 0-1 ~ 
4TIl, ° ~ 0-2 ~ TI as follows: 

KB: 

MS: 

¢(0-1, TI + 0-2) = Om' ¢(4TIl- 0- 1,0-2) 
¢( 4TIl, 0-2) = a7J-n . ¢(O, 0-2); 

¢(O, 0- 2) E M j 

¢( 4TIl, 0-2) E M j 

¢(o-\ TI + 0-2) = Om . ¢( 4TIl - 0-\ 0-2). (14.9) 

After the standard rescaling of the coordinates such that open strings are 
length TI while closed strings are length 2TI, the amplitudes are 

KB: Trc,k (Om(_1)F+F eTI(LO+Lo)/21) , 

MS: Tr .. (0 (_1)FeTILo/41). O,JJ rn . 

c: Tro,ij (a'Jv(_l)FeTILo / I). (14.10) 
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(In the above, '0' and 'c' mean 'open' and 'closed', respectively.) 
The complete one-loop amplitude is 

100 ~t {Trc (P( _l)F e-2'1Tt(Lo+£o)) + Tro (P( _l)F e-2'1TtLO ) }. (14.11) 

The projector P includes the GSO and group projections and F is the 
fermion number. The traces are over transverse oscillator states and in­
clude sums over spacetime momenta. After we evaluate the traces, the 
t ---+ 0 limit will yield the divergences. Note also that the loop modulus t 
is related to the cylinder length l as t = 1/4l, 1/8l and 1/2l for the Klein 
bottle, Mobius strip and cylinder, respectively. See figure 6.2, page 148. 

Note that the elements 0:'Jv act as follows on the bosons and in the 
Neveu-Schwarz (NS) sector: 

{ 
6 7 2'ITik 

k. Zl = X + iX ---+ e-y::{ Zl 0: N . 8 9 2'ITik, 
Z2 = X + iX ---+ e--Y::{ Z2 

(14.12) 

and it acts in the Ramond (R) sector as 

(14.13) 

As a consequence of this latter convention, notice for example that 0:'Jv 
gives the result 4cos2 ~ when evaluated on the R ground states while 
(- )F 0:'Jv gives 4sin2 ~ . 

For the closed string with integer of half-integer modes labelled by r, 
we may write the action of 0: 

(14.14) 

For open strings with mode expansion 

Xfl(a, O) = xfl + iff; rn~= ~ (eimlT ± e-imIT ). (14.15) 

rny'O 

Being more explicit, we must compute the following amplitudes, 

Tru +T { 0 ~l 0:'Jv . 1 + (-1 )F . e-2'1Tt(LO+£O)} 
NS-NS+R-R 2 ~ N 2 ' 

k=O 
KB: 

MS: Tr99 +55 {O ~l 0:'Jv . 1 + (_l)F . e-2'1TtLO} . 
NS-R 2 ~ N 2 ' 

k=O 

Tr99+55+95+59 {~ ~l 0:'Jv . 1 + (-l)F . e-2'1TtLO} , (14.16) 
NS-R 2 ~ N 2 

k=O 
c: 
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Insert 14.1. Jacobi's '!9-functions 

There are key seventeenth-century special functions which playa role 
in organising one-loop amplitudes: 

(14.17) 
00 00 00 

x II (1 - q2n) II (1 - q2ne2Triz) II (1 - q2ne-2Triz), 
n=l n=l n=l 

'!92(zlt) = 2ql/4cOS7TZ 
00 00 00 

n=l n=l n=l 
00 00 00 II (1 - q2n) II (1 + q2n-le2Triz) II (1 + q2n-l e-2Triz), 

n=l n=l n=l 
00 00 00 

n=l n=l n=l 

where q = e-Trt . We will need their asymptotics at t ---+ O. Since the 
asymptotics as t ---+ 00 are straightforward we can obtain the t ---+ 0 
asymptotia from the modular transformations (T = it) 

'!91(zIT) = T-l/2e3iTr/4e-iTrZ2/T'!91 (~I- ~), 

'!93(zIT) = T-l/2eiTr/4e-iTrz2/T '!93 (~I- ~), 

'!92(zIT) = T-l/2eiTr/4e-iTrz2/T'!94 (~I- ~), 

'!94(zIT) = T-l/2eiTr/4e-iTrZ2/T '!92 (~I- ~). (14.18) 

where U(T) refers to the untwisted (twisted) sector of the closed string. 
Since n forces the left- and right-moving sector to be identical, there is no 
need to include ~(1 + (_1)1') in the trace in the Klein bottle. The open 
string traces include a sum over Chan-Paton factors. 

The results can be written in terms of Jacobi's elliptic functions (see 
insert 14.1), generalising what we had before with a new twist. In the 
various loop channels, there is a twist by a'Jy, which introduces a Z = -JJ. 
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Insert 14.2. The abstruse indentity 

The useful abstruce identity ('aequatio identico satis abstrusa ') 
ensures the cancellation between the R-R and NS-NS sectors (see 
chapter 7): 

(14.19) 

It follows from the more general identities 

19§(Olt)19§(zlt) -19~(Olt)19~(zlt) -19~(Olt)19~(zlt) = 0 

19§(Olt)19~(zlt) -19~(Olt)19I(zlt) -19~(Olt)19§(zlt) = 0 

19§(Olt)19~(zlt) -19~(Olt)19§(zlt) -19~(Olt)19I(zlt) = 0, (14.20) 

for the full 19-functions. The twisting in the loop channels by a'Jv in­
troduces z = k/N into the oscillator sums, and hence we find that 
supersymmetry of the models are ensured by these more general iden­
tities representing the cancellations between twisted sectors. 

into the oscillator sums since there is a shift in the energy of the twisted 
states. 

In the case of the Klein bottle, there is also a twist in the closed string 
loop channel by a~-m. Such a space twist will in general change the 
moding of the fermion and bosons. This should manifest itself as another 
type of twist of the 19-functions. To write this relationship, we use the 
notation 

(14.21) 

in which we can succinctly write227 : 

(14.22) 

where (E, E/) E {O, I} for the familiar 19-functions. In evaluating the Klein 
bottle amplitude, the identities (14.22) are used to rewrite twisted expres­
sions in terms of 19-functions. 

For the twisted 99 cylinders the one-loop amplitudes are (z=k/N): 

V6 ~1 (Trhk,g))21CXl dt (8 2 /t)-3 4'· 2 f- 6 (t),a-2( It) 
3N ~ ( . 2)2 'IT a 8m 'ITZ 1 VI Z, 

2 k=l 4 sm 'ITZ 0 t 

x {19§(Olt)19§(zlt) -19~(Olt)19~(zlt) -19~(Olt)19~(zlt)} , (14.23) 
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while for the twisted 55 cylinders they are: 

The 95 cylinders give: 

TT N-l d 
V6 ~ 1= t 2' 3 6 2 2 3N L..- Trbk,9)Trbk,5) -(81T 0: t)- fl (t){)";; (zit) 

2 k=l 0 t 

x {19~(Olt)19~(zlt) -19~(Olt)19i(zlt) -19~(Olt)19~(zlt)} . (14.25) 

The twisted Mobius strip amplitudes are, for the D5-branes (z=m/N): 

and for the D9-branes: 

_ V6 ~l Trbr2!,9Ilrn,9) {= dt (81T20:'t)-3 
23 N L..- (4 sin2 1TZ)2 Jo t 

rn=l 

X 4sin2 1Tz f16 (iq)1912 (iq, z) 

x {19~(iq, O)19~(iq, z) -19~(iq, O)19~(iq, z) -19~(iq, O)19~(iq, z)}. (14.27) 

Finally, the Klein bottle gives (t+=t + ~t, c=t - ~t): 

V6 ~l 1 1= dt 2, -3 . 2 3N L..- ( . 2 )2 -(41T 0: t) 4sm 21T(Z - (t) 
2 m,n=l 4sm 1TZ 0 t 

x fI6(2t)1911(zI2C)1911(zI2t+) 

x { -19~(OI2t)194(zI2C)194(zI2t+) + 19~(OI2t)193(zI2C)193(zI2t+) 

- 19~(OI2t)192(zI2C)192(zI2t+)} . (14.28) 

In the Klein bottle amplitudes, we have the twist (=(m - n)/N in the 
closed string channel, resulting in a zero point energy shift for the bosons 
and fermions which contribute. V6 is the regularised six dimensional space­
time volume. 
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N.B. The f-functions we met in computations in chapters 4 and 7 
are a special case of the functions (14.17), at z = 0, as shown in 
equation (4.44) (here, a prime denotes 8/8z): 

00 

h(q) = q1/12 II (1 - q2n) = (21T)-1/319~(0It)1/3 
n=l 

00 

h(q) = y'2q1/12 II (1 + q2n) = (21T)1/619;(0It)1/219~(0It)-1/6 
n=l 

00 

h(q) = q-1/24 II (1 + q2n-1) = (21T)1/619~(0It)1/219~(0It)-1/6 
n=l 

00 

f4(q) = q-1/24 II (1- q2n-1) = (21T)1/619~(0It)1/219~(0It)-1/6. 

n=l (14.29) 

The factor of (4 sin2 1TZ) -2 is a non-trivial contribution from evaluating 
the trace of the operator 0 in the zl and z2 complex planes in the NN 
sector. The operator 0 is the rotation 

(14.30) 

We have 

(14.31) 

where we have used the basis 

(z1, z2Iz1/, z2/) =} 6(zl - zl/)6(z2 - z2/). 
VT4 

(14.32) 

Supersymmetry is manifest here, as due to the identities (14.20) each 
of these amplitudes vanishes identically. However, we wish to extract the 
tadpoles for closed string massless NS-NS fields from these amplitudes, 
and we do so by identifying the contribution of this sector from each of 
these amplitudes. 

14.2.S Extracting the tadpoles 

The next step is to extract the asymptotics as t ----+ 0 of the amplitudes, 
relating this limit to the l ----+ 00 limit for each surface, (using the rela­
tion between land t for each surface given earlier). Here, the asymptotic 
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behaviour of the '!9-functions given in equations (14.18) are used. This ex­
tracts the (divergent) contribution of the massless closed string R -R fields, 
which we shall list below. In what follows, we shall neglect the overall fac­
tors of 1/ N and powers of two which accompany all of the amplitudes. 

First, we list the tadpoles for the untwisted R-R potentials. For the ten­
form we have the following expression (proportional to (1 - 1 )V6V4 Jooo dl): 

(14.33) 

corresponding to the diagrams in figure 14.2 
Here, VD = VD(47T 2o:/)-D/2, where VD is a D dimensional volume. The 

limit where we focus upon the neighbourhood of one ALE point is equiv­
alent to taking the non-compact limit V4 ----+ 00 while keeping VlO = V6V4 

finite. 
For the six-form we have (proportional to (1 - 1)~ Jooo dl): 

(14.34) 

which arise from the diagrams in figure 14.3. 
In the non-compact limit we are considering here, this last contribution 

does not survive, as it is proportional to V6/V4' The fact that it vanishes 
is consistent with the fact that if space is not compact, there is no restric­
tion from charge conservation on the number of D5-branes which may 
be present: the analogue of Gauss's Law for the six-form potential's field 
strength does not apply, as the flux lines can stretch to infinity. In the 
compact case, they must begin and end all within the compact volume. So 
this equation will be relevant only when we return to the study of global 
six-form charge cancellation in the compact K3 examples. 

Notice also in this case that the last two diagrams obviously vanish in 
the case when N is odd. An immediate consequence of this is that Z3 
fixed points have no six-form charge. 

9(TI} + o~J} + Q Q 

Fig. 14.2. The tadpoles for D9-branes. 

5(05 + 

Fig. 14.3. The tadpoles for D5-branes. 
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The twisted sector tadpoles are (proportional to (1 - 1 )V6 J~oo dl): 

(14.35) 

These tadpoles correspond to the diagrams in figure 14.4. 
Notice that since a'Jv and a~+N/2 both square to the same element, aJ.!l, 

we can make opposite phase choices in the composition algebra of the 10k 
matrices: 

(14.36) 

for D9-branes and 

Tr[rs1;,51~b5] = -Tr[r2k,5] 

Tr[rs1~+1f ,51~k+1f ,5] = Tr[r2k,5] (14.37) 

for D5-branes. This is more than an aesthetic choice, as the first line of 
each of these conditions is simply the crucial result derived in section 8.7 

L [{E) + 90JJS + sOJ}] k 

+L [ Q,()E)s + QkE)9 + 
k 

Fig. 14.4. The tadpoles for twisted sectors. 
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that 0 2=1 in the 99 sector, but -1 in the 55 sector132 . The second line 
in each is the statement that IFv/2 = -1 in each sector. 

With (14.36) and (14.37), the expression (14.35) can be factorised, for 
even N: 

N 

2 1 
L 4 . 2 (2k-l)7T 
k=l sm N 

N 

2 1 

{;4sin2(2~k) 

and for odd N: 

[T"( ) 4' 2 (2k-l)7T T ( )] 2 
I 12k-l,9 - sm N r 12k-l,5 

[Tr( 12k,9) - 4 sin2 (2~k) Tr( 12k,5) - 32 cos (2~k) ] 2 

(14.38) 

M-l 1 
~ [Trb) - 4 sin2 (27Tk) Trb ) _ 32 cos2 7Tk ] 2 
~ 4 sin2 7Tk 2k,9 N 2k,5 N' 
k=l N (14.39) 

Having extracted the divergences and factorised them, revealing the 
tadpole equations (which may be also interpreted as charge cancellation 
equations, as discussed earlier) we are ready to find ways of solving these 
equations for the various orientifold groups. 

14.3 Solving the tadpole equations 

14.3.1 T-duality relations 

Compact manifolds which can be constructed as T 4 /7lw (as described in 
section 7.6.5) exist only for N = 2,3,4 and 6. From the discussion in 
section 14.1, we can therefore construct orientifolds of type A for all these 
values of N, but of type B only for N = 2,4 and 6. We list below explicitly 
the orientifold groups: 

z~ = {I, a§, 0, Oa§}, z~ = {I, Oa2}, 
zt = {I, a~, a§, 0, Oa~, Oa§}, 
z1 = {I, a!, a~, a~, 0, Oa!, Oa~, Oa~,}, zf = {I, a~, Oa!, Oa~,}, 
zt = {I, a~, ... , a~, 0, Oa~, ... , Oa~}, 
Z: = {I, a~, at, Oa~, Oa~, Oa~}, (14.40) 

N 

where 00& == R. In equation (14.33) for the untwisted ten-form potential, 
Trbo g) = 2ng, where ng is the number of D9-branes. All of the orien­
tifold' groups of type A contain the element 0, and therefore there will be 
an equation of the form (14.33), telling us that there are 16 D9-branes. 
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Similarly, all type A models except zt will contain 16 D5-branes also, as 
the presence of an element OR means that there will be an equation of 
the form (14.34). 

In contrast, the models of type B all lack the element 0 and therefore 
have only the first term of equation (14.33). The only solution is that the 
number of D9-branes in these models is zero. All type B models except 
zf have the element OR, and therefore have 16 D5-branes. So zf has 
the distinction of having no open string sectors at all: it is a consistent 
unoriented closed string theory 

Now T-duality in the (x6 ,x7 ,x8 ,x9 ) directions exchanges the elements 
o and OR. This also exchanges D9-branes with D5-branes. So models zt, 
zt, Z~ and zf are self T6789-dual. Meanwhile zt, which has only D9-
branes, is dual to z/f which has only D5-branes. Z~, which has only OR 
as a non-trivial element of its orientifold group, is dual to ordinary type I 
string theory (which we may denote as zt), whose orientifold group has 
only 0 as its non-trivial element. This is summarised in figure 14.5. 

14.3.2 Explicit solutions 

Let us write out the tadpole equations explicitly in each case. For the zt 
case, for which there is one twisted tadpole equation (recall oo§ == R): 

(14.41) 

A solution is 

ISl,9 = ISlR,5 = h2 

IR,9 ( 0 -I -- Sl,5 - -h6 h6 ) o . 

T T T 
n n n 

z~ z~ ZA 
3 Z: Z: 

Tt Tt 

Z: Z: Z: 
U 
T 

Fig. 14.5. T-duality relations between the models. 
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14.3 Solving the tadpole equations 

For the zt case we have 

Tr[''fl,9] - 3Tr[''fl,5] = 8 

Tr[''f2,9] - 3Tr[''f2,5] = 8, 

335 

(14.42) 

and since we have already learned that the number of D5-branes is zero 
in this case, we have solution 15 = 0 for all orientifold elements in the 
D5-brane sector, and we can write 

~",9 G ~ ~ D 0lg, 

2'ITi 2'ITi 

I = diag{e T (8 times),e- T (8 times), 1 (16 times)}, 1,9 

from which it is trivially verified that (14.42) is satisfied. 
Notice that 10 acts by exchanging the roots and their complex conju-

21Ti 2'ITi 
gates: eT f--+ e-T. This will be the case in all of the later models, and 
so we will no longer list it explicitly in the later solutions. Note also that 
in the other type A orientifolds, 10,9 = IOR,5, and IOR,9 = 10,5. We can 

2'ITim 

always choose a phase such that we can always write 11,9 = e~11,5, for 
m any odd integer. This simple relationship between the I matrices in 
the D5- and D9-brane sectors is a manifestation of T6789 duality. 

For the zt case we have: 

Tr[r1,9] - 2Tr[r1,5] = 0 

Tr[r2,9] - 4Tr[r2,5] = 0 

Tr[r3,9] - 2Tr[r3,5] = O. (14.43) 

Note that the middle case correctly reproduces the zt example, and there­
fore the zt example appears as a substructure. This will be true for z~ 
also. 

The solution is (o:~ == R): 
'ITi 'ITi 31Ti 3'ITi 

11,9 = diag{e"4 (8 times), e-"4 (8times), e T (8times), e- T (8 times)}. 

For the z~ case we have: 

Tr[r1,9] - Tr[r1,5] = 0 

Tr[r2,9] - 3Tr[r2,5] = 16 

Tr[r3,9] - 4Tr[r3,5] = 0 

Tr[r4,9] - 3Tr[r4,5] = -16 

Tr[r5,9] - Tr[r5,5] = 0, (14.44) 
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for which we have (aa == R): 

Trli1,9l = Trli1,5l = 0, Trli3,9l = Trli3,5l = 0, Trli5,9l = Trli5,5l = 0, 

Trli2,9l = Trli2,5l = -8, Trli4,9l = Trli4,5l = 8, 

'"h,9 = diag{e~ (4 times), e-~ (4 times), 
5'ITi 5'ITi 

e T (4 times), e- T (4 times), -i (8 times), i (8 times)}. 

Note here that: 
2'ITi 2'ITi 

11,9 == diag{ e T (4 times), e- T (4 times), 1 (8 times)} Q9 diag{ -i, i}, 

which shows a Z3 x Z2 structure, using the solutions previously obtained 
for the zt and zf models. 

Also notice that in all cases above, the coefficient of the Ik 5 trace is 
the square root of the number of fixed points invariant under' a'Jv. Also 
interesting is that (generalising the Z2 case,) the same choice made for 
D9-branes can be made for D5-branes, up to a phase. 

The tadpoles for the case Ze will turn out to be isomorphic to those 
listed above for zf, while there are no tadpoles to list for the zf model, 
as there are no D-branes required. 

Let us now turn to the closed string spectra. 

14.4 Closed string spectra 

Just as we did in section 7.6, we should construct the closed string spec­
trum for each model, which we will combine with the open string spectrum 
later. The procedure is much the same as we did for the K3 orbifold, ex­
cept that we will apply the orientifold projection, which will throw out 
more states. 

The right-moving untwisted sector has the massless states given below. 

Sector State aJ-v 80(4) charge 

NS ?jJ~1/210) 1 (2,2) 

?jJ~~/210) 
± 2Tiik 

2(1,1) e N 

?jJ~~/210) e=f 2'lJk 2(1,1) 

R 181828384) 
81 = +82, 83 = +84 1 2(2,1) 
81 = -82, 83 = -84 

± 2Tiik 
e N 2(1,2) 

Meanwhile, the right-moving sector twisted by N # ! has the following 
states. 
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Sector State a'Jv SO( 4) charge 

NS ?jJ~i/2+m/NIO) 
27rik (1-2.!!l) (1,1) e N N 

?jJ~i/2+m/NIO) 
27rik (1-2.!!l) (1,1) e N N 

R IS 1s2), Sl = -S2 
e 2;;k(1-2 N) (1,2) 

The exception to the situation depicted there is when we have an N=~ 
twist. 

Sector State a'Jv SO( 4) charge 

NS 18 3 84), s3 = +S4 1 2(1,1) 
R 18182), Sl = -S2 1 (1,2) 

We have imposed the GSa projection, and decomposed the little group 
of the spacetime Lorentz group as SO(4) = SU(2)xSU(2), just as in 
section 7.6. We form the spectrum for orientifold group of type A by 
taking products of states from the left and right sectors (to give states 
invariant under a'Jv), symmetrised by the 0 projection in the NS-NS 
sector, while antisymmetrising in the R-R sector, since we have fermions 
there. 

In this way, we have from the untwisted closed string sector of the 
type A 'lLN orientifold (N i- 2). 

Sector SO( 4) charge 

NS-NS (3,3)+5(1,1) 
R-R (3,1)+(1,3)+4(1,1) 

This is the content of the N = 1 supergravity multiplet in six dimen­
sions, accompanied by one tensor multiplet and two hypermultiplets (see 
table 14.3, p. 341, for a list of the types of multiplet). In the case of'lL2 it 
is as follows132 . 

Sector S O( 4) charge 

NS-NS (3,3)+11(1,1) 
R-R (3,1)+(1,3)+6(1,1) 

This is the D = 6, N = 1 supergravity multiplet in six dimensions, accom­
panied by one tensor multiplet and four hypermultiplets 

The twisted sectors will produce additional multiplets. The bosonic 
content of a hypermultiplet is four scalars 4(1,1), while that of a tensor 
multiplet is (3,1) + (1, 1). By combining on the left and right the sectors 
twisted by Nand (1 - N)' we find that the NS-NS sector produces one 
hypermultiplet while the R-R sector produces a tensor multiplet. A sector 
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twisted by ~ simply produces one hypermultiplet: one quarter coming 
from the R-R sector and three quarters from the NS-NS sector, just as 
in section 7.6. 

To evaluate the number of hypermultiplets (and, as we shall see, tensor 
multiplets) coming from the twisted sectors of a K3 orbifold, we need to 
recall the structure of the fixed points and their transformation properties, 
done in section 7.6.5. Using the data above, we see that in the case of z1, 
we simply multiply by the number of Z2 fixed points, and we find that 
there are 16 hypermultiplets from the twisted sectors, giving a total of 20 
hypermultiplets when combined with the four from the untwisted sector. 
For zt there are nine fixed points, each supplying a hypermultiplet and a 
tensor multiplet (for twists by (~, ~)), giving a total of 11 hypermultiplets 
and 10 tensor multiplets when added to those arising in the untwisted 
sector. 

For zt the four Z4 invariant fixed points give four hypermultiplets 
and four tensor multiplets. They are also Z2 fixed points and so supply 
an additional four hypermultiplets. The other 12 Z2 fixed points form 
six Z4 invariant pairs, from which arise six hypermultiplets. This gives 
a total of 16 hypermultiplets and five tensor multiplets for the complete 
model. 

Finally, for the model Z~, the Z6 fixed point gives two hypermultiplets 
and two tensor multiplets from (i, ~) and (~, ~) twists. It also gives six 
hypermultiplets from the ~ twisted sector. The four pairs of Z3 points give 
four tensor multiplets and four hypermultiplets for (~, ~) twists, while the 
five Z2 triplets of fixed points supply five hypermultiplets. This gives 14 
hypermultiplets and seven tensor multiplets in all. 

For ZN orientifolds of type B the situation is as follows. For closed 
string states, prior to making the theory unorientable, the relevant orb­
ifold states to consider are those for the group formed by the remaining 
pure ZN elements in the orientifold group, which is therefore Z!::L. The 
possible left and right states are evaluated as before, and then tliey are 
projected to the unoriented theory invariant under 0 . G:lv. 

It is thus easy to see that the closed string spectra for zf and zt 
are isomorphic, as are those of Z~ and zt, (the latter being simply ten 
dimensional type I string theory: there is no orbifold to perform for Z~). 

There remains only the spectrum of zf to compute, which is self 
T -dual. The pure orbifold states to consider are those of Z2. Tensoring left 
and right to form the 0 invariant spectrum, we obtain 12 hypermultiplets 
and nine tensor multiplets in total. 

In summary, we have (in addition to the usual gravity and tensor multi­
plet) a spectrum of hypermultiplets and tensor multiplets from the closed 
string sector for each model, given in table 14.1. 
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Table 14.1. The spectrum of hypermultiplets and tensor multiplets in the various 
orientifold models 

Neutral Extra 
Model hypermultiplets tensor multiplets 

7l,:J 20 0 
7l,A 

3 11 9 
7l,A 

4 16 4 
7l,A 

6 14 6 
7l,B 

4 12 8 
7l,B 

6 11 9 

Notice that in the 7l,1 case we have a total of 20 hypermultiplets. Look­
ing at table 14.3 we see that this is a total of 80 scalar fields: the 80 
moduli of the K3 surface228 . However, in the other other orientifold ex­
amples, some of the potential scalars have instead combine into tensor 
multiplets, leaving us with fewer hypermultiplets in the final model. This 
is a reduction in the dimension of the moduli space of K3 deformations 
available to these models: some of the K3 moduli are frozen. 

To complete the story, let us turn to the open string sector, computing 
what the allowed gauge groups are. 

14.5 Open string spectra 

Let us study first the 99 open string sector. The massless bosonic spectrum 
arises as follows. 

For the 55 states at a fixed point we have the following. 

state a1Zr = + 0=+ SOC 4) charge 

?j;~1/210, ij;Aij A = Ik,9AIk,~ A AT -1 (2,2) = -10,9 10,9 

?j;~~/210, ij;Aij 
±21Tk -1 A AT -1 2(1,1) A = e N Ik,9Alk,9 = -10,9 10,9 

?j;~~/210, ij;Aij 
=f21Tk . --'1 A AT -1 2(1,1) A = e N Ik,9Alk,9 = -10,9 10,9 

state a1Zr = + 0=+ SOC 4) charge 

?j;~1/210, ij;Aij A = Ik,5AIk,~ A AT -1 (2,2) = -105 105 , , 

?j;~~/210, ij;Aij 
±21Tk -1 A AT -1 2(1,1) A = e N Ik,5Alk,5 = 105 105 , , 

?j;~~/210, ij;Aij 
=f21Tk -1 A AT -1 2(1,1) A = e N Ik,5Alk,5 = 105 105 , , 

For the 55 states away from a fixed point we have the following. 
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state 0=+ 80(4) charge 

?jJ~1/210, ij)Aij A - AT -1 (2,2) - -10,5 10,5 

'1j;~~/210, ij) Aij A AT -1 2(1,1) = 105 105 , , 
?jJ~~/210, ij)Aij A AT -1 2(1,1) = 105 105 , , 

For the 59 states we have the following at a fixed point. 

state a1r = + 80( 4) charge 

IS3S4, ij)Aij, 83 = 84 A = Ik 5Alk~ 2(1,1) 

Away from a fixed point we have the following. 

state 80( 4) charge 

Using the solution presented in section 14.4 for the I matrices, the 
solutions for the open string spectra of the models are given in table 14.2. 

Table 14.2. The gauge groups for the various orientifold models 

Charged 
Model Sector Gauge group hypermultiplets 

99 U(16) 2 x 120 
ZA 

2 55 U(16) 2 x 120 
59 (16,16) 

ZA 
3 99 U(8) x 80(16) (28,1), (8,16) 

99 U(8) x U(8) (28,1), (1,28), (8,8) 
ZA 

4 55 U(8) x U(8) (28,1), (1,28), (8,8) 
59 (8,1;8,1), (1,8;1,8) 

99 U(4) x U(4) x U(8) (6,1,1), (1,6,1) 
(4,1,8), (1,4,8) 

55 U(4) x U(4) x U(8) (6,1,1), (1,6,1) 
ZA 

6 (4,1,8), (1,4,8) 

59 (4,1,1;4,1,1) 
(1,4,1;1,4,1) 
(1,1,8;1,1,8) 

ZB 
4 

- -

ZB 
6 55 U(8) x 80(16) (28,1), (8,16) 
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14.6 Anomalies for N = 1 in six dimensions 

As chiral models in six dimensions, these orientifold vacua that we have 
constructed have a chance of being afflicted by anomalies. There are 
anomaly polynomials which we can write for each sector, just as was 
done in ten dimensions in chapter 7, and in six dimensions in 
section 7.6.2. 

Of course, we can be confident that if we have done everything prop­
erly at the string level, checking the anomaly is nothing more than a 
formality, but it is instructive anyway, as we have seen before. Before we 
proceed, we must pause to note the structure of the multiplets. In fact, 
they arise naturally from splitting the N = 2 multiplets which we have 
seen in table 7.1. Both the vector and tensor multiplets become smaller 
by yielding up a hypermultiplet, whose bosonic part is four scalars, as we 
have already seen. Table 14.3 lists the multiplets. 

So again we see that the orientifolding has thrown away many pieces 
of the pure K3 spectrum, and so the marvellous cancellation in 
equation (7.52) will not happen. As in the prototype orientifold, we have 
additional pieces as well, coming from the open string sectors, which may 
give some new interesting structures. 

The first thing to check is that the irreducible parts of the anomaly 
cancel. For the gravitational part, we must look at the coefficient of tr R4. 
In fact, for N = 1 models in D = 6 it is easy to see that the vanishing of 
this coefficient is equivalent to: 

nH - ny = 244 - 29nT. (14.45) 

The reader should verify this. Here, nH, ny and nT + 1 are respectively 
the numbers of hypermultiplets, vector multiplets and tensor multiplets in 
the six dimensional supergravity model. This follows from direct use of the 
anomaly polynomials in insert 7.2, remembering to divide the polynomials 
for the complex fermions listed there by two to match the real fermions we 

Table 14.3. The structure of the N = 1 multiplets in D = 6 

Multiplet Bosons Fermions 

vector (2,2) 2(1,2) 
hyper 4(1,1) 2(2,1) 

SD tensor (1,3)+(1,1) 2(2,1) 
ASD tensor (3,1)+(1,1) 2(2,1) 

supergravity (3,3) + (3,1) + (1,3) + (1, 1) 
2(3,2) + 2(2, 1) 

or 2(2,3) + 2(1,2) 
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are counting with here. It is natural that the vectors and hypers contribute 
equal and oppositely, since they are components of the non-chiral N = 2 
vectors multiplet, as is clear from tables 7.1 and 14.3. 

In fact, in the spirit of the miraculous cancellation for pure type IIB 
string theory in ten dimensions, and for the spectrum of type IIB on 
K3 to six dimensions, shown in sections 7.1.2 and 7.6.2, there is another 
such purely closed string example, that of the zf model. Indeed, equa­
tion (14.45) is satisfied, but the coefficients of the (trR2)2 terms vanish 
also, giving: 

This is, again, another remarkable purely closed string solution of the 
anomaly equations, supplying an N = 1 supersymmetric solution of ori­
entifolded type IIB strings on K3. 

Let us turn to the models which need the addition of D-branes, and 
hence have gauge contributions to the anomaly. For the irreducible TrF4 

terms, everything again cancels. Again, it is recommended that the reader 
who is interested should verify this. This is done with the aid of the 
following information, which should be set alongside that given in 
equations (7.39) and (7.40). For SU(n) we have: 

Tradj(t2) = 2nTrf(t2), 

Tradj(t4) = 2nTrf(t4) + 6Trf(t2)Trf(t2), (14.47) 

and for completeness, we also list the result for Sp(n) == USp(2n): 

Tradj(t2) (n + 2)Trf(t2), 

Tradj(t4) (n + 8)Trf(t4) + 3Trf(t2)Trf(t2). (14.48) 

Crucially, note that for symmetric tensor representations of any of 
the groups mentioned, we can use the Sp( n) relations just mentioned in 
equation (14.48), while for antisymmetric tensor representations we can 
use the SO(n) relations given in equation (7.39). 

Now let us see how the irreducible TrP4 terms cancel for one example, 
that of zf. Table 14.2 shows that the gauge group is U(8) x SO(16) with 
hypermultiplets charged as (28,1) and (8,16). We must do each separate 
gauge group independently. Let us first do U(8), and write everything in 
terms of the fundamental representation. Doing so, we see that we get 
16Trfp4, ignoring (and for the rest of the paragraph) the purely numerical 
denominator in equation (7.2), of course. The first hypermultiplet, (28,1), 
which in fact in the antisymmetric of U(8), and so using the second line 
in equation (7.39), we see that its coefficient of Trfp 4 is in fact zero. This 
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Insert 14.3. Another string-string duality in D = 6 

Very interesting is the case of the d'4 model. The U(l) factors can 
be shown to be absent non-perturbatively196, leaving gauge group 
SU(16) x SU(16). Meanwhile the remaining anomaly factorises as: 

Is rv (trR2 - 2TrfF2) (trR2 - 2TrfF2), 

for both the D9-brane and D5-brane sectors. This similar factorisa­
tion between the two sectors is of course a reflection of the fact that 
there is a T67s9-duality exchanging the two types of brane, but there 
is more. There is a signal of another duality, now between this for­
mulation and that of a strong/weak coupling dual model also with 
strings in six dimensions. Looking at the anomaly two-forms in the 
factors (say, on the right hand side), these dual strings have a similar 
structure to those we associate with the two-forms on the left hand 
side. This is of course very special to six dimensions, where we have 
a chance of such a string-string duality, and the reader can probably 
guess what the dual string theory might be. It is in fact a K3 com­
pactification of the heterotic string, of a very special sort229, 196. One 
way to make it is as follows: Recall that from equation (7.48), the 
field equation of iI(3) is: 

a' 
diI(3) = -4 [TrF2 - trR2] , 

for which, if we were to integrate this over K3, would get a con­
tribution of 24 (up to an overall factor) which can be cancelled by 
precisely 24 instantons. So an interesting compactification is achieved 
by taking the Es x Es heterotic string on K3, with 12 instantons in 
one Es and 12 in the other. The details are interesting to uncover, 
but we shall have to leave it to the reader to study the literature, 
since it will take us too far afield229 . Note also that we can see the 
dual strings. They are perturbatively manifest on the orientifold side 
as solitons. One is a D1-brane which one can place in the six non­
compact directions and the other is its T 67s9 dual, a D5-brane with 
four of its dimensions wrapped on the compact directions. On the 
heterotic side, these map over to a pair of strong/weak dual het­
erotic strings. One is the heterotic string itself, and the other is a 
K3-wrapped NS5-brane. 
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leaves us with the hypermultiplet (8,16), which can be treated as sixteen 
copies of the fundamental of the 8, and therefore contributes -16TrfF4, 
giving a cancellation. 

For the mixed anomalies, the anomalies all factorise in a way which 
allows for their cancellation by a generalisation193 of the Green-Schwarz 
mechanism. In the models with multiple tensors, some subset of them 
can be given a classically anomalous gauge transformation to produce 
the required cancellations. In some cases, the factorisation gives a sign 
of interesting physics, since there is a stringy interpretation of both four­
form factors, suggesting new dualities (see insert 14.3). 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


15 
D-branes and geometry II 

In a number of the previous chapters, we probed various systems while 
remaining largely in the limit where D-branes are pointlike in their trans­
verse directions. However, we learned in chapter 10 that D-branes have an 
intrinsic geometry of their own, which can be seen when we place a lot of 
them together to produce a large back-reaction on the spacetime geome­
try, or if we were to turn up the string coupling (for fixed string tension) 
such that Newton's constant is strong. Both sorts of situation can and will 
be forced upon us later, so it is worthwhile trying to understand what we 
can learn by probing the supergravity geometry with different types of 
branes (we have already probed extremal p-branes with Dp-branes in sec­
tion 10.3). If we choose things such that there is some supersymmetry 
preserved, we can use it to help us learn many useful things. 

15.1 Probing p with D(p - 4) 

Let us probe the geometry of the extremal p-branes with a D(p-4)-brane. 
From our analysis of chapter 11, we know that this system is supersym­
metric. Therefore, we expect that there should still be a trivial potential 
for the result of the probe computation, but there is not enough super­
symmetry to force the metric to be fiat. There are actually two sectors 
within which the probe brane can move transversely. Let us choose static 
gauge again, with the probe aligned so that its p - 4 spatial directions 
e - ep - 4 are aligned with the directions xl - xp - 4 . Then there are four 
transverse directions within the p-brane background, labelled xp - 3 - xP , 

and which we can call xii for short. There are 9 - p remaining transverse 
directions which are transverse to the p-brane as well, labelled xp+l - x 9 , 

which we'll abbreviate to xT. The 6-2 case is tabulated as a visual guide 
below. 

345 
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XU Xl x:J x0 xL! xl) xi) Xl xl) x':cJ 

D2-brane - - - • • • • • • • 
6-brane - - - - - - - • • • 

The extremal p-brane supergravity solution is given in equation (10.38). 
As in section 10.3, we can probe this solution with D-branes, using the 
world-volume actions described in chapters 5 and 9. Following the same 
lines of reasoning as used in section 10.3, the determinant which shall go 
into our Dirac-Born-Infeld Lagrangian is: 

- (p-3) ( 2 2) 
det[-Gabl = Zp 2 1- vII - Zpvl. , (15.1) 

where the velocities come from the time (~O) derivatives of XII and Xl.. This 
is nice, since in forming the action by multiplying by the exponentiated 
dilaton factor and expanding in small velocities, we get the Lagrangian 

1 ( 2 2 ) I: = "2mp-4 VII + ZpVl. - 2 , (15.2) 

which again has a constant potential which we can discard, leaving pure 
kinetic terms. We see that there is a purely fiat metric on the moduli 
space for the motion inside the four dimensions of the p-brane geometry, 
while there is a metric 

(15.3) 

for the transverse motion. This is the Coulomb branch, in gauge theory 
terms, and the fiat metric was on the Higgs branch. (In fact, the Higgs 
result does not display all of the richness of this system that we have 
seen. In addition to the fiat metric geometry inside the brane that we 
see here, there is additional geometry describing the Dp-D(p - 4) fields 
corresponding to the full instanton geometry. This comes from the fact 
that the D (p - 4)-brane behaves as an instanton of the non-Abelian gauge 
theory on the world-volume of the coincident Dp-branes. See section 13.4.) 

Notice that for the fields we have studied, we obtained a trivial potential 
for free without having to appeal to a cancellation due to the coupling 
of the charge {Lp-4 of the probe. This is good, since there is no electric 
source of this in the background for it to couple to. Instead, the form of 
the solution for the background makes it force-free automatically. 

15.2 Probing six-branes: Kaluza-Klein monopoles 
and M-theory 

Actually, when p 2: 5, something interesting happens. The electric source 
of C(p+l) potential in the background produces a magnetic source of 
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C(7-p)' The rank of this is low enough for there to be a chance for the 
D(p - 4)-probe brane to couple to it even in the Abelian theory. For ex­
ample, for p = 5 there is a magnetic source of C2 to which the Dl-brane 
probe can couple. Meanwhile for p = 6, there is a magnetic source of C1 . 

The D2-brane probes see this in an interesting way. Let us linger here 
to study this case a bit more closely. Since there is always a trivial U(I) 
gauge field on the world volume of a D2-brane probe, corresponding to 
the centre of mass of the brane, we should include the coupling of the 
world-volume gauge potential Aa (with field strength Fab) to any of the 
fields coming from the background geometry. 

In fact, as we saw before in section 9.2, there is a coupling 

27ra' f-L2 1M C1 /\ F, (15.4) 

where C 1 = C<j;d¢ is the magnetic potential produced by the six-brane 
background geometry, which is easily computed to be: C<j; = -(r6/gs) 
cos e, where r6 = gsN a/1/2 /2. 

The gauge field on the world volume is equivalent to one scalar, since we 
may exchange Aa for a scalar s by Hodge duality in the (2+ 1 )-dimensional 
world-volume. (This is of course a feature specific to the p=2 case.) To get 
the coupling for this extra scalar correct, we should augment the probe 
computation. As we have seen, the Dirac-Born-Infeld action is modified 
by an extra term in the determinant: 

(15.5) 

We can143, 171 introduce an auxiliary vector field Va, replacing 27Ta/ Fab by 
the combination e2<j; f-L22VaVb in the Dirac action, and adding the term 

27Ta/ r F /\ V 1M 
overall. Treating Va as a Lagrange multiplier, the path integral over Va 

will give the action involving F as before. Alternatively, we may treat Fab 

as a Lagrange multiplier, and integrating it out enforces 

(15.6) 

Here, Cc are the components of the pull-back of C1 to the probe's world­
volume. The solution to the constraint above is 

(15.7) 

where s is our dual scalar. We may now replace Va by Bas + f-L2Ca in the 
action. 
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The static gauge computation picks out only s + !-L2Cq;¢, 
puting the determinant gives 

3 Z"2 2<P 2 -"2 2 2 6 e. . ( 1) 
det=Z6 1-vll-Z6v~- !-L§ [S+!-L2 Cq;¢] . 

and recom-

(15.8) 

Again, in the full Dirac-Born-Infeld action, the dilaton factor cancels 
the prefactor exactly, and including the factor of -!-L2 and the trivial 
integral over the worldvolume directions to give a factor V2 , the resulting 
Lagrangian is 

(15.9) 

which is (after ignoring the constant potential) again a purely kinetic 
Lagrangian for motion in eight directions. There is a non-trivial metric in 
the part transverse to both branes: 

ds2 = V(r) (dr2 + r2d02) + V(r)-l (ds + Aq;d¢)2, 

with V(r) = !-L2 Z6 and A = !-L2 r6 cos ed¢, (15.10) 
98 g8 

where d02 = de2 + sin2e d¢2. There is a number of fascinating inter­
pretations of this result. In pure geometry, the most striking feature is 
that there are now eleven dimensions for our spacetime geometry. The 
D2-brane probe computation has uncovered, in a very natural way, an 
extra transverse dimension. This extra dimension is compact, since s is 
periodic, which is inherited from the gauge invariance of the dual world­
volume gauge field. The radius of the extra dimension is proportional to 
the string coupling, which is also interesting. This eleventh dimension is of 
course the M-direction we saw in section 12.4. The D2-brane has revealed 
that the six-brane is a Kaluza-Klein monopole168 of eleven dimensional 
supergravity on a circle152 , which is constructed out of a Taub-NUT ge­
ometry* in equation (15.10). This fits very well with the fact that the D6 is 
the Hodge dual of the DO-brane, which we already saw is a Kaluza-Klein 
electric particle. 

15.3 The moduli space of 3D supersymmetric gauge theory 

As before, the result also has a field theory interpretation. The 
(2 + I)-dimensional U(l) gauge theory (with eight supercharges) on the 

* It is a very useful exercise for the reader to take the Taub-NUT metric, times seven 
fiat directions, and use the reduction formula given in insert 12.1 (p. 274) to reproduce 
the six-brane metric of equation (10.38) directly. 
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world-volume of the D2-brane has N f = N extra hypermultiplets coming 
from light strings connecting it to the N f = N D6-branes. The SU(Nd 
symmetry on the worldvolume of the D6-branes is a global 'flavour' sym­
metry of the U(l) gauge theory on the D2-brane. A hypermultiplet W 
has four components Wi corresponding to the four scalar degrees of free­
dom given by the four positions Wi == (2'ITo:')-lxll' The vector multiplet 
contains the vector Aa and three scalars <I>m == (21TCx')-l xT. The Yang-
M 'll 1" 2 ,-1/2 1 S coup mg IS gYM = gsa . 

The branch of vacua of the theory with W # 0 is called the 'Higgs' 
branch of vacua while that with <I> # 0 constitutes the 'Coulomb' branch, 
since there is generically a U(l) left unbroken. There is a non-trivial four 
dimensional metric on the Coulomb branch. This is made of the three <I>m, 
and the dual scalar of the U(l)s photon. Let us focus on the quantities 
which survive in the low energy limit or 'decoupling limit' a' ----+ 0, holding 
fixed any sensible gauge theory quantities which appear in our expressions. 
The surviving parts of the metric (15.10) are: 

where U = r / a' has the dimensions of an energy scale in the gauge theory. 
Also, 0' = a's, and we will fix its period shortly. 

In fact, the naive tree level metric on the moduli space is that on JPi.3 x Sl, 
of form ds2 = gY~1dxl + g?MdO'2. Here, we have the tree level and one 
loop result: V(U) has the interpretation as the sum of the tree level and 
one-loop correction to the gauge coupling of the 2+ 1 dimensional gauge 
theory237. Note the factor Nf in the one loop correction. This multiplicity 
comes from the number of hypermultiplets which can run around the 
loop. Similarly, the cross term from the second part of the metric has 
the interpretation as a one-loop correction to the naive four dimensional 
topology, changing it to the (Hopf) fibred structure above. 

Actually, the moduli space's dimension had to be a multiple of four, 
as it generally has to be hyper-Kahler for D=2 + 1 supersymmetry with 
eight supercharges185 . Our metric is indeed hyper-Kahler since it is the 
Taub-NUT metric: the hyper-Kahler condition on the metric in the form 
it is written is the by-now familiar equation: \7 x A = \7V, which is 
satisfied. 

In fact, we are not quite done yet. With some more care we can establish 
some important facts quite neatly. We have not been careful about the 
period of 0', the dual to the gauge field, which is not surprising given all of 
the factors of 2, 'IT and a'. To get it right is an important task, which will 
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yield interesting physics. We can work it out in a number of ways, but 
the following is quite instructive. If we perform the rescaling U = p / 4g?M 
and 1j; = 8'IT2 (J / N f , our metric is: 

(15.12) 

which is a standard form for the Taub-NUT metric, with mass Nf, equal 
to the 'nut parameter' for this self-dual case186 . 

This metric is apparently singular at p = 0, and in fact, for the cor­
rect choice of periodicity for '1jJ, this pointlike structure, called a 'nut', is 
removable, just like the case of the bolt singularity encountered for the 
Eguchi-Hanson space. (See insert 7.6, p. 188.) Just for fun, insert 15.1 
carries out the analysis and finds that '1jJ should have period 4'IT, and so in 
fact the full SU(2) isometry of the metric is preserved. 

What does this all have to do with gauge theory? Let us consider the 
case of N f = 1, which means one six-brane. This is 2+ 1 dimensional 
U(I) gauge theory with one hypermultiplet, a rather simple theory. We 

Insert 15.1. The 'nut' of Taub-NUT 

The metric (15.12) will be singular at at the point p = 0, for arbitrary 
periodicity of '1jJ. This will be a point like singularity which is called 
a 'nut,83, 82, in contrast to the 'bolt' we encountered for the Eguchi­
Hanson space in insert 7.6 (p. 188), which was an S2. In this case, near 
p = 0, if we make the space look like the origin of]]{4, we can make this 
pointlike structure into nothing but a coordinate singularity. Near 
p = 0, we have, for R = 2p2 (see also insert 7.4, p. 180): 

d4N = 2Nf(dR2 + R2dD§), 

which is just the right metric for ]]{4 if b..1j; = 4'IT, the standard choice 
for the Euler coordinate. (This may have seemed somewhat heavy­
handed for a result one would perhaps have guessed anyway, but it is 
worthwhile seeing it, in preparation for more complicated examples.) 
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see that after restoring the physical scales to our parameters, our original 
field (J has period 1/21T, and so we see that the dual to the photon is 
more sensibly defined as 0- = 41T 2 (J, which would have period 21T, which 
is a more reasonable choice for a scalar dual to a photon. We shall use 
this choice later. With this choice, the metric on the Coulomb branch of 
moduli space is completely non-singular, as should be expected for such 
a simple theory. 

Let us now return to arbitrary Nf. This means that we have Nf hyper­
multiplets, but still a U(l) 2+1 dimensional gauge theory with a global 
'flavour' symmetry of SU(Nr) coming from the six-branes. There is no rea­
son for the addition of hypermultiplets to change the periodicity of our 
dual scalar and so we keep it fixed and accept the consequences when we 
return to physical coordinates (U,o-): the metric on the Coulomb branch 
is singular at U = O! This is so because insert 15.1 told us to give 0- a 
periodicity of 21TNf for freedom from singularities, but we are keeping it 
as 21T. So our metric in physical units has 0- with period 21T appearing in 
the combination (2do- + Nf cos ed¢? This means that the metric is no 
longer has an SU(2) acting, since the round S3 has been deformed into a 
'squashed' S3, where the squashing is controlled by Nf. In fact, there is a 
deficit angle at the origin corresponding to an ANf - 1 singularity. 

How are we to make sense of this singularity? Well, happily, this all 
fits rather nicely with the fact that for Nf > 1 there is an SU(Nr) gauge 
theory on the six-branes, and so there is a Higgs branch, corresponding 
to the D2-brane becoming an SU(Nr) instanton! The singularity of the 
Coulomb branch is indeed a signal that we are at the origin of the Higgs 
branch, and it also fits that there is no singularity for Nf = l. 

It is worthwhile carrying out this computation for the case of Nf 
D6-branes in the presence of a negative orientifold six-plane oriented in 
the same way. In that case we deduce from facts we learned before that 
the presence of the 06-plane gives global flavour group SO(2Nr) for Nf 
D6-branes. The D2-brane, however, carries an SU(2) gauge group. This is 
T-dual to the earlier statement made in section 13.4 about D9-branes in 
type I string theory carrying SO(Nr) groups while D5s carry USp(2M) 
groups as we learned in section 8.7: the orientifold forces a pair of D2-
branes to travel as one, with a USp(2) = SU(2) group. 

So the story now involves 2+1 dimensional SU(2) gauge theory with 
Nf hypermultiplets. The Coulomb branch for Nf = 0 must be completely 
non-singular, since again there is no Higgs branch to join to. This fits 
with the fact that there are no D6-branes; just the 06-plane. The result 
for the metric on moduli space can be deduced from a study of the gauge 
theory (with the intuition gained from this stringy situation), and has 
been proven to be the Atiyah-Hitchin manifold231 . Some of this will be 
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discussed in more detail in subsection 15.6. For the case of N f = 1, the re­
sult is also non-singular (there is again no Higgs branch for one D6-brane) 
and the result is a certain cover of the Atiyah-Hitchin manifold232, 248. 
The case of general N f gives certain generalisations of the Atiyah-Hitchin 
manifold248, 250. The manifolds have DN£ singularities, consistent with the 
fact that there is a Higgs branch to connect to. Note also that a stringy 
interpretation of this result is that the strong coupling limit of these 
06-planes is in fact M-theory on the Atiyah-Hitchin manifold, just like it 
is Taub-NUT for the D6-brane. 

N.B. It is amusing to note - and the reader may have already spotted 
it - that the story above seems to be describing local pieces of K3, 
which has ADE singularities of just the right type, with the associ­
ated 5U(N) and 50(2N) enhanced gauge symmetries appearing also 
(global flavour groups for the 2+ 1 dimensional theory here). (The 
existence of three new exceptional theories, for E 6 , E7, E 8 , is then 
immediate237 .) What we are actually recovering is the fact 153 that 
there is a strong/weak coupling duality between type I (or 50(32) 
heterotic) string theory on T3 and M-theory on K3. We'll recover 
this fact again via another route in section 16.2.2. 

15.4 Wrapped branes and the enhall(;on mechanism 

Despite the successes we have achieved in the previous section with inter­
pretation of supergravity solutions in terms of constituent D-branes, we 
should be careful, even in the case when we have supersymmetry to steer 
us away from potential pathologies. It is not always the case that if some­
one presents us with a solution of supergravity with R-R charges that we 
should believe that it has an interpretation as being 'made of D-branes'. 

Consider again the case of eight supercharges. We studied brane con­
figurations with this amount of supersymmetry by probing the geome­
try of N (large) Dp-branes with a single D(p-4)-brane. As described in 
previous sections, another simple way to achieve a geometry with eight 
supercharges from D-branes is to simply wrap branes on a manifold which 
already breaks half of the supersymmetry117. The example mentioned was 
the four dimensional case of K3. In this case, we learned that if we wrap 
a D(p+4)-brane (say) on K3, we induce precisely one unit of negative 
Dp-brane charge115 supported on the unwrapped part ofthe world-volume 
(see equation (9.36)). At large N therefore, we might expect239 that 
there is a simple supergravity geometry which might be obtained by 
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taking the known solution for the D(p+4)-Dp system, and modifying the 
asymptotic charges to suit this situation. The resulting geometry naively 
should have the interpretation as that due to a large number N of wrapped 
D(p+4) branes (p = 1,2,3): 

d 2 Z-1/2Z- 1/ 2 d {td v Zl/2Z1/ 2 d id i s = p p+4 rJ{tv x X + p p+4 x x 

+ V 1/ 2 Zl/2 Z-1/2 d<;2 p p+4 • K3' 

e2<1> = g; Zp (3-p)/2 Zp+4 -(p+1)/2, 

C(p+1) (Zp -1 - l)g;ldx O 1\ dx1 1\ ... 1\ dxp+1 

(Z-l _ l)g-ldxO 1\ dx1 1\ ... 1\ dxp+5 p+4 s . (15.13) 

Here, IL, v run over the xO - xp+1 directions, which are tangent to all the 
branes. Also i runs over the directions transverse to all branes, xp+2 - x 5 , 

and in the remaining directions, transverse to the induced brane but inside 
the large brane, dSk3 is the metric of a K3 surface of unit volume. V is the 
volume of the K3 as measured at infinity, but the supergravity solution 
adjusts itself such that V(T)=VZp /Zp+4 is the measured volume of the 
K3 at radius T. 

In the above, 

while (15.14) 

where the normalisations are related to those in section 10.2. We have 
precisely N units of D(p + 4)-brane charge and -N units of Dp-brane 
charge. Note that the smaller brane is delocalised in the K3 directions, as 
it should be, since the same is true of K3's curvature. 

15.4.1 Wrapping D6-branes 

Let us focus on the case p = 2, where we wrap D6-branes, getting induced 
D2-branes. t The orientations are given as follows. 

XU Xl XLl x0 X4 x b x b Xl x 15 X"' 

D2 - - - • • • • • • • 
D6 - - - • • • - - - -

K3 - - - - - - • • • • 

t This will also teach us a lot about the pure SU(N) gauge theory on the remaining 

2+ 1 dimensional world-volume. Wrapping D7-branes (p = 3) teaches us239 about 
pure SU(N) gauge theory in 3+1 dimensions, where we should make a connection to 
Seiberg-Witten theory240, 241 at large N. 
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The harmonic functions are 

(15.15) 

normalised such that the D2- and D6-brane charges are Q2=-Q6 = -N. 
We worked out the spectrum of type IIA supergravity theory compact­

ified to six dimensions on K3 in section 7.6. Let us remind ourselves of 
some of the salient features. The six dimensional supergravity theory has 
an additional 24 U(l)s in the R-R sector. Of these, 22 come from wrap­
ping the ten dimensional three-form on the 19+3 two-cycles of K3. The 
remaining two are special U (1) s for our purposes: one of them arises from 
wrapping IIAs five-form entirely on K3, while the final one is simply the 
plain one-form already present in the uncompactified theory. 

15.4.2 The repulson geometry 

It is easy to see that there is something wrong with the geometry which 
we have just written down, representing the wrapping of the D6-branes 
on the K3. There is a naked singularity at r = If21, known as the 're­
pulson', since+ it represents a repulsive gravitational potential for small 
enough r. The curvature diverges there, which is related to the fact that 
the volume of the K3 goes to zero, and the geometry stops making sense 
(see figure 15.1). 

To characterise the repulsive nature of the geometry we can consider 
it as a background for particle motion and study geodesics. There is the 
usual obvious pair of Killing vectors, ~ = Ot and rJ = oq" and so a probe 
with ten-velocity u has conserved quantities 

e = -~ . u = -GttUt 

and 
f! = rl . U = G q,q, u q, , 

where e and f! are the total energy and angular momentum per unit mass, 
respectively. Since the particle is massive, we have -1 = u . u. In other 
words, picking 

( dt dr de d¢ ~) 
u = dT' dT' dT' dT'O , 

t This is because it is dua1239 to solutions which had earlier become known by that 
name257 . 
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Fig. 15.1. The repulson locus of points; an unphysical naked singularity. 

we have, working in the equatorial plane e = 'IT /2, 

(dt)2 (dr)2 (d cP )2 
-l=-Gtt dT +Grr dT +G¢¢ dT ' 

and so 
e2 (dr) 2 £2 

-1 = - Gtt + Grr dT + G ¢¢ , 

which we can rewrite as 

1 (dr)2 E = - - + V;ff 2 dT e , 

where 

dr e2 - 1 dT = ±VE - Veff(r), E = -2-' 

Veff(r) = ~ [_1 (1 + ~) - 1], 
2 Grr G¢¢ 

(15.16) 

and the metric components in the above are in string frame, and we have 
used that -Gtt = l/Grr . For what we wish to analyse, we can consider 
only purely radial motion, and hence set to zero the angular momentum f! 
which would correspond to a non-zero impact parameter. We sketch the 
resulting effective potential in figure 15.2. 

For large enough r, the effective potential is attractive, and so we need 
only seek a vanishing first derivative of Veff(r) to see where it becomes 
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Fig. 15.2. The effective potential for massive particle motion m the 
geometry. The minimum is at r = reo 

negative. This gives the condition: 

G;:/ = -G~t = 0, (15.17) 

which we can write in a number of interesting ways as 

, ,(Z2 Zb) (Zb Z~) (Z2 Z6) = Z6 Z6 Z6 + Z~ = Z2 Z6 Z2 + Z6 = 0, (15.18) 

and the particle begins to be repelled at radii smaller than this. Particles 
with non-zero angular momentum will of course experience additional 
centrifugal repulsion, but r = re is the boundary of the region where 
there is an intrinsic repulsion in the geometry. 

15.4.3 Probing with a wrapped D6-brane 

Let us look carefully to see if this is really the geometry produced by the 
wrapped branes. The object we have made should be a BPS membrane 
made of N identical objects. These objects feel no force due to each other's 
presence, and therefore the BPS formula for the total mass is simply (see 
equation (9.37)) 

N 
TN = -(!L6 V - !L2) (15.19) 

98 

with !L6 = (27T)-6 o/-7 j 2 and !L2 = (27T)-2 o/-3 j 2. In fact, the BPS mem­
brane is actually a monopole of one of the six dimensional U(l)s. It is 
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obvious which U(l) this is; the diagonal combination of the two special 
ones we mentioned above. The D6-brane component is already a monopole 
of the IIA R-R one-form, and the D2 is a monopole of the five-form, which 
gets wrapped. 

N.B. As we shall see, the final combination is a non-singular BPS 
monopole, having been appropriately dressed by the Higgs field asso­
ciated to the volume of K3. Also, it maps165 (under the strong/weak 
coupling duality of the type IIA string on K3 to the heterotic string 
on T4) to a bound state of a Kaluza-Klein monopole168 and an H­
monopole242 , made by wrapping the heterotic NS5-brane. 239, 243, 244 

If we are to interpret our geometry as having been made by bringing 
together N copies of our membrane, we ought to be able to carry out the 
procedure we described in the previous sections. We should see that the 
geometry as seen by the probe is potential-free and well-behaved, allowing 
us the interpretation of being able to bring the BPS probe in slowly from 
infinity. 

The effective action for a D6-brane probe (wrapped on the K3) is: 

5=-j· d3~e-q,(r)(fL6V(r)-fL2)(-detgab)1/2+fL6j· C7 -fL2 j· C3. 
M MxK3 M 

(15.20) 

Here M is the part of the world-volume in the three non-compact di­
mensions. As discussed previously (see equation (9.39) and surrounding 
discussion), the first term is the Dirac-Born-Infeld action with the posi­
tion dependence of the tension (15.19) taken into account; in particular, 
V(r) = VZ2(r)/Z6(r). The second and third terms are the couplings of 
the probe charges (fL6, -fL2) to the background R-R potentials, following 
from equation (9.36), and surrounding discussion. 

Having derived the action, the calculation proceeds very much as we 
outlined in previous sections, with the result: 

£ = _fL6VZ2 - fL2 Z6 + fL6 V (Z61 - 1) _ fL2(Z;;1_1) 
Z6 Z 2gs gs gs 

124 
+-(fL6VZ2-fL2Z6)V +O(v). (15.21) 

2gs 

The position-dependent potential terms cancel as expected for a super­
symmetric system, leaving the constant potential (fL6 V - fL2) / 9 and a 
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nontrivial metric on moduli space (the O( v 2 ) part) as expected with eight 
supersymmetries. The metric is proportional to 

2 1 2 /-L6 Z6 (Z2 V*) 2 2 2 ds =-(/-L6VZ2-/-L2Z6)dx~=-- -Z- V (dr +r d0 2), 
98 98 6 

(15.22) 
where we have used /-L2/ /-L6 = V*. We assume that V > V* == (21T)4o/2, 
so that the metric at infinity (and the membrane tension) is positive. 
However, as r decreases the metric eventually becomes negative, and this 
occurs at a radius 

(15.23) 

which is greater than the radius rr = Ir21 of the repulson singularity. 
Furthermore, it is precisely the radius at which the geometry becomes 
repulsive, since Z~/Z~ = - V*/V, and that radius is determined by equa­
tion (15.18). 

In fact, our BPS monopole is becoming massless as we approach the 
special radius. This should mean that the U(l) under which it is charged 
is becoming enhanced to a non-Abelian group. This is the case. There 
is a purely stringy phenomenon which lies outside supergravity which 
we have not included thus far. The W-bosons are wrapped D4-branes, 
which enhance the U(l) to an SU(2). The masses of wrapped D4-branes 
is computed just like that of the membrane, and so becomes zero when 
the K3's volume reaches the value V*==(21TVd)4. 

The point is that the repulson geometry represents supergravity's best 
attempt to construct a solution with the correct asymptotic charges. In 
the solution, the volume of the K3 decreases from its asymptotic value 
V as one approaches the core of the configuration. At the centre, the K3 
radius is zero, and this is the singularity. This ignores rather interesting 
physics, however. At a finite distance from the putative singularity (where 
VK3 = 0), the volume of the K3 gets to V = V*' so the stringy phenomena­
including new massless fields - giving the enhanced SU(2), should have 
played a role§. So the aspects of the supergravity solution near and in­
side the special radius, called the 'enhanc;on radius', should not be taken 
seriously at all, since it ignored this stringy physics. 

The supergravity solution should only be taken as physical down to 
the neighbourhood of the enhanc;on radius reo That locus of points, a 
two-sphere S2, is itself called239 an 'enhanc;on' (see figure 15.3). 

§ Actually, this enhancement of SU(2) is even less mysterious in the heterotic-on-T4 

dual picture mentioned two pages ago. It is just the SU(2) of a self-dual circle in this 
picture, which we studied extensively in section 4.3. 
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Fig. 15.3. The enhan<;on locus at which new physics beyond supergravity 
appears. This happens before the singular repulson locus, signalling that 
the original geometry inside the enhan<;on radius was unphysical. 

Recall also (see section 13.5.1) that the size of the monopole is inverse 
to the mass of the W -bosons (or the Higgs vev), and so in fact by time our 
probe gets to the enhan<;on radius, it has smeared out considerably, and in 
fact merges into the geometry, forming a 'shell' with the other monopoles 
at that radius. Since by this argument we cannot place sharp sources 
inside the enhan<;on radius, and so the geometry on the inside must be 
very different from that of the repulson. In fact, to a first approximation, 
it must simply be fiat, forming a junction with the outside geometry at 
r = reo 

In general, the same sort of reasoning applies for all p. The enhan<;on 
locus results from wrapping a D(p + 4)-brane on K3 is S4-p x lRp+1, 

whose interior is (5 + I)-dimensional. This must work since the ratio 
/Lpl/LpH = V* and so there will always be wrapped branes becoming 
massless at the same loci in the geometry, giving physics which goes be­
yond supergravity. For even p the theory in the interior has an SU(2) 
gauge symmetry, while for odd p there is the Al two-form gauge the­
ory, carried by tensionless strings. The details of the smoothing will be 
very case dependent, and it should be interesting to work out those 
details. 

One can also study SO(2N), SO(2N+1) and USp(2N) gauge theories 
with eight supercharges in various dimensions using similar techniques, 
placing an orientifold 06-plane into the system parallel to the D6-branes. 
The enhan<;on then becomes245 an lRP2. 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


360 15 D-branes and geometry II 

15.5 The consistency of excision in supergravity 

We can actually use classic General Relativity techniques259 , 260 to carry 
out the procedure of removing the interior geometry and replacing it by 
flat space. We should be able to see if this procedure is consistent and 
makes some physical sense. The standard procedure for this is as follows. 
If we join two solutions of Einstein's equations across some surface, there 
will be a discontinuity in the extrinsic curvature at the surface. A rewriting 
of the equations of motion can be done to show that this discontinuity 
can be interpreted as a D-function source of stress-energy located at the 
surface. 

Let's carry this out here264 , performing an incision at arbitrary radius 
r = Ti, and then gluing in flat space. The computation must be performed 
in Einstein frame to enable an interpretation of the discontinuity in the 
extrinsic curvature as a stress-energy. So we work with the ten dimensional 
Einstein metric ds~ = e-'I>/2ds2 denoting the generic metric components 
as GAB: 

g;/2 ds 2 = Z:;5/8 Z;;1/8 rJ{lvdx{ldxV + Zg/8 Z~/8 dxidxi 

+ Vl/2Zg/8Z;;1/8ds~3 
= G{lvdx{ldxV + Gijdxidxj + Gabdxadxb, 

where Z2 and Z6 are given by (15.15). 

(15.24) 

Since we make a radial slice, we can define unit 
insert 10.2): 

normal vectors (see 

A 1 (D)A 
r1± = =t= VGrr Dr ' (15.25) 

where r1+ (rL) is the outward pointing normal for the spacetime region 
r > rj (r < rj). Referring to insert 10.2, we see that the extrinsic curvature 
of the junction surface for each region is 

(15.26) 

We next define the discontinuity in the extrinsic curvature across the 
junction as rAB = K!B + K AB . The stress-energy tensor supported at 
the junction is defined in terms of these as: 

SAB = :2 (rAB - GAB rCc), 

where K is the gravitational coupling defined in (7.44). 

(15.27) 
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In choosing the metric for fiat space, we should ensure that all fields 
are continuous through the incision by writing the interior solution in 
appropriate coordinates and gauge: 

g~/2ds2 = Z2h)-5/8 Z6h)-1/8rl{wdx/LdxV + Z2h)3/8 Z6(rif /8dx i dx i 

+ V 1/ 2 Z2(n)3/8 Z6h)-1/8dsk3' 
2 <I> 2 1/2( ) -3/2( ) e = g8 Z2 n Z6 ri , 

C(3) (Z2(ri)gs)-ldxO 1\ dx1 1\ dx2, 

C(7) = (Z6(n)gs)-ldxO 1\ dx1 1\ dx2 1\ V CK3. (15.28) 

It is straightforward to derive the following results for the discontinuity 
tensor, and the reader should check the result: 

1 1 (Z' Z') 
I/LV = 16 VGrr 5 Z~ + Z: G/LV, 

ry .. = _~_1_ (3Z~ + 7Z~) G .. 
i2J 16 IQ Z Z ZJ' V urr 2 6 

1 1 (Z' Z') 
lab = - 16 VGrr 3 Z~ - Z: Gab, (15.29) 

where a prime denotes ar and all quantities are evaluated at the incision 
surface r = n. The trace is: 

ell (Z~ Z~) 
I C = -16 VGrr 3 Z2 + 7 Z6 ' (15.30) 

and the /L, v = 0,1,2 index directions along the brane, i, j index the two 
angular directions (e, ¢) transverse to the brane, and a, b index the four 
K3 directions. 

So finally we have the stress-energy tensor of the discontinuity: 

(15.31) 

Let us consider the physical properties of this object264 . The last line gives 
the components of the stress-energy along the K3 direction. It involves 
only the harmonic function for the pure D6-brane part which is consistent 
with the fact that there are only D6-branes wrapped there. The middle 
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line shows that there is no stress in the directions transverse to the branes, 
which dovetails nicely with the fact that the constituent branes are BPS 
with no interaction forces needed to support the shell in the transverse 
space. 

As a first check of this interpretation, we can expand the results in 
equation (15.31) for large Tj. Up to an overall sign, the coefficient of the 
metric components gives an effective tension in the various directions. The 
leading contributions are simply: 

(15.32) 

(15.33) 

which is in precise accord with expectations. In the K3 directions, the 
effective tension matches precisely that of N fundamental D6-branes, with 
an additional averaging factor (1/ 47fr;) coming from smearing the branes 
over the transverse space. In the xO, xl, x 2 directions, we have an effective 
membrane tension which, up to the appropriate smearing factor, again 
matches that for N D6-branes including the subtraction of N units of 
D2-brane tension as a result of wrapping on the K3 manifold128 . 

Notice that the result for the stress-energy in the unwrapped part of 
the brane is proportional to (Z2Z6)'. As we have already observed in 
equations (15.18) and (15.23), this vanishes at precisely r = re , where the 
probe starts to become unphysical, and where the supergravity starts to 
become repulsive. So, for incision at the enhan<;on radius, there is a shell 
of branes of zero tension, as the probe computation showed. 

For r < re we would get a negative tension from the stress-energy 
tensor, which is problematic even in supergravity. Notice, however, that 
nothing in our computation shows that we cannot make an incision at 
any radius of our choosing for r ~ re , and place a shell of branes of 
the appropriate tension (as in the calculation of the effective tensions at 
large ri above). This corresponds physically to the fact that constituent 
branes experience no potential, so they can consistently be placed at any 
arbitrary position outside the enhan<;on. 

15.6 The moduli space of pure glue in 3D 

Note that the Lagrangian (15.21) depends only on three moduli space 
coordinates, (x3, x4, x 5), or (r, e, ¢) in polar coordinates. As mentioned 
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before, a (2+1) dimensional theory with eight supercharges, should have 
a moduli space metric which is hyper-Kahler185 . So we need at least one 
extra modulus, s. A similar procedure to that used in section 15.2 can be 
used to introduce the gauge field's correct couplings and dualise to intro­
duce the scalar s. A crucial difference is that one must replace 27Ta/ Fab by 
e2¢(!L6 V(r) - !L2) -2vaVb in the Dirac-Born-Infeld action, the extra com­
plication being due to the r dependent nature of the tension. The static 
gauge computation gives for the kinetic term: 

(15.34) 

where 

Z6 a/-3/ 2 (V gsN a/1/ 2) 
F(r) = - (!L6 V(r) - !L2) = 2 - - 1 - , 

2gs (27T) gs V* r 
(15.35) 

and 02 = iP + sin2g qb2. 
Again, there is gauge theory information to be extracted here. We 

have pure gauge SU(N) theory with no hypermultiplets, and eight su­
percharges. We should be able to cleanly separate the gauge theory data 
from everything else by taking the decoupling limit a/ ----+ 0 while holding 
the gauge theory coupling g?M = g?M,P V-I = (27T)4gsa/3/ 2V- 1 and the 
energy scale U = r / a/ (proportional to Mw) fixed. In doing this, we get 
the metric: 

ds2 = J(U) (U2 + U2d[22) + j(U)-l (dCJ _ 4:2A¢d¢» 2, 

where j(U) = 21 2 (1 - 9?M N ) , (15.36) 
47T gYM U 

the U (1) monopole potential is A¢ = ± 1 - cos g, and CJ = sa/, and the 
metric is meaningful only for U> Ue = A = g?MN, the "t Hooft coupling', 
a natural gauge theory quantity to hold fixed in the limit of large N, 
where we make contact with supergravity. This metric, which should be 
contrasted with equation (15.11), is the hyper-Kahler Taub-NUT metric, 
but this time with a negative mass. It is singular. For N = 2, the full met­
ric, obtained by instanton corrections to this one-loop result, is smooth, 
as we will discuss. For large N, the instantons are suppressed. We shall 
discuss this some more in the next section. 

15.6.1 Multi-monopole moduli space 

Recall that the membrane resulting from wrapping the six-brane is s 
BPS monopole. Therefore the moduli space of the entire wrapped system 
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should be related to the moduli space of N BPS monopoles. In fact, since 
the low energy dynamics of the branes is SU (N) gauge theory, we learn 
that BPS monopole moduli space is to be identified with the Coulomb 
branch of the gauge theory as we1l231 . The part of the moduli space corre­
sponding to the motion of a single sub-brane (the probe discussed above) 
is evidently a submanifold of the full 4N - 4 dimensional metric on the 
relative moduli space218 of N BPS monopoles which is smooth219 . 

This should remind the reader of our study in section 15.3. Recalling 
that this is also a study of SU(N) gauge theory with no hypermultiplets, 
we know the result for N = 2: the metric on the moduli space must 
be smooth, as there is no Higgs branch to connect to via the singular­
ity. This is true for all SU(N), and matches the monopole result. For 
N = 2, we stated that the metric on the moduli space247 is actually the 
Atiyah-Hitchin manifold232 . The metric may be written in the following 
manifestly SO(3) invariant manner232, 251: 

2bcda 
= (b - c)2 - a2, and cyclic perms.; 

f dp 

where the choice f = -bj p can be made, the (Ji are defined in (7.4), and 
K (k) is the elliptic integral of the first kind: 

'IT 

K(k) = 12 (1- k2sin2T)~dT. (15.38) 

Also, k = sin({Jj2), the 'modulus', runs from 0 to 1, so 'IT ~ P ~ 00. In fact, 
the solution for a, b, c can be written out in terms of elliptic functions, but 
we shall not do that here. All of the functions entering the metric can be 
expanded in large p, and the result is: 

dS~N _ = (1 - ~) (dp2 + p2 d02) + 4 (1 _ ~) -1 (d'lj; + cos ed¢ ) 2 . 

(15.39) 

Comparing to equation (15.12), we see that this is the Taub-NUT met­
ric, but with a negative mass parameter, i.e. N f = -1. Now, as already 
stated, Taub-NUT has an SU(2) isometry, and the full Atiyah-Hitchin 
metric has an SO(3). Furthermore, the metric we have here is singular at 
p = 2, whereas the full metric is smooth everywhere. Therefore there is 
a lot missing from this approximate metric. In fact, these key differences 
are invisible at any order in the large p expansion, being exponentially 
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small in p, of the form e- p . These exponential corrections for smaller p 
remove the singularity: p = 2 is just an artifact of the large p metric in the 
above form (15.39). As for the isometry, the fact that it is really 80(3) 
follows from the fact that 1j; started out with periodicity 27T and not 47T 
in the full metric, as required by the requirement that there is no bolt 
spherical singularity at finite p. Expanding in large p will not change that 
periodicity of course, but if one was just presented with the expanded 
result one would not know of the non-perturbative no-bolt condition. So 
in this case of two monopoles, there is an 80(3) = 8U(2)/Z2 isometry in 
the problem, and not the naive 8U(2) of the Taub-NUT space, since 1j; 
has period 27T and not 47T. The 80(3) isometry, smoothness, and the con­
dition of hyper-KEihlerity actually picks out uniquely the Atiyah-Hitchin 
manifold as the completion of the negative mass Taub-NUT. 

Actually, we have described a trivial cover of the true Atiyah-Hitchin 
space. The two monopole problem has an obvious Z2 symmetry coming 
from the fact that the monopoles are identical. Some field configurations 
described by the manifold as described up to now are overcounted, and 
so we must divide by this Z2, resulting in an lRP2 for the bolt instead of 
an 8 2 . 

What is the relation to our probe result? To see it258 , change variables 
in our probe metric (15.36) by absorbing a factor of >../2 = g?MN/2 into 
the radial variable U, defining p = 2U / >... Further absorb 1j; = (J87T 2 / N 
and gauge transform to A¢ = - cos e. Then we get: 

d 2 g?MN2 d 2 
S = 327T2 STN-, (15.40) 

showing that we have precisely the form of the Taub-NUT metric that 
one gets by expanding the Atiyah-Hitchin metric in large p and neglecting 
exponential corrections. 

Now for the same reasons as in section 15.3, the periodicity of (J is 1/27T, 
and we will use (j = 47T 2 (J as our 27T periodic scalar dual to the photon 
on the probe's world-volume. Looking at the choices we made above, this 
implies that for the 8U(2) case, the coordinate 1j; has period 27T, which 
fits what we stated about the Atiyah-Hitchin manifold above. 

The exponential corrections have the expected interpretation in the 
gauge theory as the instanton corrections which maintain positivity of the 
metric and the gauge coupling249. Translating back to physical variables, 
we see that these corrections go as exp (-U / g?M)' which has the correct 
form of action for a gauge theory instanton. (We have just described a 
cover of the Atiyah-Hitchin manifold needed for the 8U(2) case. There 
is an additional identification to be discussed below.) This completes the 
story for the 8U(2) gauge theory moduli space problem248 . 
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Can we learn anything from this for our case of general N, especially 
for large N, to teach us about the enhanc;on geometry? Notice258 that the 
instanton corrections are suppressed at large N if we hold the 't Hooft 
coupling A (which sets the Taub-NUT mass) fixed, since there is a bare N 
in the exponential: exp (-NU / A). So the smoothing is suppressed at large 
N, and we recover the macroscopic sharp (relatively) enhanc;on locus at 
large N in the supergravity geometry. Notice that if we've fixed our period 
of 0- to be 27T as before, for general N the resulting period of '1jJ in the 
scaled variables is b..'IjJ = 47T/N. Therefore our isometry is not 50(3) but 
is only 5U(2)/7Lw, which is not an isometry at all. 
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16 
Towards M- and F-theory 

As we saw in chapter 12, there is an extremely tantalising picture of the 
fate of string theory at strong coupling, obtained using certain 'duality' 
transformations. In fact, D-branes were rather useful, as they allowed 
for an explicit constructive method for finding evidence of the products 
of duality, for example exhibiting stable states which must exist - with 
special properties - on both sides of the duality. 

One major task is to try to understand how to write better formula­
tions of the physics of strong coupling. There are two main goals to be 
achieved by this. The first is simply to find better ways of finding new and 
interesting backgrounds (vacua) for string theory, with techniques which 
allow for better handing of strongly coupled regions of the solution. The 
second is to attempt to find the 'correct' manner in which to describe the 
complete M-theory from which all string theories are supposed to arise as 
weakly coupled limits. 

Both 'Matrix theory1157 and 'F-theory,199 are ideas in these directions, 
putting together the strongly coupled brane and string data in ways which 
allow for new geometric ways of describing and connecting string vacua, 
and giving insights into the next generation of formulations of the physics. 
In this chapter we shall uncover aspects of both, while learning much more 
about the properties of various branes. 

16.1 The type IIB string and F-theory 

One of the remarkable dualities which we observed in chapter 12 was the 
'self-duality' of the type IIB superstring theory. Its fullest expression is 
in terms of a rich family of transformations which generate the group 
5L(2, Z). The consequences of this duality group are profound, and we 
shall uncover some of them in this chapter. 

367 
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16.1.1 SL(2,71) duality 

Recall that we saw that the coupling inverted under the 'duality transfor­
mation': gs ----+ 1lgs, or <1> ----+ -<1>, since g8 = e<I>. The fundamental string 
was exchanged with the D1-brane, from which it follows that the NS-NS 
two-form potential and the R-R two-form potential (to which those strings 
couple electrically, respectively), are also exchanged. 

In fact, as has been discussed earlier as well, this is all part of a 
larger duality, whose complete transformation group is SL(2, 7l), which is 
parametrised by matrices of the form: 

A = (~ ~), ab - cd = 1; a, b, c, dE'll. (16.1) 

Combining the R-R scalar C(O) and the dilaton into a complex coupling 
T = C(O) + ie-<I>, the duality group acts on it as: 

aT + b 
T ----+ CT + d' (16.2) 

and acts on the two-form potentials as 

( B(2)) ----+ (AT)-l (B(2)) ----+ ( d -c) (B(2)). 
C(2) C(2) -b a C(2) 

(16.3) 

So the basic strong weak coupling duality we discovered first is the case 

A=S= (_~ ~), (16.4) 

for which we get T ----+ -liT, B(2) ----+ -C(2), C(2) ----+ B(2)' While all of this 
is taking place, the R-R four-form C(4) is invariant, which has remarkable 
consequences for the D3-branes which couple to it, as we shall see later 
in this and other chapters. 

In fact, at low energy and tree level, the SL(2,71) symmetry is only 
SL(2, JPi.), as the integer restriction to the former case is only visible be­
yond tree level. The quantisation of the charges ofthe D-instanton (and by 
supersymmetry, their action) which couple electrically to C(O) arises in the 
quantum theory, as we saw in chapter 8. It is very instructive to rewrite the 
low energy supergravity action (7.42) in a manifestly SL(2, JPi.) invariant 
way, with the understanding that at this level we can restrict to integers by 
hand. We work in Einstein frame metric, defined by G~v_ = e-<I>j2Gtv, and 
find that it is useful to define a field strength doublet G(3) = (H(3) , G(3)) 

and a matrix 

-C(O) ) 
1 ' 

(16.5) 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


16.1 The type JIB string and F-theory 369 

and the action is: 

(16.6) 

(where Eij is antisymmetric with El2 = 1) and the 5L(2, lPi.) invariance is 
under: 

M ----+ AMAT . , (16.7) 

In fact, M parametrises the coset 5L(2,lPi.)j50(2), (the dimension of the 
coset, 3 - 1 = 2 corresponds correctly to the number of scalars) and the 
kinetic term for the scalars can also be written as 

O/LTO/LT 
2(ImT)2 , 

showing that the metric on the coset space is essentially*t (ImT) -2. 

16.1.2 The (p, q) strings 

We saw in chapter 11 that we can construct a family of strings as bound 
states of fundamental strings (denoted (1,0)) and D1-branes or 
'D-strings' (denoted (0, 1)). It is instructive to construct the su pergravi ty 
solutions corresponding to these bound statesl33 . The metric resembles 
the Einstein frame version of the D-string metric which we wrote in chap­
ter 10, reproduced here (lying along Xl): 

9 

ds 2 = H~3/4( -dt2 + dxr) + Hi/4 L dx;, 
i=2 

eiP H-I/2 
= g8 I , 

(16.8) 

* This form should also be familiar from chapter 2 when we discovered how to write 
modular invariant partition functions. 

t As an aside, it is worth noting that this is the simplest non-trivial example of a 
supergravity model for which we find that the scalars are valued on a coset G j H 
for some non-compact G and compact H. This example will be embedded in more 
complicated examples later. For example, we have already seen a five dimensional 
example at the end of chapter 12, arising from compactifying on T 5 to five dimensions. 
There the scalars live on the coset E6(6)jUSp(8), and there are 78-36 = 42 ofthem. 
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where r~ is given in equation (10.36) (where we choose N = 1 for a single 
brane), which is normalised so that the C(2) charge of the D1-brane is 
ILl = (27TOO/)-1. It is possible to use the SL(2,lPi.) transformations to write 
a more general solution133 , which has an asymptotic value of C(O) which is 
non-zero as well, which we shall call Co = e /27T, giving us an asymptotic 
coupling TO = Co + i/ g8' Such a solution is to be interpreted as being 
in a different vacuum from the usual case where we just have the string 
coupling switched on. 

Defining the asymptotic value of M to be Mo, (made out of TO in the 
obvious way, in view of equation (16.5) we define for the (p, q) case: 

(16.9) 

and we get the same form for the metric above, but with 

(r1 )6 
1 + tlp,q -;: 

(M- 1 ) [j] 
o ijq ( H )-1 

1/2 g8 1 , 
tlp,q 

pCo - qlTol2 + ipHi/2g;1 
T = ~--~~~--~~~=-

. H 1/ 2 -1 ' P - qco + 7q 1 g8 
(16.10) 

where q[l] = p, q[2] = q, Cm = B(2) and Cm = C(2)' The spe.cial case (1,0) 
is the solution for the fields around the fundamental string163 . We see from 
the first line in the above that the tension of the string solution is in fact 

Notice that we have reproduced the formula (11.12), but generalised to 
include non-zero asymptotic C(O), denoted Co. This is a generalisation to a 
different vacuum than the previous case. In fact, it is interesting to notice 
that various values of Co, g8 give interesting patterns for the lightest string, 
which determines what we would call the perturbative string spectrum! 

In the case Co = 0, the fundamental string (1,0) is indeed the light­
est, for small g8' as is familiar. Generically, one can always find one such 
string which is the lightest, for a given value of Co. This is the dominant 
string at weak coupling. However, at special values, we can obtain degen­
eracies. For example, notice that if ITol = 1, we get Tp,q = Tq,p. Mean­
while Tp,q = Tp,p_q if Co = 1/2 and g;2 = 3/4. Amusingly, at TO = eTri / 3, 
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all three of the 'simplest' strings are degenerate: Tl,O = TO,! = Tl,l. Also, 
for TO = e2Tri / 3 , which differs from the previous TO by one, we have 
T-l,O = TO,-l = T-l,-l, which are the strings we encountered before in 
reverse orientation. Geometrically, T = eTri/ 3 , e2Tri / 3 are the special 'orb­
ifold' points of the fundamental region of the SL(2,:2:,) shown in figure 3.3. 
This fits rather well with what we already discussed in chapter 11, where 
we saw that we could form a three string junction, by balancing the ten­
sions of the three types of string. At this point of the moduli space of 
(p, q) string theories the junction diagram is :2:,3 symmetric. 

16.1.3 String networks 

Recalling the three string junction135, 137, 140 that we encountered in 
section 11.4, it must have already occurred to the reader that there is 
an amusing construction that follows. We can make a network138 of such 
string junctions, preserving some supersymmetry. Let us see how this 
junction must work. 

First, note that when three strings meet, with charges (lJi, qi) for the 
ith string, the sum of the charges must vanish: 

3 3 

LPi = 0 = Lqi' (16.12) 
i=l i=l 

In addition, we must balance the forces exerted by each string, so as to 
achieve a stable configuration. Let the ith string by oriented along a unit 
vector ni. Then, given that it has tension Tpi,qi' the balance condition is: 

3 

L Tpi,qJti = O. 
i=l 

Now recall that our tension formula is simply 

(16.13) 

Consider the complex number P + qT. Its modulus is the tension given 
above, while its argument shall be denoted ¢(p, q, T): 

p + qT = Ip + qTlei4>(p,q,T) = Tp,qei4>(p,q,T). 

Let us now rewrite our force and charge balancing conditions in terms of 
this. First, the charge conditions (16.12) tell us that 

3 

L(Pi + iqi) = 0, 
i=l 
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3 
'""" 'T ei¢(Pi ,qi, T) = 0 
~ 'Pi,qi . 
i=l 

This is two equations, a real and imaginary part, which we can get to 
agree with the force balance equation (16.13) if we simply set 

What does this mean? Well, our result tells us that we can achieve 
a completely balanced string network of (p, q) strings if any string with 
charges (p, q) is oriented at angle ¢(pi' qi, T) in the plane, i.e. pointing 
in the direction given by P + qT. Note that this result does not depend 
on the location of any string within the network, just its orientation. So 
we can build a string network of arbitrary size out of (p, q) strings (see 
figure 16.1). 

This solution, and the fact that it preserves eight supercharges, is very 
interesting, and perhaps suggestive of something remarkable, like a new 
non-perturbative building block of the type IIB string theory. It is par­
ticularly suggestive because it reminds one of a number of diagrams that 
occur elsewhere in theoretical physics, such as planar diagrams for large N 
gauge theory, dual triangulations of string world sheets, etc. Speculations 
of this sort based on pictures alone are of course easy to do, and so it 
would be interesting to see if there are connections with firmer founda­
tions which might be exploited fruitfully. 

Fig. 16.1. A string network. 
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16.1·4 The self-duality of D3-branes 

As has been remarked upon previously, the four-form potential C(4) is 
invariant under the SL(2, Z) duality transformation. This must mean 
something quite remarkable for the D3-brane which couples to it, since 
the world-volume action of the D3-brane couples to all of the background 
fields we have been discussing so far that do have non-trivial SL(2, Z) 
duality transformation properties. In Einstein frame, the action is: 

S = -T3 J d4e det 1/ 2 [Gab + e-<1>/2 FabJ 
M4 

+ /L3 JM4 (C(4) + C(2) /\ F + tC(O) F /\ F), (16.14) 

where Fab = Bab + 21Ta' Fab, and M4 is the world-volume of the D3-brane, 
with coordinates eO, ... , e. As usual, the parameters /L3 and T3 are the 
basic R-R charge and tension of the D3-brane: 

(2 )-3( ')-2 /L3 = T3gs = 1T 0: . (16.15) 

Also, Gab and Bab are the pulls-back of the ten dimensional metric (in 
Einstein frame) and the NS-NS two-form potential, respectively. 

Before we do anything else, let us stop to think about what is going on 
at low energy, in fiat space. Let us also switch off the the background an­
tisymmetric tensor fields. The theory then becomes gauge theory, in fact, 
the N = 4 supersymmetric four dimensional SU(N) gauge theory (if we 
have N branes and neglected the overall centre of mass). This theory has 
a number of special properties. It is supposed to be conformally invariant 
in the full quantum theory. That it is classically scale invariant is of course 
trivial. For a start, all of the fields are massless. Furthermore a quick di­
mensional analysis shows that the coupling gYM has to be dimensionless, 
and indeed, our formula for it in terms of the closed string coupling sets it 
to be g?M = 21Tgs . The theory's e-angle is set by the R-R scalar C(O). The 
statement that it is quantum mechanically conform ally invariant is highly 
non-trivial. This means that the p-function vanishes, or that the trace 
of the full energy-momentum tensor vanishes, etc. This is more involved, 
and we shall see that this does follow from the properties of D3-branes, 
in chapter 18, in remarkably interesting ways. 

Another property that this theory is supposed to have is exact SL(2, Z) 
'S-duality', generalising the following electromagnetic duality which one 
would expect for the Abelian case: 

S = -T3 Jd4 xL 

I' _ 1 -<1> /LV 1 C * /LV 
L - -"4 e F/LvF +"4 (o)F/Lv F . (16.16) 
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We have the electromagnetic field if and the magnetic induction E arising 
from F/Lv as Ei = FiO and Bi = !EijkFjk. F/Lv satisfies a Bianchi identity 
a[,,\F/Lv] = O. The (sourc~free) field ~quations are given in terms of another 
antisymmetric tensor F/Lv as 0[,,\* F/Lv] = O. In the absence of C(O) , the 
theta-angle, this would simply be the F/Lv we first thought of, but more 
generally it is276 : 

~ oS 
F = -2--

/LV - of/Lv 
(16.17) 

and from it we get the electric induction i5 from Di = FiO and the mag­
netic field H as Hi !EijkFjk. These are related to the previous fields 
as: 

(16.18) 

In components, the Bianchi identities and field equations are the familiar 
ones: 

\1·E=O , 

\1. i5 = 0, 

~ aE 
\1 x E =-­at 

ai5 
\1xH= at' (16.19) 

These 'constituitive relations' may be written in terms of our earlier de­
fined matrix M: 

(16.20) 

The SL(2, Z) duality transformations are then easily written as: 

(16.21) 

which leave the relations (16.20) invariant, in view of the transformation 
of M given in equation (16.7). 

Going to the full Born-Infeld Lagrangian, it has been shown (we will 
not do it here) that the duality still holds. Furthermore, inclusion of the 
coupling to the two-form potential preserves the SL(2, Z) duality, pro­
vided that they transform according to equation (16.3). 

Considering two D3-branes gives an SU(2) gauge group, (neglecting 
the overall U(l)) and the S-duality is still supposed to hold, but with the 
dual theory having the dual SO(3) gauge group. More generally, in this 
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'Montonen-Olive duality,277, gauge group G is replaced by a gauge group 
G* whose weight lattice is dual to that of G. This is not a subject we shall 
go into here, although it is a beautiful one277 . 

Note, however, that we can translate the expected spectrum of BPS 
monopoles and dyons in the gauge theory to the case here. Recall from 
section 13.5 that if the branes separate by some distance L, these are 
made by stretching the (p, q) strings between them, and ending on the 
D3-branes' surface, the 8U(2) having been broken to a U(l), and the 
Higgs vev is set by L. Observe that we can surround a string with an 8 7. 
This means that the point at the end of the string can be surrounded by 
an 8 8 . Meanwhile, we can locate the D3-brane world-volume as a point in 
JPi.6, and so it can be surrounded by an 8 5 . Finally, to specify the location 
of the endpoint inside the world volume , we can surround it by an 8 2. So 
the source equation for the string in ten dimensions is supplemented by 
a contribution from the D3-brane action276 : 

d*G~[il _ [il £8() ~ rS8a £6() 
(3) - ILl U X + ~ -=--lil /\ U X, 

a OC(2) 

(16.22) 

where cgl = B(2) and cgl = C(2), the NS-NS and R-R form potentials 
respectivefy, and IL~%l are the charge per unit length of the fundamental 
string and D-string. Also 0: labels each D3-brane. Here, the Hodge dual 
is performed in ten dimensions, and so on both sides we have something 
which can be integrated over 8 8 in order to measure the charge. Perform­
ing the integral, and observing how the R-R and NS-NS potentials couple 
in the action (16.14), we have explicitly: 

o = IL~2l + r * F. JS2 (16.23) 

This shows that the charges of the string endpoints are correlated with the 
spacetime charges of the strings, allowing them to furnish the complete set 
of (p, q) dyons in the field theory, and the 8L(2, Z) strong/weak coupling 
duality descends correctly to these states as well, and they have masses 
mp,q = Tp,qL. 

16.1.5 (p, q) Fivebranes 

In a very similar way to the construction of the supergravity solution 
for the (p, q) strings, a family of (p. q) fivebranes may be constructed, 
filling out the expectation that such objects ought to exist in view of ten 
dimensional string/fivebrane duality, hence sourcing the doublet of two 
form potentials magnetically. The solution may be written in Einstein 
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frame as: 

5 9 

ds 2 = H~/4( -dt2 + L dx;) + H;;3/4 L dx;, 
i=l i=6 

(r5)2 
H5 = 1 + tlp,q -;: , (16.24) 

with tlp,q given in equation (16.9), and expressions for C~~) and T similar 
to the ones written for the (p, q)-strings in equation (16.10). The of these 
solutions therefore comes out to be: 

(16.25) 

the expected analogous equation to the (p, q) string tension (16.11). 

16.1.6 8L(2, Z) and D7-branes 

Let us consider the case of the action (16.6) with all of the higher rank 
potentials switched off. Furthermore, let us worry only about non-trivial 
structure in the Xs and Xg directions, leaving the directions t, Xl, ... ,Xs 

untouched. Let us write a complex coordinate z = Xs + iXg, in terms of 
which the action and equations of motion from varying it with respect to 
Tare: 

1 J 10 ;--r; ( 3TfJf ) 
8 = 2",,2 d XV -G R - 2(ImT)2 , 

33- 23T8T T+ -_-- = O. 
T-T 

(16.26) 

A simple trial solution to this which preserves half the supersymmetries 
is to ask that T is in fact holomorphic: 3T(Z, z) = O. Now recall that 
a D7-brane carries the magnetic charge of C(O)' Notice further that we 
have its C(s) charge is IL7 = (21T)-7(o:')-4, which happens to match the 
normalisation of our action, 1/(2",,2), and so in circling a single D7-brane 
once, C(O) should change by precisely 1 in order to register the correct 
amount of D7-brane charge (recall that we integrate *dC(s) around the 8 1 

to measure a D7-brane's charge). 
Using this information, a suitable choice for a D7-brane located at z = 0 

would seem to be: 
1 

T(Z) = -2 .log(z), 
1TZ 

(16.27) 

since circling the origin will produce a jump T ---+ T + 1. This is a good 
description of the object for a range of distances, but there are problems. 
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Near the origin, ImT is becoming large and negative, which cannot make 
sense, since it should be positive, given that it is the inverse string cou­
pling. So there the solution breaks down, but this is perhaps fine, since 
we can simply use open string perturbation theory there, in the spirit 
of previous brane solutions which break down near the origin. We can 
generalise this trivially to many branes located at points Zi by writing: 

1 
T(Z) = -2 . log(z - Zi). 

TiZ 
(16.28) 

Unfortunately, at large z, the solution is not very good either. If there 
was a four dimensional problem (i.e. with only one other spatial direction) 
this solution would be a 'cosmic string', and as such, the energy per unit 
length diverges for this solution, and so we cannot also solve the gravity 
equations. 

Recall however that T is allowed to jump by an 5L(2, Z) transforma­
tion. This can be exploited279 , since now T is not just any number. The 
inequivalent values of it are restricted to lie in the fundamental domain 
:F in figure 3.3. So the energy density is now controlled by: 

(16.29) 

but we can convert this to an integral over the fundamental domain in 
the T plane via: 

to give: 

(16.30) 

and we can integrate by parts to perform a boundary integral over the 
edge of the domain to give 2Ti /12 for the integral, which is the mass 
density in units of 1 /2K;2. Actually, we have assumed that we have fiat 
space for the solution. This is not correct, really, since the energy density 
in the T field ought to have a non-trivial back reaction on the geometry. 
Let us attempt to find a solution which looks like the following (inspired 
by the structure of the case p = 7 in equation (10.38)): 

7 

ds 2 = -dt2 + L dX; + H7(Z, z)dzdz. (16.31) 
i=l 

In fact, the equations of motion for the T field are not modified by this 
ansatz, since they would have included contributions from the combina­
tion (_G)1/2Gzz , which remains unchanged with the above ansatz. The 
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only non-trivial equation which results from this is 

111 -
Roo - -GooR = ---Goochh3f. 

2 H78Ti 
(16.32) 

In fact, this can be written as: 

- 3T[JT-
33 log H7 = --2- = 33 log T2. 

T2 
(16.33) 

This is just Poisson's equation in two dimensions. The source is 3alog T2, 
and its energy density of 27T/12 is the total charge in the problem. An 
obvious long distance solution is: 

1 
locy H7 = --locy Izl. 

b 12 b 

Looking back at the metric, we see that the z-plane has metric ds 2 rv 

Iz- 1/ 12 dzI 2. We can change variables to i = zl-I/12, and see that the 
metric is flat ds2 rv Idil2, but there is a deficit angle of 27T/12, since as we 
do a complete circle in z, i only goes around part of the way. 

It is straightforward to see that if there are N copies of this sort of 
solution, the result is log H7 = - [; log Izl and so the metric is ds 2 rv 

Iz- N/ 12 dzI 2. There is a deficit angle of 27TN/12. Let us consider the case 
of N = 24. Well, by a change of variables similar to what we did previously, 
i = zl-N/12, for N = 24, we get i = 1/ z, and then the metric is ds2 rv 

Idil2, but the periodicity of z and i are the same. So there is no conical 
singularity. We have just built a familiar space, CCpl, or in more familiar 
terms, 8 2 , which of course has 'deficit' angle 47T. This is highly suggestive, 
as we shall see. 

Let us try to make an exact solution of the equations of motion (16.33). 
Actually, to be careful, we should construct a solution to which is mani­
festly modular invariant. A guess at a solution is obviously log H7 = T2, 
but this fails because T2 is not modular invariant. Because the opera­
tor 3a acts, we are free to add anything which is annihilated by this to 
our guess, in other words, the real part of any holomorphic function. Well, 
this is where our experience with modular invariance from one-loop string 
theory in chapter 3 suddenly becomes useful. A nice candidate is in fact 
to replace T2 with T21]2p?, where (/ is Dedekind's function, which we met 
in equation (3.58), since that combination is modular invariant, being a 
one-loop string partition function. Recall that q = e2'ITiT. A final require­
ment is that we must not let the metric function H7 go to zero. With our 
present prescription, it goes to zero at a generic point Zi where a seven­
brane is located. This is because near there, we have the behaviour given 
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by equation (16.27) and so q rv Z - Zi with the result H7 rv I(z - Zi)1/1212. 
So, multiplying in the inverse of such a factor for each of the N points, 
we have finally279: 

(16.34) 

16.1.7 Some algebraic geometry 

Let us step back and see what we are doing. We actually are studying 
a background in which T(Z) and hence the string coupling varies as we 
move around the plane transverse to the sevenbrane. We can solve the full 
equations of motion if we have 24 of the branes present, and the transverse 
space curls up into an S2, or Cpl. The function T varies over the Cpl and is 
acted on by SL(2, Z), the physically distinct values being given by the fun­
damental region :F given in figure 3.3. We can visualise this geometry by 
thinking of an auxiliary torus T2 which is fibred over the Cpl, since T can 
always be thought of as the modulus of the torus. The torus can change as 
T ----+ T + 1 as it circles a sevenbrane. However, as we shrink that circle to a 
point, maintaining this condition is rather singular, and the result is that 
a cycle of the torus must degenerate over the point. We have the idea that 
as we encircle the point, there is a 'monodromy', meaning that everything 
that can transform under SL(2, Z) gets multiplied by the matrix 

T=(~ ~). 
This happens generically in 24 places, and the physics of it will become 
much clearer later. 

We can describe this all in a rather amusing (and powerful) way, using a 
small amount of algebraic geometry. Consider three complex coordinates 
X,Y,w. We will identify points as follows: (x,y,w) rv (AX,Ay,AW), for 

some complex number A. The resulting four dimensional space is CP2. 
This is a generalisation of the more familiar Cpl which is simply the 
sphere, as described in insert 16.1. 

Starting with our CP2 coordinates (x, y, w), consider the following ho­
mogeneous equation of degree three, giving the 'Weierstrass' form: 

(16.35) 

where f and g are constants. Here, homogeneous of degree three means 
that W(AX, AY, AW) = A3W(X, y, w). This equation will give us some one 
complex dimensional object as a subspace of CP2. In fact, it is a torus 
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Insert 16.1. 52 or CCpl from affine coordinates 

As a simple example of the use of affine coordinates to define some­
thing familiar, let us look at the sphere, 52, which in this language 
is better called CCpl. We start with two complex coordinates, (x, y). 
Our space of interest has one complex dimension made by identifying 
(:r, y) rv (Ax, Ay). Now lets find the space we want. If y i- 0, then we 
can set y to one by an appropriate choice of A. Then we have one 
complex coordinate x, giving a plane. A plane differs from 52 or CCpl 
by the addition of the point at infinity. Indeed, we have this point in 
the description. It is the case y = 0, for which we can set :r = 1 by 
the scaling, giving our final point. In other words, we can recover the 
standard North and South pole preferred projections of the 52 to a 
plane seen in elementary geometry: one is the :r plane with y = 1, 
and the other is the y plane with X = 1. 

T2. This is true for any such cubic in CCP2, and we can see it as follows. A 
single complex equation in CCP2 gives a one complex dimensional (or Rie­
mann) surface ~, and so all we need to do is determine its genus, or Eu­
ler number, which completely classifies it, as stated in chapter 2. After a 
change of variables, we can write our equation as w 3 = x 3 +y3. Let us first 
assume that x 3 +y3 does not vanish. Then our equation yields three gener­
ically distinct values of w for each (x, y), which on their own each form a 
CCpl. So naively, the equation has the Euler number of three CCpls, which 
is 3 x 2 = 6. But there are three roots of x 3 + y3 = 0, and so the equation 
requires that w = ° in that situation. These make three points, each of 
which are represented three times, once on each CCpl. Let us remove the 
three points from the CCpls, and hence the Euler number of ~-{points} 
is 3(2 - 3) = -3 and then we must add back in the missing three points, 
giving a total of zero, the Euler number of a torus. 

We can see a torus more directly as follows. Let us first assume that 
wi- 0, and so we can set it to unity. Then we have y2 = :r3 + f;x: + g. The 
solutions for yare double valued, giving two copies of the CCpl given by 
x. (We have added the point at infinity in x.) However, there are three 
places where the cubic vanishes, giving us a place where y is single valued. 
Together with the point at infinity, this allows us to draw two branch cuts 
through which to join the two 'branches' of y. We connect the two CCpls 
through two separate cuts forming tubes which construct for us a torus. 
See figure 16.2. 
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)(-----x )(-----X 

)(-----X )(-----X 

Fig. 16.2. Why a cubic gives a torus. 

Let stay with the w = 1 or 'affine' form for a while. This form keeps 
us in the picture where x forms a plane over which y takes its values; y 
is double valued everywhere except where the cubic x 3 + fx + g = 0 has 
roots. It is an elementary fact that the nature of the roots of this cubic is 
determined by the discriminant which is proportional to .6.. = 4f3 + 27 g2 . 
We have three situations, 

• .6.. > 0 There is one real root and a pair of complex ones. 

• .6.. = 0 All of the roots are real, and at least two are equal. 

• .6.. < 0 There are three distinct real roots. 

We sketch these cases in various ways in figure 16.3 for (y, :r) real. 
In the case where the roots are distinct (.6.. i- 0), we can make a torus as 

described above and depicted in figure 16.2. We can see how the generic 

Fig. 16.3. Real cubics and their roots. 
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two classes of one-cycle of the torus are made by the two classes of journey 
one can make through the cuts, as shown in figure 16.4. There, we have 
also noted that a shift and a scaling on x can be used to put a root at 
zero and another at unity, and then the final root is at .>.., giving the form 

y2 = :r(:r - l)(x - .>..). 

However, consider the case when ,6,. = 0 and two roots coincide. Then 
one or other class of cycle can pinch off, causing the torus to degenerate. 
One may ask what the complex structure T of a torus presented in the 
form (16.35) might be. It is given by the famous j-function: 

4(24f)3 

4j3 + 27g2 · 
(16.36) 

The function j(z) is a very special one. It is a modular invariant complex 
number, and is in fact a one-to-one map of the fundamental region :F to 
the complex plane. Since the denominator is the discriminant, we see that 
when the torus degenerates (,6,. = 0), j(T) diverges. 

~------ , -------

A ./ 
-' 

~ 
~--------x ~ ------------- ~ - - - - - - --x ___ ~ - - - - - - - - - - - ---
o 1 A o 1 A 

Fig. 16.4. The top sketches show one sheet of the cut complex :r plane and 
the generic torus made from it, including the two classes of one-cycle (cf. 
figure 16.2). (Note that the dotted half of one of the curves is in fact on 
the other sheet.) The bottom sketches show how the torus can degenerate 
if roots collide, giving,6,. = 0 (cf. figure 16.3). 
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16.1.8 F-theory, and a dual heterotic description 

Let us return to our problem of describing seven branes. The degeneration 
of a torus is exactly what happens when we are located at a seven brane, 
since if encircling one of charge 1 produces the jump T ----+ T + 1, then 
shrinking the loop to a point shows that the torus associated to that 
point must be degenerate. 

We saw that we had a sensible solution of the equations of motion if 
we have generically 24 sevenbranes located on a sphere. The coupling T 

can be allowed to vary as we move around the sphere, with coordinate z, 
between the sevenbranes. We can then associate a torus with every value 
of T(Z), thus making a fibred structure199 of T2 over CCpl. At the location 
of a sevenbrane, we must have the torus degenerate, which is a statement 
that our fibration has 24 places where the torus fibre degenerate (see 
figure 16.5). We can describe this using the language above by allowing 
the numbers j, 9 become functions j(z), g(z). Then we have that ~(z) = 

4j3 (z) + 27 g2 (z) must vanish in 24 places. We can achieve this by making 
j(z) an eighth order polynomial in z and g(z) a twelfth order polynomial, 
and so we have: 

W(x, y, z) = y2 - x3 - j(z)x - g(z) = O. (16.37) 

Now observe that there are nine coefficients to specify j(z) and thirteen 
for g. Four of these are parameters are redundant, however. For the first, 
scale j ----+ ).2 j, 9 ----+ ).3g which gives no change of the torus, as is evident 
from equation (16.36). For the other three, recall from chapter 3 that 
there is an 8L(2, q action on the CCpl of z that allows up to three points 
to be placed at positions of one's choice (typically z = 0, 1, (0). So there 
are 18 complex parameters which go into this solution. 

Mathematically, this all fits the fact that the moduli space of K3 man­
ifolds which can be written as an 'elliptic' (i.e. torus) fibration is 18 com­
plex dimensional, with a local description as: 

0(18,2) 
MK3elliptic = 0(18) x 0(2) (16.38) 

Our fibration of T2 over CCpl builds our friend the K3 manifold for us (see 
figure 16.5). 

Furthermore, the reader might recognise this local structure from 
section 7.4. It is the local description of the moduli space of the heterotic 
string compactified on T2. Let's check the counting. We get two complex 
parameters from the internal components of the graviton and the antisym­
metric tensor: G ij is symmetric and Bij is antisymmetric, and i, j = 8,9. 
Also, the rank 16 gauge group (80(32) or Es x Es) can have 16 Wilson 
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x 
x 

x x 

Fig. 16.5. The F-theory description of 24 sevenbranes (located at the 
crosses) as a torus fibration of T2 over Cpl. In fact, this is a description 
of K3 as an elliptic fibration! 

lines on each direction of the torus. This gives 18 complex moduli in to­
tal, with generic gauge group U(I)18 x U(I)2. The extra U(I)2 x U(I)2 
supplementing the generic U(I)16 gauge group from the current algebra 
sector, comes from the internal components G/Li, B/Li. 

There is one more important parameter we ought to consider, the het­
erotic string coupling. This is identified with the size of the Cpl base of 
the fibration, which we are free to specify in making the elliptic fibration. 
We shall see this explicitly later. The other parameters we have naively 
available to us on the IIB side are not accessible. We cannot switch on 
either of the two-form fields since they transform under the 5L(2, is). 
Furthermore, the torus fibres only have complex structure parameters; 
we should not think of them as tori whose Kahler structure (i.e. their 
size) can vary. By construction, only T has physical meaning, at least in 
this type IIB picture. 

The fact that the size of the Cpl is essentially the heterotic string 
coupling fits nicely with the expectation that the limit where we have 
a very small sphere over which the IIB coupling is varying greatly (due 
to the presence of 24 branes) would benefit from a weakly coupled dual 
string theory description. 

16.1.9 (p, q) 5evenbranes 

So far this duality is motivated by plausibility arguments. It would be nice 
to demonstrate this duality more in detail, and happily we have the tools 
to do it. The first thing to note is that we have 24 seven branes, but the 
duality to the heterotic string suggests that we only have U(I)18 x U(I)2 as 
the generic gauge group. Now a U(1? of this (on this type IIB side) comes 
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from internal components of the metric, G J-Li, (i = 8,9) leaving a prediction 
that somehow, as many as six sevenbranes are not able to contribute. We 
can resolve this as follows. The description of U(I)s on the world-volume 
of D-branes is in terms of fundamental strings, or, more specifically, (1,0) 
strings, using the description of section 16.1.2. Correspondingly, since T ----+ 

T + 1 as we encircle one, the monodromy matrix about the sevenbrane is 

which leaves these string charges invariant. Clearly, we have the useful 
idea of a (p, q) sevenbrane199, 200, which is a sevenbrane on which a (p, q) 
string can end. What is the monodromy about such a brane? Well, let us 
imagine that we transform from (1,0) string to a (p, q) string using an 
S L(2, Z) matrix lVI(p,q): 

Then the monodromy is derived by simply conjugating the problem, as 
follows: 

-1 (l- pq 
::::} lVI(p,q) = lVIT lVI = _q2 p2 ) 

1 +pq . (16.39) 

This is illustrated in figure 16.6. Now the condition that two sevenbranes 
can both be treated in perturbation theory at the same time is if their 
monodromy matrices commute. In other words, if they are (p1, q1) and 

I 
I 

x 
(1 ,0) 

T 

, , , , 
\ 

I 

/ 

I 
, , 

, 
\ 

X I 

(p, q) 

Fig. 16.6. The monodromy around a (p, q) sevenbrane, on which a (p, q) 
string can end, and its relation, by conjugation, to the (1,0) case. 
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(p2, Q2), then PIQ2 - P2Ql = O. Branes which satisfy this condition are 
said to be 'mutually local'. Furthermore, the total monodromy around 
all of the points in the Cpl must be the identity TIr!l M(Pi,qi) = 1. This 
means that all of the seven-branes definitely cannot be of type (1,0), since 
T24 # 1. The slightly weaker locality condition allows a maximum of 18 
mutually local branes, and hence U(1)18 as the generic gauge group from 
the sevenbranes. 

16.1.10 Enhanced gauge symmetry and singularities of K3 

There is even more structure to the theory than that which we have 
already uncovered, since as we might expect from previous examples, there 
are enhanced gauge symmetries. The U(1)18 can be enhanced to any of 
an A-D-E family of gauge groups of the same rank, of which the A-series 
is most obvious. We can tune parameters such that n of the branes are 
coincident, giving U(n) as the gauge group. Actually, it is prudent to cast 
this into the language of the K3 geometry. Asking that n branes coincide 
is equivalent to asking that n of the basic singularities that can occur in 
the fibre coincide. What really happens is that the singularity becomes of 
a stronger type, measured by n. 

In fact, we already know the description from chapter 13. We should 
think of the whole of the K3 as developing a singularity, and not just the 
fibre. We have already encountered the A-D-E singularities of K3 before, 
and it is instructive to observe how they are to be found in this elliptic 
description. In the purely brane description, an enhanced gauge symmetry 
arises because a fundamental string stretched between the branes becomes 
of zero length and hence there are extra massless sectors. The origin of 
this string in the F -theory description is as a the base of a Cpl fibred over 
the line which is the string. This Cpl shrinks to zero size when the seven 
branes coincide. See figure 16.7. 

This is precisely the same description of the ALE singularity which we 
encountered in chapter 13. It is easy now to see how the other A-D-E 
singularities are described. It is in terms of n Cp1s, Ci, with a set of in­
tersection numbers Ci . Cj giving the Dynkin diagram of the appropriate 
group. The reader may wish to turn to insert 4.3 for the ADE Dynkin dia­
grams, showing the topology of the intersections of the Cp1s (represented 
by the circles).:j: 

t Alternatively, the reader may examine figure 13.2 in chapter 13, where we established 
the connection between the Dynkin diagrams and the ICJlD1s underlying an ALE sin­
gularity, but they must remember to delete the crossed circle to get the Dynkin 
diagrams. 
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x 

Fig. 16.7. When branes collide: A fundamental string stretching between 
them goes to zero length when they become coincident. This lifts to a 
Cpl which stretches between the locations of the two sevenbranes, which 
shrinks to zero size when the sevenbranes coincide. The resulting fibre is 
more singular. 

Let us now turn to a few special points in the moduli space of this K3 
description, where we will uncover some of this in detail in a more familiar 
setting. 

16.1.11 F-theory at constant coupling 

The main facility of the F -theory description is that it provides an eco­
nomical geometrical way of describing the physics of type IIB vacua with 
sevenbranes together with varying coupling T = C(O) + ie-<1>. This goes 
beyond our powerful but still only perturbative description of sevenbrane 
vacua. When we have multiple sevenbranes in the perturbative descrip­
tion, we must cancel the sevenbrane charge locally (using orientifolds) so 
as not to source any varying coupling away from the branes which would 
take us outside of perturbation theory. 

Nevertheless, in understanding the statements of the previous few sub­
sections better (especially the appearance of the heterotic string!), we 
ought to try to make contact with the perturbative type II description. 
What we need to do is find a limit where the torus fibration has all of its 
structure trapped a few points, between which T is a constant197 . There 
are a number of ways of doing this, as can be seen by looking at the ex­
pression (16.36) for the j-fundion. There, we see that we have two obvious 
choices, either g(z) = 0 or J(z) = O. In the first case, we have only five 
moduli left to describe this possibility, and we see that j = 243 = 13 824 
for which T = i. This is one of the very special points in the moduli space 
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of tori, as we have already seen. The second choice gives us the other 
special point. There we have only nine moduli, and we see that j = 0, 
which is indeed T = e2Tri / 3 , the orbifold point of F. 

Returning to the first case, our K3 is given by 

8 

J(z) = II (z - Zi), (16.40) 
i=l 

and we have generically eight zeros, Zi, giving the discriminant ,6. = 

4rr~=1(Z - Zi)3. The 24 branes must have split into eight groups of three 
sevenbranes. Recalling that a basic sevenbrane in this description has 
deficit angle 'IT/6, we uncover that there is a deficit of 'IT/2 at each of the 
eight points197 . 

There is a way of splitting the eight points up differently. We can use up 
all of our remaining five moduli to have singularities at only three points, 
two of order three and one of order one 

,6. = 4(z - zI)6(z - Z2)9(z - Z3)9. 

This gives deficit angles 3'IT/2, 3'IT/2 and 'IT. These values for the deficit 
angles can be described as orbifold fixed points, since a 7/.,N orbifold has 
deficit angle 2'IT(N - l)/N. The first two points are therefore 7/.,4 fixed 
points, while the last is fixed under a 7/.,2. We have seen this description 
before in chapter 7. We really have T 2 /7/.,4. Let us see what has happened 
to the constant fibre, by studying the monodromy around its base points. 
We have J = (z - zI)2(z - Z2)3(z - Z3)3. Looking at a 7/.,4 fixed point (at 
Z = Z2 or Z3) as we encircle it once Z ---+ e2Tri z, we see that J ---+ e6Tri J. 
Looking at the form of the defining cubic in equation (16.40), we see that 
the K3 remains invariant if we also send 

91Ti 
Y ---+ e"""'2y = iy. 

So we see that the fibre has a7/.,4 orbifold action on it as well, and is there­
fore T 2 /7/.,4. In fact there is another simple description of this same fact. 
The case T = i is the unique point which is invariant under 5 : T ---+ -1/ T, 

where 

5=(~ -~), 
is the standard 5L(2,7/.,) representation. The element 5 is of order four, 
and so the case T = i is the situation of a square torus with a 7/.,4 symmetry. 
Looking above the 7/.,2 point (at zI), we have 

and so we have a 7/.,2 symmetry, generated by 52 = -1. 
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We observe that our torus fibre is also a T2/7L4' with the correct corre­
lation of its order four and order two points with the order four and order 
two points in the base, and so we discover that our K3 is in fact T4/7L4' 
an orbifold description which we encountered previously in section 7.6.5. 
It should now be easy to anticipate what happens for branch two, using 
the knowledge we developed about K3's orbifold limits in section 7.6.5, 
or about the other special point of F, the moduli space of the torus T2 
in insert 3.3. With f = 0, let us write 

12 

y2 = x3 + g(z), g(z) = II (z - Zi), (16.41) 
i=l 

and so we have we have generically twelve zeros, Zi, with ,6. = 27 rr7~1 (z­
Zi)2. The 24 branes are grouped into 12 pairs, with deficit angle 'IT /3. 
Again, we cannot write this as an orbifold in general, but if we use up all 
of our moduli we can place them at three points Zl, Z2, Z3 in two distinct 
ways: 

or 
,6. = 27(z - Zl)8(z - Z2)8(z - Z3)8. 

The first way has gives a 7L2 fixed point again, accompanied by a 7L3 and 
a 7L6. These are of course the fixed points of T 2/7L6. The second grouping 
has three 7L3 points, which are the fixed points of T 2 /7L3 . The monodromy 
around a 7L6 point in the first case gives a K3 invariant under 

lO1Ti 41Ti 
:1; ----+ e -3- x = e -3- :1; , 

which is again a 7L6 action. Once again, we can also deduce this from that 
fact that the torus T = e2Tri / 3 is the special point invariant under 

( 0 -1) (1 1) (0 -1) 
ST = 1 ° ° 1 = 1 l' 

(16.42) 

which is of order six, (ST)6 = 1. Above the 7L3 point we get 

81Ti 2'1Ti 
:1; ----+ e -3- x = e -3- X, (16.43) 

which is a 7L3 action, generated by (ST)2. Lastly, over the 7L2 point, we 
have 

61Ti 
:1; ----+ e 3 x = :1;, (16.44) 

which is a 7L2 action, generated by (ST)3 = S2 = -1. All of this infor­
mation is simply the expression of the fact that K3 is now in its T4/7L6 
orbifold limit. 
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For the other grouping, things are even simpler, as all of the points are 
the same198 . The monodromy around any of them gives that which we 
saw in equation (16.43), a :233 action, showing that this limit represents 
K3 in its T 4 /:233 orbifold limit. 

The missing orbifold is of course T 4 /:232 . This is achieved by the sym­
metric choice of placing equal groups of branes at each of four orbifold 
points in the base, giving T 4 /:232 since in that case each singularity has 
deficit angle 'IT. Slightly more generically, this can be achieved by asking 
that j3 = ag2 , for some parameter a. This does not fix T'S constant 
value, as should be clear from the j-function in equation (16.36). This 
is extremely useful, since we are then free to take the type IIB string 
coupling all the way to zero to achieve our goals of making contact with 
weakly coupled descriptions. This gives us: 

4 

~ = (4a 3 + 27) II(z - Zi)6. 

i=l 

The monodromy around one of these points is :232 , which is generated by 
52 = -1, as is clear from 

61Ti 
X ----+ e-3-x = x, (16.45) 

The next matter to consider is the precise way of identifying the A­
D-E singularity which a fibre can develop over a point. This is a matter 
requiring some mathematical care and sophistication, and so as not to 
stray too far afield, we will not embark on such a discussion. We will 
simply note that this has been classified by Kodaira183 in terms of the 
order, as polynomials in z, of the quantities (1(z), g(z), ~(z)) that we 
have been working with. Table 16.1 lists all of the types of singularity 
and the enhanced gauge symmetry they give2oo . 

Looking at table 16.1, we immediately see that the gauge groups associ­
ated to the special orbifold limits we have studied are given in 
table 16.1. There are a number of interesting general features of this 
result. The most obvious is the fact that we get exceptional gauge groups 
in the latter three cases. We have encountered no way of achieving this 
using perturbative D-branes up to now, and this remains the case. As 
we have already noted, although the coupling is constant in the last 
three models, it is not weak, and so the branes are not perturbative 
D-branes. 

In the :232 case however, we have something different 197 . We can achieve 
the required gauge group at weak coupling, and happily we have the free­
dom (by choice of a) to make the constant string coupling any value we 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


16.1 The type JIB string and F-theory 391 

Table 16.1. Kodaira's classification of the A-D-E singularities of K3 that can 
occur in the Weierstrass parametrisation given in equation (16.37) 

order (f) order(g) order(~) fibre type singularity 

;:::0 ;:::0 0 smooth none 
0 0 n In A n- I 

;::: 1 1 2 II none 
1 ;:::2 3 III Al 

;:::2 2 4 IV A2 
2 ;:::3 n+6 I* n Dn+4 

;:::2 3 n+6 I* n Dn+4 
;:::3 4 8 IV* E6 

3 ;:::5 9 III* E7 
>4 5 10 II* Es 

like. Choosing that the string coupling is zero (i.e. T ---+ ioo) implies that 
we have completely cancelled the sevenbrane charge locally at each of the 
four points. In a perturbative description, this is achieved by using an 
07-plane in the neighbourhood of an appropriate amount of D7-branes. 
Looking back to our computations of chapter 7, we see that the 07-plane 
charge is -4 in units where the D7-brane charge is 1. So we need to 
have four D7-branes and one 07-plane for charge cancellation. Actually, 
we also know precisely what gauge group this would give. It is in fact 
50(8). This is remarkably similar to have we have in the first line of 
table 16.1. There are four groups of six coincident sevenbranes. If we 
associate four of them with ordinary D7-branes, then two of them corre­
spond to the orientifold sitting at the Z2 orbifold fixed point. We have 
arrived at the T4 jZ2 orientifold of type lIB, where a (-1 )FL 0 also acts 
internally. From our experience with T -duality of simple orientifolds (see, 
for example, chapter 8), we see that this is simply T-dual to the 50(32) 
type I string theory compactified on T2. Accordingly, the orientifold (09-
plane) of charge -16 (in D9-brane units) splits into 22 = 4 07-planes of 

Table 16.2. The results for the gauge groups in the various constant coupling 
F-theory K3 orbifold limits 

K3 orbifold Gauge group 

T4jZ2 50(8)4 
T4jZ 3 E3 

6 
T4jZ4 E? X 50(8) 
T4jZ6 Es x E6 x 50(8) 
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charge -4. In order to achieve local charge cancellation, the 16 D7-branes 
are moved into four groups of four to sit at the 07-planes. 

So we have obtained the weakly coupled description we sought. Fur­
thermore, using the result of chapter 12 that the 50(32) type I string is 
strong/weak coupling dual to the heterotic string, we also have the bonus 
of proving that we have a duality to the heterotic string on T2. Deforming 
away from this special point using the moduli establishes the duality at 
all points on the moduli space. 

Incidentally, in the spirit of the discussions in chapter 12, we can even 
see what the 'dual' heterotic string is in this picture. In ten dimensional 
type I, it would have been the D1-brane. We have T-dualised on a T2, 
however, and so we see that the dual string becomes a D3-brane wrapped 
on the T2. It is a useful exercise to check that the resulting heterotic 
string's coupling is set by the area of the torus. Tuning moduli to return 
to the general non-orbifold situation, we see that the dual heterotic string 
is a D3-brane wrapped on the Cpl. The seven dimensional heterotic string 
coupling is set by the size of the Cpl in general. 

16.1.12 The moduli space of N = 2 5U(N) with Nf = 4 

Let us continue to focus on one of the four singular points for a while 
longer, placing everything at the origin Z = o. At weak coupling, we have 
seen that the branes carry an 50(8) gauge symmetry and that the pertur­
bative description is as four D7-branes and an orientifold 07-plane. Let us 
place a D3-brane probe into this background, oriented so that it is living 
in, say, the Xl, X2, X3 directions. This breaks half of the supersymmetries, 
leaving a total of eight supercharges. Observe further that when the D3-
brane is located at the orientifold, the gauge theory on its world-volume 
is in fact 5U(2), since this situation is T s9-dual to a D5-brane in type I 
string theory, as we have seen. Because we have T-dualised, however, the 
D3-brane can move off the orientifold, and then the gauge group is U(l). 
We can move the D7-branes to positions (Zl' Z2, Z3, Z4), which breaks the 
50(8) to U(1)4 generically. There can be enhanced symmetry points to 
U(n) if n of the D7-branes come together away from the 07-plane, and 
50(2n) if the coincide at the 07-plane. 

What we have arrived at is the weakly coupled description of the 
Coulomb branch of the moduli space of N = 2 four dimensional 5U(2) 
gauge theory with four flavours of quark in the fundamental. The latter 
come from the strings stretching between the D7-branes and the D3-
branes. Their classical masses are given by the positions Zi. Moving the 
D3-brane from the origin is the process of giving a vacuum expectation 
value (vev) to the complex adjoint scalar in the N = 2 vector multiplet, 
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and the z-plane is the space of gauge inequivalent values of this vev. The 
origin remains as the naive classical SU(2) gauge symmetry restoration, 
and the gauge groups associated to the D7-branes are global flavour sym­
metries in the D3-brane world-volume. 

It is amusing that we have obtained this rich and beautiful theory as 
a piece of the F-theory background seen by probing with the D3-brane, 
and we can learn much about each from this. The first thing we can learn 
(assuming we did not now it before) is the gauge theory's ,G-function, 
encoded in the one-loop running of the gauge coupling. We can read 
this out from the weak coupling behaviour of the gauge coupling. Plac­
ing the orientifold at the origin, and the four D7-branes at positions we 
have: 

T (z) = TO + ~ [t in (z - Zi) - 4 in Z] , 
2m i=l 

and use the fact that T(Z) = C(O) + ie-<I>. Remember also that gs(z) 
e<I>(z) and that the Yang-Mills coupling and e-angle are related to the 
string theory parameters by g?M = 27[gs and e = 27[C(0). The ,G-function 
for the pure glue is negative with respect to the contribution from the 
quarks. The quark masses are set by the positions Zi, since those positions 
set the length of the 3-7 strings. Notice that when all the Zi = 0, and we 
are at the SU(2) point at the origin of moduli space, then we get no 
running of the coupling and T = TO, the tree level value. This fits with 
the fact that the case of Nf = 2Nc has vanishing ,G-function, and is in 
fact conformally invariant. We can also take the opposite limit, and send 
some of the Zi to infinity, thus reducing the number of quarks, all the way 
down to the case of pure glue, if we wish. 

As we have seen before, we cannot trust the above one-loop expression 
near Z = {O, Zi}, since the logarithm takes the expression large and nega­
tive, which is not acceptable behaviour for the gauge coupling. Of course, 
this is because we have neglected the instanton contribution, which pro­
duce non-perturbative effects which remove this singular behaviour. The 
beautiful results240 of Seiberg and Witten address precisely this point, 
with the result that there is a complete solution of the problem in terms 
of the geometry of an auxiliary torus. The torus encodes the physics of 
the Coulomb branch, including the spectrum of masses of (p, q) dyons. 
The torus is singular over six points, four of them (the Zi) are the places 
where the quarks becomes effectively massless. The other two points origi­
nate from the single SU(2) point at the origin: it has split (since instanton 
effects switch on to maintain positivity of the gauge coupling or, equiva­
lently, the moduli space metric240 and they are separated by a distance 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


394 16 Towards M- and F-theory 

of order eiTO'IT, and they represent the places where (0,1) monopoles and 
(1, -1) dyons become massless. 

From the point of view of the D-brane picture, it is extremely natural 
that an auxiliary torus appears in the description of the non-perturbative 
physics, as this is the torus of the underlying F -theory description. So 
what we learn is that the orientifold 07-plane splits into two seven-branes, 
of type (0,1) and (1, -1), beyond weak coupling, physics which is iso­
morphic to the removal of the gauge theory SU(2) point by instanton 
effects240. We have seen that the full F-theory description, which allows 
the SL(2, Z) behaviour of T to come into play and keep it manifestly pos­
itive, maps to the same solution of the problem for the coupling in the 
gauge theory. 

16.2 M-theory origins of F-theory 

It is natural to wonder whether the appearance of the torus of F -theory is 
a sign of hidden twelve dimensional dynamics for which we should seek, in 
the spirit of the search for M-theory based on eleven dimensional dynam­
ics seen by all of the branes of type IIA. A more conservative point of view 
is that the torus is merely a powerful bookkeeping device, and the type 
IIB theory is no more or less ten dimensional than it was before the ad­
vent of F-theory. This is perhaps supported in part by the fact that the 
only information about the torus which has physical meaning is its com­
plex structure modulus T. The Kahler structure, containing information 
about its size, is nowhere to be seen in the formulation. So the putative 
twelve dimensional dynamics would at best be purely (loosely speaking) 
topological, it would appear. 

The spirit of string theory's history of advances is that one must keep 
one's mind and eyes open for new directions and often unexpected and 
fruitful changes of point of view. This is probably because we do not really 
know yet what the theory really is. So as long as a firm unambiguous com­
putational advantage is obtained in exchange, most practitioners simply 
do not seem to care what explanatory words or terminology arises to 
decorate the new tools once they are found. It may well be that a formu­
lation using dynamics in twelve dimensions does arise one day, and if it 
describes key pieces of physics in a manner more economical than current 
techniques, then it deserves a place alongside other important pieces of 
the puzzle of describing fundamental physics. 

So no firm declaration is to be found in these pages concerning the 
twelve dimensional dynamical origins of F-theory. Instead, it is worth 
noting that there are also signs that many of the key pieces of F -theory -
particularly the origin of the torus - can be seen directly to have more 
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humble origins: It is simply a limit of the eleven dimensional picture of 
M _ theory133, 134. 

Let us return to the duality between eleven dimensional supergravity 
on a circle of radius RlO and type IIA string theory. The type IIA string 
coupling is related to the circle radius by: RlO = (g~ )2/3f!p = g;;f!s, since 
f!p = (g~ )1/3f!s, recalling formulae from chapter 12. Once the circle is small 
enough, we are able to work with weakly coupled ten dimensional physics 
of the type IIA string to a good approximation. As we have described 
before, the D4-brane, the D2-brane, and the NS5-brane of type IIA arise 
from the M-branes reduced or wrapped on the circle, the DO-brane is a 
Kaluza-Klein momentum, and the D6-brane is a Kaluza-Klein monopole. 

We can continue to compactify on another circle, this time of radius 
Rg , and shrink that one away as well. We know that this has a dual 
description in terms of the type IIB string theory, where now the theory 
is compactified on a circle of radius R~ = f!;/ R g , and, crucially from 
equation (5.1), the type IIB string coupling is g~ = g~f!s/ Rg . We can go 
ahead and shrink away the second circle entirely as well, and use the ten 
dimensional type IIB description, which has no direct reference to the two 
circles we started with. However, we see that the type IIB string coupling 
can be expressed entirely in terms of the size of the two circles: 

B RlO 
gs = Rg (16.46) 

So in fact, given the existence of M-theory, the type IIB string coupling 
can be interpreted entirely in terms of the ratio of the radii of two circles. 
These two circles make a torus, since they define a lattice upon which 
we can make an identification. Since equation (16.46) only refers to the 
ratio of the radii of the circles, we can rescale and write the lattice as of 
unit length in one direction (associated to :rlO) , and of length l/g~ in the 
other (associated to :rg). See figure 16.8. Before making the identification 
on the lattice however, we are free to make a shift in the :rlO direction 
before identifying to construct the torus. Different non-integer shifts give 
non-equivalent tori, while a shift by an integer gives the same torus. See 
figure 16.9. This shift is to be identified with the R-R periodic scalar C(O) , 

a natural identification since it is correlated, by tracing backwards, with a 
familiar structure in the tenth direction. It is T-dual to the type IIA R-R 
potential C(l), which in turn is conjugate to momentum in the periodic 
direction :rlO and so is directly related to a periodic shift. 

What we have just described is our F-theory torus of the previous 
subsections, with complex structure T = C(O) + ie-<1>. Notice that the fact 
that it seems to have no physical size is natural from this description. 
We arrived at it by sending the each circle to zero size, and so only the 
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X9 
X9/RlO 

x x 

9 x x 

R9 x x R9 x x 
RIO 

RIO XIO XlO/RIO 

Fig. 16.8. The geometry of the compactification torus used to get type IIB 
string theory from M-theory. 

Fig. 16.9. Generalising the compactification lattice by including a shift. 
This is how the F-theory or type IIB theory torus arises from M-theory. 

ratio of the circles has physical meaning in the resulting type IIB theory. 
Moreover, it is clear that the type IIB theory obtains its SL(2,:2:,) structure 
in this way, and that it is truly and manifestly non-perturbative, given 
the construction. 

So we see that at least locally, we can attribute the F-theory torus to the 
result of shrinking a physical torus in M-theory 133, 134. Consequently, we 
should be able to make sense of, directly in M-theory, more complicated 
structures with varying type IIB couplings, like various branes, and even 
complete F-theory vacua. 

16.2.1 M-branes and odd D-branes 

The route of the previous subsection is just what we need to show the 
M-theory origin of type IIB's odd Dp-branes and NS5-brane. Of course, 
it is directly deducible from T-duality to the type IIA branes, but it is 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


16.2 M-theory origins of F-theory 397 

useful to recast things in terms of the M-theory reduction on the torus, 
following the steps above. 

Imagine that we started in M-theory with an M2-brane, with one di­
rection extended in x 10. It has tension TfI = (21T) - 2 ,(!;3. Upon red uc­
tion, this becomes the type IIA string, with the correct tension TF == 
T1,0 = TfI21TRlO = (21T)-1,(!~2, which becomes the type IIB string under 
the Tg-duality. We have used the fact that ,(!p = (g~ )1/3,(!s. Alternatively, 
the M2-brane could have been transverse to XlO, with one direction ly­
ing in Xg instead. Then it would have become a D2-brane, with tension 
T2 = (21T)-2,(!~3(g~ )-1 and by Tg-duality a D1-brane in type IIB, with 
tension 

where again we have used the fact that the type IIB string coupling is 
g~ = g~,(!s/ R g. 

The two situations are related by a flip of the :rg and XlO directions. 
This in turn is the S-transformation of the type IIB torus, and so we 
have correctly arrived at the S-duality action on the type IIB strings. It 
should be clear now how to get all of the (p, q) strings: we need to wrap 
the M2-brane p times on the XlO cycle and q times on the Xg cycle. Let us 
check that we get the right tension formula. Wrapping as stated above, 
looking at figure 16.8 reveals that the length 21T Rp,q that the M2-brane is 
stretched is simply given by Pythagoras: 21TRp,q = 21TJ(pRlO )2 + (qRg)2, 
and hence the resulting tension written in type IIB terms is: 

Tp,q = Ttt21TRp,q = (21T)-2,(!;3 . 21TRp,q 

(21T) -1 ,(!;;3(g~) -1 V (pR lO)2 + ( qRg)2 

2R2 
(21T)-1,(!;;2(g~)-1 P R210 + q2 

9 

V(PT1,0)2 + (qTO,l)2, 

(16.47) 

(16.48) 

(16.49) 

(16.50) 

where we have used the T-duality formula for the relation of the string 
couplings, the relation between ,(!S and ,(!p, etc. and we have recovered our 
earlier bound state formula (11.16). We can even go further and derive 
the more general formula for the case in which there is a background 
value, C(O), of the R-R scalar e(O) present. Recall that it is a shift in 
the :rlO direction shown in figure 16.9. So in computing the length of the 
wrapped membrane, we ought to take into account this shift: looking at 
the diagram, it is elementary to see that every time ones goes around the 
xg-cycle, one picks up a reduction of C(O) RlO in the total length stretched 
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in the XlO direction. Therefore we should have, in this case, the more 
general expression 2'TrRp ,q = 2'TrV([p - qc(o)jRlO )2 + (qRg)2. Similar ma­
nipulations to the above give: 

(16.51) 

which is a rewriting of equation (16.11). 
Turning to D3-branes, it is immediately clear from this picture what its 

origins must be. We can take an M5-brane and wrap two of its directions 
on the torus as its shrinks away. Following the type IIA route, it becomes 
first a D4-brane from shrinking :rlO, and then a D3-brane after shrinking 
Xg and T -dualising. We can check that we get the right tension directly: 

T3 = Ttt . 2'TrRlO . 2'TrRg = (2'Tr)-5.e;6(2'Tr)2 RlORg 

= (2'Tr)-3.e;;6(g~)-2.esg~Rg = (2'Tr)-3.e;;4(g~)-1. (16.52) 

It is also clear that the D3-brane is invariant under 5L(2, Z) since it is 
wrapped entirely on both cycles of the torus. 

For fivebranes, the story is similar to the case of the strings. There is 
a whole (p, q) family of them because there are two ways of getting a five 
dimensional extended object from the M5-brane: one either wraps it on 
the XlO cycle, in which case it becomes a D5-brane (which we ought to 
call (1,0)), or we wrap it on the Xg cycle and so it becomes an NS5-brane 
(0,1). It should be easy to see that the resulting tension of the (p, q) 
fivebrane made by wrapping the appropriate number of times on each 
cycle is (including the background C(O) field, and using the Pythagorean 
relation for Rp,q above): 

(16.53) 

which indeed gives the supergravity formula (16.25) given earlier. (In the 
computation, the above comes multiplied by 2'TrR~, since that is what 
the resulting fivebrane is wrapped around on arrival in the type IIB 
theory.) 

Finally, let us turn to the sevenbranes. In the stringy picture, these 
come from T-dualising transverse to D6-branes, but it is illuminating to 
think of it in the picture of reduction from M-theory. Recall that a D6-
brane in M-theory comes from a clever twist of the geometry, making a 
Kaluza-Klein monopole. The metric is (x = (:r7,:rs,:rg)): 

6 

dSIl = -dt2 + 'Ldx; + V(r)(dx· dx) + V(r)-l(dxlO + A· dx)2 
i=l 

V (r) = 1 + r6 , r2 = x . x, 
r' 

\7 x A = \7V(r), (16.54) 
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for a single brane located at r = 0 in the (;1:7, Xs, xg) plane. The key 
point is that the :rlO circle shrinks to zero at the location of the D6-brane, 
since the metric vanishes there. So we see that shrinking the :rg circle as 
well to go to the type IIB theory (after T -dualising), gives us the :rg, :rlO 
torus, which we discover has a cycle which degenerates over the (X7, xs) 
plane. This is just how we describe a D7-brane in F-theory language, and 
so we have recovered yet another key F -theory phenomenon as a limit 
of M-theory. To do better, and get (p, q) sevenbranes, we may consider 
placing Xg on a circle (on the M-theory side), giving a physical torus 
after identification (with a shift to include C(O)). We may then consider 
more general 8 1 fibration geometries than those in equation (16.54). The 
analysis of monodromies in the non-compact directions is then identical 
to the F -theory one. 

A key phenomenon which we discovered was a description of the en­
hancement of symmetry when two seven-branes coincide, described as the 
collision of singularities in the F-torus. Since this is described by funda­
mental strings going to zero length in the type IIB picture, we drew this 
suggestively as an 8 1 fibration over the string making a CClP'l cycle, as de­
picted in figure 16.7, and then identified the appearance of extra massless 
fields with the shrinking of the cycle. Since the F-torus has no dynamics 
associated with it, in the way it was described, that suggestion could not 
be honestly taken as anything more than a strongly plausible description. 
Now we see in the M-theory origins of the torus that this is exactly the 
correct description: on the M-theory side, an M2-brane can wrap both 
of its directions on the cycle stretching between two lifted D6-brane fi­
brations of the type in equation (16.54). We have already learned that 
a fundamental string comes from such a wrapped M2-brane, and after 
shrinking the torus, we recover precisely figure 16.7. So the sevenbrane 
enhanced gauge symmetries in F-theory come from wrapped M2-branes 
on collapsing cycles in M-theory. 

In summary we now see how to connect type IIB theory, and indeed 
the F-theory description, to M-theory. We can do the reverse now, and 
take various F-theory vacua and turn them into M-theory vacua. Here is 
a simple rule: Place the theory on any circle. Shrink the circle away, and 
in the limit the F -theory torus acquires a physical size, returning us to 
eleven dimensional M -theory. 

16.2.2 M-theory on K3 and heterotic on T3 

We now have enough information to construct the M-theory versions of 
some of the data which we obtained in F -theory in earlier sections. In par­
ticular, we discovered that F-theory on K3 is in fact dual to the heterotic 
string on T2. 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


400 16 Towards M- and F-theory 

Starting with the F -theory configuration described in earlier sections, 
let us now compactify a harmless direction (any of Xl, ... , ;1:7) on a circle, 
and shrink it away. The result is M-theory on K3. Actually, on the dual 
side, we are simply placing the heterotic string theory on an additional 
circle, and so derive the non-trivial result that M-theory on a K3 is dual 
to the heterotic string on T3. The fundamental heterotic string is that 
string which originated as a D3-brane wrapped on the CCpl base of the 
elliptic K3. We now see that this string is now an M5-brane wrapped on 
the entire K3 in the M-theory picture. The pattern of enhanced gauge 
symmetries is enlarged somewhat on both sides, and the moduli space is 
now locally: 

0(19,3) 
M = 0(19) x 0(3) 

16.2.3 Type IIA on K3 and heterotic on T4 

(16.55) 

Finally, we can in fact compactify another ofthe harmless circles on the M­
theory side, and the result is type IIA string theory on K3. Since we have 
done nothing non-trivial to the heterotic side either, we discover as a result 
that there is a duality between type IIA on K3 and the heterotic string 
on T4. We have already mentioned this duality previously in insert 7.5 
(p. 186) and in chapter 12. The F-theory moduli space is now locally: 

0(20,4) 
M = 0(20) x 0(4) 

16.3 Matrix theory 

(16.56) 

One of the most striking features of string duality is the discovery that 
eleven dimensions is dynamically relevant to string theory. It had always 
been thought of as a useful bookkeeping device to start with eleven di­
mensional supergravity and derive the structure of type IIA supergrav­
ity by dimensional reduction, but it was thought of as nothing more 
than that. However, once one takes the loop-protected BPS spectrum of 
DO-branes seriously, one is forced to try to interpret the tower of light 
states they supply at large string coupling, and a Kaluza-Klein story 
appears inevitablel49 . 

Further study showed that the dynamics of DO-branes implied that they 
clearly were sensitive to shorter scales106 than just f!s. In fact, now we know 
(see the discussion surrounding equation (12.15)) that the physics they 
were sensitive to was the scale f!p = g~/3 f!s, which at weak coupling a lot 
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is shorter than the supposed minimum distance fs perturbative strings 
know about. 

This might lead one to attempt to capture some of the eleven dimen­
sional physics in terms of that of DO-branes, hoping that it might lead to 
an understanding of the formulation of M-theory in its own right. This 
is not really a fully accurate picture of the thought processes that led to 
the presentation of Matrix theory157, but then this is not an attempt at 
a history158. It suffices for us here to uncover a little of what we can with 
the above motivating remarks, and leave the matter of the history of it 
to be explored in the literature or elsewhere. 

16.3.1 Another look at DO-branes 

For reasons that will be stated shortly, let us focus on the low energy 
effective Lagrangian for N DO-branes. This is simply a 0 + 1 dimensional 
theory (a quantum mechanics) involving the nine spatial transverse coor­
dinates Xi, i = 1, ... ,9, and their superpartners. We start by considering 
the branes to be all in the same place, and so we have a U(N) invari­
ant system. We must remember to keep commutator terms which would 
normally vanish in the Abelian case. 

The most efficient way of writing this action is in fact to start with ten 
dimensional maximally symmetric Yang-Mills theory and dimensionally 
reduce it all the way to 0 + 1 dimensions. After a rescaling, the result is: 

[DtXiDtXi [Xi, xjj2 i 1 ° i i ] 

£ = Tr 2g8f 8 + 4g8f8(27Tf~)2 - 28Dt8 + 47Tf~ 8r [X ,r 8] . 

We have indeed thrown away any terms with higher powers of velocity 
than quadratic, the trace is over U(N). The Xis all come from inter­
nal components of the gauge field, and so there is the usual factor of 
27Tf~ to convert a gauge field to a coordinate. There are no remaining 
appearances of gauge fields except for Ao, which is inside the covariant 
derivative only, having no kinetic term. It may therefore be thought of 
as simply a constraint field, enforcing U(N) gauge invariance. Also, 8 is 
a rescaled version of the 80(9) sixteen component fermion which would 
have appeared in ten dimensions. 

From the Lagrangian above, we can write a Hamiltonian. The details 
are left as an exercise to the reader, and the result is remarkably simple: 

H = Tr [98 f 8 .. _ [Xi, xjj2 _ _ 1_8rO[Xi ri8]] 
2 P~P~ 4gsfs(27Tf~)2 47Tf~ , 

1 [X ,X ] 1 o[ i i ] 
[ 

i j 2 ] 
= RTr 2PiPi - 167T2f~ - 47Tf~ 8r X, r 8 . (16.57) 
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Possibly the most immediately striking thing about this Hamiltonian is 
the fact that everything naturally assembles itself into eleven dimensional 
quantities, as shown in the second line above. We have pulled out an 
overall factor of the inverse mass of the DO-brane, (gs,es)-l, which is the 
inverse of the radius of the eleventh direction, which we have called R. 

16.3.2 The infinite momentum frame 

There is a striking proposal for an interpretation of the physics of the 
above HamiltonianI57 . The idea is that the system captures the physics 
of states with momentum PIO = N / R in the limit that Nand R go to 
infinity. This is the 'infinite momentum frame' (IMF), essentially a light 
cone frame. It uses the fact that DO-brane charge is momentum in the 
eleventh direction, and is quantised in units of 1/ R if the direction is 
on a circle. We then take the limit in which the circle is large and the 
momentum in that direction is large, keeping the fraction fixed. This 
allows us to consider the decompactified limit where we are allowed to 
discuss a fully eleven dimensional choice like picking a boost direction. 

To see that we have not neglected anything relevant in picking the 
original Lagrangian, notice that, if we separate momentum up into ten 
dimensional component, p and the eleven dimensional component PlO = 

N / R, we have: 
N 2 

E2 = _ +p2 + m 2 
R2 ' 

where m is the mass of the particle. In the limit that the eleven dimen­
sional momentum is extremely large, we see that the dominant energy 
contribution is from states who have a finite fraction of the eleven dimen­
sional momentum in the limit. In other words, since 

N 1R 2 2 (R)2 E = - + --(p + m ) + 0 -
R 2N N ' 

in the limit of N / R ---+ 00, the energy a state with contribution mostly 
from the second terms will not be significant, and so it will not playa 
role in the dynamics. 

In fact, this justifies our dropping of higher order terms in the basic 
Lagrangian, since those corrections (subleading in ten dimensional mo­
mentum) will not have a chance to contribute to the limit. Actually, the 
only sector which has a chance of contributing (from the ten dimensional 
perspective) are the DO-branes, together with the lightest open strings 
connecting them. These are precisely the sectors which appear in the 
Hamiltonian in equation (16.57). 
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The Hamiltonian above may therefore be studied in the light of this pro­
posal in purely eleven dimensional terms. Apparently, we are to somehow 
recover all of the physics of M-theory this way, since eleven dimensional 
Lorentz invariance (assumed to be preserved) would suggest that we can 
always boost any situation into this frame. Of course, we can only do this 
is we can understand how to extract the physics appropriate to questions 
we might ask. Now we see, for example, why the bound state questions 
of chapter 11 were pertinent. A graviton of momentum n is in fact a 
bound state of n DO-branes, and so we must establish that a normalisable 
wavefunction for such a system exists. This is not a solved problem for 
arbitrary n, as already stated in chapter II. 

The scattering of gravitons with no exchange of longitudinal (eleventh 
direction) momentum is nicely described in terms of matrices in this lan­
guage. The ath graviton of momentum Pa = na/ R is represented by a 
na x na block of the Xi (each Xi representing matrix position in the 
ith transverse coordinate). The trace of the na x na block of the matrix 
is the centre-of-mass position of the graviton. Interaction between the 
block diagonal parts can be determined by integrating out off-diagonal 
degrees of freedom, which correspond to integrating out the massive open 
strings stretching between the widely separated clumps and and deter­
mining the effective interactions between the clumps in that way. It has 
been shown that this reproduces rather nicely the expected results for 
graviton-graviton scattering. 

In fact, a lot more can be done along those lines, including recovering 
the basic lightcone world-volume M2-brane description by a change of 
variables, making contact with the much earlier work255 on the M2-brane 
Lagrangian done back when it was thought to be a viable fundamental 
object157 . 

Another striking feature of the description is that there is a natural 
statement about the importance of the onset of non-commutativity of the 
description of spacetime at high energy. Recall that the Xi are supposed 
to be related to spacetime coordinates as well. They are naturally (and 
essentially) presented as N x N matrices here. It is only when the Xi are 
large that we recover the usual picture of them as commuting spacetime 
coordinates, for only in that limit is is favourable for the Hamiltonian 
to select sectors for which [Xi, xj] vanishes. Then, the Xi can all be 
simultaneously diagonalised into their eigenvalues xi, the nine transverse 
spacetime positions26 , 157. 

Note that an interpretation of the model at finite N has also been 
proposed28o . It is simply a discrete light cone quantisation (DLCQ) of the 
theory. In other words, at finite N, the fact that the theory is on a circle of 
radius R is taken seriously. The theory is taken as being in the light cone 
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frame, with a compact null direction. Such techniques have been used 
successfully elsewhere in order to supply the non-perturbative definition 
of field theories such as QeD. 281 

Note also that there is another matrix model proposal for capturing 
important degrees of freedom. It is based on structures in the type IIB 
string and D-instantons in particular342 . 

16.3. 3 Matrix string theory 

Of course, one thing which we ought to be able to recover is the fact that 
we get the type IIA superstring upon compactification of a dimension on 
a circle. In fact, we should be able to do this on any spatial circle. How 
are we to see this here? 

What we would like to do is compactify one of the directions Xi. There 
are a number of ways of working out just what that means for our model, 
but there is a particularly simple way282, given all that we have studied 
so far: by T-duality, working with DO-branes in the presence of one of 
the Xi compact is equivalent to working with Dl-branes extended in that 
compact direction. It must be that the model we need is a large N model 
built from Dl-branes wound on a circle. As the size of the circle shrinks 
to smaller and smaller size, this picture is increasingly the more useful 
one to use. In fact, an extremely important sector to include is the family 
of light strings stretching between DO-branes after winding around the 
circle some number of times. 

We know how to write the just the model that we want. It is 1+1 
dimensional Yang-Mills on a circle. We can write it down by starting 
from the beginning again, or we can simply obtain it from the present 
matrix model. To do so, if X g is to be our compact direction, of radius 
Rg, we need only replace X g by RgDIY , where 0 ::; (J ::; 27T and DIY is the 
covariant derivative. 

The model which results is: 
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Notice that at the end, we made the substitution 

as appropriate to the case of the type IIA model we expect to arrive at 
in the limit. Indeed, we see that the model naturally cleans itself up 
into the string variables. The electric field Pm = A" is the non-trivial 
gauge field strength of the model, an electric fiux, in fact. The 16 com­
ponent field 8 has naturally split into an 8cEB8s under the natural 80(8) 
which acts here. One is left moving on the string and the other is right 
moving. The Xi transform as the 8v , of course. This model therefore has 
the manifest supersymmetry we expect for the type IIA model and is in 
'Green-Schwarz' form 108. It is also the model we arrived at (but for a 
single D1-brane) in section 12.1 within the type IIB string theory. There, 
it represented the type IIB soliton string and the opposite chiralites of 
the left and right movers was appropriate to the expected zero modes on 
the soliton. 

N.B. It is amusing to note that to describe compactification of space­
time dimensions, one has to work with a higher dimensional matrix 
model. This exchanges the role of dimensional reduction and the in­
verse procedure, dimensional 'oxidation'. 

Now this model, with U(N) gauge symmetry, is to be interpreted not as 
a soliton, but as a matrix definition of the type IIA string theory283, 284. 

The limits we are taking to get the free string are two-fold: we must take 
R ---+ 00 and N ---+ 00, as before, and we must also take g8 ---+ 0, which is 
of course the same as Rg ---+ O. 

To study the model, let us consider the supersymmetric vacua, i.e. the 
moduli space [Xi, xj] = O. The Xi (0-) can be chosen as diagonal matrices: 

(16.59) 

XN(o-) 

Naively the moduli space is just the space of eigenvalues, (]]{8)N. Notice, 
however, that a discrete subgroup of the gauge symmetry still acts. It is 
the permutations of the eigenvalues, which we shall denote as SN. Since 
we must divide by this, the vacuum moduli space is therefore the orbifold 
(]]{8)N jSN. 
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The strings we've defined are lying in the direction parametrised by a, 
but we must study this a bit more carefully. A configuration representing 
strings which are of the same length of the a circle satisfies 

Xi(a + 21T) = Xi(a). 

One way to think of this configuration is as representing N closed strings. 
The x~! may be thought of as the xi coordinate of the nth string, pa­
rameterised by a. The xi(a) are otherwise arbitrary functions (subject to 
the equations of motion) of T and a, and so can truly represent arbitrary 
strings in various shapes. (See figure 16.10.) In fact, one of these strings 
has energy of order liN that required to contribute to the physics in the 
limit, since it is T-dual to a single DO-brane among the very large N of 
the whole model. What we need is a method of making a string with a 
larger share of the longitudinal momentum. 

The matrix model naturally contains such strings too. First, note that 
there is a natural symmetry group which we shall denote SN, which 
acts on the strings by permuting the N eigenvalues of the matrices. The 
strings are all identical, and so this is a very natural model. We can use 
this permutation symmetry to make long strings, by making configura­
tions which satisfy: 

Xi(a + 21T) = s2Xi(a), 

where 8 n is the element of SN representing the permutation of n objects. 
The following configuration is an example: 

o 

1 
o 
o 

o 
o 
1 

o 
1 
o 

1 

2It a 
Fig. 16.10. Four minimum length strings in the matrix. 
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This should remind the reader of a twisted sector from our orbifold 
techniques in various previous chapters, such as in section 4.8. This matrix 
implements a permutation of the two eigenvalues X2 and X3 one goes 
around the (J" circle. So, in fact, since s§ = 1, in order to make a closed 
string with eigenvalues in the 2 and 3 position, one must go around the (J" 

circle twice. So we have made a configuration representing a string of twice 
the length of the basic strings. See figure 16.11. In this way, we see that 
the model contains closed strings which possess a large enough fraction 
of their energy in momentum in the eleventh direction in order to survive 
the limit. 

To see that we get the right sort of theory, note that the limit g8 ----+ 0 
actually defines a flow of the 1+1 dimensional Yang-Mills theory to the 
IR. There, the theory is expected to become a fully conformally invariant 
fixed point, representing the free type IIA matrix string. Notice that this is 
in fact a new way of constructing a string field theory of the strings, in the 
infinite momentum or light cone frame. It is a field theory in the sense that 
there are fields which create and destroy complete string configurations, 
the matrices Xi (T, (J") themselves. The interactions between strings can be 
studied as well, and the splittingfjoining operation is implemented by the 
addition of a special 'irrelevant' operator to the conformal field theory, 
deforming it away from the fixed point284 towards the UV (see insert 3.1, 
p.84). 

It should be noted that the matrix string model at finite N has also 
been given an interpretation in its own right as a DLCQ definition of 
the theory. Also, matrix string theories (either DLCQ or IMF) for all of 
the other ten dimensional can be defined by similar methods. In fact, 
the technique has been used to supply a definition of theories (such as 
the special six dimensional non-gravitational string theories and their low 

, 

~ 

o 2It a 
Fig. 16.11. A twisted sector representing two minimum length strings and 
one of twice the length. 
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energy field theory limits mentioned at the end of section 12.3.2) which the 
usual Lagrangian techniques seem to fail to define even perturbatively285. 

As already noted, describing further compactified spacetime dimensions 
leads us to study higher dimensional Yang-Mills field theories in various 
limits, implicitly related to world-volume theories of D-branes. Unfor­
tunately, once one gets to the study of six uncompactified directions, 
progress seems to stop. This is because the matrix theory is now a 5 + 1 
dimensional Yang-Mills field theory, which in the required matrix theory 
limit does not seem to make sense158 . 

For this and other reasons, it seems at the time of writing that Matrix 
theory, while apparently a tantalising glimpse into the correct direction 
which will lead to a definition of M-theory, is incomplete. In retrospect, 
this is perhaps not surprising, since it is still rather closely wedded to 
D-brane techniques, being largely a reinterpretation of the physics of open 
strings and D-branes in various limits, albeit a very instructive and useful 
one. The search for a definition of M-theory must continue. 
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17 
D-branes and black holes 

We've seen now many examples of the ways in which D-branes can be 
used as probes of the non-perturbative structure of string theory, with 
remarkable insights, including the one that string theory is not really a 
theory of strings beyond perturbation theory. It should not be forgotten 
that strings also have the intriguing feature that they insist on describing 
(at least) a perturbative quantum gravity. It is considerably significant 
that we can get insight into string theory's non-perturbative treatment of 
certain questions in quantum gravity, again using D-branes to probe and 
model the physics of black holes. This chapter will lay the foundations for 
how this works. 

17.1 Black hole thermodynamics 

17.1.1 The path integral and the Euclidean calculus 

In an attempt to construct a path integral definition of quantum gravity, 
one might envision the following: 

z = / D[g, yjeiI[g,'Pl, (17.1) 

for some appropriate choice of integration measure D[g, yj over the met­
ric g and matter fields y. In the early days of studying the path integral 
for gravity, it was noticed that the gravity action for some region M 
should be supplemented by a term evaluated on its boundary aM which 
allows the contribution of variations which include configurations which 
vanish on aM, but which might have non-vanishing normal derivatives 
on it. The result is (in units where GN = 1): 

1=- v=g R d x + - y-h K d x, 1 J D 1 fr' ~ D-l 
167T M 87T aM 

(17.2) 
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where h{U/ is the induced metric on the boundary, and K is the trace of the 
extrinsic curvature of the boundary. (We learned how to compute these 
quantities in insert 10.2.) This term is required so that upon variation with 
metric fixed at the boundary, the action yields the Einstein equations. 

Since I is real, there is the problem that the path integral has conver­
gence problems, since the integral is in principle oscillatory. One way this 
is made sense of to 'Wick rotate' the time axis by 900 by the substitution 
t ---+ -it, and so the path integral becomes: 

(17.3) 

where IE = -iI is the Euclidean action, which is real for real fields, and 
now the integrand is seen to be a damped exponential, which improves 
convergence. The metric has gone from signature (- + + ... +) to signa­
ture (+ + + ... +). In principle, we can evaluate our path integral on the 
Euclidean section and then rotate back to Lorentzian signature. 

The Euclidean technology allows for the definition of the canonical ther­
modynamical ensemble as well. Let us see how this works. The amplitude 
to go from a configuration (gl, Cf?I) at time h to a configuration (g2, Cf?2) 
at time t2 is: 

This quantity has another representation, in the Schrodinger picture: 

Let us study the situation that (gl, Cf?1) = (g2, Cf?2). Writing t2-h = -i{3, 
and summing over a complete set of eigenstates ('I/Jn, En) of the 
Hamiltonian, we get the partition function: 

(17.4) 

The system is at temperature T = (3-1, and we have the standard expres­
sion for the probability, Pn, of being in the nth state: 

1 
Pn = _e- f3En 

Z 

The familiar representation given in equation (17.4) represents the same 
system represented by the Euclidean path integral given in equation(17.3), 
where the fields (g, Cf?) are periodic in T with period {3. We shall see how 
to extract other physical quantities from here a little later. 
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17.1 Black hole thermodynamics 411 

17.1.2 The semiclassical approximation 

The evaluation of the entire path integral will not concern us here, since 
as string theorists, we take a rather different approach to the problem of 
quantum gravity. However, we expect from the reasoning that we have 
used many times already that we will arrive at a low energy action of the 
sort we studied above, regardless of the underlying microscopic model. 
So in fact, when we come to examine the macroscopic predictions of the 
microscopic details of our particular approach to fundamental physics 
(string and M-theory) - or any other approach, for that matter - they 
should make contact with the semiclassical results to be derived from the 
action above. 

The expectation is that the configurations with the most dominant 
contribution to the path integral will be those which are near an extremum 
of the action, i.e. solutions to the equations of motion. This of course 
fits with our intuition about how the classical limit arises from the path 
integral approach. 

In this limit, the path integral becomes 

Z = e-1E == e-(3W, 

defining the thermodynamic (effective) potential W, which is 

W=E-TS, (17.5) 

where T is the temperature and S is the entropy of the system. We can 
easily extract useful information in this limit. For example, the average 
energy of the system would be quite reasonably defined as the normalised 
quantity 

( ) _ ~ " -(3En __ ~ 8Z __ 8 log Z _ 8lE 

E - Z ~ Ene - Z 8(3 - 8(3 - 8(3' (17.6) 

Another example of some importance is the entropy. This is defined in 
terms of the occupation probability Pn as: 

(17.7) 

The approximation will allow us to extract a number of key features of 
the physics. For example, the contribution of the fields cp to the effective 
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action of quantum fields on various curved spacetime backgrounds will be 
sensitive to various features of the background and the properties of the 
fields themselves. Meanwhile, in the purely gravitational sector, we will 
find that there are dramatic effects which arise in our computations due to 
the non-trivial interplay of topology of the Euclidean section with the path 
integral288 . An example of an immediate consequence of this is the result 
that black holes have an intrinsic temperature. Let us compute this for 
the Schwarz schild and Reissner-Nordstrom solutions to see how it works, 
since the computation in this framework is surprisingly straightforward. 

17.1.3 The temperature of black holes 

We begin with the Schwarzschild and Reissner-Nordstrom solutions which 
we met in given in chapter 10, and as we were instructed in the previous 
section, we continue the solution to Euclidean signature via t ---+ -iT, with 
period {3 for T: 

(17.8) 

with 

This solution is taken as making sense in the range r + ::; r ::; 00, where 
r + = M + VM2 - Q2. Now the neighbourhood of r = r + (what was 
the horizon) is trying to look like lR 2 X 52, but sadly, there is a conical 
singularity there, because the coordinates (r, T), trying to look like polar 
coordinates in the plane, have the wrong periodicity for T for arbitrary {3. 

In fact, the problem of computing the temperature reduces to the mat­
ter of removing this 'bolt singularity,83, 82, ensuring the 'regularity of the 
Euclidean section'. This is quite easy to do: one has to make sure that the 
infinitesimal ratio of the circumference (going around in T) to the radius 
(moving in r), is in fact 27T as one approaches the origin of lR 2, which is 
r = r + = 2M. This boils down to: 

. .6.T d(V1/2) 
27T = hm -1/2 d r---+r+ V- r 

47T / 73 = V Ir=r+, 

where.6.T = {3 = liT. We then add a point (equivalent to a whole 52) to 
repair r = r +. From this we get: 

(17.9) 
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and for the case of Q = 0 (Schwarzschild), we have 

1 
T=--

87TM' 

413 

which shows that large black holes are actually quite cold, and it is small 
black holes which are hot. This is actually a good thing for consistency 
with what we have already observed, since it means that astrophysical 
black holes (especially the really big ones apparently indirectly detected 
out there at the cores of galaxies, but even stellar-sized ones) have neg­
ligible mass loss due to this sort of radiation*. In fact, this means that 
asymptotically fiat black holes (i.e. the sort we've been studying so far) 
have negative specific heat, since reducing the energy of the system (mass) 
increases the rate at which it is lost. 

Notice furthermore that for the charged black hole, the temperature 
vanishes at extremality, since there r + = Q = M. This fits rather well with 
what we have learned previously: the extremal solution is supersymmetric 
and in fact a BPS state, and so zero temperature is consistent with 
its stability. In addition, we see that the thermodynamics protects the 
censorship idea, since it cannot radiate further mass away, making a sub­
extremal object with a naked singularity. 

In fact, the temperature can be related to a purely geometrical quan­
tity known as the surface gravity, K" of a black hole, which is a purely 
geometric quantity that exists at the horizon, and (crucially) is constant 
all over it 292 . If we had a test particle in the geometry connected to an 
observer at infinity by a long (light) string, the surface gravity is in fact 
the acceleration needed to hold the particle stationary at the horizon. It 
can be defined in terms of a Killing vector X normal to the horizon: 

(17.10) 

where we perform the evaluation at the horizon. 
For our solution, we have that XIL = elL = of, and from the list of 

the non-vanishing components of the affine connection given in equa­
tion (10.5), we can compute the only non-zero component of the covariant 
derivative: 

-2Mr + 2Q2 Mr _ Q2 
----~3~---+ 3 

r r 
which gives 

* The reader can multiply by hc3 /GkB in order to restore the physical units. 
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and so we have: 

17 D-branes and black holes 

T=~. 
27T 

17.2 The Euclidean action calculus 

(17.11) 

The action is usually evaluated by computing with what is called the 
'Euclidean section' of the spacetime, which arose in the previous sec­
tions. Since this removes the singularities from the integrand, it makes the 
integration procedure sensible288 , 290. Furthermore, for asymptotically 
(locally) fiat spacetimes, the action is interpreted as computed with refer­
ence to an appropriate background in order to give a finite answer. Later, 
we will see a different prescription in the context of asymptotically anti-de 
Sitter spacetimes, which allows for a computation of the action which does 
not require reference to another spacetime. Let us compute an example 
with the present methods to get used to how they work. 

17.2.1 The action for Schwarzschild 

The Schwarzschild spacetime is asymptotically fiat, and so we can com­
pute the action by using fiat spacetime as a reference background. For 
both spacetimes, the Ricci scalar R = 0 and so the second part of the 
action is where we must concentrate our efforts. 

We must evaluate the extrinsic curvature for both spacetimes. Let us 
pick for our boundary the spherical shell at r = R. The unit outward 
normal to this is (see insert 10.2, p. 229): 

The extrinsic curvature is 

which gives non-zero components 

1 1 (2M) 2M 
K tt = -"2 (1 _ 2~I) 1/2 1 - ----;:- ~; 

1 1 (2M) 
Kee = "2 (1 _ 2~f/2 1 - ----;:- 2r; 
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1 1 (2M). 2 
Kee = "2 (1- 2~)1/2 1-~ 2Tsm e; 

- G/LV - 1 [ 1 K - K/Lv - . 1/2 21' - 3M , 
(1- 2~I) 1'2 

(17.12) 

and by setting M = 0 we get the result K = 2/1' for Minkowski space. 
The measure for integration on the boundary is 

( 2M) 1/2 Vh = 1'2 1 - -1'- sin e 
and recall that the period of the imaginary time is tlT 
Schwarzschild we have 

J VhKd3 x = ,641T(2T - 3M). 

,6. So for 

For Minkowski, we must be more careful. The measure is Vh = 1'2 sin e, 
and K = 2/1', but we must choose our temperature carefully. Since 
Minkowski is regular for any period of T, the temperature is arbitrary, 
and so we must fix it to match the Schwarzschild temperature. At ra­
dius 1', the temperature is not ,6, but it is red shifted to,6 (1 - 2M/T)1/2, 
so that is what we should use for the result of integrating over the compact 
time, with the result: 

J ( 2M)1/2 Vh Kd3x = (J41T2T 1 - -1'- , 

and so the action difference in the limit R ----+ ex) is 

(17.13) 

Let us see that we can in fact extract useful information from this result. 
First, we note that M is a function of ,6 (M = ,6/81T) and so we should 
be careful when differentiating with respect to ,6. A computation of the 
energy, using the formula (17.6) gives: 

IE\ _ M ~aM - M 
\ I - 2 + 2 a{-J - , 

which is an extremely intuitive result. We have seen that the system has a 
temperature, and so we should expect to compute a non-zero 'Bekenstein­
Hawking,262, 261 entropy, using equation (17.7): 

S = {:JM _ ,6M = 81TM2 = A 
2 2 4' 
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where A is the area of the black hole's horizon. So we see that these 
results combine nicely to confirm the expression for the thermodynamic 
potential 

I M 
W == 73 = 2 = M - TS. 

17.2.2 The action for Reissner-Nordstrom 

A similar computation of the gravity action can be done for the charged 
black hole, and in fact, the result is the same as in equation (17.13), 
with {3 now from the expression given in (17.9), which should be obvious 
to the reader who followed the computations. The term in the metric 
containing Q is subleading in a 1/r expansion. Now the action needs to 
be supplemented by a contribution from the Maxwell term, which can 
be manipulated into a boundary term, assuming that the equations of 
motion are obeyed: 

1j· In J-wD 1 1. A IW hI = -- v gF F d x = -- F dS 167T M IW 87T aM M v, 
(17.14) 

where the latter is a boundary integral, and we have used the on-shell 
condition that \7 vFMV = O. 

Notice that the usual expression for the gauge potential, written as a 
one-form A = Atdt, where At = Qlr, is singular, since the interval dt is 
infinite at the horizon. We can repair this problem by defining a value for 
the potential at the horizon, <I> = Q I r +, and then redefining the potential 
by a gauge transformation: 

A = Q (~ - ~) dt. 
r r+ 

Now since the non-zero components of FMV are just Frt = -Qlr2, the 
boundary integral for the action is easy to compute, giving, in the limit 
R ----+ 00 the result: 

{3 
1M = --Q<I>. 

2 
So the total action turns out to be 

IE = ~[M - Q<I>]. 
2 

Again, in the semiclassical limit we can equate this to {JW, where the 
thermodynamic or Gibbs potential is 

W = M - TS - Q<I>, 
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since in the thermodynamic analogy, <I> is like a chemical potential for Q, 
the analogue of particle number. Now we can use the standard thermo­
dynamic relations to compute: 

( 81) <I> (81) 
E = 8 {-J <I> - {-J 8<I> (3 = M; 

(81) A 
S = (-J 8{3 <I> - 1 = 4; 

1 (81) Q = -73 8<I> (3 = Q, (17.15) 

where A is the area of the black hole's horizon. These canonical ensemble 
computations are best performed by working in terms of r + as much as 
possible, converting in the end to, for example, 8/8{3 = (8r +/8(3)8/8r +, 
etc. 

17.2.3 The laws of thermodynamics 

The reality of the thermodynamic behaviour of black holes begun to 
emerge from considering (among other things) the observation that was 
made by relativists that an isolated black hole's horizon area, A, cannot 
be decreased by any physical process292 , 289. This is, of course, reminis­
cent of the analogous law for entropy, S, in thermodynamics, where it is 
called the Second Law of thermodynamics. 

Combining this with the result that there is in fact a temperature to be 
associated with black holes, because they are radiating their mass away 
quantum mechanically leads to the 'Bekenstein-Hawking' relation of the 
entropy to the area262 , 261, which we computed in two cases above: 

S= A 
4' 

In fact, a First Law can be formulated for black holes as well, 

dE = T dS + pdV ¢::::::} 
1 

dM = -KdA + DHdJ + Qd<I>, 
81T 

(17.16) 

where on the left hand side are the usual quantities from the first law, and 
on the right are the analogous black hole quantities, the electric charge 
and potential at the horizon, and the angular velocity at the horizon DH 
and angular momentum J such as could be computed for a rotating black 
hole (the Kerr solution). 

Additionally, a Third Law can be stated292 . For the Reissner-Nordstrom 
black hole, we saw that the extremal case has T = O. However, to achieve 
such a case starting from finite temperature is intuitively physically 
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impossible since approaching the extremal case would mean opening up 
the infinite volume spacetime which in chapter 10 was shown to live at 
the horizon of the extremal black hole. 

17.3 D = 5 Reissner-Nordstrom black holes 

It is a remarkable and profound fact that black holes obey the laws of 
thermodynamics, saying that gravity has some underlying structure which 
has yet to be fully understood. What one needs to find is (as for ordi­
nary thermodynamics) an underlying microscopic description from which 
these laws arise. This is a big problem with quantum gravity. A universal 
microscopic description of the required degrees of freedom is not known. 

Happily, the modern era has seen remarkable progress. String theory 
contains a theory of quantum gravity within it which is understood well 
enough to make progress in at least some of these questions. So far, we 
have only seen signs of gravity perturbatively, but black holes are firmly in 
the non-perturbative sector. Now, there are powerful arguments about the 
behaviour of strings at high energy density which can be followed to strong 
coupling to achieve a sharp, but qualitative understanding of the quantum 
behaviour of black holes as described by strings via a 'correspondence 
principle,263. There is marked qualitative agreement with the properties 
we have uncovered above 7. 

However, by the study of a specific but large class of black holes in 
string theory, it is possible to find a microscopic description of them us­
ing D-branes which firmly establishes the precise (including all crucial 
universal numerical factors) thermodynamic relations we discussed semi­
classically above. This is remarkable progress is a good sign that string 
theory (and M-theory) does indeed show mature signs of having a descrip­
tion of non-perturbative gravity. Let us begin to uncover some aspects of 
this description. 

We shall work with five dimensions, for the simplest example. A five 
dimensional analogue of the charged black hole solution (10.4) that we 
already studied somewhat in chapter 10 is: 

2 ( 2m q2 ) 2 ( 2m q2 ) -1 2 2 3 
ds = - 1 - R2 + R4 dt + 1 - R2 + R4 dR + R d03 , 

q 
At = R2' (17.17) 

where 
(17.18) 

is the metric on a round three sphere, and (t, R, e, ¢, X) constitute polar 
coordinates in the directions (xO, xl, x 2, x 3, x 4). 
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As before, there is an outer horizon at the largest root of crr = 0: 

R~ = m ± -1m2 - q2, 

and a singularity at R = O. From our previous discussion, we know that 
there is a Hawking temperature and Bekenstein-Hawking entropy set by 
the horizon. We would like to make a link to a microscopic description of 
the underlying structure of the black hole. 

The challenge is therefore to attempt to embed this black hole into 
string theory in a manner which allows us to use some of the tricks we 
learned about D-branes to help us study its properties. It is useful to 
rewrite the hole in isotropic coordinates for this study, since we are going 
to build the black holes out of branes, and we have presented the super­
gravity solutions for them in chapter 10 in terms of such coordinates. To 
do this, let us write R2 = r2 + R~ for some new radial coordinate r. Since 
we can write -Ctt = crr as 

where rrr = R~ - R~ = 2jm2 - q2, we find the following pleasingly 
simple form: 

where 

~ (1- H-1) 
R~ , (17.19) 

where the horizon is at r = rHo It has area A = 27T2(rrr+R~)3/2 = 27T2 Rt. 
The interior region of the black hole containing the singularity is not 
covered by these coordinates. In the extremal limit where the horizon is 
degenerate (m = q), we get R~ = R~ = q and the solution in the original 
coordinates is: 

where the horizon is at R2 q. It has area A = 27T2q3/2. In isotropic 
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coordinates we get simply: 

ds 2 = -rf;;2dt2 + He (dr 2 + r2dnn, 

At = H;;l 
Q2 

and He == 1 + 2' r 
(17.21) 

where we write Q2 = q for later notational convenience. The horizon is 
now at r = O. 

Now comes the fun part. We have to see whether any of the structure 
of the solution is familiar to us from what we have learned so far. It is 
encouraging that we get something that looks like the correct type of 
harmonic function that we would like to come from a brane solution, but 
we have to achieve a constant dilaton, and see the gauge field arise from 
either pure metric geometry and/or the R-R sector, if we are to connect 
it entirely to D-branes. 

17. 3.1 Making the black hole 

The most obvious thing to try would have been the D5-brane solution, 
wrapped on T 5 , which would have given (ignoring the T 5 directions): 

ds2 = _H-1/4dt2 + H 3/4 (dr2 + r2dn~), 
d5) = H-\ e-~ = H 1/ 4 

Q2 
where H == 1 + -2 . 

r 
(17.22) 

Compare this to the solution (17.21). This comes close in the gauge field, 
but fails for a number of reasons. The first is that the powers of the 
function H = 1 + Q2 / r2 are wrong in the parallel and transverse parts of 
the metric, and the second is that the dilaton is not a constant. 

Looking at the transverse part to see what is missing, we observe that 
we really need an additional Hl/4. Perhaps we can combine this solu­
tion with something which has this behaviour. This behaviour is what 
we would get if were to attempt to make instead a hole by dimension­
ally reducing the D1-brane solution (delocalised in four of its transverse 
directions on a T4 C T 5 , so that we use r-2 and not r-6 in H): 

ds2 = - H-3/ 4dt2 + H 1/ 4 (dr2 + r2dn~), 
C~1) = H-\ e-~ = H- 1/ 4 

Q2 
where H == 1 + -2 . 

r 
(17.23) 
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Again, this solution on its own would have shortcomings. Notice that the 
dilaton goes inversely with that of the D5-brane solution, but that the 
reduced R-R field is again just what we want. 

In fact, we can make a solution by combining these two in a manner 
analogous to that which we saw before in section 15.4, using the har­
monic function sum rule to get a solution which has eight supercharges. 
The harmonic functions in the three sectors (i.e. directions transverse to 
both, transverse to the smaller, or parallel to both) combine by product. 
Ignoring the five directions of the T 5 this gives us: 

ds 2 = - H- 1dt2 + H (dr 2 + r 2dD§) , 

dl) = H- 1 = C?); e-% = 1. (17.24) 

We could take the diagonal combination of the charge sector as our gauge 
field (thereby averaging C(1) and C(5) and so summing the charges) and 
things would be perfect there. So overall, this is very nearly what we want, 
but it sadly it fails because the power of H in Gtt is not correct. 

Undaunted, we must search for some new component to the solution 
which does not modify what we have already got correct for the trans­
verse directions and the dilaton and charge sector, but fixes the prob­
lematic power of H in Gtt . Switching off the contributions from the 
branes temporarily, we see that we must have a constant dilaton, and a 
metric: 

and we can still possibly allow an electric potential At = H-l, since we 
can take a linear combination of it with the other gauge sectors. 

One recourse is to appeal to pure geometry. We have only so far been 
considering a direct reduction on the T 5 by simply ignoring it. We can be 
considerably more subtle and reduce on it (or part of it) with a Kaluza­
Klein twist. This could achieve our modification of the metric without 
modifying the dilaton, since it would come the pure geometry of the re­
duction. Recall that we learned from earlier Kaluza-Klein studies in chap­
ter 4 (see also insert 12.1) that we can modify a metric component which 
is G~y+1 in D + 1 dimensions by twisting the y direction with, say the 
x 5 direction along which we do the Kaluza-Klein reduction. The metric 
component G~y in the D-dimensional metric is in fact Gf!v+ 1 - G55A0' and 
the gauge field Ay = G5y /G55 . In the present case, our gauge field must 
be of the form (up to a gauge choice) At = H-l, and so this fixes for us 
what we can achieve in the reduction. 
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N.B. Since the gauge field is electric, it must come from a metric 
component resulting from a twist of time t with a spatial component 
and so this is in fact equivalent to giving the entire solution some 
momentum in the internal direction x5. 

To see that this Kaluza-Klein will give the modification we need to get 
the five dimensional black hole metric, choose a six dimensional Kaluza­
Klein ansatz (still with the D1- and D5-brane components switched off): 

ds 2 = - ~dt2 + dr 2 + r2dO~ + H [dX5 + (~ - 1) dtf 

= -dt2 + dx~ + Q: (dt - dX5)2 + dr2 + r2dO~, (17.25) 
r 

where we have shifted the gauge potential At = H- 1 by unity (this is just 
a gauge choice), and labelled the Kaluza-Klein dimension as X5. 

We see that the solution looks very simple as a six dimensional metric, 
but when written in the Kaluza-Klein ansatz, with the appropriate gauge 
field, we can achieve the desired modification of the coefficient of dt2 which 
will appear in the reduced metric. When we introduce the D1 and D5 
harmonic functions into the full solution, they will be multiplied back in 
according to the manner we have seen above, not modifying this structure 
at all. 

Before writing the full solution, note that we can introduce orthogonal 
coordinates V2u = X5 - t and V2v = X5 + t and write the solution as 

There is a null vector with components l{l = o{lu, which is in fact co­
variantly conserved. This shows that the solution (H is independent of 
the u, v directions and can have a variety of dependences on the trans­
verse ones) is in fact a 'plane-fronted' wave, which has parallel wave 
fronts. It is often called a 'pp-wave' for this reason. (See insert 17.1 for 
a discussion.) 

So we have in fact succeeded in our goal. By superposing these three 
components according to the sum rules, we can construct the five dimen­
sional extremal black hole. To recapitulate, it corresponds to a D5-brane 
wrapped on a T4 (in directions X6, X7, Xs, xg) to make a string lying in 
the x5-direction. This string is combined with a D1-brane also lying in X5. 
We know from previous chapters that this is supersymmetric. Finally, we 
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Insert 17.1. pp-Waves as boosted Schwarzschild 

Observe that we can write the pp-wave given in equation (17.25) in 
a manner in which is clearly a limit of a non-extremal form: 

ds 2 ~ -dt' + dX; + ~~ ( 008h jldt - sinh (JdX5)' + (1 _ ~~ ) - 'dr2 

9 

+ r2dO~ + L dx;' (17.26) 
i=6 

This is written as a sort of boost, rather like we did for the p-brane 
solutions in subsection 10.2.2. It is actually a Lorentz boost of a fa­
miliar solution in the (t, X5) plane. The supersymmetric solution we 
wrote previously is the limit of infinite boost, {3 ----+ 00, with rH ----+ 0 
holding the combination r~ = rAe2 ;3 j 4 held fixed, just like the infi­
nite boost gives the supersymmetric extremal p-branes. The infinite 
boost gives a special supersymmetric solution with a null Killing vec­
tor a j au, where V2 u = (X5 - t). This is a momentum in the X5 direc­
tion, as discussed in the main text. The correctly normalised value of 
rp is 

2 2,V*ci 
rp = gsO: V R2 Qp, 

where Qp is an integer, R is the radius of X5, and V is the volume 
of the T4. We were able to compute the momentum in this direction 
by Kaluza-Klein reduction to be P = Qj R = RVj(g;o:'4) , where R 
is the length of X5 and V is the volume of the T4 on which we could 
put X6, ... , Xg. More generally, we have now 

So we see that the supersymmetric limit is to have only a left-moving 
momentum excited. The general solution has both left and right mo­
mentum excited. What was it we boosted? Well, taking {3 ----+ 0: 

( 2) (2) -1 9 
ds2 = - 1 - ~~ dt2 + dx~ + 1 - ~~ dr2 + r2 dO~ + ~ dX; , 

simply the five dimensional Schwarzschild solution, times a T5. 
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combine this with a third element, a wave in the X5 direction. Compact­
ifying on X5 to five dimensions, we get a pointlike object, the extremal 
Reissner-Nordstrom black hole, where the U(I) charge is in fact a diag­
onal combination of the U(I)s from the two R-R sector charges and the 
Kaluza-Klein charge of the momentum! 

We can now be a bit more general. There is no reason why we cannot 
consider having different amounts of the various charges from the three 
independent sectors, since it is only their orientations which matter for 
the amount of preserved supersymmetry. So we can have Q5, Q1 and 
Qp as three independent integers representing the number of D5-branes, 
Dl-branes, and momentum in the compact X5, respectively. Let us intro­
duce the correctly normalised harmonic functions and write the solution 
representing this. The metric is (in Einstein frame) 

g~/2ds2 = H-;3/4 H;:1/4 ( -dt2 + dx~ + Hp (dt - dX5)2) 

+ Hi/4Hi/4 (dr2 +r2dS1§) + V1/2Hi/4H;:1/4ds~4' 
(17.27) 

where dS~4' in the (x6, X 7 , x8, x9) directions, is the metric on a T4 with 
unit volume. Notice that given the orientations of the constituent branes, 
we can replace the T4 by a K3 and preserve the same amount of supersym­
metry. The results for the entropy count will turn out to be the same, but 
we will do it more carefully in a later section, since wrapping branes on 
K3 produces interesting subtleties, due to the enhan<;on mechanism which 
we discussed in chapter 15. The X5 direction is compact with period 2TiR. 
The dilaton and Ramond-Ramond (R-R) fields are given by 

2<I> 2H1 (3) -1 
e = g8 -H ' Frtz = 3rH 1 , 

5 

The harmonic functions are given by 

where the various scales are set by 

F (3) 2 2 . 2 e . A. 
8¢x = r5 sm sm 'P. (17.28) 

(17.29) 

2 , Q 2 , V* 2 2' V* a' () 
r5 = gsa 5, r1 = gsa V Q1, rp = g8 a V R2 Qp, 17.30 

where V* = (2Tivei) 4 . The properties of the event horizon at r = 0 can 
be computed (which the reader should do), yielding a vanishing surface 
gravity (and hence Hawking temperature) and a non-vanishing area and 
hence Bekenstein-Hawking entropy: 

(17.31) 
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Our goal is to find a microscopic description of this, and we do this next. 
Notice that the mass of the black hole is computed to be: 

(17.32) 

which is just the sum of the Kaluza-Klein mass and the constituent brane 
charges normalised by the appropriate volume factors arising from where 
they are wrapped. That there is no interaction energy is consistent with 
the fact that we are constructing this black hole out of BPS constituents. 

Notice that, inevitably, there is an explicit dependence of the mass on 
the embedding parameters. This is in contrast to the entropy, which is 
independent of the embedding parameters and so appears to be much 
more universal. We shall see a reason for this much later. 

17.3.2 Microscopic entropy and a 2D field theory 

Now we can follow the logic which we used in chapter 10. This geometry is 
entirely constructed with R-R charged objects, with some momentum. We 
have established that D-branes are the smallest possible objects carrying 
those charges, and so we must be able to make the black hole out of 
D-branes, with some momentum 7 . 

The case which we consider here is a compactification in which Q5 
D5-branes wrap a T 4 , appearing as strings in six dimensions, forming 
a composite with Q1 D1-branes. The D1 can only move within the 
D5-brane world-volume, and so this configuration should remind us of 
the D1-D5 bound state, which preserves 1/4 of the spacetime supersym­
metries. Adding BPS momentum (i.e. purely right-moving) to such a con­
figuration breaks a further 1/2 of the supersymmetries, and so we have a 
total of four supercharges. 

Let us consider the case of gsQ « 1, where Q is any of the charges in 
the solution. Then from the form of the harmonic functions (17.30), it 
is clear that in this limit we are studying the weakly coupled system of 
D-branes in fiat space. We shall perform the study of the system in this 
limit initially. The case of gsQ > 1 is where we have a macroscopic black 
hole, and as we shall see, our results for the counting of the entropy will 
apply to this case as well. This will appear to be simply due to the fact 
that we are counting BPS states, but later we shall see that things are 
more robust than that. 

The configuration yields the following decomposition of the spacetime 
Lorentz group: 

50(1, 9) ~ 50(1,1) Q9 50(4) Q9 50(4), (17.33) 
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where the first factor acts along the D-string world sheet (t, x 5 ), the 
third acts in the rest of the D5-brane world-volume (x6,x7,x8,x9) and 
the second in the rest of spacetime (xl, x 2, x 3, x 4). From the point of 
view of the D5-brane gauge theory, the Dl-branes are bound states in 
the 'Higgs branch', in which the Dl-branes are instantons inside the 
D5-branes (see section 13.4). This branch is parametrised by the vacuum 
expectation values (vevs) of 1-5 open strings, which give 4QI Q5 bosonic 
and fermionic states, simply the dimension of instanton moduli space. 
The 'Coulomb branch' of the gauge theory is the situation where the 
Dl-branes become pointlike instantons and then leave the D5-branesI30 , 
ceasing to be bound states. This branch is parameterised by the vevs of 
1-1 and 5-5 strings, which ultimately separate the individual D-branes 
from each other. This takes us away from the black hole, the state of 
most degeneracy. So we study the 1-5 and 5-1 open string sector, i.e. 
oriented strings stretching between the Dl- and D5-branes. From the 
counting in section 13.4, we know that we have 4QI Q5 boson-fermion 
ground states 7 . 

N.B. Another way of thinking of this theory is as follows. At strong 
coupling, it will flow to the infra-red and become a non-trivial con­
formal field theory (see insert 3.1). It turns out (this is essentially a 
property of the superconformal algebra) that the number of boson­
fermion ground states is directly related to the central charge of 
the conformal field theory, which in turn is equal to the difference 
in the number of hypermultiplets and vector multiplets nH - nv. 
In this case (things will be different in the case of K3 wrapping 
later in section 17.5) the number of 1-1 and 5-5 hypermultiplets 
exactly cancel the number of 1-1 and 5-5 vector multiplets, leaving 
QIQ5' 

Our configuration must be made to carry momentum Q p in the x 5 

direction around which the D-string is wrapped. What we really have is 
an effective 2D field theory in the (t, X5) directions on the world-volume 
of the effective string. The Hamiltonian is H = Qp/ R. We are trying to 
distribute this total momentum amongst the 4QI Q5 bosons and fermions. 
This should remind the reader of earlier studies in chapters 3 and 4. It is 
just like being at level n and trying to distribute the energy among the 
bosons and fermions in the two dimensional conformal field theories we 
discussed in chapter (see insert 3.4, p. 92). Here, we have a supersym­
metric string moving in the 4QI Q5 dimensions of the moduli space. 
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The number of ways, d( Q p ), of distributing a total momentum Q p 

amongst the 1-5 and 5-1 strings is given by the partition function: 

( 

00 1 + n ) 4Ql Q5 
'Ld(Qp)qQp = II 1- qn (17.34) 

n=l q 

For large Qp, this gives d(Qp) rv exp(21TvQIQ5Qp), and Boltzmann's 
relation S = lnd(Qp) yields precisely the entropy (17.31) we computed 
for our black hole using the Bekenstein-Hawking area law, in the previous 
section 7. 

Let us pause to admire this result. We have actually counted the de­
generacy of BPS states in the limit gsQ « 1 where we have D-branes in 
fiat space. When we go to gsQ > 1 and the geometry of the branes will 
take over, making the black hole with geometry given in (17.27), we can 
be assured that the degeneracy will be precisely the same, because this 
is not renormalised by any quantum effect. So we have actually found 
a microscopic description of the black holes, at least for the purposes of 
counting the entropy. This works for black holes in four dimensions to0268, 
and with other properties like spin, etc. There are excellent reviews of this 
in the literature278 . In fact, as we shall see, it is not really supersymmetry 
that is protecting us from an awful mismatch between the strong and 
weak coupling limits, but an important universal structure which will be 
uncovered later in chapter 18. A sign of this is to perform the counting 
successfully for a non-extremal black hole269 , which we shall do next. 

17.3.3 Non-extremality and a 2D dilute gas limit 

A non-extremal generalisation269 of the solution can be written by exploi­
ting the boost forms of the various components which we noted in sub­
section 10.2.2 (see equation (17.26)) and insert 17.1, with the following 
result: 

g;/2ds2 = Z;-3/4Z51/4 (-dt2+dX~+ ~~ (COShPdt-sinhPdX5 )2) 

+ Zl'/4 Z;/4 ( (1 _ ~~ ) -1 dr' + ,.' dill) + V ' /2 Zl'/4 Z~ 1/4 ds}" 

e2iP = g;ZdZ5, (17.35) 

where* 

* The reader might find it worth checking that in the case that all of the R-R charges 
and the momentum are the same, a reduction to five dimensions gives the isotropic 
form ofthe five dimensional Reissner-Nordstrom black hole given in equation (17.19). 
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The R-R charges of this solution are as before, while as we learned in 
insert 17.1, there is now both left- and right-moving momentum in the X5 

direction, creating the non-extremality. 

The mass of this solution is 

~ _ RV 1'~ (COSh 2(31 cosh 2(35 cosh 2(3) 
M - g;o/4 2 + 2 + 2 . 

Now we can compute the entropy of the solution by computing the area 
of the horizon at l' = 1'H: 

27TRV1'~ 
S = 2 14 ( cosh lh cosh (35 cosh (3). 

g80: 

Now we study an interesting limit. We take the R-R charge densities 
to be greater than the momentum densities which in turn is larger than 
the string scale: 

(17.36) 

which has the effect of keeping the D-brane component close to extremal­
ity but allowing both left and right momenta to survive. We can check 
this by seeing that the energy above the amount at extremality, computed 
in equation (17.32), becomes: 

~ RV1'~ e2~ Q~ 
M-M""----=-

- g;0:14 4 R ' 

and so we see that the extra energy coming from the left-moving sector is 
simply additive, as though the left- and right-moving components of the 
system are non-interacting, despite the fact that we are non-extremal. 
This is called the 'dilute gas' limit, since in the 1+1 dimensional model, 
a 'gas' of 4Q1 Q5 boson-fermion pairs, there is no interaction between the 
left- and right-moving parts. 

A little algebra shows that in this limit we get for the entropy 

(17.37) 

The microscopic computation for the statistical entropy is just like the 
one we had before, but with both left- and right-moving sectors. In this 
dilute limit, since they are decoupled the result is just the sum of the 
entropies of the two sectors, as we have seen coming from the supergravity. 
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So again, we have exactly verified with a microscopic computation the 
entropy of a black hole, now even without the help of supersymmetry. 

17.4 Near horizon geometry 

Recall that in our earliest examination of extremal black holes in chap­
ter 10, we found that the geometry of the horizon was an interesting place, 
since the geometry was highly symmetric. The extremal horizon size was 
controlled entirely by the asymptotic charge at infinity, and not by the 
details of the embedding of the solution into the supergravity. In fact, 
there are other special properties of the black hole apparent when the 
system is embedded in the supergravity. 

Just as we saw in the case of the solution for the D6-brane wrapped 
on K3 in section 15.4, the parameters of the compact solution are just 
the asymptotic values of fields - the moduli - in the full supergravity. 
There, we studied a solution where the volume of K3. Here, the radius R 
of the X5 circle, and the volume V of the T 4, are the asymptotic values 
of scalars. In fact, these scalars approach fixed universal values at the 
black hole horizon, due to what is called the 'attractor mechanism'267. 
The values are fixed by the underlying U-duality algebraic structure of 
the supergravity. In particular, the area of the horizon itself is fixed in 
terms of the E6,(6) U-duality invariant, and the parameters which make 
it up are determined only by the charges measured at infinity and not the 
details of the geometry or the embedding. In particular, the entropy itself 
is an E6,(6) U-duality invariant. 

We won't study this general issue in any detail here, but refer the reader 
to the literature267 . Let us instead directly examine the near-horizon ge­
ometry of the black hole that we constructed in the previous sections. 
Consider the non-extremal black hole solution given in equation (17.35), 
but in string frame: 

,2 _ -1/2 -1/2 ( 2 2 r§ ( . J " (3' )2) ds - Zl Z5 -dt + dX5 +?i cosh {Jdt - smh dX5 

+ Zl/2 Zl/2 ((1 _ r§) -1 dr2 + r2 dO~) + V1/2 Zl/2 Z-1/2 d 2 
1 5 r2 3 1 5 ST4, 

e2<I>=g;Zl/Z5. (17.38) 

The limit we will take is that g8Q1, g8Q5 are large, but Qp are arbitrary. 
This means that r2 < rr and rg, and so we can neglect the 1 in the har­
monic functions in which they appear. So we see that the volume of the T4 
has become fixed to Vri!rg, and the dilaton has gone to e<I> = gsrl/r5. 
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In the limit, we get: 

ds2 = ~ (-dt2 + dx~ + 1'~ (cosh(3dt - sinh (3dX5)2) 
1'11'5 l' 

+ r~~5 ( (I _ ~~ ) -1 dr' + r' dnl) + :; d4, (17.39) 

It is useful to define 

P2 - ",2 ('osh2{:J p2_ =_ "'H2 "1'nh2{:J, + = I H . J, I U ) (17.40) 

Finally, after a change of coordinates to p2 = 1'2 + p~, the metric is: 

( 2 2)( 2 2) 2 
ds2 = _ P - p+ P - p- dt2 + 1'1 1'5P dp2 

1'1 1'5p2 (p2 _ p~)(p2 _ p~) 

2 ( p+p-) 2 2 1'1 2 + P dX5 + --2-dt + 1'1 1'5d03 + -dST4 , 
P 1'5 

(17.42) 

which can be recognised294, 295 as a three dimensional black hole solu­
tion called the 'BTZ black hole,296 multiplied by an S3 and T4. In fact, 
the black hole solution can be seen to be asymptotically AdS3 , with a 
length scale f! set by f!2 = 1'11'5. See insert 17.2. The case p+ = p_, gives 
the extremal 5D black hole, and the near-horizon metric becomes locally 
AdS3 x S3 X T 4, with an identification on the X5 circle. This is a situa­
tion that we have seen before, where the extreme black hole has a simple, 
highly symmetric spacetime in the near-horizon limit, with the size of the 
solution controlled by the asymptotic charges. 

The fact that the near-horizon geometry of the black hole is actually 
AdS3 , (times fixed compact spaces) with a black hole in it is interesting. 
As we shall see in the next chapter, there is remarkable duality proposed 
which - if correct - ensures that the physics of the 1 + 1 dimensional theory 
which was controlling our entropy count is captured entirely by the AdS3 

physics. Especially in the case of AdS3 , the aspects of the duality relevant 
to our problem are quite well understood. It is this AdS/CFT duality 
which seems to ensure that the entropy count was correct, even away 
from extremality. See insert 17.2. 
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Insert 17.2. The BTZ black hole 

Consider the action for (2+ 1 )-dimensional gravity with negative cos­
mological constant A = _1/£2: 

(17.43) 

There is an interesting solution, whose metric is: 

2 2 -1 2 2 ( 4G3J) 2 dSBTZ = -V(p)dt + V(p) dp + P dcp+ ------;;x-dt , 

( 
p2 16G2J2) 

V(p) = -8G3M + £2 + p~ , (17.44) 

where cp is periodic, with period 27T. This is the 'BTZ black hole' 
solution296 , and there are two event horizons are at p = P±, in terms 
of which we arrived at the solution (17.42), and £2 = r1r5 there. The 
mass and angular momentum of this solution are given by 

J = p+p-. 
4RG3 

Notice that the case M = -1/8G3 , J = 0 gives us AdS3 in global 
coordinates, as given in equation (10.29). The case M = 0, J = 0 is 
also AdS3 , but now in local coordinates. In fact, the BTZ spacetime 
is locally AdS3 everywhere. Since cp is compact, there is a global 
difference which makes it a non-trivial solution for arbitrary M and J. 

Using the techniques presented at the beginning of this chapter, the 
entropy and temperature may be computed to be 

The AdS/CFT correspondence, to be discussed in the next chapter, 
associates a dual (1 + 1 )-dimensional CFT to the physics of AdS3 x S3, 
with297 C = 3R/2G3 . In fact, the M = 0 and M = -1/8G3 cases can 
be identified298 with the NS-NS and R-R ground states of the theory, 
with energy E = 0 or E = -R/8G3 , where the fermions are either 
periodic or antiperiodic around cpo (The factor of R results from a 
conformal rescaling, see section 18.1.3.) Computations we know how 
to do from chapters 2 and 4 show that the zero point energy difference 
is c/12, which is the result one would get from converting R/8G3 . 
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17.5 Replacing T4 with K3 

An important variation on the constructions above is to replace the T4 
in the X6, ... ,X9 directions by the K3 manifold instead. In fact, this does 
not break any more supersymmetries than the D5-Dl orientation, and 
so in principle, everything should go through trivially. However, as we 
know from chapters 9 and 15, the wrapping of the D5-branes on the K3 
should change things considerably, since the enhanc;on mechanism ought 
to modify the geometry significantly in the limit of large charges where 
the black hole becomes manifest. In fact the original reference considered 
K3 first 7 , and did not take into account the subtleties introduces by K3 
in the macroscopic geometry. Our goal in this section is to examine this 
physics carefully299. Their answer for the entropy was not wrong, however, 
for reasons we shall see. Our careful analysis will produce a new result, 
however, since it will become clear that the enhanc;on mechanism works 
in precise conjunction with the second law of thermodynamics. 

17.5.1 The geometry 

The Einstein frame metric is: 

ds 2 = H;3/4H;;1/4 (-dt2 + dx~ + Hp(dt - dX5)2) 

+ Hi/4 H;/4 (dr2 + r2 dO~) + V 1/2 Hi/4 H;;1/4dsk3' (17.45) 

where dSk3 is the metric on a K3 manifold with unit volume. The other 
fields and harmonic functions are the same as those listed in equations 
(17.30). 

Of course, the integers Ql, Q5 and Qp appearing in the harmonic func­
tions measure the asymptotic charges associated with the electric and 
magnetic R-R fluxes and the internal x5-momentum, respectively. We 
must, however, introduce another set of integers, Nl and N5 to denote the 
number of Dl-branes and D5-branes, respectively, in the system. Clearly 
we have N5 = Q5. However, as discussed in chapter 9 and in detail in 
section 15.4, wrapping the D5-branes on K3 induces a negative Dl-brane 
charge and so we have Ql = Nl - N5 or alternatively Nl = Ql + Q5. 

Just like in section 15.4, the volume of the K3 manifold (measured by 
the string frame metric) is: 

HI 
V(r) = H5 V, (17.46) 

where V is the asymptotic volume of the K3. At the horizon, it is: 

_ rr Ql Nl - N5 
VH = V(r = 0) = 2 V = -Q V* = N V*, (17.47) 

r5 5 5 
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and so if rl < r5, then VH < V. So we see that as long as rl < r5, that 
the volume K3 is shrinks as we move in from r ---+ 00. When we reach 
V(r) = V* at some radius, new physics will come into play, and this is 
the 'enhangon' locus we discovered in section 15.4. This radius is easily 
computed: 

{ >o 
<0 

for 
for 

(17.48) 

where r~ < 0 simply indicates that the K3 volume reaches V* inside the 
event horizon. Therefore we see that we can have the enhangon appearing 
either above or below the horizon, depending upon how we choose the 
parameters. 

Let us consider the case of r~ > O. Now when the K3 volume reaches 
V*, at the enhangon radius, re , the wrapped D5-branes will be unable to 
proceed supersymmetrically into smaller radius, due to the fact that their 
effective tensions are going through zero there. They are therefore forced 
to form an enhangon sphere at radius re. By contrast, D1-branes and 
momentum modes can movie inside of r = re: they are not wrapped on 
K3 and therefore do not care that it is approaching a special radius there. 
However, notice that the geometry can be made of D1-D5-bound states. 
The corrections of -Tl to the effective tension of the wrapped D5-brane 
is precisely compensated by the +Tl coming from the marginally bound 
D1-brane. Therefore we can make the above geometry in equations (17.45-
17.29) by binding N5 D1-branes to N5 the D5-branes we wish to include 
in the geometry, and bring the resulting N5 D1-D5 bound states in from 
infinity, together with Ql extra D1-branes. 

17.5.2 The microscopic entropy 

In the microscopic model we have some modifications to the T4 situa­
tion. We have an effective 1 + 1 dimensional gauge theory on the effective 
D-string formed by wrapping the D5-branes and binding it with 
D1-branes. At strong coupling the theory will flow to a conformal field 
theory in the infra-red (see insert 3.1, p. 84). The important feature of the 
conformal field theory is its central charge, which can be computed from 
the gauge theory as proportional to nH - nv, the difference between the 
numbers of hypermultiplets and the number of vector multiplets. Count­
ing the bosonic parts, the D1-branes contribute Nf vectors and Nf hy­
pers, the latter coming from (x6 , X 7, x 8 , x 9 ) fluctuations. The D5-branes 
contribute N1; vectors, but there are no massless modes coming from os­
cillator excitations in the (x 6 , X 7, x 8 , x 9 ) (K3) directions. There are, in 
addition, 1-5 strings which give Nl N5 hypermultiplets. Evaluating the 
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difference gives: Nl N5 - Ng = Ql Q5 hypermultiplets. Hence in total, 
there are 4Ql Q5 bosonic excitations and an equal number of fermions, 
since a hypermultiplet contains four scalars and their superpartners. 

In another language all that we have done is evaluated the dimension 
the Higgs branch of the D5-brane moduli space of vacua, where the Nl 
D1-branes can become instanton strings of the U(N5) gauge theory on the 
world-volume of the D5-branes. The vacuum expectation values of the 1-5 
strings is precisely what constitutes this branch. In this language, the ab­
sence of hypers coming from the 5-5 sector corresponds to the absence 
of Wilson lines on the K3 surface (there are no non-trivial one-cycles). 
The entropy count then goes precisely along the lines of section 17.3.2. 

Let's close this discussion by observing that we have a mild appar­
ent conflict with the microscopic description. For Nl < 2N5, we know 
from the analysis of the previous section that, at any given value of the 
momentum, the entropy can be maximised by using only Nl/2 of the D5-
branes in the problem. So, from the field theory point of view it appears 
to be favourable to Higgs the U(N5) gauge theory leaving massless only 
a U(Nl/2) subgroup. But since all of these supersymmetric vacua are 
degenerate, all black holes appear to be on the same footing. 

This is really an artifact of the thermodynamically peculiar situation 
that we are at zero temperature while having a finite entropy, so the 
entropy strictly has a meaning as a degeneracy of ground states. Processes 
which maximise the entropy require dynamics, and so we must take the 
system away from extremality in order that it can explore configuration 
space, and find the maximal entropy black hole. 

17.5.3 Probing the black hole with branes 

Let us illustrate the above statements with some probe computations299 . 

Both D1- and D5-branes are natural probes of the geometry266, since they 
preserve the same supersymmetries. Consider a composite probe brane 
consisting of n5 D5-branes and nl D1-branes. It is important for the 
physics of the following that this composite probe is in the D5-branes' 
Higgs phase. That is, this composite probe is not simply a collection 
of individual D5-branes and D1-branes moving together, but rather the 
D1-branes have been absorbed as instanton strings lying along the z­
direction in the D5-brane world-volume. These instantons are maximally 
smeared over the K3 directions and that we have chosen the orientation of 
the vevs of the hypermultiplets arising from 1-5 strings such that the in­
stantons are of maximal rank in the U (n5) gauge theory. In this phase, the 
composite probe brane is then a true bound state, i.e. the fields describing 
the relative separation of the branes in the Coulomb phase are all massive. 
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The effective action for the composite brane probe regarded as an ef­
fective string is 

s = - h d2~ e- iP(rl(n5 T5V (r) + (nl- n5)Tl)(-detgab)lj2 

+n5T5 r C(6) + (nl - n5)Tl r C(2), (17.49) 
J~xK3 J~ 

where ~ is the unwrapped part of the brane's world-volume, with co­
ordinates ~O,l. Remember in the above action that the wrapping of the 
D5-branes on the K3 introduces negative contributions to both the tension 
and two-form R-R charge terms. Recall that gab is the pull-back of the 
string-frame spacetime metric. The background fields in which the probe 
moves are those of the black hole solution given in equation (17.28). The 
corresponding R-R potentials may be written as 

(17.50) 

where CK3 denotes the volume four-form on the K3 space with unit volume. 
These R-R potentials do not vanish asymptotically because we choose a 
gauge which eliminates a constant contribution to the energy which would 
otherwise appear. 

We will now choose static gauge, aligning the coordinates of the effective 
probe string with the x 5 direction and letting it move in the directions 
transverse to K3 while freezing and smearing the degrees of freedom on 
the K3: 

~O = xO == t, xi = xi(t), i = 1,2,3,4. (17.51) 

The result can be written as an effective Lagrangian £ for a particle 
moving in the (xl, x 2, x 3, x 4) directions: 

where, as usual, a dot is used to denote a/at, and 

As should be expected by now, here is no non-trivial potential, since 
supersymmetry cancelled the mass against the R-R charge as in previous 
computations of this type. 

The effective tension of the probe is given by the prefactor in equa­
tion (17.52). We can already see that there is the possibility that the 
tension will go negative when n5 > nl. 
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Putting m the definitions of the harmonic functions given m equa­
tions (17.29) and (17.30), we see that the tension remains positive as 
long as 

(17.53) 

which translates into 

(17.54) 

It is worth considering some special cases of this result. If we remove all 
of the D5-branes, the result for pure D1-brane probes is quite simple, as 
setting n5 to zero in the above result gives: 

(17.55) 

since the D1-brane is not wrapped on the K3 and so its tension is positive 
everywhere. It simply floats past the enhanc;on radius on its way to the 
origin without seeing anything particularly interesting there. 

Note that the result (17.55) is the same as would have been obtained in 
the case of probing for a T4 compactification, considering only motion in 
the directions transverse to the torus. Similarly in the case that nl = n5, 

we get: 

(17.56) 

which is the same as the result for pure D5-brane probes in the case where 
they are wrapped on T4. The cancellation of the induced tensions from 
K3 wrapping and non-trivial instanton number in constructing the bound 
state probe provided a simple result: the wrapped D5-branes, when appro­
priately dressed with instantons, can indeed pass through the enhanc;on 
shell. 

If we instead remove all of the D1-branes, we just get the familiar result 
of section 15.4 that the probe, made of pure D5-branes, hangs up at the 
enhanc;on radius re given by equation (17.48). Now we discover that our 
earlier enhanc;on result is just a special case of a more general result: 
whenever there are more D5-branes than D1-branes making up the probe 
(i.e. n5 > nl), there is a generalisation of the enhanc;on radius, f~, where 
the composite probe will become tensionless and must stop. Notice that 
this happens in a 'substringy' regime where VK3 < V*. 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


17.5 Replacing T4 with K3 437 

17.5.4 The enhanr;on and the second law 

The entropy and area of the black holes which we construct are given by 
the formula 

S = :a = 2TIVQIQ5Qp = 2TIJ(N1 - N 5)N5Qp, (17.57) 

where in the second equality we have written it in terms of the number 
of physical branes of each type. Let us consider the dependence of the 
entropy on the number of D5-branes. Fixing Nl and Qp, we see that it 
gives a half an ellipse, as depicted in figure 17.1. We see that there are 
maximal entropy black holes that we can make, (corresponding to the 
apside of the ellipse) which are those for which N5 = Nl/2, or in other 
words Ql = Q5' 

If we wish to consider the maximum entropy that can be achieved for 
a given set of parameters, N 1 , N5 and Qp, we observe that the behaviour 
of this entropy changes at precisely Nl = 2N5. In figure 17.2 is a plot of 
the (square of the) maximal entropy as a function of Ql for fixed N5 and 
Qp. For a 'large' number of D1-branes (Nl > 2N5), the maximal area 
squared is simply proportional to Ql, as expected from equation (17.57). 
However, for a 'small' number of D1-branes (Nl < 2N5), the entropy is 
maximised if only N~ = Nl/2 of the available D5-branes participate in 
the formation of the black hole. In this regime, we have 

(17.58) 

and so the curve becomes a parabola which only reaches zero at Ql = - Q5. 

2.5 

A 

1.5 

0.5 

Hs 
5 

Fig. 17.1. The horizon area as a function of N 5 , for fixed Q p (= 1) and 
Nl (= 5), which forms half of an ellipse. As the number of D5-branes 
increases past Nl/2, the area decreases. 
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Fig. 17.2. The square of the maximal horizon area as a function of Q1, for 
fixed Qp (=1) and Q5 (=2). For N1 > 2N5, the (area)2 increases linearly. 
For N1 < 2N5 , to maximise the area, one must use only NI/2 of the 
available D5-branes (see figure 17.1), and therefore the dependence on N1 
is quadratic. 

Note that in this regime, the maximum entropy is greater than one would 
calculate from equation (17.57). Assuming the excess D5-branes have ac­
cumulated in an enhan<;on shell around the black hole, the maximum 
entropy configuration corresponds to precisely that where the K3 volume 
is frozen at V* throughout the interior region. 

Let us return to the curve in figure 17.1. If we were to begin with a 
black hole with a 'large' number of D1-branes, we would be on a point 
on the left hand side of the ellipse in the figure. We may now consider 
increasing the number of D5-branes in the system by bringing them one 
at a time from infinity. As a result the black hole moves up the ellipse 
to the extremum at N5 = NI/2. At this point, however, if we were to 
add one more D5-brane, we we see that we will in fact decrease the hori­
zon area, and hence the entropy of the resulting system. In principle we 
can bring this D5-brane up to the black hole horizon as slowly as we 
like, and so we have found a way of reducing the entropy of the hole by 
an adiabatic process. This is a violation of the second law of thermo­
dynamics. 

Actually, there is a very satisfying resolution of this problem299 . It is 
precisely for this class of black holes that the enhanc;on appears above 
the horizon. So an attempt to bring our extra D5-brane into the hole is 
thwarted by the fact that it will be forced to stop at the enhan<;on radius 
Te just above the horizon. We could bind the extra D5-brane with an 
extra D1-brane to bring it in, but in this case Q1 remains fixed while 
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Q5 increases. Therefore adding the D1/D5 bound state to the black hole 
increases the entropy. 

If we begin with a black hole on the right half of the ellipse (Nl/2 < 
N5 < N I ), the enhanc;on again ensures that we cannot move further to the 
right decreasing the horizon area by dropping D5-branes into the black 
hole. These were configurations where the black hole is already surrounded 
by a region where V(r) < V* and hence the extra D5-branes are restrained 
from reaching the horizon by the enhanc;on mechanism. 

However, we have seen in section 17.5.3 that D1/D5 bound states can 
move through such regions where V(r) < V* and so we must still in­
vestigate if we are able to decrease the entropy by sending in a bound 
D1/D5 probe brane. Adopting the previous notation, let the probe con­
sist of a bound state with nl D1-branes and n5 D5-branes. Assuming 
that the black hole already contains many more of each type of brane, i.e. 
nl, n5 « NI, N5, dropping in such a probe would cause an infinitesimal 
shift in the entropy (squared) given by 

(17.59) 

Note that implicitly we are assuming NI, N5, nl, n5 > O. Even so the 
expression in parentheses has the potential to be negative, which would 
signal a decrease in the black hole entropy. However, we found that this 
expression also appears in the numerator of equation (17.54) for the ra­
dius of vanishing probe tension, but with the opposite sign. Hence the 
probe-brane finds no obstacle to dropping inside the horizon only in those 
situations where the entropy increases. Precisely in those cases where sec­
ond law would be violated, the enhanc;on locus filters out the wrong type of 
D1-D5 bound states from reaching the event horizon. Thus the enhanc;on 
provides string theory with precisely the mechanism needed to maintain 
consistency with the second law of black hole thermodynamics299 , 300. 
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D-branes, gravity and gauge theory 

As we learned in section 10.2, there are effectively two descriptions of 
the low energy dynamics of branes. One description uses the collective 
dynamics of the effetive world-volume field theory. In the case of N co­
incident D-branes, this is captured in string theory by the open string 
sectors which give a U(N) gauge theory with sixteen supercharges. The 
other description treats the brane as a soliton-like source of the various 
low energy closed string fields in the superstring theory. As such it has a 
description in terms of a classical solution of the low energy field equa­
tions. In both cases, we must remember that there is a whole tower of 
stringy dynamics which sits on top of this low energy physics, and we 
must understand in which situations this tower can be made irrelevant, 
or at least kept under control by a sensible expansion. To control string 
loops, we must work in a regime where 98 is small, so that we can trust the 
classical action that we wrote down for the supergravity. Similarly, work­
ing in the 0:' ----+ 0 limit ensures that we can safely ignore the possibility 
of the massive string states introducing corrections to our supergravity, 
and in the open string sector, that the truncation to gauge theory of the 
full Born-Infeld, etc., action, is sensible. In this chapter, we will follow 
this limit quite some way, and the two complementary descriptions will 
lead to a sharp statement of a duality between two traditionally disparate 
fields: large N gauge field theory and gravity. This is a natural and logical 
outcome of many of the gauge theory and geometry connections we have 
already been noticing throughout this book. 

440 
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18.1 The AdS/eFT correspondence 

18.1.1 Bmnes and the decoupling limit 

We have already learned from our moduli space probe computations that 
the specialisation of the results to gauge theory can be achieved by tak­
ing ex' ----+ 0 while keeping finite some characteristic gauge theory quan­
tity of interest, such as a typical vacuum expectation value of a mass­
less 'Higgs' field. In geometries already considered, this corresponded to, 
for example, keeping fixed a scaled radial coordinate u = r / 0:' as we 
send ex' ----+ 0, which also meant that r ----+ O. In other words, we must 
approach the core or horizon of the solution closely. In these limits, 
we found that the remaining supergravity quantities which survived the 
limit in combinations have physical meaning in the gauge theory on the 
probe, such as the gauge coupling, etc. Let us see if we can take this 
further. 

Let us consider the case of the extremal D3-brane, initially. At low 
energy, on the world-volume (ignoring the overall U(I) corresponding 
to the centre of mass) there is a U (N) gauge theory with N = 4 su­
persymmetry in four dimensions, i.e. sixteen supercharges. The gauge 
coupling is g?M = 2TIgs . The gauge multiplet contains the vector, AIL' 
six scalars cPi, i = 1, ... , 6 (representing the transverse motions), and 
four two-component Weyl fermions, Aa , a = 1, ... ,4, the fermionic su­
perpartners of the eight physical bosonic degrees of freedom. There is a 
SO(6) ':::::' SU(4) R-symmetry under which the scalars transform as the 6 
and the fermions transform as the 4. The theory is conformally invariant, 
(i.e. it has vanishing p-function) with the conformal group being SO(2, 4), 
which contains the Poincare group, the dilatations, etc., as discussed in 
sections 3.1 and 10.1.9. 

The low energy supergravity solution is: 

(18.1) 

where /L = 0, ... ,3, and i = 4, ... ,9, and the harmonic function H3 is 

(18.2) 

We are instructed to send ex' ----+ 0, and hold a quantity u = r / a' fixed. 
This limit focuses on the neighbourhood of the horizon of the brane, and 
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a computation gives the following metric27o : 

ex' 
*dC(4) 

where L2 

We have written it such that we can see the lengths measured by the 
metric in units of the string length. 

From our work in section 10.1.9, we recognise this solution as the metric 
of AdS5 x S5, where the cosmological constant and the radius of the sphere 
is set by £2 = ex' )29?MN, a combination ofthe supergravity /string theory 
parameters which gives the gauge coupling. Just as in the case of the 
Reissner-Nordstrom horizon, the near-horizon geometry of the D3-brane 
is a smooth 'throat' geometry, with size set by the charge of the solution. 
Since, as was discussed in chapter 10, AdS5 x S5 is a maximally symmetric 
solution, just like Minkowski space, we see that the extremal D3-brane is 
an interpolating soliton solution, like extremal Reissner-Nordstrom65 (see 
insert 1.4). The extremal M-brane solutions of section 12.6.1 also share 
this property68. 

Let us observe that the limit of small r is also a sensible restriction to 
low energy from the point of view of supergravity. Recall an effect which 
is familiar from considerations of ordinary gravity solutions such as black 
holes. There is a redshift effect, which means that the energy, as measured 
at asymptotic infinity, of a signal originating at radius r is decreased due 
to a multiplicative factor Jgtt(r) = H:;1/4, arising from having to climb 
out of the gravitational well produced by the solution. This redshift is 
infinite as r ---+ 0, and so the throat is decoupled from the asymptotic 
regime in the low energy limit. 

Now we should ask about the regime of validity of this geometry. We 
have to examine the amount of curvature this solution has, and this is set 
by the size of a typical squared curvature invariant, R2. We have sent a' 
to zero and also are keeping g8 small, to remain in the supergravity regime 
(string tree level). Looking at the essential controlling function (18.2), we 
see that we have one more parameter we can adjust, and this is N. If we 
make N large, we can keep the curvatures low. More properly, if we keep 
the effective coupling A = g?M N large enough, we can ensure that we 
stay at closed string tree level and decouple the higher string modes by 
sending g8, a' ---+ O. Notice that this limit is the regime that open string 
and hence gauge theory perturbation theory breaks down. So we have 
a useful complementarity. The large N, strong 't Hooft coupling limit of 
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the gauge theory has a description in terms of the supergravity solution 
above. This is the 'AdS/CFT correspondence,270, 271, 272. The corrections 
to this in a 1 IN expansion are the usual stringy loop corrections to the 
supergravity. In fact, the string coupling is to be identified with liN, just 
as was anticipated long ago in general terms for gauge theories at large N 
(see insert 18.1). We have a concrete realisation of this conjectured string 
theory as type IIB on AdS5 x S5. Notice that the SO(4,2) and SO(6) 
isometries of each space become the conformal group and the R-symmetry 
of the gauge theory. 

Before we go any further, let us therefore compute the five dimensional 
Newton constant, G5 in terms of our compactification on an S5 of radius g. 
We get 1/G5 = (Vol(S5)g5)/GlO. Looking at our expression for GlO in 
equation (7.44), and the one for g in equation (18.3), it is prudent to 
substitute for g8, giving our first precise entry in the AdS I eFT dictionary: 

'ITg3 

G5 = 2N2' (18.4) 

since the volume of a unit S5 is 'IT3. This will be useful to us many times 
later, since we will want to convert gravitational quantities to gauge theory 
ones. Notice that this formula also confirms for us in five dimensional 
terms that for fixed string length, the large N limit keeps us at tree level 
in the effective string theory, and hence just gravity. The effective closed 
string coupling is geff rv liN. 

18.1.2 Sphere reduction and gauged supergravity 

We have arrived at a remarkable connection between a particular large N 
gauge theory (pure N = 4 supersymmetric D = 4 SU(N)) and a trun­
cation of type IIB string theory on AdS5 x S5. For many purposes, it is 
useful to think of this as simply a five dimensional theory, obtained by the 
analogue of Kaluza-Klein reduction on S5. The resulting five dimensional 
theory is in fact a five dimensional N = 8 'gauged supergravity', with 15 
vector fields acting as gauge bosons of an SO(6) gauge symmetry. There 
are in fact 42 scalars in the theory, which in general are charged under 
the SO(6). 

One way to think of how to arrive at the gauged supergravity theory 
and the resulting solution we are studying is as follows302 . Start with the 
T 5 reduction of type IIB, which gives an N = 8 theory in five dimensions 
with a global E6(6) symmetry. The 42 scalars ¢i in the resulting theory 
live on the coset E6(6)IUSp(8). We discussed this theory in the context of 
V-duality in section 12.7, where we saw that wrapped branes filled out the 
various multiplets of the symmetry. Starting with this theory, it is possible 
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Insert lB. 1. The large N limit and string theory 

Quite general considerations301 can lead to a search for a string the­
ory description of gauge theory at large N. In the commonly used 
scaling, a power of gYM is absorbed into the fields in order to write 
the Lagrangian as £;v -TrF2/(49?M)' and this is the only appear­
ance of g?M. So there is an overall NI A (where A = g?MN is the "t 
Hooft coupling') in front of the entire Lagrangian. Hence, vertices 
in Feynman graphs come with a factor N, while propagators come 
with liN. Feynman graphs are drawn with a double line, one line 
carrying an index in the fundamental, the other an antifundamental: 
the full propagator is in the adjoint. (This might remind the reader 
of open string diagrams of chapter 2.) A closed loop will contribute 
an N, since a free index can run over all its N values. The reader 
might like to consider some vacuum graphs (appropriate to any field 
theory with adjoint fields): 

A graph with E edges (propagators), V vertices (interactions) and 
F faces (closed loops) can be drawn on a surface of Euler number 
X = F - E + V = 2 - 2h. The second equality is familiar from 
chapter 2, relating to the genus (number of handles h) of a closed 
Riemann surface. Overall, a graph comes with a factor NX and is 
some polynomial in A, and so planar (sphere) diagrams dominate at 
large N, followed by toroidal, etc. As this is reminiscent of a closed 
string theory diagram of the same topology, this suggests the identi­
fication g8 ;v liN. With reasoning along these lines, it was suspected 
that there might be stringy descriptions of large N gauge theories, 
where the string coupling is related to N as above. The difficulty 
was trying to find such a string theory. It surely could not be one of 
the strings used for 'theories of everything', since those would be too 
simple, it was thought. Now we see that we can use such strings, but 
propagating on interesting spacetimes, as we shall uncover. 
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to make some of the global symmetry local, gauging by letting some of the 
vectors of E6(6) enter into the covariantised versions of the derivatives. In 
fact, to achieve gauge invariance, such a procedure ultimately leads one 
to go beyond minimal coupling and generate potentials for the scalars, 
and the largest subgroup that can be consistently gauged turns out to 
be SO(6) C E6(6)' There is a non-trivial potential, V(¢i), for the scalars, 
coming from the non-minimal coupling procedure, and the effective theory 
is of the form (looking just at the bosonic gravity and scalar sector): 

(18.5) 

AdS5 with the particular value of the cosmological constant A = -6/ p2 
and with an SO(6) gauge symmetry is a very special solution to this. It is a 
fixed point for the scalars, and so 8¢d 8x/1 = 0 and they all vanish ¢i = 0, 
and so SO(6) is preserved, since there are no non-zero fields charged under 
it in this case. The value of the potential is V(¢i = 0) = -12/g2 and so 
we have: 

(18.6) 

for which the maximally symmetric solution is AdS5 with A = -6/ g2. 
This way of thinking of AdS is quite useful, since it leads immediately 

to an intuitive understanding of what is going on in the gauge theory in 
more complicated situations we will encounter in chapter 19. 

The other way to think of our SO(6) symmetric solution is in ten di­
mensional terms, which is how we began. However, it can be thought of 
as a Kaluza-Klein truncation of the ten dimensional theory by placing it 
on an S5. The ansatz that is used is that the five-form F(5) is set by some 
constant times the volume five-form E(5) of the S5: 

This is the 'Freund-Rubin ansatz '19, and with this choice, the ten dimen­
sional equations of motion decompose into two sectors: 

4 
Rmn = + g29mn, 

(with IL, v having Lorentzian signature (- + + + +) and m, n having 
Euclidean (+ + + + + )) which is the precise generalisation of that which 
we saw happen for the Reissner-Nordstrom solution in section 10.1.11. 
The maximally symmetric solutions are of course AdS5 and S5. 
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18.1.3 Extracts from the dictionary 

Recall that we identified the scaled radial coordinate u as representing an 
energy scale in the gauge theory. It is natural to therefore to consider the 
limit u ----+ ° as the infra-red (IR) and u ----+ 00 as the ultra-violet (UV). We 
must not forget that our theory is defied as strongly coupled even in the 
UV, since it is conformal, and we must keep).. = g?MN large to remain 
within gravity. 

The limit u ----+ 00 defines a natural boundary of AdS. In the coordinates 
used in (18.3) any radial slice is in fact four dimensional Minkowski space, 
but u = 00 is special for us, since on the one hand it takes a finite time 
for massless particles to propagate from u = 0, reflect at u = 00, and 
return. On the other hand, the UV is the natural limit in which to discuss 
intuitive objects in gauge theory, like pointlike operator insertions. 

Notice that large u seems like an IR limit for the AdS side of the duality, 
while it is UV on the side of the CFT. This is a feature of what is known 
as the 'UV /IR correspondence'. (See also the discussion before equation 
6.1.) 

When the common phrase 'the dual theory lives on the boundary', or 
some variation of it, is used, it should be understood that it is a short­
hand for this UV identification. There are many properties (or quantities 
within) the dual which cannot unambiguously be placed at the boundary, 
and so we should be careful. It is better to think of the dual theory as 
being everywhere*, and a slice at some value of u simply focuses on the 
effective theory obtained by working at a cutoff defined by the energy u, 
and the background geometry has metric (/LV = (£2/u2)h/Lv, where h/Lv is 
the metric induced on the boundary by restricting the five dimensional 
metric to constant u. 

Recall that our coordinates inherited from the brane solution put us on 
AdS in local coordinates. We know from section 10.1.9 that we can con­
sider this as a local patch of global AdS5 , and so it is natural to consider 
the same field theory dual to AdS in these coordinates. For example, for 
global AdS5 we write: 

d,' ~ - (1+ ~:) dt' + (1+ ~:) -1 dr' + r'dOl. (18.7) 

Going to the radial slice at infinity, we see that the dual theory is on a 
background lR x 8 3 with metric ds 2 = -dt2 +£2dD§, which is the Einstein 
static universe. The local coordinates before had us studying a system for 
which the dual is on lR x lR3 . There is the temptation to be confused at 

* Frustratingly, perhaps, even better is not to think of the dual gauge theory as any­
where in the five or ten dimensional spacetime at all. It is simply the dual. 
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this point, since we are supposed to think of the physics as independent 
of the coordinates, but somehow this seems to matter here. In fact, we 
must recall that in making the choices of coordinates here, we are also 
choosing a specific time slicing. This means that we are making choices 
which will affect our definition of the Hamiltonian of the theory. Further, 
since the radial coordinate seems to refer to the energy scales within the 
dual theory, being able to choose alternative radial foliations would seem 
to make good physical sense, since it refers to a choice of regulator at a 
given energy scale. 

A large part of the rest of the dictionary of the AdS / CFT correspon­
dence comes from equating the partition functions of the two theories: 

(18.8) 

Here the quantities cPO,i have two interpretations: On the gravity side, 
these fields correspond to the boundary values (i.e. at r = 00) for the bulk 
fields cPi which propagate in AdS. This includes not just the 42 scalars, 
but all fields, including the graviton and the gauge fields. On the field 
theory side, the cPO,i correspond to external sources or currents coupled to 
operators in the CFT. We can then obtain insertions of these operators by 
differentiation of the partition function with respect to the sources. This 
fits rather nicely, since all fields on the gravity side have specific SO(6) 
gauge charges, which matches the corresponding R-charge of the inserted 
operator. 

In fact, there is a specific271 , 272, 274 relation which can be derived be­
tween the dimension ,6. of an operator which a scalar couples to and the 
mass m of the scalar in the bulk spacetime. As a solution to the wave 
equation in AdS5 , a scalar cPi(r, x)'s asymptotic behaviour is in fact: 

(18.9) 

where 
,6.i = 2 + )4 + m;f2. (18.10) 

In fact, the first term is a non-normalisabile solution while the other term 
is normalisable. They both have a meaning in the theory. The first term 
is interpreted as switching on or 'inserting' the operator, while the latter 
term has the interpretation as controlling the vacuum expectation value 
of the operator. We shall see this interpretation in action with specific 
examples later on. In fact, there is a generalisation of this to the case of 
a p-form field in AdSD . It couples to a (D - p - I)-form operator and the 
dimension is: 

,6. D-I-2p {(D-I-2P)2 2f2 ( )}1/2 
= 2 + 4 +m -pp-D+l (18.11) 
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We list how the basic 42 scalars are interpreted in the gauge theory in 
table 18.1. In the table, the trace is over the adjoint of the gauge group, 

Table 18.1. An extract from the dictionary of the AdS/CFT correspondence 

Scalar m"Lp Operator SO(6) charge ~ 

<I> 0 Tr [*F 1\ F] 1 4 
C(O) 0 Tr [F 1\ F] 1 4 

Cf?l -3 Tr[A(aAb)] 10 3 

-3 Tr[),(a),b)] 
-

3 Cf?l 10 

Cf?2 -4 Tr[<p(i<pj)] - i 8ijTr [<Pk<Pk] 20 2 

under which every field transforms. In the first two lines we recognise our 
two friends from ten dimensions, the dilaton and the R-R scalar. As is 
to be expected, the dilaton couples to the basic Yang-Mills Lagrangian 
of dimension four, since its asymptotic value sets the string coupling (a 
fact we know from way back in chapter 2), and g?M = 27[gs. Similarly, we 
know that the R-R scalar couples to the topological term of dimension 
four, controlling instanton, from our studies in chapter 9. These fields were 
not involved in the sphere reduction and so do not have and non-trivial 
SO(6) charges. 

The rest of the 42 scalars couple a different class of operators. The first 
set, with m 2 = -2/ f2 couples to a symmetrised product of the scalars <Pi, 
with the trace removed. 

N.B. The reader may be disturbed by the fact that the scalars can 
have a negative mass squared. It turns out that the presence of nega­
tive cosmological constant requires us to reexamine the issue of stable 
scalar fluctuations about the vacuum. The result is that there is a 
window of squared masses below zero up to the value -4/ f2 which is 
stable. This lower bound is the 'Breitenlohner-Freedman' bound303 , 

and its negativity is a crucial feature which helps the dictionary to 
work. 

Recalling that the scalars are in the 6 of SO(6), a little group theory 
confirms that 6 ® 6 = 20 EEl 15 EEl 1, where the latter is the trace, and 
the previous two are the symmetric and antisymmetric combinations. In 
fact, there is a whole tower of Kaluza-Klein harmonics which can be 
made by such symmetrised products of the scalars. The reader might 
recognise these from group theory as the spherical harmonics of S5, which 
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are indeed made this way most commonly. These operators, which are the 
'chiral primaries' of the conformal field theory, couple to the basic tower of 
scalars which arise in the Kaluza-Klein spectrum with these same SO(6) 
transformation properties. 

The other set of scalars with m 2 = -3/£2, couple to an antisymmetrised 
product of the fermions Aa. These transform in the 4. Representation 
multiplication gives 4 Q9 4 = 10 EEl 6, and since the Aa are fermions, it is 
the 10 which is picked out. A similar structure exists for the ),a, which 
are in the 4, and hence give the 10. 

Correlation functions of the various operators in the CFT can be deter­
mined through calculation involving the dynamics of the various scalars 
to which they couple, propagating in the AdS spacetime. This is a very 
powerful technique which we do not have time to explore here. 

Just as we did in the case of black hole studies at the beginning of 
chapter 17, one can consider evaluating the AdS partition function in a 
saddle-point approximation: 

e-hdS(<Pi) = (ef <PO,i Oi ) eFT' (18.12) 

where IAdS(¢i) is the classical gravitational action as a functional of the 
(super)gravity fields, and Oi are the dual CFT operators. Hence, in this 
approximation the AdS action becomes the generating function of the 
connected correlation functions in the CFT271 , 272. This framework is also 
naturally extended to considering CFT states for which certain operators 
acquire expectation values by considering solutions of the gravitational 
equations which are only asymptotically AdS273 . We shall do that below, 
but first we will explore a little of the technology of evaluating the action. 

18.1.4 The action, counterterms, and the stress tensor 

We need to make sense of the path integral of gravity on AdS, given on 
the left hand side of the correspondence dictionary in equation (18.12). 
This returns us to the issue of calculating the action of the theory, from 
which we can compute such quantities as the stress-energy-tensor, and 
if (as we did for asymptotically flat black holes in chapter 17) we were 
to Euclideanise, various thermodynamic quantities such as the energy, 
entropy, etc. 

Recall from earlier discussions in chapter 17 that the action in D di­
mensions is defined as follows: 

1 J D 1 i D-l 11 hulk+Isurf=- G d xv'9(R-2A)--G d xvhK, 
167T 5 M 87T 5 aM 

(18.13) 
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where, as we've seen in section 10.1.9, the cosmological constant is related 
to the length scale f! by 

A= _ (D-l)(D-2) 
2jJ2 . 

Recall that the second integral is the Gibbons-Hawking boundary term, 
which is required so that upon variation with metric fixed at the bound­
ary, the action yields the Einstein equations. Here, K is the trace of the 
extrinsic curvature of the boundary aM as embedded in M, which was 
discussed in insert 10.2. 

Remember also that both of these expressions are divergent because 
the volumes of both M and aM are infinite (and the integrands are non­
zero). The approach we used in section 17.2, (there, the first term vanished 
and the second term was divergent) to avoid this problem is to perform 
a 'background subtraction', producing a finite result by subtracting from 
equation (18.13) the contribution of a background reference spacetime, so 
that one can compare the properties of the solution of interest relative 
to those of the reference state. In our computation we ensured that the 
asymptotic boundary geometries of the two solutions can be matched in 
order to render the surface contribution finite. 

In AdS, we can in fact follow a different approach, which has a natural 
meaning in the dual gauge theory304. We can supplement the action by 
a finite set of boundary integrals which depend only on the curvature 
scalar R (and its derivatives) of the induced boundary metric h/Lv, which 
itself diverges as r ---+ 00. These integrals look like a family of counterterms 
in the dual field theory, and with appropriate coefficients, they cancel 
the divergences (IR in AdS, UV in the gauge theory) as r ---+ 00, giving 
a intrinsic definition of the action for asymptotically AdS spacetimes, 
with no reference to a background spacetime. Calling the set of boundary 
integralst let, we define the complete action to be I = hUlk + lsurf + let. 

One of the useful quantities which we will extract from the action is 
the stress tensor, which is obtained by the standard expression: 

T/LI/ = _2_~ = lim (r2 _2_~) (18.14) 
A {YI/LI/ r-+oo jJ2 vi=h 8h/L1/ ' 

where in the second expression we have used h/LI/ which is the metric on 
the boundary induced by restricting the bulk metric by setting r to a 

t That this construction is unique to asymptotically AdS spaces is apparent because 
the AdS curvature scale g is essential in defining the counterterms. We are excluding 
non-polynomial terms, which could be introduced in the absence of a cosmological 
constant305 , giving a definition that is applicable to space times with other asymptotic 
behaviour. 
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constant. In the first expression, [/w is the metric obtained by removing 
a conformal factor r2 /£2 to get the dual field theory's natural metric in 
the UV. From this stress-tensor we can extract quantities like the energy 
density, etc., in the usual way, for example p = TfLVufLuV, where u fL are 
the components of a timelike unit vector. 

It turns out that the counterterm action is304, 306: 

-- xvn --+ R 1 i dD - 1 I1h [D - 2 £ 
81TG5 aM £ 2(D - 3) 

£ ab D - 1 2 
3 1 + 2(D - 5)(D - 3)2 (Rab R - 4(D _ 2) R ) + .... 

(18.15) 

Here, Rand Rab are the Ricci scalar and Ricci tensor for the bound­
ary metric, respectively. The three counterterms are sufficient to cancel 
divergences for D ~ 7. 

Let us consider an example. Take AdS5 in global coordinates, as given 
in equation (18.7). As stated beneath that equation, the metric [fLV is 
that of the Einstein static universe of radius £. Computing with the first 
two counterterms in equation (18.15), the stress tensor becomes: 

(18.16) 

where G ij refer to the metric components in the angular directions for an 
S3 of unit radius. In the r ---+ 00 limit we see that we get a finite result, 
which can be written in the suggestive form: 

1 JV2 
TfLV = 641TG5£ (4ufLuV + [fLV) = 321T2£4 (4ufLuV + [fLV) , (18.17) 

using the conversion formula (18.4). This is the standard form (see equa­
tion (10.23)) for a conformally invariant perfect fluid's stress tensor (since 
it is traceless) of density p = 3p in four dimensions with a spacetime of 
metric [fLV' The overall prefactor is p/3, as written. We have used the con­
version formula (18.4) to change gravitational quantities to field theory 
ones. Note that the stress tensor is traceless, as expected for a conform ally 
invariant theory. The field theory is in an S3 box of radius £, and so we 
can integrate the energy density to give the total energy (the dual to the 
spacetime's gravitational mass) which is: 

31T£2 3JV2 
E=-=-

32G 16£ 
(18.18) 
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In fact, this result matches expectations from field theory304. Since it 
is defined in a box, there is a Casimir energy. For free fields, the Casimir 
energy on 8 3 x R, the Einstein static universe of radius .e, may be found 
in the literature293 to be: 

1 3(JV2 - 1) 
ECas = --0 ( 4no + 17nl/2 + 88nd = .e' 960r, 16, 

(18.19) 

where no denotes the number of real scalars, nl/2 is the number of Weyl 
fermions, and nl the number of vectors. We have inserted the correct 
values for the dual 8U(JV) gauge theory, no = 6(JV2 -1), nl/2 = 4(JV2 -1) 
and nl = JV2 -1, giving an expression which agrees with the result (18.18) 
that we got from the stress tensor in the large JV limit. (See also insert 17.2 
for comments on the AdS3 case.) 

18.2 The correspondence at finite temperature 

We arrived at the correspondence between the supersymmetric gauge 
theory and pure AdS by taking the near horizon limit of the extremal 
D3-brane solution. It is natural to try to give an interpretation of the 
non-extremal solution. A key difference between the two is that the latter 
solution is at finite temperature. As we shall see, these properties relate 
to those of the field theory. 

18.2.1 Limits of the non-extremal D3-brane 

Taking the decoupling limit of the solution given in equation (10.34) for 
p = 3, we see that a3 ---+ 1 and so H3 ---+ .e4/r4 again, and so we can write 
the solution as307, 271: 

ds' ~ - (~: - P~~2 ) dt' + ~: ~ dri + (~: - ;;:' ) -1 dr' + I'dfll, 

(18.20) 
1 

where .e2 = a§ T§ ---+ T§. This is in fact the AdS5-Schwarzschild black 
hole, in local coordinates (its horizon is JPi.3 instead of 8 3), times an 8 5 of 
radius .e. It is sometimes called a 'flat' black hole. In fact, its mass and 
temperature are easily computed to be: 

37Tr4 

M = 8G5;2' rH 
T = 7T.e2 ' (18.21 ) 

Interpreting the mass as an energy in the field theory271, we see that 
in fact that there is a familiar energy-temperature relation following the 
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Stephan-Boltzmann law: 

(18.22) 

18.2.2 The AdS-Schwarzschild black hole in global coordinates 

It is easy to write a global version of the AdS-Schwarzschild black hole 
solution: 

2 r ro 2 r ro 2 2 2 ( 2 4 ) ( 2 4 )-1 
ds = - 1 + jJ2 - jJ2r2 dt + 1 + jJ2 - jJ2r2 dr +r d03 , (18.23) 

and we have relabelled rH as ro since this will in general not be an horizon 
radius. A computation of the stress tensor gives: 

Ttt = 

and so: (18.24) 

In the last line we have taken the r ---+ 00 limit and put it into the perfect 
fluid form. The mass-energy can be written as 

(18.25) 

which after conversion using equation (18.4), gives the Casimir energy we 
derived before, since we are in the same box, together with an energy over 
extremality which matches the energy density derived for the flat black 
hole in the previous subsection. 

The horizon of the solution is located at the largest root, r +, of the 
equation GTT = 0: 

=0 - 1 (J 4 2 2) r + - "2 f! + 4ro - f! . 

(18.26) 

Notice that r + i- ro for the global case, in general. The temperature of 
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the solution can be computed to be: 

(18.27) 

This expression is very interesting, since for a given temperature T, there 
are in fact two values of r + which solve the above relation, as is clear from 
figure 18.1. Notice that there is a minimum temperature below which 
there are no black hole solutions. We see also that there are two classes 
of black hole solutions. There is one branch which, for large r +, the tem­
perature goes linearly with the radius. The other branch goes at small r + 
as the inverse cube of r +. These 'small' black holes have the familiar be­
haviour of five dimensional black holes in asymptotically fiat spacetime, 
since their temperature decreases with increasing size. The term 'small' is 
appropriate, since they are smaller than the characteristic size set by the 
AdS scale /;, and so they have the characteristics of the asymptotically 
Minkowskian holes. Similarly, the 'large' black holes are obtained when 
/; is small compared to the horizon size. These cases are most apparent 
when taking the large or small /; limit of the equation (18.26). The large 
black hole limit gives the case r + = ro (which we previously called rH) 
and the linear temperature behaviour seen in the case of the planar black 
holes obtained in local coordinates in equation (18.21). 

0.5 

0.4 

f3 0.3 

0.2 

0.1 

3 4 6 

Fig. 18.1. The inverse temperature vs. horizon radii, r +, for AdS black 
holes. There are two classes of holes, small and large, and a minimum 
temperature. 
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18.3 The correspondence with a chemical potential 

It is extremely natural, given what we saw in the previous sections, to 
ask about the role of charged black holes in this AdS scenario. There 
are SO(6) gauge fields in the supergravity and so a black hole can be a 
charged source of them. We will focus on the Abelian case, and the U(I)3 
Cartan subalgebra is the maximal case. It is easy to see what in the dual 
gauge theory such a black hole would correspond to. An electric field will 
be supported by a potential of the form At rv r-2. Since this is a rank one 
massless field in AdS with this asymptotic, it must correspond, by the 
dictionary of equation (18.11), to a dimension four operator or current in 
the gauge theory. This is just what we would expect for an R-current, to 
which the gauge fields correspond. In other words, putting in a charged 
source is equivalent to switching on an external current source or chemical 
potential in the theory. It is instructive to construct the precise geometry, 
as our first example of non-trivial ten dimensional geometries which are 
dual to gauge theory. 

18.S.1 Spinning DS-branes and charged AdS black holes 

Given that the SO(6) R-charge comes from Kaluza-Klein reduction from 
ten dimensions on an S5, it is natural to guess that the appropriate geom­
etry to seek is one which has some momentum in the compact directions 
which will be equivalent to the conserved R-charges in the theory. The 
internal velocities - which couple to momenta in a canonical formalism -
will be the chemical potentials in the gauge theory, and hence conjugate 
to conserved R-charges308, 309. 

So we seek a 'spinning' D3-brane solution308 , 311. There are six dimen­
sions transverse to a D3-brane, and so we have three independent planes 
in which a rotation axis can be placed, to define three different angular 
momenta. 

Let us first review some geometrical parameterisations which will be 
usefu13l2 . Using the angles e, 1j; on an S2, we may introduce three direction 
cosines /Li, with L:i /Lt = 1,0 < e ~ 27T, 0 < 1j; ~ 7T: 

/Ll = sin e, /L2 = cos e sin 1j;, /L3 = cos e cos 1j;. (18.28) 

In terms of these, and three more angles qh, i = 1,2,3, the metric on a 
round S5 of unit radius can be written as follows (0 ~ qJi < 27T): 

3 

dO~ = "5:)d/Lt + /L; d¢;). (18.29) 
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where the functions ,6., H 3 , and Hi are given by 
3 2 4 . h2 P 4 

,6. - 'lJ 'lJ 'lJ """"' fLi H _ rH sm 3 _ a3 r3 
- IL l' L2' L3 ~ 'lJ. ' 3 - 1 + 4 ,6. - 1 + ,6. 4' 

i=l ' Lt r r 
jJ} 

Hi = 1 + ---12, i = 1,2,3. (18.31) 
r 

It will be useful at this point to refer to the expressions given for the boost 
form for the non-extremal solution given in section 10.2.2. The structure of 
the solution can be seen to be closely related to our non-extremal solution 
presented there, the key difference being that there is a deformation of the 
round S5 produced by spoiling the three directions ¢i with deformations 
controlled by the three parameters £i. The SO(6) isometry of rotation 
invariance is broken to U(1)3 generated by the obvious Killing vectors 
a; 3¢i· There are a number of interesting limits of this solution. One of 
them is discussed in insert 18.2, where we find an interesting form to 
which we will return later. 

Most pertinent to this section is the decoupling limit of the solution, 
where we scale the rotation parameters in order to keep them finite in 
the limit. We write r = a'u, rH = a'uH, and since r3 = 0:'27'3, in the limit 
a' -----+ 0, we see: 

1 A2 

sinh P3 and cosh P3 -----+ 
r3 

a' u 2 , 
H 

1 A4 1 r3 
H3 -----+ ---

a,2 u4 ,6.' 

£i 
, 

-----+ a qi, 
2 

Hi -----+ 1 + qi 
2 ' U 

,6.(£i, r) -----+ ,6.(qi, u). (18.32) 
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Insert 18.2. D3-brane distributions 

Particularly interesting is the straightforward extremal limit lh ----+ 00, 

rH ----+ 0, holding rf're2;33 /4 = r§ fixed, giving 

ij) 
e = g8' 

(18.33) 

The terms corresponding to rotation have disappeared, leaving a so­
lution which is supersymmetric311 , 313. It, of course, still has N D3-
branes composing it, but it is not spherically symmetric. The change 
of variables314 : 

Y1 = V(r2 +fI)/L1COS<P1 = V(r2 +fr) sinecos<p1, 

Y2 = V(r2 +fI)/L1 Sin <P1 = v(r2+fI) sinesin<p1, 

Y3 = v(r2+f~)/L2COS<P2 = v(r2+f~) cos e sin'lj; cos <P2, 

Y4 = V (r2 + f~) /L2 sin <P2 = V (r2 + f~) cos e sin 'lj; sin <P2, 

Y5 = v(r2+f§)/L3COS<P3 = v(r2+f§) cos e cos'lj; cos <P3, 

Y6 = V (r2 + f§) /L3 sin <P3 = V (r2 + f§) cos e cos 'lj; sin <P3, 
(18.34) 

places the solution back into the familiar form: 

d 2 H- 1/ 2 ( d 2 d 2 d 2 d 2) H 1/ 2 (d~ d~) 8 = 3 - t + Xl + X2 + X3 + 3 y. y. 

Now, H3 is not of our simple forms discussed in chapter 10. It is still 
harmonic, as it ought to be, and we may write it in the integral form: 

(18.35) 

where the density function P3 - which may be derived implicitly from 
the change of variables (18.34) - encodes a general distribution of 
branes313 , which we shall study in more detail later in section 19.2.4. 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


458 18 D-branes, gravity and gauge theory 

The last term in the metric in equations (18.30) vanishes in this limit, 
and after some algebra, the metric can be written as: 

ds 2 fA ( -1 2 -1 2 u2 2 2 2 ) d = y ~ -(HIH2H3) f dt + f du + £2 [dxl + dX2 + dX3l 

3 

+ ~ ~Hi (£2dfLT + fLT (£dcPi + (Hi 1 -1)dt)2), (18.36) 

where 

(18.37) 

Now we can consider dimensional reduction to five dimensions of this 
solution. Pulling a factor (HIH2H2)-1/3 into JK puts it into the standard 
Kaluza-Klein form for reduction to five dimensions, and we get: 

d 2 2 
~/ = -(HIH2H3)-2/3 f dt2 + (HI H2 H3)1/3(f-l du2 + ~2 dif· dif), 

Xi = Hi 1 (HIH2H3)1/3, A~ = 1 - Hi 1. (18.38) 

We have two scalar fields from the reduction, since X 1X 2X 3 = 1. There 
are three U (1 ) gauge fields since there are are three independent isometry 
directions, cPi. 

The meaning of this solution might be more apparent if one sets all the 
qi, and hence the Hi, to be equal. Then comparing to equation (17.19), 
we recognise this as a family of charged five dimensional black holes, 
written in isotropic coordinates. One difference is that, just as earlier in 
section 18.2 these are actually 'fiat' black holes, in the sense that the 
horizons are of]]{3 topology. There are spherical and hyperbolic versions 
which can be readily written down. Similarly, there are such generalisa­
tions in the case of the full ten dimensional rotating solution. In the case 
where all of the charges are different, we see that it is a quite general 
family, with three charges under the U(I)3, and two scalar fields. 

They are solutions of a U(I)3 truncation of the N = 8 SO(6) gauged 
supergravity, with action: 

1 J 5 r---r; ( 1 2 1 2 1 ""' -2 i 2 1=- d Xy-G R- -(3cpI) - -(3cp2) - - ~Xi (F) 
167TG5 2 2 4 . 

t 

4 ""' X-I 1 l.LUper).. Fl F2 A3) + 02 ~ i + -E J.w per ).. • 
t.. 4 

z 

(18.39) 

In the above, the gauge fields and their field strengths are labelled 1,2 
or 3 for each of the three U(I) sectors. The final term is a Chern-Simons 
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type term, which only will be non-zero if there are both magnetic and 
electric charges present, which will not be the case here. 

The two scalars Cf?l and Cf?2 are contained in the three Xi, via a gener­
alisation of the exponential ansatz that we used in simpler Kaluza-Klein 
cases. We write them as components of a two-vector, cj5 = (Cf?l, Cf?2), and: 

l~ ~ 
Xi = e-"2 ai ''P, (18.40) 

where the ai sum to zero in order to ensure X 1X 2 X 3 = 1, and we make 
the conventional choice311 : 

(18.41) 

where ai satisfy the dot products ai . aj = 4Dij - i. 

18.3.2 The AdS-Reissner-Nordstrom black hole 

A special case of this is to set all of the angular momenta to be equal, 
qi = q which makes all the Xi = 1, setting all of the scalars to zero. Then 
with Ft2) = F(2)/ V3, the action becomes310, 308: 

1=- 1 Jd5XV-C(R-!F2+12), 
167TC5 4 f2 

(18.42) 

where the cosmological constant is A = -6/ f2 (we omit the Chern-Simons 
term, since we only have electric charges present) and the solution is: 

2 

ds~ = _1-{-2 f dt2 + 1-{(f-l dr 2 + ~2 dx· dx), 

At = 1 - 1-{-1, 

q2 u 2 u4 
1-{ = 1 + 2' f = 021-{3 - 02 H2' r t, t,U 

(18.43) 

As stated before, this is the form of our old friend from chapter 17, 
the Reissner-Nordstrom black hole in five dimensions (17.19), but now in 
anti-de Sitter spacetime and with an horizon with topology JPi.3. We can 
make the global cousin of this which would have a spherical horizon by 
replacing g-2dx· dx) by dO§ and adding a 1 to the function f. We shall 
study this solution shortly308. 

18.3.3 Thermodynamic phase structure 

By changing to a new radial coordinate r, in the same manner in which 
we did for equation (17.19), we write the black holes we have obtained in 
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static coordinates in the form in which we have previously done our 
thermodynamic studies. For comparison to the earlier case of AdS­
Schwarzschild in section 18.2, we shall, as promised, work with the spher­
ical cousins, obtained as stated below equation (18.43): 

where 
m q2 r2 

V (r) = 1 - 2 + 4 + IJ2· r r t-

Here, m is related to the mass M of the solution as 

37T 
M= 8Gm. 

The U (1) charge Q is related to q by 

Q _ V37T 
- 87TG q· 

(18.44) 

(18.45) 

(18.46) 

(18.47) 

Let r + denote the largest real positive root of V(r). This defines the 
horizon: 

r~ + /!2r! -/!2mr~ + q2/!2 = o. 
The derivative of V is 

Vi = 51 IJ2 [2r~ + 2mr~/!2 - 4q2/!2] = 52112 [2r~ + r!/!2 - q2/!2] , 
r+t- r+t-

and so for a non-singular horizon we must have 2r~ + r+ /!2 ~ q2/!2. Now, 
as we've seen many times before, VI controls the temperature of the black 
hole via 

(18.48) 

When the inequality above is saturated the horizon is degenerate, (-J di­
verges, and we get the zero temperature extremal black hole+. 

As before, we will choose a gauge in which A is regular at the horizon: 

where (18.50) 

t Note that this extremal case is not supersymmetric, as in asymptotically flat cases. 
The supersymmetric case is m = 2q, and then 

V(r) = ( 1 - rq2 r + ~:, (18.49) 

which is clearly positive everywhere. This means that the curvature singularity at 
r = 0 is naked for this value310 . 
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It is useful to rewrite the temperature in terms of the potential: 

(18.51) 

which will be useful later. Here, <I>c = J3/4. It is useful to observe the 
behaviour of the temperature as a function of black hole size r +, as we 
did previously for the AdS-Schwarzschild case. 

The reader may notice that there are qualitatively two distinct types 
of behaviour, determined by whether <I> is less than or greater than the 
critical value <I>c. In particular, for <I> 2: <I>c, {-J diverges (T vanishes) at 
r~ = g2 (<I>2 / <I>~ -1) /2. This regime of large potential has a unique black 
hole radius associated with each temperature. Meanwhile for <I> < <I>c, (3 
goes smoothly towards zero as r + ---+ O. This latter behaviour is just like 
that we observed in the case of AdS-Schwarzschild in figure 18.1. This 
small potential regime has two branches of allowed black hole solutions, 
a branch with larger radii and one with smaller. Correspondingly, the 
smaller branch of holes is unstable, having negative specific heat. Both 
cases are plotted in figure 18.2. 
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'+ '+ 
Fig. 18.2. The inverse temperature vs. horizon radii, r +, at fixed poten­
tial for <I> 2: <I>c, <I> < <I>c. The divergence in the first graph (shown with a 
vertical line) is at zero temperature, where the black hole is extremal. 
This divergence goes away for <I> < <I>c, in general, and the curve is similar 
to that of the situation with zero potential. 
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462 18 D-branes, gravity and gauge theory 

We will study the Euclidean section (t ---+ iT) of the solution, at fixed 
temperature set by the period, {3, of the imaginary time. We will work 
with fixed temperature and potential, defining thus the grand canonical 
thermodynamic ensemble using the Euclidean version of the action given 
in equation (18.42). 

In fact, as both spaces we use are asymptotically AdS, it turns out 
that we need not consider the Gibbons-Hawking boundary term, since 
its contributions vanishes. The boundary terms from the gauge field will 
vanish if we keep the potential At fixed at infinity. Imposing the equations 
of motion we can obtain: 

E 1/"5 [F2 8] 
J = 167TG } M d xJ9 6 + jJ2 ' 

(18.52) 

(18.53) 

This is the grand canonical ensemble, at fixed temperature and fixed 
potential. The grand canonical (Gibbs) potential is W = JE / (3 = E - T S -
<I>Q. Using the expression in equation (18.53), we may compute the state 
variables of the system as follows: 

E= ('~;) 0 - ~ C;::) p ~ 8~~5 m ~ M 

(3 (aJE ) _ JE = 27T2r~ = AH and 
a{3 4G5 4G5 ' 

ij) 

S= 

Q= _~ (aJE
) = V37T q. 

{3 a<I> (3 8G5 
(18.54) 

Together, they satisfy: dE = TdS + <I>dQ. 
In order to study the phase structure we must study the free energy 

W = JE / {3 as a function of the temperature. It is shown in figure 18.3. 
The interpretation of this is as follows. At any non-zero temperature, 
for large potential (<I> > <I>e) the charged black hole is thermodynamically 
preferred, as its free energy (relative to the background of AdS with a 
fixed potential) is strictly negative for all temperatures. 

This behaviour differs sharply from the small potential (<I> < <I>e) situa­
tion, which is qualitatively the same as the uncharged case. In that situ­
ation, the free energy is positive for some range 0 < T < Te , and it is only 
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Fig. 18.3. A graph of the free energy vs. temperature for fixed potential 
ensemble. There is a crossover from the cusp behaviour in the case <I> < <I>c 
to the single branch (<I> > <I>c) behaviour. The two branches consisting of 
smaller (unstable) and large (stable) black holes are visible. The entire 
unstable branch has positive free energy while the stable branch's free 
energy goes negative. 

above Tc that the thermodynamics is dominated by AdS-Schwarzschild 
black holes (the larger, stable branch), as their free energy is negative. 

So for high enough temperature in all cases the physics is dominated 
by non-extremal black holes§. This phase represents a sort of 'unconfined' 
phase of the dual gauge theory, while AdS without a black hole is a 'con­
fined' phase271 . There is a lot of evidence for this which we cannot uncover 
here due to lack of space. However, a clear sign of this an examination 
of the behaviour of the physical quantities we have computed, such as 
the energy and entropy. One can take the quantities in equations (18.54), 
converting them to the gauge theory quantities using equation (18.4), and 
find that there is an overall factor N 2 . In an unconfined gauge theory, all 
of the N 2 adjoint degrees of freedom contribute on the same footing, and 
we see this here are an overall factor of N 2 in extensive quantities. 

§ The 1> = 0 special case of this transition, from AdS to AdS-Schwarzschild black 
holes, was studied first by Hawking and Page291 . The more general phase diagram 
was worked out later in the AdS/eFT context308 . 
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At low temperatures, and for <P > <Pc, we have something very new. No­
tice that as we go to T = 0, the free energy curve approaches a maximum 
value which is less than zero. This implies that even at zero tempera­
ture the thermodynamic ensemble is dominated by a black hole. From 
the temperature curve (18.2) it is clear that it is the extremal black hole. 
For <P = <Pc, at T = 0 we recover AdS space, returning to the 'confined' 
phase. So this suggests that even at zero temperature the system prefers 
to be in a state with non-zero entropy (given by the area of the extremal 
black hole)'. 

The resulting thermodynamic phase structure for the fixed potential 
ensemble is summarised in figure 18.4. It represents in the dual gauge 
theory the phase diagram for the introduction of a chemical potential 
into the gauge theory, and there is a phase boundary across which there 
is a first order phase transition to the deconfined phase. It is intriguing 
that this may be a (highly simplified) prototype computation for the phase 
structure of more realistic gauge theories in analogous situations. One can 
imagine the chemical potential here being analogous to baryon number 
in QeD. This would then be an analogue of the finite temperature and 
density phase diagram, a subject of some current experimental interest, at 
the time of writing. Perhaps one future use of this gauge/gravity duality 
might be to model the generic phase structure of more realistic gauge 
theories using black hole and other objects within the gauge dual. On 
the one hand, it seems unrealistic to expect a direct connection, but on 
the other, there may be universality classes of behaviour which are quite 
robust to modification of the details, and so may be captured by studies 
of the sort presented here. 

18.4 The holographic principle 

As we have seen there is a close relationship between the physical prop­
erties of five dimensional AdS backgrounds and those of a four dimen­
sional conform ally invariant gauge theory. It is a remarkable duality, 
and is in fact the sharpest known example of what is called holographic 
behaviour286 , 287: the physics involving gravity in a given number of di­
mensions is conjectured to be completely captured by a non-gravitational 
description in fewer dimensions. 

'If Notice that this T = 0 situation can be seen to display the 'confined' behaviour char­
acteristic of the ordinary zero-temperature phase, despite the presence of the black 
hole. This follows from the fact that the horizon at extremality is infinitely far away 
down a throat. There is the possibility that the extremal black hole might decay away 
by emission of charged quanta, which is possible since it it not supersymmetric, and 
so this T = 0 part of the story should be studied further. 
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Fig. 18.4. The phase diagram for charged spherical black holes in global 
AdS. There is a transition from pure AdS to the black hole at finite tem­
perature and potential. In the dual gauge theory, the black holes represent 
a deconfined phase of the theory. There is a boundary across which there 
is a first order phase transition between the two phases. The <I> = 0 axis is 
the Schwarzschild case, with the Hawking-Page transition291 . The T = 0 
axis is the extremal charged case, also confining in the gauge theory. 

The idea of why such a conjectured phenomenon should be a reality 
is motivated by the behaviour of black holes. They seem to represent all 
their degrees of freedom on their horizon, from the point of view of an 
observer who remains outside, and the universal result that their entropy 
is one quarter of the area of the horizon is a precise statement that the 
number of degrees of freedom within the volume that is occupied by the 
black hole is in fact only of order one per unit area of the horizon, as 
measured in Planck units. 

The idea then is that in any quantum theory of gravity, the number of 
degrees of freedom in any volume are again just of order one per unit area 
of the surface surrounding the volume. This is enforced by the expectation 
that an attempt to examine the structure of the theory right down to the 
shortest distances, in order to learn about the microscopic degrees of 
freedom, will eventually probe energy densities which will dynamically 
favour the formation of a black hole, for which we believe the result is 
true. The largest obtainable entropy for a given volume is that held by a 
black hole which fills that volume. This puts an upper limit on the number 
of degrees of freedom as that given by the total surrounding area. 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


466 18 D-branes, gravity and gauge theory 

The AdS/eFT correspondence can be examined in the light of just this 
type of argument and seen to realise precisely this type of arrangement315 . 

In this case, it takes the physics of gravity in five dimensional anti-de 
Sitter spacetime and makes a hologram of it in terms of a gauge theory. 
This is also true for anti-de Sitter spacetimes of other dimension too: 
the hologram is again a non-gravitational conformal field theory in one 
dimension fewer. Some of the best known examples are as follows. There is 
AdS3 , which is dual to the 1+1 dimensional gauge theory arising from D1-
and D5-branes intersecting. This was responsible for controlling a number 
of universal properties of five dimensional black holes which we uncovered 
in chapter 17. The cases of AdS4 and AdS7 are also natural in this context. 
They arise as near-horizon limits (times 57 and 54 respectively) of the M2-
and M5-brane geometries discussed in chapter 12 (the reader can check 
this directly). In fact, as hinted at previously (see section 12.6.2), there are 
important conformal field theories, with sixteen supercharges (in 2+ 1 and 
a 5+1 dimensions), on the world-volumes of these branes, whose direct 
Lagrangian definitions are not known. However, the theories certainly 
exist as limits of more familiar theories, and the AdS /eFT relation can be 
taken as a definition of the properties of these theories via the holographic 
duality. 

The holographic expectation has been elevated to the status of a prin­
ciple, although at present there is a scarcity of well-understood examples 
outside the AdS/eFT examples and their close cousins. A very active 
area of research is the endeavour to find further examples, since this is 
clearly an important clue regarding the nature of fundamental physics 
about which we should learn more. 
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The holographic renormalisation group 

We saw in the previous chapter that the 'holographic,286, 287 duality315 

between AdS5 physics and the physics of the conformally invariant four 
dimensional Yang-Mills theory can be extended to the properties of solu­
tions which are only asymptotically AdS5 , in keeping with the basic dic­
tionary of the correspondence. We studied the properties of Schwarz schild 
and Reissner-Nordstrom black holes in AdS, arising naturally as limits 
of non-extremal and spinning D3-branes, and found that their properties 
make considerable physical sense in the holographically dual field the­
ory. 

It is very clear that this duality between gravitational physics and that 
of gauge theory is potentially a powerful tool for studying gauge theory. 
The prototype example is, of course, a highly specialised sort of gauge 
theory, since it has sixteen supercharges, and is conform ally invariant. Of 
great interest is the study of gauge theories which might be closer to the 
theories we use to model interactions in particle physics, such as QeD. 
Perhaps there are gravitational duals of such theories. More generally, of 
course, we would like to also find and study full string theory duals, if we 
want to study more than just very large N. At the time of writing, this 
is subject of considerable research effort. 

In this chapter we shall have a brief look at extending the intuition we 
have developed about the AdS/eFT correspondence a bit further, and 
address the issue of studying less symmetric gauge theories by deforming 
the AdS/eFT example. 

19.1 Renormalisation group flows from gravity 

Recall that, in section 18.1.2, we took a five dimensional perspective, 
and recognised AdS5 with gauge symmetry 50(6) as a special fixed point 

467 
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solution of the gauged supergravity which preserves the full gauge symme­
try. It should be clear from that discussion that other fixed points of the 
potential will have an intuitive explanation as other conform ally invariant 
theories with fewer supersymmetries. We will again have a¢i/ ax/-' = 0, 
and some set of the scalars approaching some non-zero constants. Since 
the scalars are charged under the 50(6), such non-zero expectation values 
will mean that some amount of the 50(6) will be broken, leaving a sub­
group G. The scalar potential will take some value -C/jJ2. The solution 
will be AdS5 with a new value of the cosmological constant and hence the 
AdS radius for this solution, i, will be given by: A = -C / jJ2 = -6/ i2. 
The expectation is that this defines a dual conformal field theory, with 
fewer supersymmetries and global symmetry G. 

We can imagine a solution that is asymptotically AdS5 , with all of the 
scalars being asymptotically zero, but at smaller radius, approaches this 
new solution. Since the radial parameter has been identified with an en­
ergy scale in the theory, we have the intuitive picture that this solution 
represents a collection of snapshots (one for each radial slice) of the evo­
lution of the gauge theory as a function of energy scale. It begins in the 
UV with the symmetric theory and then at lower energies approaches a 
new theory, which is less symmetric. This picture is just what we would 
call renormalisation group flow (RG flow) 319, 320 in the context of the 
field theory. Our example is one of flowing from a UV fixed point, us­
ing a 'relevant operator' (see insert 3.1, p. 84), to an IR fixed point. The 
five dimensional gravitational dual picture of this (and its ten dimen­
sional extension) therefore deserves to be called holographic renormalisa­
tion group flow, and we shall do so. 

In fact, we can be even bolder than this. There may be other solutions 
which are viable vacua which are not AdS5 in the interior. If they are 
connected at large radius to the familiar 50(6) AdS5 , we can also think 
of them as the result of deforming the UV fixed point by relevant oper­
ators and undergoing RG flow to some new non-conformal field theory. 
Evidently, the utility of such a tool is worth exploring. Ultimately, we 
can see that this leads us to even consider the existence of well-defined 
solutions that are not AdS5 in either radial limit, which are nevertheless 
holographic duals of gauge theories. In fact, gauge theories of consider­
able phenomenological interest - perhaps the entire Standard Model -
may perhaps be represented in this way. It is prudent to develop the tools 
to find and study these holographic duals. 

The flow between fixed points has a precise example which we shall 
study in section 19.3. It breaks the supersymmetry from N = 4 to N = 1. 
First, we shall study a simpler RG flow, which is just the switching on of 
an operator which preserves supersymmetry and merely takes the theory 
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out onto its Coulomb branch. Last, we shall exhibit a flow to a theory 
which is non-conformal and N = 2 supersymmetric. 

First, we will uncover a little of the basic technology that we will need, 
and emphasise a bit further aspects of the physics of the gravitational side. 
Before proceeding, we should note that many of the powerful techniques 
which underlie the construction of the solutions we present here are well 
beyond the scope of this book, and we must refer the reader to the liter­
ature for the details. We shall merely exhibit solutions and hope that our 
discussion will at least make their properties seem natural and reasonable 
in the present context. Also, we will not have space to introduce in a self­
contained manner some of the more advanced dual field theory properties 
that we examine. The reader should not regard this as discouragement, 
but instead as an opportunity to see some of these advanced field theory 
concepts and properties emerging in an interesting setting, which may, in 
some cases, serve as a useful introduction. 

19.1.1 A BPS domain wall and supersymmetry 

Since every radial slice should be dual to the gauge theory at some energy 
scale set by the radius, we expect that the metric should be of the form: 

u = ieT /£ (19.1) a'" , 

where we have preserved the Poincare invariant form of the metric. The 
function A(r) is chosen such that as r ---+ 00, A(r) ---+ r / /;, and so we 
recover the metric of AdS5 , where we show how to return to the more 
familiar local AdS5 coordinates in terms of the variable u. 

Let us consider the possibility that one of the 42 scalars, cp, has been 
switched on, and has a non-trivial profile as we go in to smaller r. The 
function A(r) will deviate from the AdS behaviour of r / /; to some non­
trivial behaviour. Generically, it is useful to think of A(r) as parametrising 
some interpolating region, with AdS5 located at r ---+ +00 being one re­
gion. On the other side, there are a number of possibilities for what A(r) 
might do, and we shall see three types by example as we proceed. One 
possibility is that we get A(r) ex r again, (with the scalar running to a 
constant) giving an AdS region in the interior. As discussed before, this 
is another fixed point, and is expected to be dual to a conformal field the­
ory again. We shall see this later. Away from the asymptotic behaviour, 
we should still think of A as giving us an interpolating solution, form­
ing a 'domain wall' separating two types of asymptotic behaviour. See 
figure 19.1, and recall the kink example of insert 1.4 (p. 18). 
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Fig. 19.1. The function A(r) in the metric parametrises a departure from 
the UV's AdS behaviour, and may be thought of in terms of a 'domain 
wall' separating it from a new region in the IR. 

Let us study some of the physics of this wall316 . The supergravity action 
is: 

(19.2) 

If we insert the form of the metric given in equation (19.1), we get the 
following equations of motion: 

12A2 - 2cp2 + V = 0 

6A + 12A2 + 2cp2 + V = 0 

.. 4A·· loV 0 10+ 10- -- = 
r r 40tp , (19.3) 

where a dot denotes a derivative with respect to r. It is interesting to note 
that differentiating the first equation and then using the third equation 
gives the second, and in fact 

.. 2 .2 
A = --tp . 

3 
(19.4) 

It is most interesting to substitute the equation (19.1) into the action 
itself. Since the only non-trivial behaviour of the metric is as a function 
of r, the problem reduces to a one dimensional one, since the integral 
over the directions (t, Xl, X2, X3) is trivial. Throwing away the (infinite) 
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constant from performing that integral, the action reduces to an energy 
functional: 

(19.5) 

Let us consider the possibility that V depends upon an auxiliary func­
tion W, in the following manner*: 

4 [1 (aW)2 4 2] V ( zp) = jJ2 "2 azp - "3 W . (19.6) 

Let us substitute this into the energy functional, to get 

We have obligingly completed the square, as suggested by four of the 
terms, and collected the remainder at the end. Since cp( aw / azp) = vii, we 
can write the last two terms under the integral as =t=d(12e4AW)/dr, and 
therefore it may be integrated and replaced by a boundary term. 

So the functional is extremised if the following first order equations are 
satisfied: 

aA = -~W 
ar 3£' 

azp 
ar (19.8) 

In fact, (by analogy with many other cases in earlier chapters) the reader 
should expect that finding a solution to these equations means that we 
have found a BPS solution of the system, preserving some of the super­
symmetries of the original N = 8 supergravity. The precise number of 
unbroken supersymmetries depends upon the details of Wand the de­
pendence on the scalars. 

* The function W is called the 'superpotential' in the context of supersymmetric do­
main wall technology. It should not be confused with the W we shall later use for 
field theory superpotentials. 
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19.2 Flowing on the Coulomb branch 

Recall that the N = 4 supersymmetric Yang-Mills theory's gauge multi­
plet has bosonic fields (AIL' cPi), i = 1, ... ,6, where the scalars cPi transform 
as a vector of the 80(6) R-symmetry, and fermions Ai, i = 1, ... ,4 which 
transform as the 4 of the 8U(4) covering group of 80(6). 

As we know from other examples in chapters 13 and 15, it is interesting 
to give vacuum expectation values of the scalars in the gauge multiplet. 
Generically, switching on vevs in the Cartan subalgebra of the 8U(N) 
gauge group will break the theory to U(I)N-l, while keeping the scalar 
potential L;i,j Tr[cPi, cPj] vanishing and hence preserving supersymmetry. 
This is the Coulomb branch of vacua of the theory. 

In the AdS/CFT context, the 42 N = 8 gauged supergravity scalars 
decompose as 1+1+10+10+20 of the 80(6) c::::' 8U(4) gauge group, cou­
pling to operators which have those R-charges in the gauge theory. Their 
translation is given in the dictionary extracts in table 18.1. Let us consider 
a family of vacua which are dual to the case of having switched on some 
components of this operator. If the AdS/CFT dictionary is to be believed, 
we should expect to find a non-trivial five dimensional supergravity solu­
tion which is asymptotically AdS5 (since in the UV any relevant operator's 
vev should be negligible), and in the bulk there should be a non-trivial 
profile for supergravity scalars in the 20. In ten dimensional type IIB su­
pergravity terms, since we are exciting an 80(6) spherical harmonic, we 
expect that the supergravity solution is asymptotically AdS5 x 8 5 , but in 
the interior, it deviates from it. In particular, the 8 5 should be deformed 
in such a way which represents the turning on of the 20. 

19.2.1 A five dimensional solution 

The scalar which will have a non-trivial profile will be called 0:. It should 
be zero as r ----+ 00, and according to the dictionary entry (18.11), it should 
go as 

al -2r/C 
0: ----+ -e + ... y'6 , (19.9) 

since the 20 is an operator of dimension two. 
In fact, there are complete solutions which can be written down329, 330. 

One of them is as follows. The scalar 0: will correspond to a particular 
part of the 20: 

4 6 

0:: LTr(cPicPi) - 2LTr(cPicPi)' (19.10) 
i=l i=5 

This operator, which we can write as diag(l, 1, 1, 1, -2, -2), in an 80(6) 
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basis, splits the JR6 transverse to the brane into an JR4 and an JR2, and so 
we expect that the supergravity solution will preserve an 50(4) x 50(2) 
of the 50(6). The dependence of 0: and A can be written as first order 
differential equations representing a flow from their initial values at T ----+ 

00 to the interior, all the way to T ----+ -00. Defining p = en, we have: 

8p _ ~ 2 8W _ ~ (~_ 5) 
8T - 6.e p 8 p - 3.e p p , ~: = - :.e W = :.e (:2 + ~4) , 

(19.11) 

where the auxiliary function 

W = _ (~+ p4) 
p2 2 

can be used to write the scalar potential: 

(19.12) 

The functions Wand V are plotted in figure 19.2. 
In fact, the flow equations can be solved explicitly. Since we can write 

a differential equation for p in terms of A: 

we can write 

8p 

8A 

l2 p4 
2A 

e =.e2 p6 _ l' (19.13) 

where l is a conveniently chosen integration constant. This initial value 
flow problem completely specifies the five dimensional supergravity solu­
tion. 

Recall that we have two pictures, a five dimensional one in which we 
just have the gauged supergravity, and a ten dimensional one in which 
we have some type IIB solution. The first can be obtained from the lat­
ter, of course, although as we get more complicated gauged supergravity 
solutions, it will be harder to find the 'lift' to the full ten dimensional 
geometry. We shall, in a number of examples, wish to probe the geom­
etry with D3-branes in order to determine more information about the 
physics. This is appropriate since the solutions are, after all, supposed 
to be made of D3-branes, in the sense that we discussed as early as in 
chapter 10. The D3-brane itself is best understood in a ten dimensional 
setting, and so the full ten dimensional picture is very useful to have, in 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


474 19 The holographic renormalisation group 

-0.6 -0.4 -0.2 0.2 0.4 0.6 
~--~----~--~o~----~----~--~ 

a 

-2 

-4 

-6 

w 
-8 

-10 

-0.6 -0.4 -0.2 0.2 0.4 0.6 
~--~----~--~o~----~----~--~ 

a 

-2 

-4 

-6 

v 
-8 

-10 

Fig. 19.2. The superpotential and potential, Wand V, as a function of 
the scalar 0:. 
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order to do the probe computation. Notice also that ultimately we would 
like to study the full string theory beyond the tree level gravitational 
limit, which is again naturally done in a ten dimensional setting. Let us 
therefore write the ten dimensional lift of that which we have uncovered 
here. 

19.2.2 A ten dimensional solution 

We expect that the ten dimensional solution will be of the form, 

dSIo = 0 2 dSI,4 + ds§, (19.14) 

where 0 is a 'warp' factor, which can depend upon the angles on the S5 
and r, and dsg is a deformed metric on the transverse space. Since we 
expect an SO(4) x SO(2) invariance, it is sensible to break things up into 
the metric dO§ on a round S3, and two other angles e and ¢ which control 
the rest of the S5, which is now deformed. The solution is329 , 330: 

with 

-1/2 

02=~ 
P 

Xl = cos2 e + p6 sin2 e, 

d ,2 _ n2 jJ2 [de2 sin 2 e dA.2 p6 cos2 e dn2] 
s5 - H 2 + X- '+' + X H3' 

P 1 1 

The other supergravity fields all vanish except: 

4A -
e Xl 1 2 3 

C(4) = --2-dt 1\ dx 1\ dx 1\ dx . 
9sP 

19.2.3 Probing the geometry 

(19.15) 

(19.16) 

(19.17) 

The geometry above is very interesting, but there is more physics to be 
uncovered. It is meant to govern the physics of the Coulomb branch of the 
moduli space of the N = 4 gauge theory. Going onto the Coulomb branch, 
recall, is merely the process of pulling the N branes apart, away from the 
origin at u = O. Recall also our result from chapter 10 that because the 
branes are all BPS, there is no potential for an individual brane's motion 
transverse to all the other branes and, furthermore, because we have six­
teen supercharges, the actual metric on this moduli space should be flat. 
This should be true here. It is a simple exercise (see e.g. section 10.3) 
to probe the supergravity geometry presented in the previous subsection 
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with a D3-brane318 . In Einstein frame, some of the terms in the D3-brane 
world-volume action are: 

S = -T3 j' d4~ det l / 2 [Ga b + e-<I>/2 FabJ M4 
+ /-L3 iM4 (C(4) + C(2) /\ F + ~C(O) F /\ F), (19.18) 

where Fab = Bab + 27TO:' Fab, and M4 is the world-volume of the D3-brane, 
with coordinates ~o, ... , e. As usual, the parameters /-L3 and T3 are the 
basic R-R charge and tension of the D3-brane: 

(19.19) 

Also, Gab and Bab are the pulls-back of the ten dimensional metric 
(in Einstein frame) and the NS-NS two-form potential, respectively. 

A quick computation shows that the potential vanishes, and the result 
for the metric on its moduli space is 

ds'tt = T3 Xl e2A [dr2 + £2 (de2 + sir: 2 e dq} + p6 cos2 e dO~) 1 ' 
2 p2 p2 Xl Xl 

(19.20) 

which looks very far from being flat. The way around this problem must 
simply be an issue of coordinates. There must be new coordinates more 
clearly adapted to the dual gauge theory physics in which this geometry 
is manifestly flat space. We expect to be able to find a new radial coor­
dinate v and a new angle 1jJ which replace rand e so that the metric is 
simply318: 

ds'tt ~ [dv2 + v2 ( d'1/J2 + sin2 1jJdq} + cos2 'l/JdOn] 

~ [dv2 + v2dO~]. (19.21) 

Equating coefficients requires us to show that the following equations can 
be solved: 

(19.22) 
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In fact, we can now perform this change of variables on the supergrav­
ity solution itself. After some algebra, and after using the flow equations 
themselves, the result is: 

(19.23) 

Looking at the form of the other supergravity fields in equation (19.17), 
we see that we have returned to the standard form for the brane solution, 
where we now have318 

(19.24) 

which we have partially translated into the new coordinates using the 
change of variables (19.22). A useful equation from there is a quadratic in 
p6 obtained by eliminating e from the last two lines in equations (19.22), 
to give: 

In the new variables, H3 (v) is in fact harmonic. One way to see its ex­
plicit form is to expand the above equation for p6 in large v. To do 
this, observe first that to a first approximation, the third term in the 
square braces vanishes, and so we have the solution p6 = 1. Substi­
tute p = 1 + (l2/v 2)g(l,?/J, v), and solve at the next order. The result 
is 9 = 1 + 0(l2/v2). Recursive substitution like this will give318 : 

6 1 l2 (1 . 2 of,) l4 (1 3' 2 of, 2' 4 of,) l6 p = + - + - sm 'f/ - + - sm 'f/ + sm 'f/ - + .. '. 
v2 v4 v6 

Using this, H3 may be expanded to give: 

which suggests the form: 
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where the Yk (cos2 'lj;) (with Yk (1) = 1) are the scalar spherical harmonics 
on 55. In the above, we see explicitly the 20 (n = 1), and the 50 (n = 

2). 
This is remarkable, since we are seeing explicitly that non-zero l turns 

on precisely the operator which we want, with subleading mixing with 
higher order harmonics318 . 

19.2.4 Brane distributions 

The analysis we carried out above, where we found variables which took 
us from a complicated solution to one of the simple D3-brane standard 
form (but with a complicated harmonic function H3), should remind the 
reader of the discussion presented in insert 18.2. Let us take the case 
where we only have one of the £i, say £1 = l non-zero. This corresponds 
(before the limit of insert 18.2) to a rotation in only one plane, and hence, 
after the limit, we expect an 50(4) x 50(2) invariant configuration. Let 
us study this. 

The metric before the change of variables is: 

dSIo = H:;1/2 ( -dt2 + dXI + dx~ + dx~) 

H 1/2 [r2 + l2 cos2 e d 2 (2 l2 ,2 e)de2 + 3 2 l2 r + r + cos r + 

+ (r2 + l2) sin2 edrpI + r2 cos2 edn~ 1 ' 
£4 

H3 = 1 + , 
r2(r2 + [2 cos2 e) 

C(4) = g;;l(H.;l - 1) dt 1\ dX1 1\ dX2 1\ dX3, e<P = g8' (19.27) 

The change of variables314 : 

Y1 = v(r2 + [2) /L1 COSrp1 = v(r2 + [2) sinecosrp1 

Y2 = v(r2 + [2) /L1 sinrp1 = v(r2 + [2) sinesinrp1 

Y3 = r /L2 cos rp2 = r cos e sin 'lj; cos rp2 
Y4 = r /L2 sin rp2 = r cos e sin 'lj; sin rp2 
Y5 = r /L3 cos rp3 = r cos e cos 'lj; cos rp3 

Y6 = r /L3 sin rp3 = r cos e cos 'lj; sin rp3, 

places the solution back into the familiar form: 

ds2 = H:;1/2 ( -dt2 + dXI + dx~ + dX§) + Hi/2 (diJ· diJ). 

(19.28) 
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Let us examine the harmonic (in the Yi) function: 

(19.29) 

Notice that when T = 0 there is a quadratic singularity for all e. From the 
coordinate transformation (19.28), it is clear that this singularity occurs 
on the flat plane ]R4 given by Y3 = Y4 = Y5 = Y6 = 0, and the locus of 
points yr + Y§ ::; l2. This is a disk. 

The singularity in the harmonic function should signal the presence of 
the source - the D3-branes themselves - and it is tempting to conclude 
that they are distributed on that disk, and we can write313 the appropriate 
uniform density function to go into the integral form (18.35): 

(19.30) 

In fact, since a pointlike source in six dimensions produces a quartic 
singularity, a smeared two dimensional source should indeed produce a 
quadratic singularity so we are clearly on the right track. See figure 19.3. 

We can check that our density function is correct by working perpen­
dicular to the (Yl, Y2) plane of the disc, e = 0, to show that we recover 

~--

D3-brane 
distribution 

Fig. 19.3. The uniform disc distribution in ]R6 of D3-branes produced by 
switching on an operator in the 20. This is a part of the Coulomb branch 
of the dual gauge theory. 
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expression (19.29) by explicitly integrating the the integral form (18.35). 
The e dependence is forced to come out right by standard harmonic anal­
ysis: separation of variables, and the uniqueness of the expansion in terms 
of spherical harmonics. 

There remains to establish a direct connection to the geometry of the 
previous subsection. So far, they have some of the same symmetries, but 
we have not shown that they are directly related. In fact, despite the 
differing form of the harmonic functions, they contain precisely the same 
physics. This can be shown by explicit computation. Notice that from the 
change of variables (19.28), we can write that 

r2 = y2 _ l2 sin2 e. 

We can easily expand the harmonic function in 1/ r2, and then use 

1 1 ( l2 sin2e)-1 1 00 (l2 . 2 )m 
r2 = y2 1 - y2 = y2 fa y2 sm e 

After some algebra, we find precisely the expression (19.26) we wrote 
earlier in terms of spherical harmonics, with (?/J, v) replaced by (e, y). 

19.3 An N = 1 gauge dual RG flow 

To recapitulate, the N = 4 supersymmetric Yang-Mills theory's gauge 
multiplet has bosonic fields (AIL' cPi), i = 1, ... ,6, where the scalars cPi 
transform as a vector of the 50(6) R-symmetry, and fermions Ai, i = 

1, ... ,4 which transform as the 4 of the 5U( 4) covering group of 50(6). 
In N = 1 language, there is a vector supermultiplet (AIL' A4), and three 
chiral multiplets made of a fermion and a complex scalar (k = 1,2,3): 

(19.31) 

and they have a superpotential 

(19.32) 

(,h.c.' means Hermitian conjugate) where h is related to gYM in a specific 
way consistent with superconformal symmetry. 

Let us study the case of giving a mass to <1>3, 

j. 2 1 2 
Lft ----+ Lft + d e "2m<1>3 + h.c, (19.33) 

where 'h.c.' is the hermitian conjugate. The resulting spectrum (both mas­
sive and massless) can now have at most an N = 1 multiplet structure. 
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The resulting SU(N) theory has matter multiplets in two flavours, <PI 

and <P2, transforming in the adjoint of SU(N). The SU(4) c:::: SO(6) 
R-symmetry of the N = 4 gauge theory is broken to SU(2)F x U(l)R' 
the latter being the R-symmetry of the N = 1 theory, and the former a 
flavour symmetry under which the matter multiplet forms a doublet. 

This mass perturbation is a relevant one and so upon flowing to the 
IR it becomes more significant. Eventually we fall to scales where the 
mass is effectively infinite, and we are close to the pure N = 1 theory we 
discussed in the previous paragraph. 

In a supergravity dual, via the dictionary this maps to turning on cer­
tain scalar fields in the supergravity, their values being close to zero in 
the UV (1' ----+ +(0), they develop non-trivial profiles as a function of 1', 
becoming more significantly different from zero as one goes deeper into 
the IR, l' ----+ -00. The supergravity equations of motion require that 
there be a non-trivial back-reaction on the geometry, which deforms the 
spacetime metric in a way given by A(1'), in equation (19.1) 

There is a supergravity dual which achieves this322 . It turns on two 
scalars, which turn on a combination of the operator which we want, and 
a vev of the operator we discussed in the previous section: 

4 6 

0:: LTr( ¢iC!)i) - 2 LTr( ¢i¢i) 
i=1 i=5 

x: (19.34) 

At a low enough scale, we can legitimately integrate out the massive 
scalar <P3 , and this results in the quartic superpotentia1325 , 326 

(19.35) 

which is in fact a marginal operator of the theory325. So the theory we 
get in the IR is also a conformal field theory, as is confirmed by the 
following considerations. If the operator, represented by the sum of the 
terms in equations (19.32) and (19.33), is marginal in the IR, then as it 
is a superpotential, it must have dimension three. This can be achieved 
if the fields developed anomalous dimensions Ii (the fields's dimension is 
1 + Ii in this notation) once they left the UV and went to the IR. Since 
<P3 was treated differently from <PI and <P2, it can have a different value 
for its anomalous dimension. An appropriate assignment is325 , 326 : 

1 1 
11 = 12 = -"4' 13 = "2' (19.36) 

We should also check that the p-function vanishes. In fact, it is 
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proportional 331 to 3- L:i(1-2ii), and so we see that it vanishes, showing 
that our operator is in fact exactly margina1325 . 

From what we have already learned about AdS/eFT, it is natural to 
expect that the gravity dual to this conformal field theory is again AdS5 . 

It cannot be the same AdS5 as before, and so it must have a different 
value for the cosmological constant and for the gauge symmetry associated 
to the supergravity. In the language of the discussion presented at the 
beginning of this chapter, it must simply be another fixed point of the 
N =8 gauged supergravity, which has N = 2 supersymmetry and SU(2) x 
U(l) gauge symmetry. In the ten dimensional language, it must be that 
the transverse geometry is no longer S5, but some deformation of the 
sphere which preserves SU(2) x U(l) isometry. 

19.3.1 The five dimensional solution 

Just as in the previous sections, the radial dependences of scalars and the 
function A(r) are given in terms of first order 'flow' equations (recall that 
p == en): 

dp 
dr 

dX 
dr 

~p28W = ~ (p6(COSh(2X) - 3) + 2cosh2 x) 
6£1 8p 6£1 p 

! 8W = ~ ((p6 - 2) Sinh(2X)) 
£I 8x 2£1 p2 

dA 2 1 ( 6 6) - = --W = -- cosh(2X)(p - 2) - (3p + 2) , 
dr 3£1 6gp2 

where the function 

W = 4~2 (cosh(2X)(p6 - 2) - (3p6 + 2)) 

can be used to construct the potential via: 

(19.37) 

4 [1 2 (8W)2 4 1 1 (8W)2 1 (8W)2 16 
V = £12 "2 tr 8CPi - "3 W2 = 3£12 8a +"2 8X - 3£12 W 2. 

(19.38) 
The functions Wand V are plotted as contour maps in figure 19.4, and 
as three dimensional figures in figure 19.5.t 

It is clear that the values X = 0, a = 0 (p = 1) define a stationary point 
for the scalars. After a bit of thought, one can find another fixed point 

t The reader should not take the small scale variations of the contours near the fixed 
points seriously. They are due to loss of numerical accuracy. 
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1 .5 ,----------: =7777l7TTT7Tfffi= 
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Fig. 19.4. Contour plots of the superpotential and potential, Wand V, as 
functions of the scalars 0:, X. This is dual to the RG flow from the N = 4 
conform ally invariant gauge dual (the fixed point at X = 0,0: = 0) to 
an N = 1 conformally invariant gauge dual (either of the fixed points at 
0: = log 21/ 6 , X = ±log31/ 2 ). 
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10 

o 

-10 

Fig. 19.5. Three dimensional figures of the superpotential and potential, 
Wand V, as functions of the scalar Ct, X, for the RG flow from the N = 4 
gauge dual to an N = 1 gauge dual. 
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solution: X = ± log 31/ 2 , a = log 21/ 6 . In the first case, those values give 

8A 
81' 

1 
1! 

after throwing away an integration constant, which gives AdS5 with cos­
mological constant Auv = -6jf2. In the second case, the fixed point 
values give: 

8A 
81' 

- 31! 
A(r) = erie where I = -

25/ 3 ' 

after throwing away in integration constant, which gives AdS5 with cosmo­
logical constant AIR = -6jI2. So the ratio between the two cosmological 
constants is in fact 

Auv 
AIR 

9 
322/ 3 . 

(19.39) 

This flow can be recognised as a generalisation of the pure p Coulomb 
branch case from before, by setting X = O. Unlike that case, there is no 
known exact solution for these particular equations, but much can be 
deduced about the structure of the solution by resorting to numerical 
methods which we shall not explore much here. It is possible to extract 
that the asymptotic UV (1' ---+ +(0) behaviour of the fields x(r) and 
a(r) = log(p(r)) is given by: 

x(r) ---+ aoe-r / e +"'; 

This behaviour of X is, according to the dictionary 18.11, characteristic of 
an operator of dimension three representing a mass term (controlled by ao), 
while that of a represents a mixture of both a dimension two mass operator 
(again through ao) and a vacuum expectation value (vev) of an operator 
of mass two (through a1). 

Actually, the values of the constant 

A a1 /IT 1 a = 2 + - ogao 
ao 3 

(19.41) 

characterise a family of different solutions for (p(r), x(r), A(r)) represent­
ing different flows to the gauge theory in the IR. Meanwhile, in the IR 
(1' ---+ -00) the asymptotic behaviour is: 

() 1 Ar/e X l' ---+ "2 log 3 - boe + .. " 

1 V7 - 1 Ar/I! a(r) ---+ - 10" 2 - boe + ... 
6 b 6 ' 

25/ 3 
where A = -( V7 - 1). 

3 
(19.42) 
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At this end of the flow, there is also a combination which is characteristic 
of the flow, and this is boaS. This may be thought of as characterising the 
width of the region interpolating between the two AdS asymptotes322 . 

The critical value lie c:::: -1.4694 represents the particular flow which 
starts out at the N = 4 critical point and ends precisely on the N = 1 
critical point. It has been proposed3 l 7 that the solutions with Ii > lie 
describe the gauge theory at different points on the Coulomb branch of 
moduli space. The combination lie then, is pure mass and no vev, while 
other values are a mixture of both. The vev is that of a combination of 
massless fields which take us out onto the Coulomb branch. 

For the flows with Ii < lie, the five dimensional supergravity potential is 
no longer bounded above by the asymptotic UV value. They are believed 
to correspond to attempting to give a positive vev to the massive field. 

19.3.2 The ten dimensional solution 

The ten dimensional solution can be parameterised in the same way as 
before, in equation (19.14). This time we have323, 324: 

2 2 [22 [2 6 2 (COSh X 2 (Tf + (T~ ) dS5 = f! 2 2 de + p cos e ---(T3 + -----=-~---=-
p cosh X X 2 Xl 

X2 cosh X sin2 e (d-l, p6 sinh X tanh X cos2 e ) 2] ( ) + X2 '+' + (T3 , 19.43 
1 X 2 

with 

-1/2 
[22 = Xl cosh X 

P 
Xl = cos2 e + p6 sin2 e 
X2 = sechxcos2 e + p6 cosh X sin2 e. (19.44) 

The (Ti are the standard SU(2) left-invariant forms (see insert 7.4, p. 180), 
the sum of the squares of which give the standard metric on a round three­
sphere. They are normalised such that d(Ti = Eijk(Tj /\ (Tk. For future use, 
we shall denote the coordinates on the S3 as ('l/Jl, '1jJ2, 'l/J3). 

It is easily seen that the non-trivial radial dependences of p(r) and x(r) 
deform the metric of the supergravity solution from AdS5 x S5 at r = +00 

where there is an obvious SO(6) symmetry (the round S5 is restored), to a 
spacetime which only has an SU(2) x U(I) symmetry, which is manifest in 
the metric of equation (19.43). The SU(2) is the left-invariance of the (Ti 

and the U(I) rotates (Tl into (T2. The obvious extra U(I) symmetry, as 
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EJ / EJ¢ is also a Killing vector, but this is not a symmetry of the other fields 
in the full solution. 

The fields <I> and C(O) , the ten dimensional dilaton and R-R scalar, are 
gathered into a complex scalar field)" = C(O) + ie- iP , which is constant all 
along the flow. There are non-zero parts of the two-form potential, C(2) , 

and the NS-NS two-form potential B(2) also, but for our study we won't 
need them. 

Part of C(4) may be written as: 

where 

4 
C(4) = --w(r, e) dxo /\ dXl /\ dX2 /\ dX3, (19.45) 

g8 
e4A 

w(r, e) = -2 [p6 sin2 e(cosh(2X) - 3) - cos2 e(l + cosh(2X))]. 
8p 

We have only displayed the part of it which will be pertinent to the physics 
of a D3-brane probe. The part that is missing does not give a non-zero 
contribution to the probe Lagrangian. 

19.3.3 Probing with a D3-brane 

In order to understand this geometry a bit better, we shall do what we 
did in the previous example, and probe the geometry with a D3-brane. 
Again, this has a natural interpretation321 . The Coulomb branch moduli 
space of the N = 1 SU (N) gauge theory is parameterised by the vevs of 
the complex adjoint scalars ¢1,2 which set the potential Tr([¢l, ¢2j2) to 
zero. This generically breaks the theory to a product of U(l)s. Probing 
with a D3-brane will single out a four dimensional subspace of the full 
moduli space here since our moduli space is the space of allowed zero-cost 
transverse movements of our single D3-brane probe. These directions are 
parameterised by the scalars (¢l, ¢2, ¢3, ¢4), which make up the complex 
doublet (Cf?l, Cf?2)' That hyperplane corresponds to the choice e = O. 

Using the very familiar probe methods from before (see e.g. section 10.3), 
we get the following result for the effective Lagrangian for the probe 
moving slowly in the transverse directions ym = (r, ¢, e, 'I/Jl' 1/;2, '1/J3) (we 
restrict ourselves to considering Fab = 0 here): 

The Gmn refer to the Einstein frame metric components. 
It is clear that the case e = 0 indeed makes the potential vanish, picking 

out the four dimensional moduli space of the probe. The case p = 0, which 
is 0: = -00, lies outside the physically allowed values of the flow. 
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19.3.4 The Coulomb branch 

It is worthwhile considering the case of large vevs. This should correspond 
to large r, and we should get a familiar result, flatness in all four (moduli 
space) transverse directions to the brane. The metric on this moduli space 
is simply the flat metric on JR4: 

with 
£ v = _erie 

I ' 0: 
(19.47) 

where we have defined the energy scale v. 
A general point on the flow has e = 0 as the family of flat directions. 

This moduli space is the Coulomb branch of the gauge theory anywhere 
along the flow. We see that we have movement on a (stretched) S3, with 
coordinates ('IPI, 1/;2, 1/;3), and the radial direction r. These give an JR4, 
topologically, exploring the vevs ofthe complex scalar fields in the adjoint, 
(PI and (h· The metric on this moduli space for arbitrary (r, '1/J1' 1/;2, '1/J3) is: 

ds 2 = T3 cos~2 X e2Adr2 + T3 £2e2A p2 (cosh2X CJ§ + CJr + CJ§). 
2 P 2 

(19.48) 

We can study this metric in the limit of small vevs: r ----+ -00. Inserting 
the IR values of the functions and defining: 

- 3 
£ = 25/ 3 £, Po == PIR = 21/ 6 (19.49) 

we get 

(19.50) 

This is an interesting result321 which encodes information about the 
filed theory in a way which it would be nice to understand better. In 
order to do this, we ought to find better coordinates in which various 
field theory quantities are more manifest. 321 In a low-energy sigma model, 
the metric on the moduli space is the quantity which controls the kinetic 
terms for the scalar fields. In superspace, the kinetic terms are written in 
terms of a single function, the Kahler potential K: 

(19.51) 

where <I>i are chiral superfields whose lowest components are the scalars 
whose vevs we are exploring and W(<I» is the superpotential. Our next 
task is to prove the existence of a Kahler potential for the probe metric. 
It is not at all manifest that this is the case, so we should spend some 
time on this next. 
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19.3.5 Kahler structure of the Coulomb branch 

Let us start again with some new assignments of coordinates. The mod­
uli space is parametrised by the vevs of the complex massless scalars, 
which we shall write as Zl and Z2. The Zi transform as an SU(2) doublet 
(i.e. in the fundamental), while their complex conjugates transform in the 
antifundamental. The SU(2) flavour symmetry implies that the Kahler 
potential is a function of u 2 only where we define, 

(19.52) 

This is not necessarily the coordinate u we used as the AdS coordinate, 
or in the small vev presentation of the moduli space in the previous sub­
section. We shall see how they are related in various limits later. 

We can divide the coordinates (and indices) into holomorphic and 
antiholomorphic (those without and those with a bar). If the Kahler struc­
ture exists then the metric is given by 

ds2 = gJ-LvdzJ-LdzV = 91Idz1dz1 + 912dzl dz2 + 92Idz2dz1 + 922 dz2dz2, 

where 

where the primes denote differentiation with respect to u 2 , and we have 
inserted our assumption about the u dependence of K. Notice that since 

and (19.53) 

we have 

(19.54) 

and so on. Some algebra shows that the metric can be written as 

ds2 = (dz1dz1 + dZ2dz2)K' + (zldz1 + Z2dz2) (zldz1 + Z2dz2)K/. 

Now notice that82 

(19.55) 

This is convenient, since we can write 

and 
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Some more algebra puts the metric in the following form: 

Looking at the form of the probe result in equation (19.48), we see 
that in order to put the metric into Kahler form we need a change of 
radial coordinate relating rand u. Equating coefficients, we obtain three 
equations: 

Using the first two equations we find 

with solution: 

d 2 _ f2 p4d 2 
r - 2 u, 

U 

f u = _e!(r)/R , " , with 
df 
dr a 

(19.57) 

(19.58) 

(19.59) 

(19.60) 

(19.61) 

Since the latter is always positive it defines a sensible radial coordinate u. 
We can now define K by the differential equation (19.59): 

K' = dK = T3 f2p2e2A 

d(u2 ) 2 u 2 ' 
(19.62) 

and we have to check that such a K obeys equation (19.58), which can 
be written as 

d T3 
u 2 d( u2) (u2 K') = 2f2 p2e2A cosh2 x· (19.63) 

From the definition of u in equation (19.61), we have that 

(19.64) 

and so we need to show that 

fp2 d ( 2') T3 2 2 2A 2 -- u K = -f p e cosh X. 
2 dr 2 

(19.65) 

From our definition of K in equation (19.62) this amounts to requiring us 
to show that: 

d 2 
_(p2e2A ) = _e2A cosh2 x· 
dr f 

(19.66) 
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We can achieve this by performing the derivative on the left hand side and 
substituting the flow equations for p(r) and A(r) listed in equations (1.13) 
gives precisely the result on the right321 . 

We have demonstrated the existence of the Kahler potential. In fact, 
using the equation (19.64) we can write an alternative form for the defi­
nition of K, to accompany (19.62), which is: 

dK _ f} 2A(r) 
dr - T3t-e . (19.67) 

N.B. This remarkably simple equation has been shown321 to be sat­
isfied by the Kahler potentials of all of the holographic RG flow 
examples that are (currently) known in ten dimensions. It would be 
interesting to learn what lies beneath this apparent universality, and 
the direct meaning of this equation in field theory. 

In fact, one can readily write down an exact solution to this equation 
everywhere along the flow. Up to additive constants, it is: 

(19.68) 

Let us unpack some of the content of this solution321 . For large u (i.e. in 
the limit of large vevs) , p rv 1 so that, from equation (19.61), we have 
U rv ~, exp( r / J!), and to leading order: 

(19.69) 

which implies the expected flat four dimensional metric (19.47) that we 
obtained before. We can also look at next-to-leading order corrections to 
the Kahler potential. Recalling the asymptotic solutions for 0: and X in 
equations (19.40) and also the flow equations (19.37) gives: 

(19.70) 

so that 

(19.71) 
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We have discarded terms of order exp( - 2r / j!) as well as constant terms. 
Similarly, the corresponding expression for u2 is from (19.61): 

u2 c::::' ~ (e2T/£ + 4a§~). 
exl2 3 j! 

(19.72) 

Returning to the Kahler potential, we find that: 

Kc::::' 2\ [u2_a§~21n(exl:2u2)l' 
81T gYM ex t-

(19.73) 

an expression which looks like a one-loop field theory result. Further com­
parison requires some knowledge of how a§ corresponds to the mass for 1>3. 
To deduce this we can look at the probe result at large u more closely. The 
result of the probe calculation was given in equation (19.46). To leading 
order, we have 

(19.74) 

and so 

£ = \ ((li112 + li212 + li312) - 4~§IZ312), 
81T2gYM t-

(19.75) 

where we used the asymptotic solution (19.40) for ex and for x. The mass 
of ([>3 is therefore 

2ao 
m 3 =T· 

Inserting this into the Kahler potential, we obtain 

K rv 1 u2 _ Nm§ in (ex l2 u 2 ) 
- 81T2 g~ M 161T2 j!2' 

(19.76) 

(19.77) 

which is of the form expected for the tree level plus one loop correction, 
since (it turns out that) the N = 4 field content ensures that u2 1n u 2 

terms cancel exactly. For small u, p ----+ 21/ 6 and we have 

U rv !, exp ( 1~3 ). 
ex 2 j! 

(19.78) 

This gives us: 

1 3 

81T2g~M 25/ 3 
(19.79) 
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and so the metric in this limit is: 

which can be converted to the original form (19.50) after the redefinition 
u ---+ u3/ 4 and an overall rescaling. 

So now we understand that the curious form of this metric is simply a 
consequence of the power, 4/3, of u 2 which appears in the Kahler poten­
tial. This power in turn follows from simple supergravity scaling, which 
translates nicely into the field theory data we already discussed. 

At the UV end of the flow we have the standard AdS5 x 55 geometry. 
The AdS5 part of the metric given in equation (19.1) with A = I which 
has a scaling symmetry under 

1 
x ---+ -x 

a 
u ---+ au, (19.81) 

where we have used that u ;v eA for large 1'. In other words the fields on 
moduli space have scaling dimension one, and so match with the dual field 
theory values for the scalar components of these chiral superfields in the 
N = 4 theory. Next we consider the IR end of the flow. Here the solution 
again has the scaling symmetry (19.81) except that A = 25/ 31' /3f in this 
case. The coordinate u goes like u ;v exp Cl/3£) ;v (eA)3/4 and thus the 
scaling symmetry becomes 

1 
x ---+ -x 

a 
(19.82) 

Therefore, we see that the massless fields have scaling dimension 3/4 
here. Again this agrees with the field theory, as it includes the anomalous 
dimensions discussed earlier in equation 19.36. 

Let's put it another way. Consider the Kahler potential at either end 
(UVor IR) of the flow. From the 5U(2) flavour symmetry we know that 
K is a function of u 2 only. We also know the scaling dimension of u 2 at 
each end of the flow. The action's kinetic term is: 

(19.83) 

where i.p are the massless scalars with some scaling dimension. For the 
action to be invariant under scaling, K(u2 ) must have scaling dimension 2. 
At the UV end of the flow u has scaling dimension 1, so K ;v u2 , as 
expected. At the IR end of the flow, u has scaling dimension 3/4 and so 
K ;v (u2)4/3, matching our earlier results. 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


494 19 The holographic renormalisation group 

19.4 An N = 2 gauge dual RG flow and the enhanc;on 

It is worthwhile studying just one more flow example. This time it will 
not flow to a fixed point, and will preserve twice the supersymmetry as 
the previous example. This is achieved by turning on operators which cor­
respond to giving equal masses to the N = 1 multiplets 1>1,1>2. Together, 
these form an N = 2 hypermultiplet. This leaves one adjoint chiral multi­
plet 1>3, together with the vector N = 1 supermultiplet (AIL' )..4), forming 
the N = 2 vector supermultiplet. So the deformation preserves an N = 2 
structure. 

As before, this should correspond to an appropriate combination of 
scalars being switched on in supergravity, and the solution is known322 . 

Again there are two scalars, and they correspond to the following opera­
tors: 

4 6 

0: : LTr( cPi¢)i) - 2 LTr( cPicPi) 
i=l i=5 

x: (19.84) 

Moving around on the accessible part of the Coulomb branch of the N =2 
theory corresponds to giving a vacuum expectation value (vev) to tp3 = 

cP5 + icP6, which is the plane e = 'IT /2. 
The Coulomb branch of the moduli space of the N = 2 SU(N) gauge 

theory is parametrised by the vevs of the complex adjoint scalar tp3 which 
set the potential Tr [cP3 , cP1j2 to zero. This generically breaks the theory to 
U (1) N -1. This moduli space is of course an N - 1 complex dimensional 
space, but we are just focusing on the one-complex dimensional subspace 
corresponding to SU(N - 1) x U(l). The low energy effective action of 
the theory is described in terms of a low energy field u with an effective 
complex coupling T(U): 

e 4'IT 
T(U) = Tc + - + i-2-, 

2 'IT gYM 
(19.85) 

where the classical value is Tc = es/2'IT + i / gs in our case. The quantities es 

and gs are of course set by the R-R scalar C(O) and the dilaton 1>. Recall 
that C(O) couples to F 1\ F on the D3-brane world volume, contributing 
to the e-angle in the N = 2 effective low energy theory. 

19.4.1 The five dimensional solution 

As before, at r ----+ 00, the various functions in the solution have the 
following asymptotic behaviour322 : 

p(r) ----+ 1, x(r) ----+ 0, A(r) ----+ r/I!. (19.86) 
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For arbitrary r, the values ofthe functions are determined by the following 
flow equations: 

do: 
dr 
dX 

18W 1 (1 4 ) -- = - 2 - P cosh(2X) 
f! 80: 3f! P 
18W 1 4 . 
-- = --p smh(2x) 

dr f! 8X 2f! 

dA 2 2 (1 1 4 ) - = --W = - - + -p cosh(2X) 
dr 3f! 3f! p2 2 ' 

where the function 

W = - (;2 + }p4cosh(2X)), 

can be used to construct the potential via: 

(19.87) 

4 [1 2 ( 8W) 2 4 1 1 ( 8W) 2 2 (8W) 2 16 
V = f!2 "2 ~ 8CPi - "3 W2 = 3f!2 80: + f!2 8x - 3f!2 W 2. 

(19.88) 
The functions Wand V are plotted as contour maps in figure 19.6, and 
as three dimensional figures in figure 19.7.:j: 

By using the middle equation of (19.87), we can write expressions for 
do:/dX and dA/dX, which we can integrate (with some manipulation) to 
give: 

2 
eA = k P 

sinh(2x) 

6 2 ( [ sinh X ] ) p = cosh(2X) + sinh (2X) I + log -- . 
cosh X 

(19.89) 

Here, k is a constant we shall fix later, while I is a constant whose values 
characterise a family of different solutions for (p(r), x(r)) representing 
different flows to the N = 2 gauge theory in the IR. See figure 19.8. 

• For I < 0, equation (19.89) yields a finite value, XO = ~ cosh-1 Co, 
of X in the IR, while p goes to zero. The supergravity solution has 
a naked singularity as a result. 

• For I = 0, X diverges in the IR and again p goes to zero. Supergrav­
ity again has singular behaviour, coming from both the divergence 
and the zero. 

• For I > ° both X and p diverge, and the supergravity is singular. 

t As mentioned before, the reader should not take the small scale variations of the 
contours near the fixed points seriously. They are due to loss of numerical accuracy. 
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3~--------------------------~ 
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-1 
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-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 

Fig. 19.6. Contour plots of the superpotential and potential, Wand V, 
as functions of the scalars 0:, X, for the RG flow to an N = 2 gauge dual. 
The flows depicted in figure 19.8 are centred on the ridges to the left, the 
case I = 0 being precisely along the ridge. 
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o 
-2 
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-8 
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20 

o V 

-20 

1.5 -3 

Fig. 19.7. Three dimensional figures of the superpotential and potential, 
Wand V, as functions of the scalar 0:, X, for the RG flow to an N = 2 
gauge dual. 
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0.6,--------------------, 

0.4 

0.2 

-0.2 

-0.4 

-0.6 

-0.8 
X 

-1 
-2 -1 0 2 

Fig. 19.8. The families of (X, 0:) curves for differing " given by equation 
(19.89), superimposed on the contours of the superpotential W. There are 
three classes of curves. The middle curve is , = 0, the, < 0 curves are 
below it, and the, > 0 curves are above. The flow from UV to IR along 
each curve is to the right. 

All of our intuition gathered in this chapter and the previous one points 
towards there being sensible physics concerning the Coulomb branch of 
the expected N = 2 dual gauge theory to be found at the end of the 
flow. We see that instead, the supergravity solution flows to regions which 
produce unphysical singularities. Somehow, this must be obscuring actual 
physical information. 

This is where it is useful again to study the ten dimensional lift of 
the solution and probe it with a D3-brane. Following the wisdom of the 
previous two examples, we might find that the probe has a better handle 
on what are the right variables to use for the extraction of meaningful 
physics. 

19.4.2 The ten dimensional solution 

The ten dimensional solution written in the form (19.14), with327, 328: 

(19.90) 
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where c = cosh(2X), and 

(CXIX2)1/4 
[22 = ___ -'-----_ 

P 
Xl = cos2 e + p6 cosh(2X) sin2 e 
X2 = cosh(2X) cos2 e + p6 sin2 e. (19.91) 

It is easily seen that the non-trivial radial dependences of p(r) and x(r) 
deform the supergravity solution from AdS5 x 8 5 at r = 00 where there 
is an obvious 80(6) symmetry (the round 8 5 is restored), to a spacetime 
which only has an 8U(2) x U(1)2 symmetry, which is manifest in the 
metric (19.90). 

There are also explicit solutions for the R-R two-form potential, C(2) , 

and the NS-NS two-form potential B(2)' We will not need them here. The 
fields (1), C(O)) are gathered into a complex scalar field which we shall 
denote as ).. = C(O) + ie-<I> , and the solution for them is as follows: 

(1- B) 
)..=i l+B ' (19.92) 

with 
_ [b l / 4 - b- I / 4 ] 2i¢ _ Xl 

B - bl / + b- I / 4 e ,where b = c X 2 ' (19.93) 

We shall extract the specific form for the dilaton, which we shall need, a 
bit later. 

We will need the explicit form for the R-R four-form potential C(4) , to 
which the D3-brane naturally couples. It is 

4A Xl 
C(4) = e --2dxo /\ dXI/\ dX2 /\ dX3. 

9sP 
(19.94) 

As is clear from the behaviour displayed in figure 19.8, it is evident 
that in the IR the supergravity becomes singular. This makes it hard to 
interpret the physics which is supposed be telling us about a dual gauge 
theory. Again, it is prudent to probe the geometry with a D3-brane to see 
if we can determine more about the physics. 

19.4.S Probing with a DS-brane 

Following on what we did before, it is again straightforward to probe the 
geometry332, 333, and the reader is urged to carry out the computation. 
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The result is an effective Lagrangian I: = T - V, where: 

(19.95) 

where the Vi are the natural velocities associated to the one-forms (Ji given 
in insert 7.4 (p. 180), and in the last line we have used the first of the 
results in equations (19.89). The penultimate line was arrived at by using 
the fact that the second flow equation in (19.87) allows us to replace i 2 

by c2g2/[p8(c2 - 1)2]. 

19.4.4 The moduli space 

In order to make the potential vanish, there are two independent condi­
tions: CX2 = Xl, which means e = Tr/2, or p = O. Notice that for the 
cases of 1 > 0, the second situation does not exist, since (as is clear from 
figure 19.8) p ----+ 00 and X ----+ 00, while for 1 < 0, the flow assigns a 
specific value, XO = ~ cosh- 1 co, for X while p ----+ O. The moduli space is 
parameterised by the coordinates (e, ¢), with metric: 

2 P,3 g2 ( ) d'i ('"V < 0) - cos2 ede2 + sl'n2 edrf,.2 . 
• M2 I - 2gs (c6 _ 1) 'P 

Notice that at 1 = 1, the value of Co diverges, and so the metric vanishes. 
In the first situation there is a sensible metric for all classes of I' It is 
parameterised by the (c, ¢) space and the metric is: 

2 P,3 g2ck2 (dC2 2) 
ds M1 (r) = 2g8 (c2 _ 1) (c2 _ 1)2 + d¢ . (19.96) 

As discussed earlier, the 1 < 0 flows lead to p = 0 and some finite value of 
c, which we call co. The supergravity is singular there, but the probe 
metric is perfectly smooth there. This situation is similar to ones we have 
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encountered before, and is suggestive of a the edge of a disklike D3-brane 
source. 

In the case I ~ 0, c diverges, and the probe metric vanishes again. This 
is a signal of an enhanc;on-like locus, which we encountered in chapter 15. 
It appears here to be a circle, as would appear in the case of wrapped 
D7-branes, but we must be careful before we interpret this in gauge theory. 
As in the previous two examples that we have studied in this chapter, we 
must be careful to ensure that we are using the right coordinates. 

We have two scalars, c and ¢, but we must recall that these should be 
the components of a complex scalar, the adjoint scalar in the low energy 
effective low energy U(l) action on the brane. So they should have the 
same coefficient332 , 333. So we must find a complex coordinate z in which 
the metric is conformal to dzdz. This is achieved by finding a new radial 
coordinate v such that 

which has solution 

v = /c+ 1 
c -1' 

and so our putative enhanc;on circle at c ----+ 00 on the I ~ 0 branches is 
at z = 1. We can write the metric as: 

2 M3 g2 ck2 _ 
dsM1 (r) = - ( )2 dzdz . 

298 c + 1 
(19.97) 

In the low energy theory, the scalar field Y, being part of the N = 2 gauge 
multiplet on the brane's world-volume, should have the same functional 
dependence for the kinetic term that the U(l) gauge field on the probe 
has333 . This translates into a kinetic term for Y: 

(19.98) 

where the dilaton may be extracted from the equation (19.93) as: 

-<1> c e = ~----------~ 
981 cos¢ + icsin¢1 

We must therefore change variables to the complex coordinates Y. Writing 

- 3z 3z 
dzdz = dYdY 3Y 3Y' 

we get an equation 

1 
3Y 12 _ 2 21 cos ¢ + ic sin ¢ 12 _ k 2 g21 1 1 - -kg -- 1+-
3z c + 1 4 z2 ' 
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and therefore 

(19.99) 

We should write our complex coupling T in terms of this coordinate. Some 
substitution gives the holomorphic result: 

(19.100) 

We have a branch cut forming a segment333 of the real line: -kg::; y ::; kg. 
We see from the change of variables in equation (19.99) that this branch 
cut is the circle z = 1, which is the enhan<;on, appearing in the I ::; 0 
flows. The I > 0 flows are currently believed to be unphysical. 

So we see that in fact the singular behaviour of the supergravity was 
hiding valuable physics which we uncovered by probing with a D3-brane. 
Just as in chapter 15, we find a region of the moduli space of large N 
gauge theory with eight supercharges where the constituent D-branes have 
spread out into a locus which we call the enhangon. Just as there, were 
this not to have happened (as the naive supergravity would allow), the 
constituent branes would have attained negative values for their tension. 
In the dual gauge theory, this negativity is a negative value for the kinetic 
term in the low energy action one moduli space, or alternatively, a negative 
value for the effective squared gauge coupling g;ff' In any of those pictures, 
this would be unphysical, and the brane physics protects itself against this 
case by moving the constituent branes to quantum corrected positions. In 
the language of the gauge theory, this is of course a large N manifestation 
of the Seiberg-Witten 10cus24o , which owes its origin to the same positivity 
requirements§ . 

19.5 Beyond gravity duals 

The last example is a situation where a supergravity solution, in attempt­
ing to reveal the physics about highly non-trivial behaviour of the dual 
gauge theory, needs to be supplemented with information about the string 
theory. We found this by probing with D3-branes by hand. 

This is the expected sign that our ability to extract useful informa­
tion about dual gauge theories will rely on our success in understanding 
more about the full string theory in the background. The D3-brane probe 
method, while powerful in its own right, is only a hybrid method, and 

§ See also section 16.1.12, for examples where quantum corrections to brane geometry 
in F-theory correlate with underlying Seiberg-Witten theory. 
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much more progress will be made when some way of computing in the 
full string theory for these backgrounds is found. The difficulty here is 
that one of the most crucial features of the solution is that it is supported 
by N units of R-R flux. This cannot be described as a small perturba­
tion of an NS-NS background, and so the string theory must be phrased 
directly in terms of the R-R data. It should have been apparent, how­
ever, from the many studies that we have carried out in this book that it 
is in fact difficult to describe fully the strings propagating in such back­
grounds. Looking back, it should be clear that we have only ever described 
string propagation in these backgrounds in the supergravity limits. The 
full conformal field theories that we described or alluded to were only 
ever for propagation in non-trivial NS-NS fields (like K3 geometry, or the 
NS5-brane's core). For the R-R p-branes, or the non-trivial F-theory or 
other such fascinating backgrounds, we were never in a position to present 
a world-sheet model (like a O"-model of chapter 2) which corresponded to 
the full string theory in the background, even perturbatively. The prob­
lem is that in the formalism described in chapter 7, the vertex operators 
corresponding to R-R states introduce world-sheet branch cuts in the 
presence of the superconformal generators, making them non-local with 
respect to each other1 , and hence outside the realm of the local conformal 
field theories that we have been studying. 

Tools for the description of string theory propagating in R-R back­
grounds need to be developed further, with some urgency. Results in this 
area will be especially interesting in view of the variety of physical phe­
nomena that we have learned about from D-branes throughout this book. 
We learned all of this by indirect arguments combined with powerful tech­
nology in various limits (such as open strings, conformal field theory, and 
supergravity). Imagine what we might learn, and what useful tools we 
could develop if we could formulate things more directly. 

A tantalising glimpse in this direction has been obtained recently. In 
addition to Minkowski space and AdS5 x S5, it has been realised344 that a 
certain type of pp-wave (see pp. 422-423) with R-R flux is also maximally 
supersymmetric. Furthermore, the pp-wave can be obtained345,347 as a 
certain limit of AdS5 x S5 that focuses on trajectories with large angu­
lar momentum in the S5. String propagation in this pp-wave is exactly 
solvable, despite the R-R flux, in the light-cone gauge 346. 

Remarkable, a class of gauge theory operators from the original dual 
eFT with R-charge going as VN as N ----+ ex) can be directly identified 
with the full tower of string states347 . Properties of the light-cone string 
can be reconstructed from the gauge theory, and vice versa. This is an 
exciting development that will undoubtedly be explored further. 
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20 
Taking stock 

It is hoped that we have learned rather a lot about string theory in this 
book, and that the role of D-branes and other extended objects has been 
fascinating, entertaining, and instructive. It was with great pain that we 
had to sacrifice a tremendous amount of material in order to keep this 
book close to a sensible length, while retaining enough to succeed in telling 
a coherent story. 

It is tempting to sit and reflect upon what great lessons we have learned, 
although it is not clear that this is a useful exercise at this stage, so we 
will be brief in our remarks. The main and most unambiguous lesson is 
that extended objects are vitally important to our understanding of string 
theory, and possibly (probably) whatever the final form of the fundamen­
tal quantum theory of space and time turns out to be. While extended 
objects are universally accepted as important, it is still (at a stretch) a 
matter of taste whether someone wants to go further and accept that it 
is unambiguously true that 'string theory is not a theory of strings'. The 
author believes it to be so, but will not insist that the reader take a po­
sition, since it seems that nobody can yet say what string or M-theory 
actually are theories of. 

Whatever the final theory turns out to be, and whether or not once it is 
found it turns out be directly relevant to nature at all, it is clear that we 
have many new tools to work with which should keep us busy for some 
time to come in various areas. There are still many very specific ques­
tions that might be partly answered with the present technology which 
would have considerable benefits. For example, various gravity duals of 
increasingly complex gauge theory phenomena are being found from time 
to time, and a useful body of knowledge is being assembled about how 
such tools work in some detail. As a by-product, valuable lessons about 
strongly coupled gauge theory are being learned. This is despite the lack 
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of a viable technology for studying string theory in R-R backgrounds, (an 
issue discussed at the end of chapter 19) with which considerable leaps in 
our understanding will be likely. 

A topic that we have not touched upon at all is the whole 'Brane World' 
discussion. This topic fruitfully borrows many ideas from the string the­
ory constructions which we have discussed here, applying them to phe­
nomenology. One class of models is that we simply live on a three-brane 
embedded in higher dimensions, to which are confined the gauge interac­
tions which give rise to the standard model physics (so this is rather like a 
D-brane). Meanwhile, gravity lives in the whole spacetime and its relative 
weakness as compared to the other forces is apparently then attributable 
to the fact that it lives in more dimensions335 . The other sort of scenario 
is again the idea that we live on a brane in higher dimensional spacetime, 
but that gravity is localised in the neighbourhood of the brane, due to 
the properties of the larger spacetime336 . 

These both lead to interesting toy models of our world, and may find 
a home one day within a fundamental theory. The efforts to move these 
ideas forward are often mistakenly identified with research in string the­
ory, but it should be clear that although there is some overlap, these are 
entirely different endeavours. It is safe to say that at the time of writ­
ing the many models which are being studied in these genres are not 
anywhere near constrained enough by being embedded in the (relatively) 
tight framework of string or M-theory (as far as we understand the latter 
two). On the other hand, this might not turn out to be entirely a bad 
thing, but it is too early to say. 

Both of the topics above (and much of the content of the body of 
research described in this book) rely on the fact that although we do not 
know the details of the theory, we can learn a lot about things by working 
with low energy truncations. Of course, any small child educated in the 
modern field theory era will rightly immediately speak up at this point 
and mention that this is not special to string theory, but is a foundation 
of quantum field theory in general. The remarkable thing that seems to be 
available to us in the stringy arena is the wide variety of different ways of 
embedding various low energy phenomena into string and M-theory. This 
inevitably leads to new effective and often geometrical tools for studying 
these low energy phenomena, and sometimes powerful dual descriptions 
of the same physics, as we have seen many times. 

This urges us to begin looking around for more examples, and possibly 
applications to other fields of physics where strongly coupled phenom­
ena and interesting effective field theories of various sorts abound, like 
condensed matter physics. An example of this is the recent activity in 
embedding the physics of the quantum hall effect into string theory334, 
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following on from recasting it in terms of tools (such as non-commutative 
geometry338) sharpened in the string context. This may not be the only 
class of examples, and in fact there may be a lot to gain by deliberately 
exploring connections. There is also of course great likelihood that some 
of these connections will enrich understanding of string and M-theory. 

While it is all well and good to discuss the elegant tools that we have 
uncovered, perhaps for useful application to difficult (nearly) phenomeno­
logical questions, we must not sidestep the issue of the direct search for 
a definition of M-theory. It becomes apparent when preparing a book of 
this sort, which surveys a large portion of the field, that it is perhaps not 
surprising at all that we have not yet stumbled on the definition. At nearly 
every turn of a page there seems to be a host of interesting unexplored 
connections and directions which might lead to interesting new physics. 
To save embarrassment, no attempt will be made to list them, since the 
large number may simply be a result of the author's ignorance, rather 
than his profound insight. In any case, the reader has probably their own 
list to be getting on with. 

There are a number of seemingly very interesting features of D-branes 
which apparently have very deep roots, however. Whether or not they are 
a signal of the right variables for a dynamical formulation of the under­
lying theory is quite possibly an entirely different matter, but they are 
intriguing. For example, it is very striking that D-branes seem to supply 
the right variables for many very elegant descriptions of various geometries 
such as that of instantons, monopoles, the moduli spaces of these objects, 
ALE spaces, etc. Essentially, these 'right variables' are all of the charged 
hypermultiplets of various sorts which constitute the D-branes' collec­
tive coordinates, together with an appropriate set of constraints and/or 
projections. 

Further to this (and closely related of course) is the fact that the world­
volume couplings of D-branes seem to be naturally written in terms of 
very powerful geometrical objects: characteristic classes of various sorts, 
which enable them to enumerate topology so naturally*. This is an aw­
fully generous circumstance and makes one wonder whether we should 
look deliberately for other powerful tools by starting with some of our 
other favourite geometrical or topological devices (other characteristic 
classes, etc.) and attempting to make them dynamical, perhaps by de­
signing a world-volume interaction around them. Of course, it is not clear 
what the best candidates are, and what guiding principle one should 
use. Furthermore, this has in many senses been tried before, but perhaps 

* Part of the outcome of this was the K-theory113 description of D-branes alluded to 
but (sadly) not described in any detail in this book. 
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some of this approach could be revisited in the light of recent develop­
ments. 

An interesting endeavour which is firmly underway at the time of writ­
ing is the revisitation of string field theory. As was clear to some people 
long ago (back at the time when string duality was generating a heady 
excitement, and hasty and unkind (but perhaps forgivable) things were 
said about string field theory), it may yet have its uses. One such use has 
turned out to be the detailed study of local portions of the potential in 
which the string theories which we know are special vacua. Various ideas 
are afloat concerning the suggestion that the decay of unstable D-branes 
(via 'tachyon condensation') takes the theory to a new but familiar place. 

So for example the space-filling D25-brane of bosonic open string theory 
decays away leaving a closed string theory vacuum. A relatively simple 
string field theory computation shows that the energy difference between 
the starting vacuum and the ending vacuum well approximates the tension 
of the D25-brane, which is intriguing337. Similar suggestions for the unsta­
ble branes of other theories have be tested also, with encouraging results. 
This has led to renewed vigour in the matter of understanding formula­
tions of string field theory, and the interpretation of mysterious aspects 
of current formulations. In the latter regard for example, still puzzling 
to some extent is the fact that the computation done above is within the 
purely open string field theory. However, since the endpoint of the process 
is not an open string theory at all (the D25-brane has disappeared), the 
appearance in that framework of the closed strings which remain (if that 
is what remains) is not well understood. Overall, this is certainly a very 
interesting area which may well sharpen our understanding of aspects of 
the string vacua we know and how they are connected. 

There has also been recent progress in understanding the fate of tachy­
onic purely closed string backgrounds and the vacua to which they 
decay348. For example, supersymmetry-breaking orbifold projections of 
CC 2 can be constructed, generalising the ALE spaces of chapters 13 and 
14. Tachyons arise in the twisted sectors, giving interesting models in 
which the supersymmetry breaking is localised at the conical singularity. 
The decay channels involve the spaces radiating some of their curvature 
to infinity, becoming less singular and settling to stable vacua with curva­
ture, or to flat space. Even in these tachyonic models, techniques closely 
related to some discussed in chapter 13 show that there are fascinating 
connections to a rich mathematical framework of singularity theory349. 

Included in the above are topics which incorporate the fact that we are 
very much at home with the idea of non-BPS D-branes, and in fact some 
of the outcome of that research may be to find more useful techniques 
for finding them and working with them. Non-BPS D-branes were not 
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discussed at all in this book, unfortunately, but the tachyon condensa­
tion techniques can be used to point to their existence (and sometimes 
stability)18, 21. Furthermore, the K-theory organisation113 of D-branes in 
fact does not care whether they are supersymmetric or not. This is very 
encouraging but we need more than a classification, we need a technology. 
With a good handle on the properties of non-BPS D-branes we can address 
two large areas of research. One is the area of probing various dualities 
beyond the supersymmetric sector. This applies to field theory dualities, 
where we might learn about more realistic strongly coupled gauge theory 
phenomena with such tools, and also string theory dualities, where con­
nections to non-supersymmetric string vacua can be explored. This is a 
major motivation (in part) for some of the endeavours mentioned above. 

The whole area of 'holography,286, 287 has certainly only just begun to 
be uncovered. It is perhaps clear that the collection of ideas surrounding 
that topic is an intriguing part of a profound story about spacetime, 
quantum mechanics, gravity and field theory, but the problem so far is 
the lack of a constructive way of phrasing the Holographic Principle: it 
tells one what the count of degrees of freedom ought to be, but gives (at 
time of writing) no insights as to how to implement the hologram. It may 
be again that this is a result of working with the wrong basic objects: as 
a result, it seems that the few working examples of holography that we 
have, like the AdS/eFT correspondence and perhaps matrix theory, are 
too different from each other in order to teach us anything general but 
yet specific enough. 

On the whole, it remains a very exciting area in which to be working. In 
fact, one has a feeling of anticipation that there is something just around 
the corner which will put us back into the remarkable situation we were 
in a few years ago. Up to late 1994 or early 1995 we used to dream about 
various scenarios in string theory (perturbative and non-perturbative) 
which we had scarcely any tools to help us realise. Branes, and particularly 
D-branes, came along as the sharp tools that were needed and some of 
those dreams were made concrete, others discarded. For a while, D-branes 
were so intrinsically rich with new physics that they supplied us with new 
scenarios that we had not dreamed of at all, and gave us further ideas 
about how to concretely study those new situations. 

Now we are in the situation where things have become hard again. 
Since the Second Revolution, we now dream in technicolour: branes are 
still telling us that there are remarkable places to which the theory can go 
(eg. by their changing shape and expanding into other branes, mingling 
with spacetime geometry or describing it as non-commutative, etc.) but 
it is harder for them to take us there. In other words, it is perhaps time 
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for them to hand over to another tool that can take us to these new 
places. One has a feeling that this new tool (or tools) may well be within 
our grasp, perhaps just at the edge of our collective peripheral vision. 
It may be that, as happened with D-branes initially, the new tool has 
already been discovered, but has not yet been recognised. Perhaps it is 
time to squint more quizzically at some of the objects which lurk in our 
notebooks. 

There are many more topics of considerable importance which we have 
only touched upon, or not mentioned at all. An obvious one is the emer­
gence of non-commutative geometry in both field theory and string theory 
which has been a topic of much research338 . We touched upon it in one 
of its guises earlier in section 13.6, but have left most of it unexplored. 
There are other topics too, such as compactifications of string theory 
and M-theory to four dimensions using the some of the new ideas and 
techniques that D-branes have supplied, perhaps giving new insights into 
phenomenology and/or other important four dimensional physics. Any of 
those topics could well be the area in which the next major breakthrough 
occurs, which is exciting. The hope is that, regardless of where the next 
breakthrough might be, this book will serve as a useful guide to some of 
the ideas and tools which have brought us to this point, and which may 
well help in moving things further. 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


References 

[1] J. Polchinski, String Theory, Vols. 1 and 2; Cambridge University Press 
(1998) (Cambridge Monographs on Mathematical Physics). 

[2] J. Polchinski, S. Chaudhuri and C. V. Johnson, Notes on D-Branes, hep-th/ 
9602052. 

[3] C. V. Johnson, D-Brane primer, in TASI 1999, Strings, Branes and 
Gravity, World Scientific (2001), hep-th/0007170. 

[4] C. V. Johnson, Etudes on D-branes, hep-th/9812196. 

[5] M. B. Green, J. H. Schwarz and E. Witten, Superstring Theory, Vols. 
1 and 2; Cambridge University Press (1987) (Cambridge Monographs on 
Mathematical Physics). 

[6] This is an example: E. Kiritsis, Introduction to Superstring Theory, hep-th/ 
9709062. Leuven University Press (1998) 315 pp. (Belgium) (Leuven Notes 
in Mathematical and Theoretical Physics, B9). 

[7] A. Strominger and C. Vafa, Phys. Lett. B379, 99 (1996), hep-th/9601029. 

[8] J. Dai, R. G. Leigh and J. Polchinski, Mod. Phys. Lett. A4, 2073 (1989). 

[9] A. Chodos and C. B. Thorn, Nucl. Phys. B72, 509 (1974); W. Siegel, Nucl. 
Phys. BlD9, 244 (1976); S. M. Roy and V. Singh, Pramana 26, L85 (1986); 
Phys. Rev. D35, 1939 (1987); J. A. Harvey and J. A. Minahan, Phys. Lett. 
B188, 44 (1987). 

[10] N. Ishibashi and T. Onogi, Nucl. Phys. B3l8, 239 (1989); G. Pradisi and 
A. Sagnotti, Phys. Lett. B2l6, 59 (1989); A. Sagnotti, Phys. Rept. 184, 167 
(1989); P. Horava, Nucl. Phys. B327, 461 (1989). 

[11] J. H. Schwarz, Nucl. Phys. B65, 131 (1973); E. F. Corrigan and D. B. Fairlie, 
Nucl. Phys. B9l, 527 (1975); M. B. Green, Nucl. Phys. BlD3, 333 (1976); 
M. B. Green and J. A. Shapiro, Phys. Lett. 64B, 454 (1976); A. Cohen, 
G. Moore, P. Nelson, and J. Polchinski, Nucl. Phys. B267, 143 (1986); 
B28l, 127 (1987). 

510 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


References 511 

[12] M. Dine, P. Huet, and N. Seiberg, Nucl. Phys. B322, 301 (1989). 

[13] P. Horava, Phys. Lett. B231, 251 (1989); M. B. Green, Phys. Lett. B266, 
325 (1991). 

[14] K. Kikkawa and M. Yamanaka, Phys. Lett. B149, 357 (1984); N. Sakai and 
I. Senda, Prog. Theor. Phys. 75, 692 (1986). 

[15] V.P. Nair, A. Shapere, A. Strominger, and F. Wilczek, Nucl. Phys. B287, 
402 (1987). 

[16] P. Ginsparg and C. Vafa, Nucl. Phys. B289, 414 (1987). 

[17] T. H. Buscher, Phys. Lett. B194B, 59 (1987); B201, 466 (1988). 

[18] A. Sen, JHEP 9806, 007 (1998), hep-th/9803194; JHEP 9808, 010 (1998), 
hep-th/9805019; JHEP 9808,012 (1998), hep-th/9805170; JHEP 9809,023 
(1998), hep-th/9808141; JHEP 9810,021 (1998), hep-th/9809111; Reviews 
can be found in: A. Sen, Non-BPS states and branes in string theory, hep­
th/9904207; A. Lerda and R. Russo, Int. 1. Mod. Phys. A15, 771 (2000), 
hep-th/9905006. 

[19] P. G. Freund and M. A. Rubin, Phys. Lett. B 97, 233 (1980). 

[20] D. J. Gross, J. A. Harvey, E. Martinec and R. Rohm, Phys. Rev. Lett. 54, 
502 (1985); Nucl. Phys. B256, 253 (1985); Nucl. Phys. B267, 75 (1986). 

[21] Two useful reviews are: J. H. Schwarz, TASI lectures on non-BPS D-brane 
systems, in TASI 1999: Strings, Branes and Gravity, World Scientific (2001), 
hep-th/9908144; K. Olsen and R. Szabo, Constructing D-branes From 
K-theory, hep-th/9907140. 

[22] J. Paton and Chan Hong-Mo, Nucl. Phys. BI0, 519 (1969). 

[23] L. Dixon, J. A. Harvey, C. Vafa and E. Witten, Nucl. Phys. B261, 678 
(1985). 

[24] J. H. Schwarz, in Lattice Gauge Theory, Supersymmetry and Grand Unifi­
cation, 233, Florence 1982, Phys. Rept. 89, 223 (1982); N. Marcus and A. 
Sagnotti, Phys. Lett. 119B, 97 (1982). 

[25] J. Polchinski, Phys. Rev. D50, 6041 (1994), hep-th/9407031. 

[26] E. Witten, Nucl. Phys. B460, 335 (1996), hep-th/9510135. 

[27] A. Sagnotti, in Non-Perturbative Quantum Field Theory, eds. G. Mack et al. 
(Pergamon Press, 1988), 521; V. Periwal, unpublished; J. Govaerts, Phys. 
Lett. B220, 77 (1989). 

[28] A. Dabholkar, Lectures on orientifolds and duality, hep-th/9804208. 

[29] S. P. de Alwis, A Note on Brane Tension and M Theory, hep-th/9607011. 

[30] C. Lovelace, Phys. Lett. B34, 500 (1971); L. Clavelli and J. Shapiro, 
Nucl. Phys. B57, 490 (1973); M. Ademollo, R. D' Auria, F. Gliozzi, 
E. Napolitano, S. Sciuto, and P. di Vecchia, Nucl. Phys. B94, 221 (1975); 
C. G. Callan, C. Lovelace, C. R. Nappi, and S. A. Yost, Nucl. Phys. B293, 
83 (1987). 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


512 References 

[31] J. Polchinski and Y. Cai, Nucl. Phys. B296, 91 (1988); C. G. Callan, 
C. Lovelace, C. R. Nappi and S. A. Yost, Nucl. Phys. B308, 221 (1988). 

[32] A. Abouelsaood, C. G. Callan, C. R. Nappi and S. A. Yost, Nucl. Phys. 
B280, 599 (1987). 

[33] This is a vast subject by now. Ref. [31], and the last of ref. [30] are 
some of the originals, but there are many more. Some good reviews are: 
P. Di Vecchia and A. Liccardo, D branes in string theory. I, hep-th/ 
9912161; P. Di Vecchia and A. Liccardo, D-branes in string theory. II, 
hep-th/9912275. 1. V. Vancea, Introductory lectures to D-branes, hep-th/ 
0109029. 

[34] R. G. Leigh, Mod. Phys. Lett. A4, 2767 (1989). 

[35] S. Coleman and E. Weinberg, Phys. Rev. D7, 1888 (1973). 

[36] J. Polchinski, Comm. Math. Phys. 104, 37 (1986). 

[37] M. Douglas and B. Grinstein, Phys. Lett. B183, 552 (1987); (E) 187, 
442 (1987); S. Weinberg, Phys. Lett. B187, 278 (1987); N. Marcus and 
A. Sagnotti, Phys. Lett. B188, 58 (1987). 

[38] See refs. [39, 40, 41]. 

[39] C. Bachas, Phys. Lett. B374, 37 (1996), hep-th/9511043. 

[40] C. Bachas, Lectures on D-branes, hep-th/9806199. 

[41] E. Bergshoeff, M. de Roo, M. B. Green, G. Papadopoulos, and P. K. 
Townsend, Nucl. Phys. B470, 113 (1996), hep-th/9601150; E. Alvarez, 
J. L. F. Barbon, and J. Borlaf, Nucl. Phys. B479, 218 (1996), hep-th/ 
9603089; E. Bergshoeff and M. De Roo, Phys. Lett. B380, 265 (1996), 
hep-th/9603123. 

[42] E. S. Fradkin and A. A. Tseytlin, Phys. Lett. B163, 123 (1985). 

[43] A. A. Tseytlin, Nucl. Phys. B501, 41 (1997), hep-th/9701125. 

[44] See refs. [46, 47, 48, 49, 50]. 

[45] See, for example, refs. [43,46,50,51]. 

[46] D. Brecher and M. J. Perry, Nucl. Phys. B527, 121 (1998), hep-th/9801127. 

[47] D. Brecher, Phys. Lett. B442, 117 (1998), hep-th/9804180. 

[48] M. R. Garousi and R. C. Myers, Nucl. Phys. B542, 73 (1999), hep-th/ 
9809100. 

[49] A. Hashimoto and W. 1. Taylor, Nucl. Phys. B503, 193 (1997), hep-th/ 
9703217; P. Bain, hep-th/9909154. 

[50] A. A. Tseytlin, Born-Infeld action, supersymmetry and string theory, 
hep-th/9908105. 

[51] R. C. Myers, JHEP 9912, 022 (1999), hep-th/9910053. 

[52] W. 1. Taylor and M. Van Raamsdonk, Nucl. Phys. B573, 703 (2000), 
hep-th/9910052; Nucl. Phys. B558, 63 (1999), hep-th/9904095. 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


References 513 

[53] There are many good treatments of anomalies. The field theory treatment 
should begin with a good modern text. See vol. 2 of ref. [54], vol. 2 of ref. [5], 
and: S. B. Treiman, E. Witten, R. Jackiw and B. Zumino, Current Algebra 
and Anomalies, World Scientific, Singapore (1985). 

[54] S. Weinberg, The Quantum Theory OJ Fields, Vols. 1, 2, and 3, Cambridge 
University Press (2000) (Cambridge Monographs on Mathematical Physics). 

[55] See refs. [56, 57, 58, 59, 60]. 

[56] G. W. Gibbons, Nucl. Phys. B514, 603 (1998), hep-th/9709027. 

[57] C. G. Callan and J. M. Maldacena, Nucl. Phys. B513, 198 (1998), hep-th/ 
9708147. 

[58] P. S. Howe, N. D. Lambert and P. C. West, Nucl. Phys. B515, 203 (1998), 
hep-th/9709014; S. Lee, A. Peet and L. Thorlacius, Nucl. Phys. B514, 161 
(1998), hep-th/9710097. 

[59] R. Emparan, Phys. Lett. B423, 71 (1998), hep-th/9711106. 

[60] J. P. Gauntlett, J. Gomis and P. K. Townsend, JHEP 9801, 003 (1998), 
hep-th/9711205. 

[61] E. B. Bogomolny, Sov. 1. Nucl. Phys. 24, 449 (1976). 

[62] M. K. Prasad and C. M. Sommerfield, Phys. Rev. Lett. 35, 760 (1975). 

[63] Two good books from which to learn this sort of construction are: J. Bagger 
and J. Wess, Supersymmetry and Supergravity, Princeton University Press, 
1991; P. West, Introduction to Supersymmetry and Supergravity, World 
Scientific, Singapore, 1990. 

[64] E. Witten and D. Olive, Phys. Lett. 78B, 97 (1978). 

[65] G. W. Gibbons, in Proc. Heisenberg Memorial Symp. 1981, eds. P. 
Breitenlohner and H. P. Durr (Lecture notes in Physics 160, Springer­
Verlag 1982); G. W. Gibbons and C. M. Hull, Phys. Lett. B 109, 190 (1982). 

[66] A. Papapetrou, Proc. R. Irish Acad. A51 (1947) 191; S.D. Majumdar, Phys. 
Rev. 72,930 (1947). 

[67] C. Teitelboim, Phys. Lett. B 69, 240 (1977). 

[68] G. W. Gibbons and P. K. Townsend, Phys. Rev. Lett. 71, 3754 (1993), 
hep-th/9307049. 

[69] A useful review, with references, is: R. Kallosh, From Gravity to 
Supergravity, Lectures given at Theoretical Advanced Study Institute in 
Elementary Particle Physics (TASI 97): Supersymmetry, Supergravity and 
Supercolliders, Boulder, CO, 1-7 June 1997. 

[70] J. A. Shapiro and C. B. Thorn, Phys. Rev. D36, 432 (1987); J. Dai and 
J. Polchinski, Phys. Lett. B220, 387 (1989). 

[71] F. Gliozzi, J. Scherk and D. Olive, Nucl. Phys. B122, 253 (1977); Phys. 
Lett. B65, 282 (1976). 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


514 References 

[72] A. Strominger, Nucl. Phys. B343, 167 (1990); Erratum: ibid., 353, 565 
(1991); S.-J. Rey, in Superstrings and Particle Theory: Proceedings, eds. 
L. Clavelli and B. Harms, (World Scientific, 1990); S.-J. Rey, Phys. Rev. 
D43, 526 (1991); 1. Antoniades, C. Bachas, J. Ellis and D. Nanopoulos, 
Phys. Lett. B211, 393 (1988); ibid., Nucl. Phys. 328, 117 (1989); C. G. 
Callan, J. A. Harvey and A. Strominger, Nucl. Phys. B359, 611 (1991). 

[73] C. G. Callan, J. A. Harvey and A. Strominger, in Trieste 1991, String Theory 
and Quantum Gravity, hep-th/9112030. 

[74] D. Friedan, E. Martinec, and S. Shenker, Nucl. Phys. B271, 93 (1986). 

[75] For example, see the conventions in: E. Bergshoeff, C. Hull and T. Ortin, 
Nucl. Phys. B451, 547 (1995), hep-th/9504081. 

[76] M. B. Green, C. M. Hull and P. K. Townsend, Phys. Lett. B382, 65 (1996), 
hep-th/9604119. 

[77] P. Meessen and T. Ortin, Nucl. Phys. B541, 195 (1999), hep-th/9806120. 

[78] See refs. [79,80,81,88,89]. 

[79] D. N. Page, Phys. Lett. B80, 55 (1978). 

[80] M. A. Walton, Phys. Rev. D37, 377 (1988). 

[81] A very useful reference for the properties of string theory on ALE spaces is: 
D. Anselmi, M. Bill6, P. Fre, L. Girardello and A. Zaffaroni, Int. J. Mod. 
Phys. A9, 3007 (1994), hep-th/9304135. 

[82] An excellent reference for various relevant geometrical facts is: T. Eguchi, 
P. B. Gilkey and A. J. Hanson, Gravitation, Gauge Theories And Differen­
tial Geometry, Phys. Rept. 66, 213 (1980). 

[83] G. W. Gibbons and S. W. Hawking, Commun. Math. Phys. 66, 291 (1979). 

[84] T. Eguchi and A. J. Hanson, Ann. Phys. 120, 82 (1979). 

[85] N. J. Hitchin, Polygons and gravitons, in Gibbons, G. W. (ed.), Hawking, 
S. W. (ed.): Euclidean quantum gravity, World Scientific (1993), pp. 527-
538. 

[86] F. Klein, Vorlesungen Uber das Ikosaeder und die Aufiosung der Gleichun­
gen vom funften Grade, Teubner, Leipzig 1884; F. Klein, Lectures on 
the Icosahedron and the Solution of an Equation of Fifth Degree, Dover, 
New York (1913). 

[87] J. Mckay, Pmc. Symp. Pure Math. 37, 183 (1980), American Mathematical 
Society. 

[88] N. Seiberg, Nucl. Phys. B303, 286 (1988). 

[89] P. S. Aspinwall and D. R. Morrison, String theory on K3 surfaces, in Greene, 
B. (ed.), Yau, s. T. (ed.): Mirror symmetry II* 703-716, hep-th/9404151. 

[90] P. Aspinwall, K3 Surfaces and String Duality, in TASI 1996, World Scientific 
1997, hep-th/9611137; Compactijication, Geometry and Duality: N = 2, 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


References 515 

m TASI 1999: Strings, Branes and Gravity, World Scientific (2001), 
hep-th/OOOlOOl. 

[91] G. W. Gibbons and S. W. Hawking, Comm. Math. Phys. 66, 291 (1979). 

[92] M. K. Prasad, Phys. Lett. B83, 310 (1979). 

[93] M. B. Green, Phys. Lett. B329, 435 (1994), hep-th/9403040. 

[94] G. T. Horowitz and A. Strominger, Nucl. Phys. B360, 197 (1991). 

[95] For a review of string solitons, see: M. J. Duff, Ramzi R. Khuri and J. X. Lu, 
String Solitons, Phys. Rept. 259, 213 (1995), hep-th/9412184. 

[96] A. Strominger, Nucl. Phys. B451, 96 (1995), hep-th/9504090. 

[97] L. J. Romans, Phys. Lett. B169, 374 (1986). 

[98] J. Polchinski and A. Strominger, Phys. Lett. B388, 736 (1996), hep-th/ 
9510227. 

[99] M. B. Green, Phys. Lett. B69, 89 (1977); B201, 42 (1988); B282, 380 
(1992). 

[100] S. H. Shenker, The Strength of Non-Perturbative Effects in String Theory, 
in Cargese 1990, Proceedings: Random Surfaces and Quantum Gravity 
(1990), p. 19l. 

[101] T. Banks and L. Susskind, Brane-Anti-Brane Forces, hep-th/9511194. 

[102] S. H. Shenker, Another Length Scale in String Theory?, hep-th/9509132. 

[103] D. Kabat and P. Pouliot, Phys. Rev. Lett. 77, 1004 (1996), hep-th/9603127; 
U. H. Danielsson, G. Ferretti and B. Sundborg, Int. J. Mod. Phys. All, 
5463 (1996), hep-th/960308l. 

[104] M. R. Douglas, D. Kabat, P. Pouliot and S. H. Shenker, Nucl. Phys. B485, 
85 (1997), hep-th/9608024. 

[105] W. Fischler and L. Susskind, Phys. Lett. BI71, 383 (1986); 173, 262 
(1986). 

[106] See refs. [102, 103, 104, 233, 234, 237]. 

[107] M. B. Green and J. H. Schwarz, Phys. Lett. B149, 117 (1984); B151, 21 
(1985); Nucl. Phys. B255, 93 (1985). 

[108] M. B. Green and J. H. Schwarz, Phys. Lett. B 136, 367 (1984); Nucl. Phys. 
B 243, 285 (1984). 

[109] M. B. Green, J. H. Schwarz and P. C. West, Nucl. Phys. B 254, 327 (1985). 

[110] C. G. Callan and J. A. Harvey, Nucl. Phys. B250, 427 (1985); S. G. 
Naculich, Nucl. Phys. B296, 837 (1988); J. M. Izquierdo and 
P. K. Townsend, Nucl. Phys. B414, 93 (1994), hep-th/9307050; J. D. Blum 
and J. A. Harvey, Nucl. Phys. B416, 119 (1994), hep-th/9310035. 

[111] M. B. Green, J. A. Harvey and G. Moore, Class. Quant. Grav. 14, 47 
(1997), hep-th/9605033. 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


516 References 

[112] Y. E. Cheung and Z. Yin, Nucl. Phys. B517, 69 (1998), hep-th/9710206. 

[113] R. Minasian and G. Moore, JHEP 9711, 002 (1997), hep-th/9710230; 
E. Witten, JHEP 9812, 019 (1998), hep-th/9810188; P. Horava, Adv. 
Theor. Math. Phys. 2, 1373 (1999), hep-th/9812135; D. Diaconescu, 
G. Moore and E. Witten, hep-th/0005091 and hep-th/0005090. 

[114] R. I. Nepomechie, Phys. Rev. D31, 1921 (1985); C. Teitelboim, Phys. Lett. 
B167, 63, 69 (1986). 

[115] M. Bershadsky, C. Vafa, and V. Sadov, Nucl. Phys. B463, 420 (1996), 
hep-th/9511222. 

[116] M. Bershadsky, C. Vafa and V. Sadov, Nucl. Phys. B463, 398 (1996), 
hep-th/9510225. 

[117] S. Katz and C. Vafa, Nucl. Phys. B497, 196 (1997), hep-th/9611090; 
S. Katz, A. Klemm and C. Vafa, Nucl. Phys. B497, 173 (1997), hep-th/ 
9609239. 

[118] M. Li, Nucl. Phys. B460, 351 (1996), hep-th/9510161. 

[119] M. R. Douglas, Branes within Branes, hep-th/9512077. 

[120] A. A. Belavin, A. M. Polyakov, A. S. Shvarts and Y. S. Tyupkin, Phys. 
Lett. B 59, 85 (1975). 

[121] See also the very useful refs. [125, 124, 126, 127, 123]. 

[122] K. Dasgupta, D. P. Jatkar and S. Mukhi, Nucl. Phys. B523, 465 (1998), 
hep-th/9707224. 

[123] K. Dasgupta and S. Mukhi, JHEP 9803, 004 (1998), hep-th/9709219. 
C. A. Scrucca and M. Serone, Nucl. Phys. B556, 197 (1199), hep-th/ 
9903145. 

[124] B. Craps and F. Roose, Phys. Lett. B445, 150 (1998), hep-th/9808074; 
B. Craps and F. Roose, Phys. Lett. B450, 358 (1999), hep-th/9812149. 

[125] J. F. Morales, C. A. Scrucca and M. Serone, Nucl. Phys. B552, 291 
(1999), hep-th/9812071; B. Stephanski, Nucl. Phys. B548, 275 (1999), 
hep-th/9812088. 

[126] S. Mukhi and N. V. Suryanarayana, JHEP 9909, 017 (1999), hep-th/ 
9907215. 

[127] J. F. Ospina Giraldo, Gravitational couplings for generalized orientifold 
planes, hep-th/0006076; Gravitational couplings for yGOp-planes, hep-th/ 
0006149. 

[128] C. P. Bachas, P. Bain and M. B. Green, JHEP 9905, 011 (1999), hep-th/ 
9903210. 

[129] M. Berkooz, M. R. Douglas and R. G. Leigh, Nucl. Phys. B480, 265 (1996), 
hep-th/9606139. 

[130] E. Witten, Nucl. Phys. B460, 541 (1996), hep-th/9511030. 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


References 517 

[131] See refs. [132, 193, 194, 192, 28, 195, 196]. 

[132] E. G. Gimon and J. Polchinski, Phys. Rev. D54, 1667 (1996), hep-th/ 
9601038. 

[133] J. H. Schwarz, Phys. Lett. B360 13 (1995); (E) B364, 252 (1995), hep-th/ 
9508143. 

[134] P. S. Aspinwall, Nucl. Phys. Proc. Suppl. 46, 30 (1996), hep-th/9508154. 

[135] J. H. Schwarz, Nucl. Phys. Proc. Suppl. 55B, 1 (1997), hep-th/9607201. 

[136] P. K. Townsend, M-theory from its superalgebra, hep-th/9712004. 

[137] O. Aharony, J. Sonnenschein and S. Yankielowicz, Nucl. Phys. B474, 309 
(1996), hep-th/9603009. M. R. Gaberdiel and B. Zwiebach, Nucl. Phys. B 
518, 151 (1998), hep-th/9709013. 

[138] A. Sen, JHEP 9803, 005 (1998), hep-th/971 1130. 

[139] E. Witten, Nucl. Phys. B500, 3 (1997), hep-th/9703166. 

[140] K. Dasgupta and S. Mukhi, Phys. Lett. B423, 261 (1998), hep-th/9711094. 

[141] A. Sen, Phys. Rev. D54, 2964 (1996), hep-th/9510229. 

[142] Here is a selection of papers in this topic: J. Froehlich and J. Hoppe, 
Commun. Math. Phys. 191, 613 (1998), hep-th/9701119; P. Yi, Nucl. 
Phys. B505, 307 (1997), hep-th/9704098; S. Sethi and M. Stern, Com­
mun. Math. Phys. 194, 675 (1998), hep-th/9705046; M. Porrati and 
A. Rozenberg, Nucl. Phys. B515, 184 (1998), hep-th/9708119; M. B. Green 
and M. Gutperle, JHEP 9801,005 (1998), hep-th/9711107; M. B. Halpern 
and C. Schwartz, Int. J. Mod. Phys. A13, 4367 (1998), hep-th/9712133; 
G. Moore, N. Nekrasov and S. Shatashvili, Commun. Math. Phys. 209, 77 
(2000), hep-th/9803265; N. A. Nekrasov, On the size of a graviton, hep-th/ 
9909213; S. Sethi and M. Stern, Adv. Theor. Math. Phys. 4, 487 (2000), 
hep-th/0001189. 

[143] P. K. Townsend, Phys. Lett. B373, 68 (1996), hep-th/9512062. 

[144] A. Sen, Phys. Rev. D53, 2874 (1996), hep-th/9511026. 

[145] C. Vafa, Nucl. Phys. B463, 415 (1996), hep-th/9511088. 

[146] S. Sethi and M. Stern, Phys. Lett. B398 47 (1997), hep-th/9607145; Nucl. 
Phys. B578, 163 (2000), hep-th/0002131. 

[147] G. Papadopoulos and P. K. Townsend, Phys. Lett. B393, 59 (1997), 
hep-th / 9609095. 

[148] U. H. Danielsson and G. Ferretti, Int. 1. Mod. Phys. A12, 4581 (1997), 
hep-th/9610082; S. Kachru and E. Silverstein, Phys. Lett. B396, 70 (1997), 
hep-th/9612162; D. Lowe, Nucl. Phys. B501, 134 (1997), hep-th/9702006; 
T. Banks, N. Seiberg and E. Silverstein, Phys. Lett. B401, 30 (1997), 
hep-th/ 9703052; T. Banks and L. Motl, JHEP 12, 004 (1997), 
hep-th/9703218; D. Lowe, Phys. Lett. B403, 243 (1997), hep-th/9704041; 
S.-J. Rey, Nucl. Phys. B502, 170 (1997), hep-th/9704158. 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


518 References 

[149] See refs. [151, 152, 153]. There are also excellent reviews available, some 
of which are listed in refs. [156, 135, 136]. 

[150] C. M. Hull, Nucl. Phys. B468, 113 (1996), hep-th/9512181. 

[151] C. M. Hull and P. K. Townsend, Nucl. Phys. B438, 109 (1995), hep-th/ 
9410167. 

[152] P. K. Townsend, Phys. Lett. B350, 184 (1995), hep-th/9501068. 

[153] E. Witten, Nucl. Phys. B443, 85 (1995), hep-th/9503124. 

[154] See for example refs. [143, 135, 156]. 

[155] See refs. [170, 171, 143]. 

[156] For other reviews, see: M. J. Duff, M-Theory (the Theory Formerly Known 
as Strings), Int. J. Mod. Phys. All, 5623 (1996), hep-th/9608117; A. Sen, 
An Introduction to Non-perturbative String Theory, hep-th/9802051. 

[157] T. Banks, W. Fischler, S. H. Shenker and L. Susskind, Phys. Rev. D55, 
5112 (1997), hep-th/9610043. 

[158] For reviews, see: T. Banks, TASI lectures on matrix theory, in TASI 1999, 
Strings, Branes and Gravity, World Scientific (2001), hep-th/9911068. 
T. Banks, Matrix Theory, Nucl. Phys. Proc. Suppl. B67, 180 (1998), hep­
th/9710231; D. Bigatti and L. Susskind, Review of Matrix Theory, hep-th/ 
9712072; H. Nicolai and R. Helling, Supermembranes and M(atrix) Theory, 
hep-th/9809103; W. 1. Taylor, The M(atrix) model of M-theory, hep-th/ 
0002016; A. Bilal, M(atrix) theory: A pedagogical introduction, Fortsch. 
Phys. 47, 5 (1999), hep-th/9710136. 

[159] C. G. Callan, J. A. Harvey, and A. Strominger, Nucl. Phys. B367, 60 
(1991). 

[160] E. Witten, in the proceedings of Strings 95, USC, 1995, hep-th/9507121. 

[161] P. S. Aspinwall, Phys. Lett. B 357, 329 (1995), hep-th/9507012. 

[162] J. Polchinski and E. Witten, Nucl. Phys. B460, 525 (1996), hep-th/ 
9510169. 

[163] A. Dabholkar and J. A. Harvey, Phys. Rev. Lett. 63, 478 (1989); A. 
Dabholkar, G. Gibbons, J. A. Harvey and F. Ruiz Ruiz, Nucl. Phys. B340, 
33 (1990). 

[164] A. Dabholkar, Phys. Lett. B357, 307 (1995); C. M. Hull, Phys. Lett. B357, 
545 (1995). 

[165] C. V. Johnson, N. Kaloper, R. R. Khuri and R. C. Myers, Phys. Lett. 
B368, 71 (1996), hep-th/9509070. 

[166] E. Bergshoeff, E. Sezgin and P. K. Townsend, Phys. Lett. B189, 75 (1987); 
M. J. Duff and K. S. Stelle, Phys. Lett. B253, 113 (1991). 

[167] R. Guven, Phys. Lett. B276, 49 (1992). 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


References 519 

[168] R. Sorkin, Phys. Rev. Lett. 51, 87 (1983); D. J. Gross and M. J. Perry, 
Nucl. Phys. B226, 29 (1983). 

[169] P. Horava and E. Witten, Nucl. Phys. B460, 506 (1996), hep-th/9510209. 

[170] M. J. Duff and J. X. Lu, Nucl. Phys. B390, 276 (1993), hep-th/9207060; 
S. P. de Alwis and K. Sato, Phys. Rev. D53, 7187 (1996), hep-th/9601167; 
A. A. Tseytlin, Nucl. Phys. B469, 51 (1996), hep-th/9602064. 

[171] C. Schmidhuber, Nucl. Phys. B467, 146 (1996), hep-th/9601003. 

[172] K. Hori, Nucl. Phys. B539, 35 (1999), hep-th/9805141; K. Landsteiner 
and E. Lopez, Nucl. Phys. B516, 273 (1998), hep-th/9708118; E. Witten, 
JHEP 9802, 006 (1998), hep-th/9712028; E. G. Gimon, On the M-theory 
interpretation of orientifold planes, hep-th/9806226; C. Ahn, H. Kim and 
H. S. Yang, Phys. Rev. D59, 106002 (1999), hep-th/9808182; S. Sethi, 
JHEP 9811, 003 (1998), hep-th/9809162; C. Ahn, H. Kim, B. Lee and 
H. S. Yang, Phys. Rev. D61, 066002 (2000), hep-th/9811010; A. Hanany, 
B. Kol and A. Rajaraman, JHEP 9910, 027 (1999), hep-th/9909028; 
A. M. Uranga, JHEP 0002, 041 (2000), hep-th/9912145; A. Hanany and 
B. Kol, JHEP 0006, 013 (2000), hep-th/0003025. 

[173] K. S. Narain, Phys. Lett. 169B, 41 (1986). 

[174] P. Ginsparg, Phys. Rev. D35, 648 (1987). 

[175] K. S. Narain, M. H. Sarmadi and E. Witten, Nucl. Phys. B279, 369 (1987). 

[176] B. Julia, in Supergravity and Superspace, ed. S. W. Hawking and M. Rocek 
(Cambridge University Press, Cambridge, 1981). 

[177] C. Vafa and E. Witten, Nucl. Phys. B431, 3 (1994), hep-th/9408074. 

[178] C. Vafa, Nucl. Phys. B463, 435 (1996), hep-th/9512078. 

[179] A. Strominger, Phys. Lett. B383, 44 (1996), hep-th/9512059. 

[180] S. Sethi and L. Susskind, Phys. Lett. B 400, 265 (1997), hep-th/970210l. 

[181] An excellent review can be found in D. R. Morrison, TASI Lectures on 
Compactijication and Duality, in TASI 1999, Strings, Branes and Gravity, 
World Scientific (2001). 

[182] See refs. [132, 191, 194, 188]. 

[183] K. Kodaira, Ann. of Math. (2) 77,563 (1963); ibid., 78 (1963) l. 

[184] M. R. Douglas, 1. Geom. Phys. 28, 255 (1998), hep-th/9604198. 

[185] L. Alvarez-Gaume and D. Z. Freedman, Commun. Math. Phys. 80, 443 
(1981). 

[186] S. W. Hawking, Phys. Lett. 60A 81, (1977). 

[187] J. Polchinski, Phys. Rev. D55, 6423 (1997), hep-th/9606165. 

[188] M. R. Douglas and G. Moore, D-Branes, Quivers, and ALE Instantons, 
hep-th/9603167. 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


520 References 

[189] A. Hitchin, A. Karlhede, U. Lindstrom, and M. Rocek, Comm. Math. Phys. 
108, 535 (1987). 

[190] P. Kronheimer, 1. Diff. Geom. 28, 665 (1989); 29, 685 (1989). 

[191] C. V. Johnson and R. C. Myers, Phys. Rev. D55, 6382 (1997), hep-th/ 
9610140. 

[192] A. Dabholkar and J. Park, Nucl. Phys. B477, 701 (1996), hep-th/9604178; 
Nucl. Phys. B472, 207 (1996), hep-th/9602030. 

[193] See also: G. Pradisi and A. Sagnotti, Phys. Lett. B216, 59 (1989); 
M. Bianchi and A. Sagnotti, Phys. Lett. B247, 517 (1990). 

[194] E. G. Gimon and C. V. Johnson, Nucl. Phys. B477, 715 (1996), hep-th/ 
9604129. 

[195] J. D. Blum, Nucl. Phys. B486, 34 (1997), hep-th/9608053; J. D. Blum 
and K. Intriligator, Nucl. Phys. B506, 223 (1997), hep-th/9705030; 
P. Berglund and E. Gimon, Nucl. Phys. B525, 73 (1998), hep-th/9803168; 
R. Blumenhagen, L. Gorlich and B. Kors, Nucl. Phys. B569, 209 (2000), 
hep-th/9908130. 

[196] M. Berkooz, R. G. Leigh, J. Polchinski, J. H. Schwarz, N. Seiberg and 
E. Witten, Nucl. Phys. B475, 115 (1996), hep-th/9605184. 

[197] A. Sen, Nucl. Phys. B475, 562 (1996), hep-th/9605150. 

[198] K. Dasgupta and S. Mukhi, Phys. Lett. B385, 125 (1996), hep-th/9606044. 

[199] C. Vafa, Nucl. Phys. B469, 403 (1996), hep-th/9602022. 

[200] D. R. Morrison and C. Vafa, Nucl. Phys. B473, 74 (1996), hep-th/9602114; 
Nucl. Phys. B476, 437 (1996), hep-th/9603161. 

[201] D. Diaconescu, M. R. Douglas and J. Gomis, JHEP 9802, 013 (1998), 
hep-th/9712230. 

[202] K. Dasgupta and S. Mukhi, JHEP 9907, 008 (1999), hep-th/9904131. 

[203] H. Ooguri and C. Vafa, Nucl. Phys. B463, 55 (1996), hep-th/9511164. 

[204] 1. Brunner and A. Karch, JHEP 9803, 003 (1998), hep-th/9712143; 
A. Karch, D. Lust and D. Smith, Nucl. Phys. B533, 348 (1998), hep-th/ 
9803232; B. Andreas, G. Curio and D. Lust, JHEP 9810, 022 (1998), 
hep-th/9807008. 

[205] R. Gregory, J. A. Harvey and G. Moore, Adv. Theor. Math. Phys. 1, 283 
(1997), hep-th/9708086. 

[206] A. Hanany and E. Witten, Nucl. Phys. B492, 152 (1997), hep-th/9611230. 

[207] E. Witten, 1. Geom. Phys. 15,215 (1995), hep-th/9410052. 

[208] M. F. Atiyah, V. G. Drinfeld, N. J. Hitchin, and Y. 1. Manin, Phys. Lett. 
A65, 185 (1978). 

[209] D. Diaconescu, Nucl. Phys. B503, 220 (1997), hep-th/9608163. 

[210] D. Tsimpis, Phys. Lett. B433, 287 (1998), hep-th/9804081. 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


References 521 

[211] S. K. Donaldson, Commun. Math. Phys. 96, 387 (1984). 

[212] S. Elitzur, A. Giveon and D. Kutasov, Phys. Lett. B400, 269 (1997), 
hep-th/9702014; S. Elitzur, A. Giveon, D. Kutasov, E. Rabinovici and 
A. Schwimmer, Nucl. Phys. B505, 202 (1997), hep-th/9704104. 

[213] This is a useful review: A. Giveon and D. Kutasov, Brane dynamics and 
gauge theory, Rev. Mod. Phys. 71,983 (1999), hep-th/9802067. 

[214] G. t'Hooft, Nucl. Phys. B79, 276 (1974); A. M. Polyakov, JETP Lett. 20, 
194 (1974). 

[215] B. Julia and A. Zee, Phys. Rev. Dll, 2227 (1975). 

[216] W. Nahm, The Construction Of All Selfdual Multi-Monopoles By The 
ADHM Method (Talk), in N. S. Craigie, P. Goddard and W. Nahm, 
Monopoles In Quantum Field Theory. Proceedings, Monopole Meeting, 
Trieste, Italy, December 11-15, 1981, World Scientific (1982). 

[217] For reviews, the appendix of ref. [232] is useful, and also: P. M. Sutcliffe, 
BPS monopoles, Int. 1. Mod. Phys. A12, 4663 (1997), hep-th/9707009. 

[218] E. J. Weinberg, Phys. Rev. D20, 936 (1979); W. Nahm, Phys. Lett. B85, 
373 (1979). 

[219] H. Nakajima, Monopoles and Nahm's Equations, in Sanda 1990, Proceed­
ings, Einstein metrics and Yang-Mills connections, pp. 193-21l. 

[220] A. Hashimoto, Phys. Rev. D57, 6441 (1998), hep-th/9711097. 

[221] J. Schwinger, Phys. Rev. 144, 1087 (1966); 173, 1536 (1968); D. Zwanziger, 
Phys. Rev. 176, 1480, 1489 (1968); B. Julia and A. Zee, Phys. Rev. Dll, 
2227 (1974); F. A. Bais and J. R. Primak, Phys. Rev. D13, 819 (1975). 

[222] P. Fayet and J. Iliopoulos, Phys. Lett. 51B, 461 (1974). 

[223] There are many good references. Some examples are: vol. 3 of ref. [54]; 
M. F. Sohnius, Phys. Rept. 128,39 (1985). 

[224] M. Melvin, Phys. Lett. 8, 65 (1963). 

[225] F. Dowker, J. P. Gauntlett, D. A. Kastor and J. Traschen, Phys. Rev. D 49, 
2909 (1994), hep-th/9309075; F. Dowker, J. P. Gauntlett, G. W. Gibbons 
and G. T. Horowitz, Phys. Rev. D52, 6929 (1995), hep-th/9507143; D53, 
7115 (1996), hep-th/9512154. 

[226] R. Emparan, Nucl. Phys. B 610, 169 (2001), hep-th/0105062; M. S. Costa, 
C. A. Herdeiro and L. Cornalba, Nucl. Phys. B 619, 155 (2001), hep-th/ 
0105023; D. Brecher and P. M. Saffin, Nucl. Phys. B 613, 218 (2001), 
hep-th/0106206. 

[227] H. E. Rauch and A. Lebowitz, Elliptic Functions, Theta Functions, and 
Riemann Surfaces, Williams and Wilkins (1973). 

[228] N. Seiberg, Nucl. Phys. B303, 286 (1988). 

[229] M. J. Duff, R. Minasian and E. Witten, Nucl. Phys. B 465, 413 (1996), 
hep-th/9601036. 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


522 References 

[230] M. J. Duff, TAS! lectures on branes, black holes and anti-de Sitter space, 
in TASI 1999: Strings, Branes and Gravity, World Scientific (2001), 
hep-th/9912164. 

[231] See refs. [232, 237, 248, 249]. 

[232] M. F. Atiyah and N. J. Hitchin, Phys. Lett. AI07, 21 (1985); Phil. 
Trans. R. Soc. Lond. A315, 459 (1985); The Geometry And Dynamics Of 
Magnetic Monopoles., M. B. Porter Lectures, Princeton University Press 
(1988). 

[233] G. Lifschytz, Phys. Lett. B388, 720 (1996), hep-th/9604156. 

[234] M. Douglas, J. Polchinski and A. Strominger, JHEP 9712, 003 (1997), 
hep-th/9703031. 

[235] See refs. [237, 238, 248, 172]. 

[236] See refs. [132, 193, 194, 192]. 

[237] N. Seiberg, Phys. Lett. B384, 81 (1996), hep-th/9606017. 

[238] A. Sen, JHEP 9709,001 (1997), hep-th/9707123; JHEP 9710,002 (1997) 
hep-th/9708002. 

[239] C. V. Johnson, A. W. Peet and J. Polchinski, Phys. Rev. D61, 086001 
(2000), hep-th/9911161. 

[240] N. Seiberg and E. Witten, Nucl. Phys. B431, 484 (1994), hep-th/9408099; 
ibid., B426 (1994) 19; Erratum: ibid., B430, 485 (1994), hep-th/9407087. 

[241] M. R. Douglas and S. H. Shenker, Nucl. Phys. B447, 271 (1995), hep-th/ 
9503163. 

[242] R. R. Khuri, Phys. Lett. B294, 325 (1992), hep-th/9205051; Nucl. Phys. 
B387, 315 (1992), hep-th/9205081; J. P. Gauntlett, J. A. Harvey and 
J. T. Liu, Nucl. Phys. B409, 363 (1993), hep-th/9211056. 

[243] M. Krogh, JHEP 9912, 018 (1999), hep-th/9911084. 

[244] The following has a nice discussion of the appearances of monopoles in 
string and gauge theory: A. Hanany and A. Zaffaroni, JHEP 9912, 014 
(1999), hep-th/9911113. 

[245] L. Jiirv and C. V. Johnson, Phys. Rev. D62, 126010 (2000), hep-th/ 
0002244. 

[246] G. Chalmers and A. Hanany, Nucl. Phys. B489, 223 (1997), hep-th/ 
9608105. 

[247] N. S. Manton, Phys. Lett. BllO, 54 (1982). 

[248] N. Seiberg and E. Witten, in Saclay 1996, The mathematical beauty of 
physics, hep-th/9607163. 

[249] N. Dorey, V. V. Khoze, M. P. Mattis, D. Tong and S. Vandoren, Nucl. 
Phys. B502, 59 (1997), hep-th/9703228. 

[250] A. S. Dancer, Commun. Math. Phys. 158, 545 (1993). 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


References 523 

[251] G. W. Gibbons and N. S. Manton, Nucl. Phys. B274, 183 (1986). 

[252] J. Madore, Class. Quant. Grav. 9, 69 (1992); Annals Phys. 219, 187 (1992); 
Phys. Lett. B263, 245 (1991). 

[253] D. Kabat and W. I. Taylor, Adv. Theor. Math. Phys. 2, 181 (1998, hep-th/ 
9711078. 

[254] S. Rey, Gravitating M(atrix) Q-balls, hep-th/9711081. 

[255] B. de Wit, J. Hoppe and H. Nicolai, Nucl. Phys. B305, 545 (1988). 

[256] J. McGreevy, L. Susskind and N. Toumbas, JHEP 0006, 008 (2000), 
hep-th/0003075; J. Polchinski and M. J. Strassler, hep-th/0003136. 

[257] K. Behrndt, Nucl. Phys. B455, 188 (1995), hep-th/9506106; R. Kallosh 
and A. Linde, Phys. Rev. D52, 7137 (1995), hep-th/9507022; See also: 
M. Cvetic and D. Youm, Phys. Lett. B359, 87 (1995), hep-th/9507160. 

[258] C. V. Johnson, Phys. Rev. D63, 065004 (2001), hep-th/0004068; Int. 
J. Mod. Phys. A 16, 990 (2001), hep-th/0011008 (talk at Strings 2000). 

[259] W. Israel, Nuovo Cim. 44B, 1 (1966). 

[260] C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation, San Francisco, 
Freeman (1973). 

[261] S. W. Hawking, Commun. Math. Phys. 43, 199 (1975). 

[262] J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973), Phys. Rev. D 9, 3292 (1974). 

[263] G. T. Horowitz and J. Polchinski, Phys. Rev. D 55, 6189 (1997), hep-th/ 
9612146. 

[264] C. V. Johnson, R. C. Myers, A. W. Peet and S. F. Ross, Phys. Rev. D 64, 
106001 (2001), hep-th/0105077. 

[265] J. Polchinski, Phys. Rev. Lett. 75, 4724 (1995), hep-th/9510017. 

[266] M. Douglas, J. Polchinski and A. Strominger, JHEP 9712, 003 (1997), 
hep-th / 9703031. 

[267] S. Ferrara, R. Kallosh and A. Strominger, Phys. Rev. D 52, 5412 (1995), 
hep-th/9508072; S. Ferrara and R. Kallosh, Phys. Rev. D 54,1514 (1996), 
hep-th/9602136; Phys. Rev. D 54, 1525 (1996), hep-th/9603090; S. Ferrara, 
G. W. Gibbons and R. Kallosh, Nucl. Phys. B 500, 75 (1997), hep-th/ 
9702103. 

[268] C. V. Johnson, R. R. Khuri and R. C. Myers, Phys. Lett. B 378,78 (1996), 
hep-th/9603061; J. M. Maldacena and A. Strominger, Phys. Rev. Lett. 77, 
428 (1996), hep-th/9603060; N. R. Constable, C. V. Johnson and R. C. 
Myers, JHEP 0009, 039 (2000), hep-th/0008226; N. R. Constable, Phys. 
Rev. D 64, 104004 (2001), hep-th/0106038. 

[269] C. G. Callan and J. M. Maldacena, Nucl. Phys. B 472, 591 (1996), hep-th/ 
9602043; G. T. Horowitz and A. Strominger, Phys. Rev. Lett. 77, 2368 
(1996), hep-th/9602051. 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


524 References 

[270] J. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1988), hep-th/9711200. 

[271] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998), hep-th/9802150. 

[272] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Phys. Lett. B 428, 105 
(1998), hep-th/9802109. 

[273] E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998), hep-th/9803131. 

[274] This is a review: O. Aharony, S. S. Gubser, J. Maldacena, H. Ooguri and 
Y. Oz, Phys. Rept. 323, 183 (2000), hep-th/9905111. 

[275] Two very useful treatments are: P. Ginsparg, Applied Conformal Field 
Theory, Les Houches, France, June 28-Aug 5, 1988, eds. E. Brezin and 
J. Zinn-Justin, North-Holland, (1990); P. Di Francesco, P. Mathieu and 
D. Senechal, Conformal Field Theory, New York, Springer (1997). 

[276] G. W. Gibbons and D. A. Rasheed, Phys. Lett. B 365, 46 (1996), hep-th/ 
9509141. M. B. Green and M. Gutperle, Phys. Lett. B 377, 28 (1996), 
hep-th/9602077. A. A. Tseytlin, Nucl. Phys. B469, 51 (1996), hep-th/ 
9602064. 

[277] C. Montonen and D. I. Olive, Phys. Lett. B 72, 117 (1977). 

[278] A. W. Peet, TASI lectures on black holes in string theory, in TASI 1999: 
Strings, Branes and Gravity, World Scientific (2001), hep-th/0008241. 

[279] B. R. Greene, A. D. Shapere, C. Vafa and S. T. Yau, Nucl. Phys. B 337, 
1 (1990). 

[280] L. Susskind, Another conjecture about M(atrix) theory, hep-th/9704080. 

[281] H. C. Pauli and S. J. Brodsky, Phys. Rev. D 32, 1993 (1985). 

[282] W. I. Taylor, Phys. Lett. B 394, 283 (1997), hep-th/9611042; O. J. Ganor, 
S. Ramgoolam and W. I. Taylor, Nucl. Phys. B 492, 191 (1997), hep-th/ 
9611202. 

[283] L. Motl, hep-th/9701025. T. Banks and N. Seiberg, Nucl. Phys. B 497, 41 
(1997), hep-th/9702187. 

[284] R. Dijkgraaf, E. Verlinde and H. Verlinde, Nucl. Phys. B 500, 43 (1997), 
hep-th/9703030. 

[285] For a review, see: R. Dijkgraaf, E. Verlinde and H. Verlinde, Nucl. Phys. 
Pmc. Suppl. 62, 348 (1998), hep-th/9709107. 

[286] G. 't Hooft, Dimensional Reduction In Quantum Gravity, gr-qc/9310026. 

[287] L. Susskind, J. Math. Phys. 36, 6377 (1995), hep-th/9409089. 

[288] G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2752 (1977); 
G. W. Gibbons and M. J. Perry, Pmc. R. Soc. Lond. A 358, 467 (1978); 
G. W. Gibbons, S. W. Hawking and M. J. Perry, Nucl. Phys. B 138, 141 
(1978). 

[289] J. M. Bardeen, B. Carter and S. W. Hawking, Commun. Math. Phys. 31, 
161 (1973). 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


References 525 

[290] S. W. Hawking and G. T. Horowitz, Class. Quant. Grav. 13, 1487 (1996) 
gr-qc/9501014. 

[291] S. W. Hawking and D. N. Page, Commun. Math. Phys. 87, 577 (1983). 

[292] An excellent reference for many matters of this nature is: R. M. Wald, 
General Relativity, Chicago University Press (1984), 491p. 

[293] N. D. Birrell and P. C. Davies, Quantum Fields in Curved Space, 
Cambridge University Press (1982), 340p. 

[294] S. Hyun, U-duality between three and higher dimensional black holes, 
hep-th/9704005. 

[295] K. Sfetsos and K. Skenderis, Nucl. Phys. B 517, 179 (1998), hep-th/ 
9711138. 

[296] M. Baiiados, C. Teitelboim and J. Zanelli, Phys. Rev. Lett. 69, 1849 (1992), 
hep-th/9204099. 

[297] J. D. Brown and M. Henneaux, Commun. Math. Phys. 104,207 (1986). 

[298] O. Coussaert and M. Henneaux, Phys. Rev. Lett. 72, 183 (1994), hep-th/ 
9310194. 

[299] C. V. Johnson and R. C. Myers, Phys. Rev. D 64, 106002 (2001), hep-th/ 
0105159. 

[300] See the last reference in ref. [268]' for the four dimensional version of this. 

[301] G. 't Hooft, Nucl. Phys. B 72, 461 (1974). 

[302] M. Gunaydin, L. J. Romans and N. P. Warner, Nucl. Phys. B 272, 598 
(1986); Phys. Lett. B 154, 268 (1985); M. Pernici, K. Pilch and P. van 
Nieuwenhuizen, Nucl. Phys. B 259, 460 (1985). 

[303] P. Breitenlohner and D. Z. Freedman, Phys. Lett. B 115, 197 (1982). 

[304] V. Balasubramanian and P. Kraus, Commun. Math. Phys. 208, 413 (1999), 
hep-th/9902121. 

[305] S. R. Lau, Phys. Rev. D 60, 104034 (1999), gr-qc/9903038. R. B. Mann, 
Phys. Rev. D 60, 104047 (1999), hep-th/9903229. 

[306] R. Emparan, C. V. Johnson and R. C. Myers, Phys. Rev. D 60, 104001 
(1999), hep-th/9903238. 

[307] G. T. Horowitz and S. F. Ross, JHEP 9804, 015 (1998), hep-th/9803085. 

[308] A. Chamblin, R. Emparan, C. V. Johnson and R. C. Myers, Phys. Rev. 
D 60, 064018 (1999), hep-th/9902170. 

[309] M. Cvetic and S. S. Gubser, JHEP 9904, 024 (1999), hep-th/9902195. 

[310] L. J. Romans, Nucl. Phys. B 383, 395 (1992), hep-th/9203018. 

[311] M. Cvetic, M. J. Duff, P. Hoxha, J. T. Liu, H. Lu, J. X. Lu, R. Martinez­
Acosta, C. N. Pope, H. Sati, T. A. Tran, Nucl. Phys. B 558, 96 (1999), 
hep-th/9903214. 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


526 References 

[312] R. C. Myers and M. J. Perry, Annals Phys. 172, 304 (1986). 

[313] P. Kraus, F. Larsen and S. P. Trivedi, JHEP 9903, 003 (1999), hep-th/ 
9811120. 

[314] J. G. Russo, Nucl. Phys. B 543, 183 (1999), hep-th/9808117. 

[315] L. Susskind and E. Witten, The holographic bound in anti-de Sitter space, 
hep-th/9805114. 

[316] A very clear presentation of this sort of technology can be found in: 
P. K. Townsend, Phys. Lett. B 148, 55 (1984). 

[317] S. S. Gubser, Curvature singularities: The good, the bad, and the naked, 
hep-th/0002160. 

[318] J. Babington, N. Evans and J. Hockings, JHEP 0107, 034 (2001), 
hep-th/0105235. 

[319] L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, JHEP 9812, 022 
(1998), hep-th/9810126. 

[320] J. Distler and F. Zamora, Adv. Theor. Math. Phys. 2, 1405 (1998), hep-th/ 
9810206. 

[321] C. V. Johnson, K. J. Lovis and D. C. Page, JHEP 0105, 036 (2001), 
hep-th/0011166; JHEP 0110, 014 (2001), hep-th/0107261. 

[322] D. Z. Freedman, S. S. Gubser, K. Pilch and N. P. Warner, Adv. Theor. 
Math. Phys. 3, 363 (1999), hep-th/9904017. 

[323] K. Pilch and N. P. Warner, N = 1 Supersymmetric Renormalization Group 
Flows from JIB Supergravity, hep-th/0006066. 

[324] A. Khavaev, K. Pilch and N. P. Warner, Phys. Lett. B487, 14 (2000), 
hep-th/9812035 

[325] R. G. Leigh and M. J. Strassler, Nucl. Phys. B447, 95 (1995), hep-th/ 
9503121. 

[326] A. Karch, D. Lust and A. Miemiec, Phys. Lett. B 454, 265 (1999) hep-th/ 
9901041. 

[327] K. Pilch and N. P. Warner, Nucl. Phys. B 594, 209 (2001), hep-th/0004063. 

[328] A. Brandhuber and K. Sfetsos, Phys. Lett. B 488, 373 (2000), hep-th/ 
0004148. 

[329] D. Z. Freedman, S. S. Gubser, K. Pilch and N. P. Warner, JHEP 0007, 
038 (2000), hep-th/9906194. 

[330] 1. Bakas and K. Sfetsos, Nucl. Phys. B 573, 768 (2000), hep-th/9909041. 

[331] M. A. Shifman and A. 1. Vainshtein, Nucl. Phys. B 277, 456 (1986) [Sov. 
Phys. JETP 64, 428 (1986)]; Nucl. Phys. B 359, 571 (1991). 

[332] N. Evans, C. V. Johnson and M. Petrini, JHEP 0010, 022 (2000), hep-th/ 
0008081. 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


References 527 

[333] A. Buchel, A. W. Peet and J. Polchinski, Phys. Rev. D 63, 044009 (2001), 
hep-th/0008076. 

[334] L. Susskind, The quantum Hall fluid and non-commutative Chern Simons 
theory, hep-th/0101029; S. Hellerman and M. Van Raamsdonk, JHEP 
0110, 039 (2001), hep-th/0103179; A. P. Polychronakos, JHEP 0104, 
011 (2001), hep-th/0103013; J. H. Brodie, L. Susskind and N. Toum­
bas, JHEP 0102, 003 (2001), hep-th/0010105; O. Bergman, Y. Okawa 
and J. H. Brodie, JHEP 0111,019 (2001), hep-th/0107178; S. Hellerman 
and L. Susskind, Realizing the quantum Hall system in string theory, hep­
th/0107200. 

[335] N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B429, 263 
(1998), hep-th/9803315; Phys. Rev. D59, 086004 (1999), hep-th/9807344. 
I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. 
B436, 257 (1998), hep-th/9804398. 

[336] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999), hep-th/ 
9905221; Phys. Rev. Lett. 83, 4690 (1999), hep-th/9906064. 

[337] A. Sen and B. Zwiebach, JHEP 0003:002 (2000), hep-th/9912249. 

[338] A. Connes, M. R. Douglas and A. Schwarz, JHEP 9802, 003 (1998), 
hep-th/9711162; M. R. Douglas and C. M. Hull, JHEP 9802, 008 (1998), 
hep-th/9711165; C. S. Chu and P. M. Ho, Nucl. Phys. B 550, 151 
(1999), hep-th/9812219; Nucl. Phys. B568, 447 (2000), hep-th/9906192; 
V. Schomerus, JHEP 9906, 030 (1999), hep-th/9903205; A. Y. Alekseev, 
A. Recknagel and V. Schomerus, JHEP 9909,023 (1999), hep-th/9908040; 
JHEP 0005,010 (2000), hep-th/0003187. N. Seiberg and E. Witten, JHEP 
9909, 032 (1999), hep-th/9908142. 

[339] L. Alvarez-Gaume and E. Witlen, NucZ. Phys. B234, 269 (1983). 

[340] D. Tong, JHEP 0207, 013 (2002), hep-th/0204186. 

[341] O. J. Ganor and A. Hanany, Nucl. Phys. B474, 122 (1996), hep-th/ 
9602120. 

[342] N. Ishibashi, H. Kawai, Y. Kitzawa and A. Tsuchiya, Nucl. Phys. B498, 
467 (1997), hep-th/9612115. 

[343] See also: P. Bain, 'On the non-Abelian Born-Infeld action', hep-th/ 
9909154; F. Denef, A. Sevrin and J. Troost, Nucl. Phys. B581, 135 (2000), 
hep-th/0002180; A. Sevrin, J. Troost and W. Troost, Nucl. Phys. B603, 
389 (2001), hep-th/0101192. 

[344] M. Elau, J. Figueroa-O'Farrill, C. Hull and G. Papadopoulos, JHEP0201, 
047 (2002), hep-th/0110242. 

[345] M. Elau, J. Figueroa-O'Farrill, C. Hull and G. Papadopoulos, Class. 
Quant. Grav. 19, L87 (2002) hep-th/0201081. 

[346] R. R. Metsaev, Nucl. Phys. B625, 70 (2002), hep-th/0112044. 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


528 References 

[347] D. Berenstein, J. M. Maldacena and H. Nastase, JHEP 0204, 013 (2002), 
hep-th/0202021. 

[348] A. Adams, J. Polchinski and E. Silverstein, JHEP 0110, 029 (2001), 
hep-th/ 0108075. 

[349] J. A. Harvey, D. Kutasov, E. J. Martinec and G. Moore, Localized Tachyons 
and RG Flows, hep-th/0111154. 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


Index 

Page numbers in sloping type denote items treated in an insert. 

A-genus, 215-218, 220 
A-D-E classification 

of ALE spaces, 187, 289 
of discrete SU(2) subgroups, 289 
of simply laced Lie algebras, 112 
of singularities of K3, 386-390 

action 
Born-Infeld, 134 
Dirac-Born-Infeld, 135, 205 
Einstein frame, bosonic, 61 
Einstein-Hilbert, 5, 69, 234, 272, 

410 
Einstein-Hilbert-Maxwell, 224 
Euclidean, for gravity, 410 
for particle motion, 24 
from boundary counterterms in 

AdS, 449-452 
low energy effective, bosonic, 59 
low energy effective, heterotic, 

175-176 
low energy effective, superstrings, 

174-175 
Maxwell,7 
N ambu-Goto, 27 
of D-brane world-volume, 131-

140, 198,220 
of Euclidean Reissner-Nordstrom, 

416-417 
of Euclidean Schwarzschild, 414-

416 

529 

Polyakov, 29 
string frame, bosonic, 59 
a-model, 58 

adjoint representation, 109 
affine connection 

computed for Reissner­
Nordstrom, 226 

from derivatives of metric, 3 
affine coordinates, 379-390 

for torus T2, 379-383 
S2 or ClP'l example, 380 

amplitude 
D-brane exchange of graviton 

and dilaton, 146-147 
vacuum, cylinder, 142-144, 197-

200, 324-333 
vacuum, Klein bottle, 324-333 
vacuum, Mobius strip, 148-150, 

324-333 
annihilation operators 

coherent states and, 152 
in description of fermionic states, 

159, 231 
string modes as, 40 

anomalous dimensions, 481 
anomaly 

conformal, 45, 170 
conformal, and Virasoro central 

term, 45, 79 
for K3 orientifolds, 341-344 

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371


530 Index 

anomaly (cant.) 
gauge and gravitational, 160, 161, 

341-344 
Green-Schwarz mechanism, 

165-169, 206, 220, 344 
inflow mechanism, 219 
miraculous cancellation, 164, 183-

184, 342 
polynomials, 161, 162 
world-volume curvature 

couplings and, 206-220 
anti-de Sitter (AdS) 

AdS/eFT correspondence, 22, 
243, 441-466 
AdS/eFT correspondence and 

holography, 464-466 
AdS / eFT correspondence 

dictionary, see dictionary 
as a hyperbolic slice, 236 
as solution of gauged 

supergravity, 445, 467-471 
black holes in, 452-466 
charged black hole and, 455-459 
domain wall in, 469-471 
extremal black branes and, 442 
extremal black hole and, 233 
Freund-Rubin ansatz and, 237-

238,445 
holographic renormalisation group 

flow and, 467-471 
in various coordinate systems, 235 
local vs global coordinates, 

235-237 
antisymmetric tensor fields 

as generalisations of photon, 12 
coupling to branes, see under 

p-form 
in world-volume dynamics of 

~15-branes, 277-278 
in world-volume dynamics of 

NS5-branes, 268-270 
R-R sector, 163 

asymptotic freedom, 84 
asymptotically locally Euclidean 

(ALE) space, 187-191 
A-D-E classification of, 187, 289 

as Higgs branch, 285-289 
D-brane probes of, 282-291 
Eguchi-Hanson as, 187, 287 
Euler characteristic, 189 
Gibbons-Hawking metric and, 

187, 287 
hyper-Kahler property, 289 
hyper-Kahler quotient and, 289-

291 
T-duality of, 295-296 
topology of, 292-294 

Atiyah-Hitchin manifold 
as two-monopole moduli space, 

364-366 
hyper-Kahler property, 351, 365 
06-plane and, 351-352 
relation to Taub-NUT, 364-366 

Atiyah-Hitchin-Drinfeld-Manin 
(ADHM) construction, 304, 307 

attractor mechanism, 429 

;3-function 
of N = 1, D = 4 Yang-Mills, 481 
of N = 2, D = 4 Yang-Mills, 393 
of N = 4, D = 4 Yang-Mills, 373, 

441 
of string world-sheet O"-model, 

59 
RG flow and, 84 
Yang-Mills and asymptotic 

freedom, 84 
background fields 

D-branes in R-R, 315-318 
dielectric effect and R-R, 315-318 
in D-brane tension computation, 

145-147 
string propagation in, 12, 56-61 

basis 
coordinate vs orthonormal, 65-67 

Baiiados-Teitelboim-Zanelli (BTZ) 
black hole, see under black hole 

Bekenstein-Hawking entropy, see 
under entropy 

Bernoulli numbers, 216 
Bertotti-Robinson solution, 233 
bifundamental matter, 284, 288 
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BIons 
as BPS states, 138-140 
stretched D-branes and, 308 
stretched fundamental strings and, 

139-140 
black brane 

D-branes vs, 241-245 
extremal, see extremal black brane 
non-extremal, 238-240 

black hole 
Baiiados-Teitelboim-Zanelli 

(BTZ), 431 
BTZ and eFT dual, 431 
BTZ as near horizon geometry, 

429-430 
Bekenstein-Hawking entropy, 21 
charged, see also Reissner­

Nordstrom 
charged in AdS, from spinning 

branes, 455-459 
constructing extremal Reissner­

Nordstrom, 418-425 
constructing non-extremal 

Reissner-Nordstrom, 427-428 
construction from branes and 

momentum, 420-425 
D1/D5 bound states and, 425-427, 

433-439 
entropy, microscopic description, 

425-428, 433-434 
fiat, in AdS, 452, 458, 459 
holographic principle and, 465 
large vs small in AdS, 454, 461 
multicentre solutions, 232 
non-extremal Reissner-Nordstrom, 

see non-extremal Reissner-Nordstrom 
Reissner-Nordstrom, 225, 226, 

228-233, 412-414 
Reissner-Nordstrom and super-

symmetry, 231 
Reissner-Nordstrom-AdS, 459 
Schwarzschild, 225-228, 412-414 
Schwarzschild-AdS, 452 
temperature of, 412, 413, 452, 

454,460 
thermodynamics, 409-414 

thermodynamics in AdS, 459 
Bogomol'nyi condition, 312 
Bogomol'nyi-Prasad-Summerfield 

(BPS) states 
AdS domain wall as, 469-471 
BIons as, 138-140 
BPS monopole limit, 312 
D-branes as, 195-197 
extremal branes as, 240, 245 
extremal Reissner-Nordstrom as, 

228-232, 413 
monopoles as, 311-314 
no-force condition and, 232, 240, 

245 
O-planes as, 200 

bolt singularity 
of Atiyah-Hitchin manifold, 364-

365 
of Eguchi-Hanson space, 188 
of Euclidean black hole, 412 

bosonisation, 113-116, 163 
bound states 

of D-branes; mass formulae, 253 
of D-branes; various, 258-260 
of D1- and D5-branes, and black 

holes, 425-427, 433-439 
of F-strings and D-strings, 254-

255, 369-371 
dyons and, 314, 374-375 

of F-strings and D-strings, 
tension, 253, 254, 370, 371, 397 

of NS5-branes and D5-branes, 
375-376, 398 

SL(2, Z) and five-branes, 375-376 
SL(2, Z) and strings, 257, 263, 

369-371 
tension formula and Pythagoras, 

397 
boundary conditions 

closed string, 30 
fermions, R vs NS, 115, 156 
open string mixed Dirichlet and 

Neumann, 250 
open string Neumann, 30 

boundary counterterm prescription, 
450-452 
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boundary state, 150-154 
as coherent state, 151, 152 

brane distributions 
from spinning branes, 457 

branes ending on branes, see 
stretched branes 

Breitenlohner-Freedman bound, 448 
bundle 

instanton, 211, 212 
monopole, 209, 210 
normal,220 
tangent, 215, 216, 220 
toroidal or elliptic fibration of K3, 

383-392 

Cartan subalgebra, 110 
Casimir energy 

from boundary counterterm 
prescription, 452-453 

world-sheet zero point energy 
and,45-46 

central charge or extension 
as charge of gauge field, 232 
of supersymmetry algebra, 230-

231 
of Virasoro algebra, 41, 79 

Chan-Paton factors, 51-54, 159 
for oriented strings, 52 
for unoriented strings, 53-54 
orbifold action on, 283-284, 323 

characteristic classes, 210-216 
Chern, see Chern, class 
Euler, 215, 216 
Pontryagin, 214-215, 216 

chemical potential 
AdS/CFT correspondence and, 

455-464 
Chern 

character, 208, 219 
class, first, 208, 211 
class, first: of Dirac monopole, 

209, 210 
class, second, 211 
class, second: of instanton, 211, 

212 

Chern-Simons three-form, 167, 168, 
211 

circle 
closed strings on, 96-116 
fields on, see Kaluza-Klein 
self-dual radius of, 100-103 

Clifford algebra, 68, 116, 158 
coherent state 

boundary state and, 151, 152 
cohomology, 64, 210-216 
Coleman-Weinberg formula, 143, 144 
complex 

affine coordinates, 379 
coordinate transverse to seven­

brane, 376 
coordinates on world-sheet, 48 
coupling of D = 4 Yang-Mills 

theory, 393, 502 
coupling of type lIB, 368, 393, 395 

confining/ deconfining phase transition 
large N Yang-Mills and, 462-464 

conformal anomaly, 83 
conformal dimension, see conformal 

weight 
conformal factor 

world-sheet geometry and, 47-48 
conformal gauge 

fixing by reparams and Weyl, 36 
fixing with Faddeev-Popov 

ghosts, 85-87 
conformal ghosts, 85, 87, 157 

and critical dimension, 86-87 
conformal group, 72-73 

anti-de Sitter isometries and, 236, 
443 
four dimensions, 373, 441 
two dimensions, 73 

conformal invariance, 70-80 
as residual symmetry, 37 
at fixed point, 84 
of N = 1, D = 4 Yang-Mills, 

480-482 
of N = 2, D = 4 Yang-Mills, 393 
of N = 4, D = 4 Yang-Mills, 373, 

441 
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conformal weight, 79, 93 
constraints 

Virasoro, 39, 41 
coset 

as target space of scalars, 279, 
369,443 

cosmic string 
seven-brane as, 377 

cosmological constant 
Einstein's equations and, 233 
negative, see anti-de Sitter 
positive, see de Sitter 

Coulomb branch, 285, 346, 349, 
426 

Atiyah-Hitchin as, 351-352, 
364-366 
enhangon and, 362-366, 502 
fractional D-branes and, 291-292 
lifting by tilting D-branes, 298 
lifting by unwrapping D-branes, 

292-294 
of large N Yang-Mills, from 

holographic RG flow, 472-480 
Seiberg-Witten theory and, 

393-394, 502 
singularities on, 351-352 
stretched D-branes and, 297 
Taub-NUT as, 349-352 
touching Higgs branch, 351-352 

covariantly constant spinor, see Killing 
spinor 

creation operators 
coherent states and, 152 
in description of fermionic states, 

159, 231 
string modes as, 40 

critical dimension 
bosonic string, 43-44 
heterotic string, 170 
supersymmetric string, 157 

critical string theory, see citical 
dimension 

current algebra, see Lie algebras, affine 
curvature 

couplings in DBI action, 222-223 

extrinsic, see extrinsic curvature 
two-form, 66, 67-69 
world-volume couplings, see also 

world-volume 
cylinder 

amplitude, see amplitude, 
vacuum 

fundamental region, 148 

D-flatness condition, 285, 303-304, 
307 

D-manifolds, 191 
D-term, 285, 303-304, 307 
de Sitter 

and the sphere, 234 
decoupling limit, 349, 363, 441 

AdS/CFT and, see under anti-de 
Sitter 
of non-extremal D3-brane 

solution, 452 
of spinning branes, 456 
on D3-brane supergravity 

solution, 441-442 
Dedekind's rl-function, 91, 378 
deficit angle, 90 

of'LN orbifold, 388 
of bolt, 188 
of Euclidean black hole's bolt, 

412, 460 
of nut, 350, 351 
ofseven-branes, 378-379, 388-390 

dictionary, AdS / CFT 
action and energy-momentum 

tensor, 449-452 
AdS3 and D = 2 CFT, 431 
boundary metric, 446-447 
Breitenlohner-Freedman bound, 

448 
BTZ black holes and D = 2 CFT 

sectors, 431 
chemical potential, 455-464 
fields and operators, 447-449 
finite temperature and black 

holes, 452-453 
Kaluza-Klein reduction, 449 
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dictionary, AdS / CFT (cant.) 
partition function, 447, 449 
semi-classical action, 449 
spherical harmonics, 448 
symmetries and isometries, 443 
ultraviolet and infrared, 446 

dielectric effect, 314-321 
background R-R fields and, 

315-318 
non-Abelian Dirac-Born-Infeld 

and, 314-316 
non-Abelian R-R couplings and, 

314-316 
differential forms, see p-forms 
dilatations, 72, 441 
dilaton 

as massless closed string mode, 
12 

propagator, 146 
string coupling and, 12, 60 

dilute gas limit 
non-extremal black holes and, 

427-428 
dimension 

critical, see critical dimension 
eleventh, and Kaluza-Klein, 271-

273, 274, 346-348, 400-404 
eleventh, from brane world-volume, 

269, 277-278, 346-348 
eleventh, from strong coupling, 

271-273, 275, 400-404 
of spacetime, and conformal ghosts, 

86-87,170 
of spacetime, for bosonic string, 

43-44, 86-87 
of spacetime, for heterotic strings, 

170 
of spacetime, for strings, 14 
of spacetime, for supersymmetric 

strings, 157, 170 
Dirac genus, see A-genus 
Dirac monopole, see bundle, monopole 
Dirac string, 201-202, 210 
Dirac-Born-Infeld, see action, Dirac-

Born-Infeld 

Dirac-Nepomechie-Teitelbiom charge 
quantisation, 201-202 

for D-branes, 202 
for M-branes, 277 

discrete light cone quantisation 
(DLCQ) 
matrix string theory and, 407 
matrix theory and, 403 

discriminant of cubic, 380-383, 
387-390 

dissolving D(p - 2) into Dp, 206, 294 
domain wall 

in AdS, see holographic 
renormalisation group 

duality 
Hodge, see Hodge duality 
S-, or strong/weak coupling; for 

field theory, see field theory duality 
S-, or strong/weak coupling; for 

string theory, see string duality 
strong/weak coupling, see strong/ 

weak coupling duality 
T-, or target space, see T-duality 
U-, see U-duality 

Dynkin diagram, 111 
extended, for simply laced Lie 

algebras, 288 
for simply laced Lie algebras, 112 
U-duality groups and, 280 

dyons 
D /F-string bound states and, 314, 

374-375 

Eguchi-Hanson space, 187, 188 
Euler charcteristic of, 188 
Gibbons-Hawking metric and, 

287 
eleven dimensional supergravity, see 

also dimension, eleventh, 261 
bosonic form of, 272 
string duality and, 271-273 

eleventh dimension, see dimension, 
eleventh 

elliptic fibration, 383-392 
energy-momentum tensor 
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and Einstein's equations, 3 
as generator of conformal 

transformations, 76-78 
fermionic part, 156 
for electromagnetism, 7, 225 
from boundary counterterms in 

AdS, 449-452 
in two dimensions, 35-36, 38-42, 

76-82 
of excision, 360-362 
perfect fluid form, 234, 451 
string world-sheet, 35-36, 38-42 
Virasoro algebra and, see 

Virasoro 
enhangon 

as a filter, 439 
black hole and, 433-439 
black hole horizon and, 439 
BPS monopole and, 356-359 
Coulomb branch moduli space and, 

362-366, 502 
mechanism, 358-362 
positivity of coupling and, 502 
positivity of tension and, 362, 

502 
second law of theormodynamics 

and, 437-439 
enhanced gauge symmetry 

affine Lie algebras and, 113 
F-theory and, 386-390 
from D4-branes wrapped on K3, 

358-359 
from D5-branes wrapped on K3, 

359 
from M-theory on K3, 352 
from type IIA on K3, 298, 400 
heterotic string and, 171,386-390 
of coincident NS5-branes, 268-

270, 299 
of string on circle, 100-103, 358 
small instantons and, 305-306 

entropy 
from Euclidean path integral, 411 
of black hole, Higgs branch and, 

426,434 

of Reissner-Nordstrom, 417, 
424 
of Schwarzschild, 416 

Euclidean, see also signature 
path integral, 410, 411 
path integral and temperature, 

410 
quantum gravity, 410 

Euler angles, 180 
Euler characteristic 

of ALE space, 189 
of graphs, 444 
ofK3,187-189 
of sphere S2, 216 
of torus T2, 380 

Euler class, 215 
excision techniques, 360-362 

energy-momentum tensor, 
360-362 

exponential corrections 
Atiyah-Hitchin manifold and, 

365 
of Taub-NUT, as instanton 

corrections, 363 
exponential map, 47 
exterior derivative, 64 
extremal black brane, 240-246 

distributions of, 248 
extremal black hole vs, 240 
multicentre solutions and, 240 
near horizon geometry, 241 
no-force condition and, 240, 245 

extremal black hole, see also extremal 
Reissner-Nordstrom 

extremal Reissner-N ordstrom 
as BPS state, 228-232, 413 
as interpolating solution, 233 
construction from branes and 

momentum, 418-425 
in AdS, 460 

extrinsic curvature, 229 
from wrapping branes, 360 
of Reissner-Nordstrom, 416 
of Schwarzschild, 414 
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F-theory, 263, 367 
enhanced gauge symmetry and, 

386-390 
from M-theory, 394-396 
orientifold limit of, 390-392 
torus and, 394-396 
twelve dimensions and, 394 

Faddeev-Popov ghosts, 85-87, 
see conformal ghosts 

Fayet-Iliopoulos term, 286 
fermionisation, 113-116 
fermions 

in curved spacetime, 68 
R vs NS boundary conditions, 115, 

156 
Feynman graphs 

of large N gauge theory, 444 
fibre bundle, see bundle 
field equations 

Einstein's gravitational, 3 
from vanishing of world-sheet 

p-function, 59 
field theory duality 

Montonen-Olive, 374-375 
5L(2, Z) and, 373-375 

fixed points 
5L(2, Z); fundamental domain 

and,371 
of 5L(2, Z); fundamental domain 

and,90 
of orb if old, 117-119, 126, 388-390 
of RG flows, 84 
orientifolds as, 126 

flat direction, 83 
fractional D-branes, 291-292 

from wrapped D-branes, 
292-294 

T-duality to stretched D-branes, 
296-300 

frame 
dual tangent, 67, 220 
inertial, 6 
string vs Einstein, 60 
tangent, 61-69, 220 

Freund-Rubin ansatz, 237-238 

fundamental domain, 89, 379 
j-function and, 382, 387-390 
5L(2, Z) fixed points, 90 
5L(2, Z) fixed points, 371 
special orbifold points, 90, 371 

fuzzy sphere, 317-318 

gauge fields 
as massless open string modes, 12 

gauge theory/geometry 
correspondence, 243 
AdS/eFT, see anti-de Sitter 

geodesic 
analysis of repulson, 354-356 
equation, 2 

gerbes, 270 
ghosts 

Faddeev-Popov, see conformal 
ghosts 

negative norm states, 43 
Gibbons-Hawking boundary term, 

410, 450, 462 
Gibbons-Hawking metric, 187 

as moduli space metric, 287 
Eguchi-Hanson space and, 187, 

287 
from D-brane probe, 287 
hyper-Kahler property, 287 

Gibbs 
thermodynamic potential, 

416, 462 
Gliozzi-Scherk-Olive (GSO) 

projection 
D-string and, 262, 302 
heterotic string and, 172, 265 
superstring and, 158-159 
tachyon and, 158 

graviton 
as massless closed string mode, 12 
linearised gravity and, 7-11, 145-

147 
propagator, 146 

Green-Schwarz form, 262, 405 
Green-Schwarz mechanism, see under 

anomaly 
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Hamiltonian 
Euclidean path integral and, 410 
of matrix string theory, 405 
of matrix theory, 402 
on world-sheet, 39 

Hanany-Witten, 300 
Hawking temperature, see black hole, 

temperature of 
heterotic strings, see supersymmetric 

strings 
Higgs branch, 346, 349 

ALE space as, 285 
black hole entropy and, 426, 434 
touching Coulomb branch, 

351-352 
Hirzebruch i-polynomial, 215-220 
Hodge duality, 65 

D-branes and, 196, 198, 201, 
348 
fundamental string and 

NS5-brane, 198 
M-branes and, 276 
on D2-brane world-volume, 278, 

347 
on K3 wrapped D6-brane world­

volume, 362-363 
holographic principle, 467 

a rough statement of, 22, 464-466 
AdS/CFT correspondence and, 

464-466 
black holes and, 464-466 
remarks, 508 

holographic renormalisation group, 
467-471 

brane distributions and flow 
geometries, 478-480 

domain wall and, 469-471 
fixed points and, 467-471 
from gravity, 467-471 
Kahler potential of 

supersymmetric Yang-Mills, 
489-493 

Hopf fibration 
53: 51 '----+ 52; and Taub-NUT, 

349 

53: 51 '----+ 52, 209, 210 
57: 53 ,----+ 54, 211, 212 

horizon 
as null surface, 228 
enhan<;on and, 439 
flat vs round, 452, 458 
geometry near, 233, 241, 429-430, 

441-442 
of black branes, 239, 240 
of BTZ black hole, 431 
of Reissner-Nordstrom, 228, 412, 

419-420, 424, 439 
of Reissner-Nordstrom-AdS, 460 
of Schwarzschild, 227-228, 412 
of Schwarzschild-AdS, 452 

hyper-Kahler property 
of ]R4, 289 
of ALE spaces, 289 
of Atiyah-Hitchin manifold, 351, 

365 
of Gibbons-Hawking metric, 287 
of K3 manifold, 289 
of Taub-NUT metric, 349 

hyper-Kahler quotient, 289-291 
ADHM construction as, 304 
ALE spaces and, 289-291 

hypersurface technology, 229 

induced metric 
on World-sheet, 27 
on World-volume, 131-132 

inertial frame, 6 
infinite momentum frame (IMF) 

matrix theory and, 402-404, 
407 

inner product, 65 
instanton 

contributions to moduli space, 
363, 365 

core size, 212,267,305 
corrections of Taub-NUT, 363, 

365 
D(p+4)-Dp system and, 208, 300-

301 
D-brane as, 208, 300-306 
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instanton (cant.) 
from D-brane probe, 301-305 
in large N gauge theory, see 

under large N gauge theory 
moduli space, and black hole 

entropy, 426, 434 
NS5-brane as, 267 
number, 212 
positivity of Coulomb branch 

metric and, 363, 365, 393, 394, 502 
positivity of gauge coupling and, 

363, 365, 393, 394, 502 
world-volume coupling, 208 
zero core size, see small 

instantons 
intercept 

critical dimensions and, 42-44 
numerical value, 43-44, 157, 

170 
interpolating solution 

extremal black branes as, 
442 
extremal black hole as, 233 
kink as, 18 

invariant polynomials, 210-216 
isotropic coordinates, 226-227 

j-function 
fundamental domain and, 382, 

387-390 
modular invariance and, 382, 

387-390 
Jacobi 

identity for Lie algebras, 108 
19-function identities, 328 
19-functions, 327 
19-function identities and super­

symmetry, 198 

K-theory 
cohomology vs, 221 
other remarks, 507 
tachyon condensation and, 220-

221 
world-volume couplings and, 220-

221 

K3 manifold, 322-344 
compactification and black hole, 

432-439 
elliptic, moduli space of, 383 
enhanced gauge symmetry from 

wrapped branes, 298, 352, 399-400 
Euler characteristic of, 187-191 
heterotic string on, 343 
hyper-Kahler property, 289 
Kodaira classification of 

singularities, 390 
string duality and, 186, 343 
topology of, 184-185, 187-191 
torus or elliptic fibration, 383-392 
type IIA superstring on, 184-185 
various orbifold limits of, 189-191, 

388-390 
K3 orientifolds, 191, 322-344 

anomalies of, 341-344 
Kahler potential 

of N = 1 D = 4 Yang-Mills, 489-
493 

Kac-Moody algebra, see Lie algebras, 
affine 

Kaluza-Klein, 94-96 
charged black holes and, 455-459 
DO-branes and string duality, 271, 

400-404 
in construction of D = 5 black 

hole, 421-425 
monopole, 357 
monopole; six-brane as, 348-352 
reduction formulae, 95-96, 274 
sphere reduction and gauged 

supergravity, 443-445 
type IIA from eleven dimensions, 

271-273, 274, 400-404 
Killing 

spinor, 232, 233 
vectors, 225-228 

kink solution, 18 
Klein bottle 

amplitude, see amplitude, 
vacuum 

fundamental region, 148 
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Kodaira 
classification of singularities of 

elliptic K3 manifold, 390 

i-polynomial, see Hirzebruch 
large N gauge theory 

as a string theory, 444 
confining/ deconfining phase 

transition, 462-464 
Feynman graphs, 444 
instantons in, 365-366 
RG flow from gravity, 467-471 
't Hooft coupling, 363, 365, 442, 

444 
lattice 

Euclidean signature, 171-172 
even, self-dual, 104, 106, 171-172, 

176-177 
Lorenzian signature, 103, 106, 

176-177 
modular invariance and even, 

self-dual, 103, 106 
Laurent expansion 

of open and closed strings, 
48 

left-invariant one-forms, 180 
level matching 

from translational invariance, 
42,91 

modular invariance and, 91 
of closed string modes, 42 

Lie algebras 
adjoint representation of, 

109 
affine, 102 
Cartan subalgebra, llO 
classical, III 
Lie groups and, 108-ll1 
simple, 109 
simply laced, 112 
Yang-Mills and, 66 

linearised gravity 
graviton from, 7-11, 145-147 

Lorentz group, 68 
as a gauge group, 67-68 

inertial frames and, 6 
representation using gamma 

matrices, 68, 159 
tangent frame and, 62, 67-68 

M-branes 
descending to D- and NS5-branes, 

277-278 
descending to odd D-branes and 

NS5-branes, 396-399 
Dirac-N epomechie-Teitelbiom 

charge quantisation, 277 
supergravity solutions, 276-277 
tensions, 277 

M-theory, 367, 400-408 
and strongly coupled strings, see 

string duality 
eleven dimensional supergravity 

and, 271-273 
F-theory and, 394-396 
matrix theory formulation of, 20, 

400-408 
Mobius strip 

amplitude, see amplitude, vacuum 
fundamental region, 148 

magnetic monopole, see monopole 
Majumdar-Papapetrou solutions, 

232 
matrix string theory, 404-408 

Hamiltonian of, 405 
interactions from irrelevant 

operator, 407 
long strings from twisted sector, 

406 
orbifold of (Jl{8)N by SN, 

405-407 
matrix theory, 367, 400-408 

and non-commutativity of 
spacetime, 20, 403 

Hamiltonian of, 402 
toroidal compactification of, 404-

408 
Maurer-Cartan one-forms, 180 
McKay correspondence, 187, 289 
Melvin solution, 320 
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mode expansion 
of open and closed strings, 37, 48 
various open string boundary 

conditions, 250 
modular invariance, 91, 103-104, 116, 

158 
even self-dual lattices and, 103, 106 
j-function and, 382, 387-390 
level matching and, 91 
seven-brane metric and, 378-379 

modular transformations, 88-89, 145, 
379 

as generators of SL(2, Z), 88 
fundamental domain and, 89, 379 

moduli space 
Coulomb branch, see Coulomb 

branch 
Higgs branch, see Higgs branch 
of BPS monopoles, 363-366 
of elliptic K3 manifolds, 383 
of instantons, and black hole 

entropy, 426, 434 
moduli space metric, see also moduli 

space 
from Dp-brane probe of p-brane, 

245-246 
from D-brane probe of RG flow 

geometry, 476, 487, 488, 493, 500, 
502 

from Dl-brane probe of ALE 
space, 286-289 

instanton contributions to, 363, 
365 
of D = 2 + 1 susy gauge theory, 

348-352 
monodromy 

SL(2, Z) and, 376-382, 384-396 
monopole 
BPS saturated, 311, 312,313, 

314, 363-366 
BPS, enhan<;on and, 356-359 
D-brane as, 306-314 
Dirac, see bundle, monopole 
H-, as wrapped N5-brane, 357 
Kaluza-Klein, 357 

Kaluza-Klein; six-brane as, 
348-352 

moduli space of, 363-366 
't Hooft-Polyakov, 310 

Montonen-Olive duality, 374-375 
multiple D-branes 

boundary conditions, 249-252 
unboken supersymmetry, 252-254 

Myers effect, 314-321 

Nahm 
monopole data, 311 
monopole equations, 307 

naked singularity 
as limit of charged black hole in 

AdS, 460 
enhan<;on and, see enhan<;on 

mechanism 
from holographic RG flows, 495 
repulson as, 354 

near-horizon, see horizon, geometry 
near 

Neveu-Schwarz fermions, 115, 156 
Newton's constant 

from low energy effective action, 
61, 175 

relation to central charge of 2D 
CFT,431 

relation to large N gauge theory 
quantities, 443 

no-force condition, see Bogomol'nyi­
Prasad-Summerfield states 

non-Abelian 
Dirac-Born-Infeld, 136-137 
Dirac-Born-Infeld, and dielectric 

effect, 314-316 
gauge theory, see also Yang-Mills 
R-R couplings, 221-222 
R-R couplings, and dielectric 

effect, 314-316 
Taylor expansion, 316 
tensor multiplet on coincident 

NS5-branes, 270 
vector multiplet on coincident 

NS5-branes, 268 
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non-commutative geometry 
fuzzy sphere and, 317-318 
matrix theory and, 20, 403 
remarks, 508 

non-compact Lie groups 
by continuation, 111 
T-duality and, 108 
U-duality and, 279, 280 

non-extremal Reissner-N ordstrom 
construction from branes and 

momentum, 427-428 
dilute gas and, 427-428 

non-perturbative strings, see under 
duality 

and extended objects, 17 
normal ordering, 40 

time ordering vs, 76 
NS-NS sector, 160 
NS5-brane, 241 

as dual of fundmental string, 
198 

as instanton, 267 
branes ending on, 268-270, 297 
coincident, 268-270 
from D5-brane, 266 
heterotic, 267-268 
T-dualityof, 267-268 
type II, 268-270 
world-volume dynamics, 268-270 

nut singularity, 350 
of Taub-NUT metric, 350-352 

operator 
irrelevant, and matrix string 

theory, 407 
marginal, 83, 84 
relevant and irrelevant, 84 
string state correspondence, 

48-51 
vertex, see vertex operator 

operator product expansion (OPE), 
75-76 

operators 
spherical harmonics and, 448, 478 
states and, 74-75 

orbifold, 117 
action on Chan-Paton factors, 

283-284, 323 
blow-up to smooth manifold, 185 
fixed point, 117-119, 126, 

388-390 
from T-duality of Type I, 193 
K3limit for superstring, 179-191 
of (~8)N by SN, and matrix string 

theory, 405-407 
of circle (bosonic), 117 
of superstring on T 4 , 179-191 
points of fundamental domain, 

90,371 
superstring on ~4 /7L2' 282 
T 4 /7L2 spectrum, 180-184, 336-

339 
orientifold 

as orbifold fixed point, 126, 193-
194 
at strong coupling; 06, 352 
at strong coupling; 07, 392, 394 
at strong coupling; 08, 275, 277 
from T-duality, 125-126, 193-194 
group, 126, 166, 194, 324 
limit of F-theory, 390-392 
making type I from type lIB, 165-

166, 201 
parity and, 125 
tension of 0-plane, see tension 
world-volume curvature 

couplings, 217, 220 
oxidation 

of RG flow geometries to ten 
dimensions, 475, 486-487, 499 

reduction as, in compactified 
matrix theory, 405, 408 

reduction vs, 405, 408 

(p, q)-five-branes, see bound states of 
NS5-branes and D5-branes 

(p, q)-seven-branes, 384-386 
(p, q)-strings, see bound states of 

F -strings and D-strings 
p-branes, see black branes 
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p-forms, 63-65 
Dp-branes charge of, 197-200 
NS-NS coupling to F-string and 

NS5-brane, 198 
Op-planes charge of, 200 
R-R coupling to p-branes, 196, 

198 
R-R coupling to p-branes, 

non-Abelian, 221-222 
Yang-Mills theory and, 66 

parity 
right-handed, and T-duality, 100 
world-sheet combined with 

spacetime, 125 
world-sheet, closed strings, 54, 

165 
world-sheet, open strings, 52-54 

partition function, 87-93 
at bosonisation radius, 113-115 
black hole entropy and, 427 
of closed string on circle, 103-104 
of open string, 142-144, 326-330 
of orbifolded circle, 118 
simple computation, 92 

Pauli matrices, 283 
perfect fluid, 234, 451 
periodic time 

temperature and, 410 
phase transitions 

AdS/eFT correspondence and, 
462-464 

confining/ deconfining, 462-464 
physical state conditions, see Virasoro 

constraints 
Poincare 

form of AdS, 235, 237 
group, 72, 236, 441 

Poisson brackets 
of classical strings, 38 
replaced by commutators, 40 

Poisson resummation formula, 106, 
107 

Poisson's equation 
seven-branes and, 378 

Pontryagin class, 214-215 

positivity of coupling 
enhangon and, 502 
instantons and, 363, 365, 393, 394, 

502 
positivity of metric 

instantons and, 363, 365, 393, 394, 
502 

positivity of tension 
enhangon and, 362, 502 
instantons and, 502 

pp-wave, 423 
and gauge/string duals, 503 
in construction of D = 5 black 

hole, 422 
primary field, 74, 79 
probing 

black hole with D-branes, 434-436 
extremal p-branes with D(p - 4)­

branes, 345-348 
extremal six-branes with 

D2-branes, 346-348 
extremal black p-branes with 

Dp-branes, 243-246 
holographic RG flows with 

D-brane, 475-478, 487-493, 
500-502 
of ALE space by D-branes, 

282-291 
of Dp-D(p+4) system by D-brane, 

301-305 
wrapped six-branes with wrapped 

D6-brane, 356-359 
propagator 

closed string, 153 
dilaton, 146 
graviton, 146 

Pythagoras 
D-brane bound state tension 

formula and, 397-399 

quasi-primary field, 74 
quiver diagram, 284, 288 

Ramond fermions, 115, 156 
Reissner-Nordstrom, see also under 

black hole 
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embedded in string theory, 424 
extremal, see extremal Reissner­

Nordstrom 
renormalisation group flow, 84 

AdS/CFT and, 467-471 
reparametrisation invariance 

of classical string action, 29, 31, 
36 

repulson geometry 
excision of, 360-362 
geodesic analysis, 354-356 
naked singularity and, 354 
wrapped D-branes and, 354-356 

Revolution 
First Superstring, 15, 169-170 
Second Superstring, 15, 17, 170, 

261, 508 
right-invariant one-forms, 180 
Romans' massive supergravity, 

275 
roots 

of cubic, torus and, 380-383, 
387-390 

simple, llO 
R-R sector, 163 
R-R charge 

D-branes and, 197-199, 201 
p-branes and, 238-240 
orientifolds and, 200 

5L(2, C) invariance, 73 
fixing with 3 points, 74, 383 

5L(2, Jl{) invariance, 73 
fixing with 3 points, 74 

5L(2, Jl{) 
vs 5L(2, Z), 368 
supergravity action and, 368-369 

5L(2, Z) 
and bound states of F -strings and 

D-strings, 257, 263, 369-371 
bound states of NS5-branes and 

D5-branes and, 375-376 
field theory duality and, 373-375 
fundamental domain and, 89, 379 

generators, see modular 
transformations 

monodromy or jump, seven-
branes and, 376-382, 384-396 
string duality and, 263, 367-400 
torus and, 88-89 
U-duality and, 278 

scaling dimension, 79 
Schrodinger picture 

Euclidean path integral and, 410 
Schwarzian derivative, 80 
Schwarzschild, see under black hole 

mass from Euclidean action, 415 
Seiberg-Witten theory 

N = 2 D = 4 Yang-Mills, 353, 
393, 394, 502 

Coulomb branch and, 393-394, 
502 
enhan~on and, 502 
from F -theory, 393-394 
torus and, 393-394 

semiclassical quantum gravity, 4ll-412 
signature 

Euclidean, 410, 412 
Euclidean de Sitter as sphere, 234 
Euclidean world-sheet, 47 
mostly plus convention, 2 
of lattice, Euclidean, 171-172 
of lattice, Lorenzian, 103, 106, 

176-177 
singularity 

conical, see deficit angle 
of black branes, 239, 240 
of Reissner-Nordstrom, 228 
of Schwarzschild, 228 

small instantons 
Es x E s , 305-306 
enhanced tensor gauge symmetry, 

305 
enhanced vector gauge symmetry, 

305 
50(32),305 

smeared brane, 206, 248, 295 
special conformal transformations, 72, 

441 
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spherical harmonics 
operators and, 448, 478 

spin connection, 67-69 
fermions and, 68 
Killing spinor and, 231 

spin field, 163 
spinning branes 

brane distributions from, 457 
charged black holes from, 455-459 

states 
operators and, 74-75 
spurious; spacetime gauge 

invariance and, 43-44 
vertex operator correspondence, 

48-51 
static gauge, 134, 136 
static solutions, 227 
Stefan-Boltzmann law 

AdS/eFT correspondence and, 453 
stress tensor, see energy-momentum 

tensor 
stretched D-branes, 294-300, 375 

as monopoles, 306-314 
BIons and, 308 
T-duality to fractional D-branes, 

296-300 
wrapped D-branes and, 294-300 

stretched fundamental strings, 314, 375 
string coupling 

dilaton and, 12, 60 
from eleven dimensions, 273, 395 
large N gauge theory and, 443, 

444 
world-sheet topology and, 34 

string duality 
D = 10 supergravity and, 

175-176 
D = 6 supergravity and, 186 
Es x Es heterotic +-+ 1\1, 273-276 
50(32) heterotic +-+ type I, 264-

265 
dual branes and, 265-270, 

277-278 
eleven dimensional supergravity 

and, 271-273 

F-string +-+ D-string, 262-263 
heterotic +-+ heterotic in D = 6, 

343 
heterotic +-+ type IIA in D = 6, 

186,298,357,358 
heterotic +-+ F in D = 8, 383-384, 

390-392, 399 
heterotic +-+ 1\1 in D = 7, 399-400 
heterotic +-+ type IIA in D = 6, 

400 
K3 manifold and, 186, 343, 383-

384, 399, 400 
1\1-theory and, 17 
5L(2, Z) and, 263, 367-400 
type IIA +-+ 1\1, 271-273 
type lIB +-+ type lIB, 261-263, 

367-400 
string field theory 

and background independence, 15 
and non-perturbative issues, 15 
matrix string theory as, 407 
tachyon condensation and, 507 

string network, 371-372 
three-string junction and, 371 

string spectrum 
infinite tower of excitations, 11 
massless sector, 12 
NS-NS sector, 160 
NS-R and R-NS sectors, 163 
of heterotic string, 172 
of type II strings, 160-164 
on circle, 98 
perturbative, 11 
R-R sector, 163 

stringy cosmic string, 377 
strong coupling 

and gauge theory, 21 
fate of strings, 17, see also string 

duality 
strong/weak coupling duality 

for field theory, see field theory 
duality 

for string theory, see string 
duality 

structure constants, 108 
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supergravity 
gauged, and anti-de Sitter, 443-

445, 467-471 
gauged, and sphere reductions, 

443-445 
SL(2,~) and, 278 
SL(2,~) invariant form, 368-369 
ten dimensional, 174-176 

superpotential 
of supergravity, for AdS domain 

walls, 471 
supersymmetric strings 

heterotic, construction, 169-174 
type I and type II, construction, 

155-169, 201 
supersymmetry multiplets 

long, 231 
N = 1 in D = 10, 159 
N = 1 in D = 6, 341 
N = 2 in D = 10, 163 
N = 2 in D = 4, 230 
N = 2 in D = 6, 183 
short, 231, 255 

surface gravity 
black hole temperature and, 413 

symmetric polynomials, 213 

B-angle 
in N = 2, D = 4 Yang-Mills, 373, 

393,494 
't Hooft coupling, see under large N 

gauge theory 
T-duality, 19, 94-128 

action on dilaton, 129 
action on Dirac-Born-Infeld, 136 
action on R-R fields, 193 
as O(d, d + 16, Z), 177 
as O(d, d, Z), 108 
as right-handed parity, 100, 105, 

125, 192 
boundary conditions and, 

120, 125 
discovering D-branes, 119-121, 193 
discovering orientifolds, 125-126, 

193 

in background fields, 129-131, 
193 
minimum distance and, 19 
of ALE spaces, 295-296 
of black brane solutions, 246-248 
of closed strings, 99-108 
of fractional D-branes, 296-300 
of heterotic strings, 177, 194-195, 

273 
of NS5-brane, 267-268 
of NS5-branes, 295-296 
of open strings, 119-125 
of stretched D-branes, 296-300 
of tilted brane, 133-135, 205-206, 

294 
of type I superstrings, 193-194 
of type II superstrings, 192-193 
type IA vs type IE, 193, 273 

tachyon 
condensation, 220-221 
of bosonic string, 42 
removal by GSO projection, 158 

tadpole cancellation, 201, 324, 330-336 
tangent space, see frame, tangent 
Taub-NUT metric 

as moduli space metric, 348-352 
hyper-Kahler property, 349 
instanton corrections, 363, 365 
K3 wrapped six-brane and, 

363-366 
negative mass parameter, 363 
relation to Atiyah-Hitchin 

manifold, 364-366 
six-brane and, 348-352 

temperature 
from Euclidean path integral, 

410 
of black holes in AdS, 454 
of BTZ black hole, 431 
of Reissner-Nordstrom, 412 
of Reissner-Nordstrom-AdS, 460 
of Schwarzschild, 413 
of Schwarzschild-AdS, 452, 454 
periodic time and, 410 
surface gravity and, 413 
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tension 
of bound states of NS5-branes 

and D5-branes, 376 
of D-brane; recursion relation, 132 
of D-branes in bosonic string 

theory, 142-147 
of D-branes in superstring theory, 

197-200 
of F /D-string bound state, 253, 

254, 370, 371 
of fundamental strings, 11, 32 
of O-planes in superstring theory, 

200 
of orientifold or 0-plane, 148-150 

tensionless 
branes, 358-359, 362 
strings, 270, 359 

thermodynamics 
entropy from Euclidean path 

integral, 411 
first law, for black holes, 417 
free energy, 462 
Gibbs potenial, 416, 462 
Hawking-Page phase transition, 

462,465 
of black holes, 409-414 
phase transitions in AdS/eFT, 

462-464 
potential, 411 
second law, and enhan<;on, 437-

439 
second law, for black holes, 417 
third law, for black holes, 417 

three-string junction, 255-258 
string network and, 371 

throat, see horizon, geometry near 
tilted brane 

and Born-Infeld action, 133-135 
dissolved brane and, 205-206, 294 
F-flux coupling and, 205-206, 294 

toroidal compactification 
heterotic string and, 171, 383-

390, 399-400 
moduli space of, for bosonic 

string, 108 

moduli space of, for heterotic 
string, 177 
of bosonic strings, 104-108 
of heterotic string, 176-177 
of matrix theory, 404-408 
of superstrings, 178-179 
U-duality and, 279, 280 

torsion, 67 
torus 

compactification, see toroidal 
compactification 
F-theory and, 394-396 
fibration of K3 manifold, 383-392 
in affine coordinates, 379 
maximal, of Lie algebra, 110 
moduli space of, 88-89 
roots of cubic and, 380-383, 

387-390 
Seiberg-Witten theory and, 

393-394 
special shapes, 90 
Weierstrass form, 379-383 

transition functions, 208, 209, 211 
twisted sector 

Fayet-Iliopoulos terms and, 286 
long matrix strings and, 406 
of (JR8)N /SN orbifold, 406 
of 5 1 /7L 2 orbifold, 118-119 
of T4/7L2 orbifold, 181-183 

U-duality, 278-281 
bound states and, 279-281 
near horizon geometry and, 429 
non-compact Lie groups, 279, 

280 
5L(2,7L) and, 278 
toroidal compactification and, 

279, 280 
type II on T 5 , 278-279 

unorientable 
closed strings, 54 
open strings, 52-54 
orientifolds, see orientifolds 
world-sheet diagrams, 55-56, 57 

UV /IR connection, 143, 446, 450 
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vacuum energy, see zero point energy 
vacuum interpolation, see 

interpolating solution 
vertex operator, 48-51 

correspondence to string states, 
48 
enhanced gauge symmetry and, 

101, 102 
for R-R states, 163 
of G IlU , E llu , <P, 50, 58 
of gravitino, 158, 163 
of tachyon, 50 
of vector gauge field, 51, 52 

vielbein, see frame, tangent 
Virasoro 

algebra, and stress tensor, 39, 79 
algebra, supersymmetric, 157 
central charge or extension, 41, 

44,45,79 
constraints, 39, 41, 157, 163 
zero mode and mass spectrum, 

40-42, 157 
volume element, 69 
volume form, 64 

wedge product, 63 
Weierstrass 

form of torus T2, 379-383 
weight vector, 110 
Wess-Zumino coupling, see p-forms, 

R-R coupling 
Weyl invariance 

of classical string action, 30, 36 
of world-sheet a-model action, 59 

Wick 
contraction, 76, 81-82 
rotation, 410 

Wilson lines 
Chan-Paton factors and, 121-123 
D-brane positions and, 121 
fractional momentum and, 121, 

122 
on a circle, 122 
50(16) x 50(16), for heterotic 

T-duality, 194-195,273 

world-line 
of particle, 2, 24 

world-sheet 
of string, 13, 27 
various possible topologies, 57 

world-volume 
clues to eleventh dimension, 269, 

277-278, 348 
curvature couplings, 205-223 
curvature couplings for D-branes, 

217, 220 
curvature couplings for O-planes, 

217, 220 
dynamics of D-branes, see Yang­

Mills and action, Dirac-Born­
Infeld 

dynamics of M2-brane, 277-278, 
466 
dynamics of M5-brane, 277-278, 

466 
dynamics of type II NS5-branes, 

268-270, 297 
Hodge duality in D = 2 + 1, 278, 

347, 362-363 
instantons on, 208 
of D-brane, 131 

wrapped D-branes, 292-294 
D6-brane on K3, 353-366 
dual strings from, 390-392 
enhanced gauge symmetries from 

D4-branes on K3, 358-359 
enhanced gauge symmetries from 

two-branes on K3, 298, 352 
extrinsic curvature of, 360 
fractional D-brane as, 292-294 
K3-induced charge, 222-223, 

352 
K3-induced tension shift, 222-223, 

352 
on K3 manifold, 352-353 
repulson geometry and, 354-356 
six-brane as BPS monopole, 

357-359 
spacetime metric, 352-353 
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Yang-Mills 
N = 1 D = 4, fixed point theory, 

480-493 
N = 2 D = 4, 392-394, 494-502 
N = 4 D = 3,348-352,363-366 
N = 4 D = 4,373,441,472 
at finite temperature via AdS/ 

CFT, 459-464 
at large N, see large N gauge 

theory 
p-function and asymptotic 

freedom, 84 
p-function of N = 2, D = 4, 393 
p-function of N = 4, D = 4, 373, 

441 
complex coupling in D = 4, 393, 

502 
coupled to Higgs, 309 
coupling, and D-brane tension, 138 
D-brane collective coordinates as, 

123-125 

from compactified matrix theory, 
408 
from D-brane world-volume 

action, 138 
Montonen-Olive duality, 374-375 
open strings and, 60, 123-125 
e-angle in N = 2, D = 4, 373, 

393 

zero point energy, 45-46, ll6, 157, 
181, 250, 262, 264 

as Casimir energy, 45 
BTZ black holes and, 431 
exponential map and, 46 
from AdS/CFT, 431, 452-453 
general formula in D = 2, 46 
of twisted sector, ll8 
(-function regularisation and, 

46 
(-function regularisation, see zero 

point energy 
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