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Preface

In view of the exciting developments in our understanding of those partic-
ular aspects of fundamental physics that string theory seems to capture,
it seems appropriate to collect together some of the key tools and ideas
which helped move things forward. The developments included a true
revolution, since the physical perspective changed so radically that it un-
dermined the long-standing status of strings as the basic fundamental
objects, and instead the idea has arisen that a string theory description
is simply a special (albeit rather novel and beautiful) corner of a larger
theory called ‘M-theory’. This book is not an attempt at a history of the
revolution, as we are (arguably) still in the midst of it, especially since we
are in the awkward position of not knowing even one satisfactory intrin-
sic definition of M-theory, and have implicit knowledge of it only through
interconnections of its various limits.

All revolutions are supposed to have a collection of characters who
played a crucial role in it, ‘heroes’ if you will. Hence, one would be ex-
pected to proceed to list here the names of various individuals. While
I was lucky to be in a position to observe a lot of the activity at first hand
and collect many wonderful anecdotes about how some things came to be,
I will decline to start listing names at this juncture. It is too easy to yield
to the temptation to emphasise a few personalities in a short space (such
as this preface), and the result can sometimes be at the expense of others,
a practice which happens all too often elsewhere. This seems to me to be
especially inappropriate in a field where the most striking characteristic
of the contributions has been the collective effort of hundreds of thinkers
all over the planet, often linked by e-mail and the web, often never having
met each other in person.

There were marvellous weeks, back in 1995 and 1996 especially, where
there was one key paper after another, from all over the world, driven by

XX
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the fact that new ideas were pouring in from conversations everyone was
excitedly having at blackboards, in the sand, over lunch, via e-mail, on the
back of an envelope, etc. However, when one is speculating about aspects
of fundamental physics which are not yet in the directly testable realm it
should be noted that ideas — even radical ones — are cheap. Computational
tools are needed to test them, and to provide access to the new regimes
to which the ideas beckon. The collection of tools which filled this crucial
role in this context was built around ‘D-branes’, and it was the change
of perspective and computational power that they brought that unlocked
that steady flow of marvellous papers. In my mind, they can indisputably
be placed high on list of characters cast as heroes of the revolution. Indeed,
many will speak of the feeling that often arose after working with them
for a while in those exciting days, that the D-branes simply had a life and
character of their own. They shaped the ideas and language of the field in
a way that was directed by no single personality, and — most importantly —
were a wonderful and sharp tool for investigating in detail the nature of
the many bold conjectures which were made.

D-branes were discovered well before the revolution, of course, but
in the Summer of 1995 it was shown by Joseph Polchinksi that they
were relevant to strongly coupled string theory. I arrived as a postdoc-
toral researcher at the Institute for Theoretical Physics (Santa Barbara,
California) in the following Autumn, and by then it was already clear that
there were many people, both young and old, who could benefit from a
refresher course on issues outside the realm of heterotic string theory
(on which much of the focus had been up to then, with an eye on phe-
nomenology) and an introduction to D-branes. Furthermore, there was
some need for an agreement about language and conventions, since there
had not been much in the way of texts or other notes which focused on
the relevant aspects. (Polchinski’s modern textbook! was still only par-
tially written, and the manuscript had been seen only by a privileged
few.)

Some of us begged Joe to give us some lectures at the ITP, and I (and
probably others) quickly had the idea for a written set of notes that could
be circulated to the world at large, as a basic toolbox. I suggested this to
him, and he eventually agreed. During the lectures, I took such notes as
I could and then together with Shyamoli Chaudhuri, we produced some
notes with Joe, which we released? with his name listed as first author —
breaking the strict alphabetical convention in this field — as it seemed to
me highly inappropriate, given our roles as scribes, that his name might
come last. Happily, the ‘D-notes’ (as I liked to call them) seemed to be
well received by very many, and proved to be useful in forming a common
point of departure for almost everyone working in the field.
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I was fortunate enough to be asked to give introductory lectures on D-
branes over the following months and years, and this led me to write more
notes to embellish the D-notes, finding new ways of explaining things,
sometimes making illustrative links between different aspects, depending
on the theme of the lecture series in which I was participating.

This book grew out of such lecture notes® 4, and contains my own bi-
ased perspective on what aspects of D-branes ought to be included in an
introductory text. Pressures of space mean that I have omitted a large
number of remarkably interesting and useful material, and my choices
will no doubt not suit everyone. I have made many efforts for it to be
a stand alone handbook. It is intended that the person who knows little
or no string theory (but with some background in quantum field the-
ory and relativity) can open this book, and upon working through it,
learn many things about string theory, and become adept at computing
with D-branes, making no reference to another string theory text. Per-
haps as a bonus, they will even learn various aspects of advanced topics
in relativity, geometry and quantum gravity and quantum field theory
since those are the meat and drink of D-brane physics. However, if they
want a deeper knowledge of many aspects of string theory which are only
sketched here due to lack of space, then they can consult the excellent
text of Polchinski', and also that of Green, Schwarz and Witten®, which
is still an excellent text for many aspects of the subject. There are also
many other sources, on the web (e.g., www.arXiv.org) and elsewhere, of
detailed reviews of various specialised topics, even other string theory
books®.

So, this is not intended to be a string theory textbook. It is instead
a handbook or toolbox for concepts concerning branes in string theory,
with emphasis on D-branes. However, since many of the applications are
in what I like to call ‘extreme string theory’ — taking limits like strong
coupling, low energy, large IV, etc. — the reader will also learn important
physics of those regimes and others, which are not covered in any other
text at this time.

Over the years I have had the great benefit of lengthy conversations
about string theory and D-branes with many people, out of which my
intuition for these matters developed, and I would like to thank them
all. Chief among these are Robert Myers, Joseph Polchinski, and Edward
Witten, all of whose patience (and refreshing open-mindedness in the early
days) is much appreciated. I also thank all of the people with whom I have
collaborated in very many exciting research projects, and from whom I
learned a great deal. Aspects of some of that work will appear in this
text, and I would like it made clear that any inaccuracies in presenting
the results are my own.
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Parts of this book were written (or sometimes day-dreamt about) in
many inspiring places, not all of which I can recall, but I should thank
especially a number of institutions for providing facilities: The New York
Public Library’s Rose Reading Room, and Columbia University’s Butler
Library (New York, NY, USA), the Bodlean Library (Oxford, England),
The Aspen Centre for Physics (Aspen, Co., USA), The Park City
Mathematical Institute 2001 (Park City, Utah, USA), El Centro de
Estudious Cientificos (Valdivia, Chile), The Physics Department at
Stellenbosch University, and the Stellenbosch Institute for Advanced Study
(Stellenbosch, South Africa), The Perimeter Institute for Fundamental
Research (Waterloo, Canada), The Village Vanguard (New York, USA),
Broadway (New York, USA), and various United Airlines lounges world-
wide.

Thanks to [an Davies, James Gregory, Laur Jérv, Ken Lovis, Rob Myers
and David Page for reading and commenting on parts of the manuscript,
and many people around the world for their useful remarks upon ear-
lier notes which were absorbed into this book. Thanks also go to Jim
Gates, Brian Greene, David Gross, Ted Jacobson and Lenny Susskind for
their thoughts on a late title change, and on other important matters
concerning the book, logistical and otherwise’. I'd like to thank all of
my colleagues at the Department of Mathematical Sciences, University
of Durham, for providing such a friendly and supportive working envi-
ronment, and Carol, Delia and Robert Johnson for their encouragement.
Thanks also to Elizabeth and Nich Butler for much appreciated culinary
provision and other matters of hospitality over Christmas 2001.

I would especially like to thank Samantha Butler for her constant
patience and support throughout this project, and beyond.

b e
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t A conversation with Brian led to a flirtation with the slightly irreverent idea of giving
this book the simple title ‘Volume III’. I abandoned this after a while, since it would
produce confusion amongst those not aware of the affection held for (or existence of)
the two-volume texts in references [1] and [5].
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1

Overview and overture

Einstein’s theory of the classical relativistic dynamics of gravity is remark-
able, both in its simple elegance and in its profound statement about the
nature of spacetime. Before we rush into the diverse matters which concern
and motivate the search which leads to string theory and beyond, such
as the nature of the quantum theory, the unification with other forces,
etc., let us remind ourselves of some of the salient features of the classical
theory. This will usefully foreshadow many of the concepts which we will
encounter later.

1.1 The classical dynamics of geometry

Spacetime is of course a landscape of ‘events’, the points which make
it up, and as such it is a classical (but of course relativistic) concept.
Intuition from quantum mechanics points to a modification of this picture,
and there are many concrete mechanisms in string theory which support
this expectation and show that spacetime is at best a derived object or
effective description. We shall see some of these mechanisms in the sequel.
However, since string theory (as currently understood), seems to be devoid
of a complete definition that does not require us to refer to spacetime,
the language and concepts we will employ will have much in common
with those used by professional practitioners of General Relativity, and
of classical and quantum Field Theory. In fact, it will become clear to the
newcomer that success in the physics of string theory is greatly aided by
having technical facility in both of those fields. It is instructive to tour
a little of the foundations of our modern approach to classical gravity
and observe how the Relativist’s and the Field Theorist’s perspective are
muddled together. String theory makes good and productive use of this
sort of conflation.
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It is useful to equip a description of spacetime with a set of coordinates
o = 0,1,...,D — 1, where 2° = ¢ (the time) and we shall remain
open-minded and work in D dimensions for much of the discussion. The
metric, with components g, (z), is a function of the coordinates which
allows for a local measure of the distance between points separated by an
interval dz*:

ds? = g (v)datdz”.
The metric is a tensor field since under an arbitrary change of variables
¥ — x'¥(x) it transforms as

oz Oxb
G — Gy = 908 g (1.1)

Of course, ‘distance’ here means the more generalised Special Relativistic
interval characterising how two events are separated, and it is negative,
zero or positive, giving us timelike, null or spacelike separations, according
to whether if it possible to connect the events by causal subluminal motion
(appropriate to a massive particle), or by moving at the speed of light
(massless particles), or not. This of course defines the signature of our
metric as being ‘mostly plus’: {— + + + - - -} henceforth.

As a particle moves it sweeps out a path or ‘world-line’ z*(7) in space-
time (see figure 1.1), which is parametrised by 7. The wonderful thing is
that what we would have said in pre-Einstein times was ‘a particle moving
under the influence of the gravitational force’ is simply replaced by the
statement ‘a particle following a geodesic’, a path which is determined by
the metric in terms of the second order geodesic equation:

d?a? N, dxtdx”
dr2 - ,uz/(g)ﬁﬁ y (1.2)
x©
. /3 X" (@) T
/ Tj&“
X2

Xl

Fig. 1.1. A particle’s world-line. The function z#(7) embeds the world-
line, parametrised by 7, into spacetime, coordinatised by x*.
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where the affine connection I'(g) is made out of first derivatives of the
metric:

1
P;);z/(g) = 59)\’{ (8Mg/-w + 81/9/-@;1 - 3mg,w) .

Here and everywhere else, when working with curved spacetime we lower
and raise indices with the metric and its inverse, (which has components
g such that g, g"* = 6%). Also note that 9, = 9/0z*.

Switching language again we see that since the term on the left hand
side of the equation (1.2) is what we think of as the ‘acceleration’, our
Newtonian intuition determines the right hand side to be the ‘applied
force’, attributed to gravity. In such language, g, (x) is interpreted as a
potential for the gravitational field.

In the purely geometrical language, there are no forces. There is only
geometry, and the particle simply moves along geodesics. The above state-
ment in equation (1.2) about how a particle moves in response to the
metric is derivable from a simple action principle, which says that the
motion minimises (more properly, extremises) the total path length that
its motion sweeps out:

S = —m/(—gw,(a:)da:“da:”)1/2 = —m/rf(—gm,(x):z':“a’:”)l/ng . (1.3)

where a dot denotes a derivative with respect to 7. (The reader might
consider checking this by application of the Euler—Lagrange equations or
by direct variation.)

The only question (which is of course one of the biggest) remaining
is the nature of what determines the metric itself. This turns out to be
governed by the distribution of stress-energy-momentum, and we must
write field equations which determine how the one sources the other,
just as we would in any field theory like Maxwell’s electromagnetism (see
insert 1.1).

The stress-energy-momentum contained in the matter is captured in
the elegant package that is the tensor T/ (x), a second rank, symmetric,
divergence-free tensor which for an observer with four-velocity u, encodes
the energy density as T}, u*u”, the momentum density as —7),u*x"”, and
shear pressures (stresses) as T}, z*y”, where the unit vectors x and y are
orthogonal to u.

Einstein’s field equations are:

1
Rm/ - §guuR = 87TGNT;W ) (16)

where Gy is Newton’s constant. As one would expect, the quantity on the
left hand side is made up of the metric and its first and second derivatives,
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Insert 1.1. A reminder of Maxwell’s field equations

‘Maxwell’s equations’ are second order partial differential equations
for the electromagnetic potentials A (?, t),gﬁ(z,t) from which the

—

magnetic (B(x,t)) and electric (E(g, t)) fields can be derived:

E(7,6) = - Go(z - ) - 2t
B(Z,t) =V x A(Z,1). (1.4)

In terms of the fields, Maxwell’s equations are:

§~E=4Trp
V-B =0
- - 9B
L _o
VXE+8t
~ - OE =
—— =4 . 1.
V X B gD T J (1.5)

N

Here, the functions .J(z,t) and p(z,t), the current density and the
charge density are the ‘sources’ in the field equations.

We have written the equations with the sources on the right hand
side and the expression for the derivatives of the resulting fields
(to which the sources give rise) on the left hand side. We will write
these much more covariantly in insert 1.3.

where the Ricci scalar and tensor,
R = QWJR/W; R,uz/ = gﬁpgAprL/wa (1'7)
are the only two contentful contractions of the Riemann tensor:

RQW =0,T7, — a,,rgu + rgurgy - rgyrjm. (1.8)

Except for the metric itself, the quantity on the left hand side of equa-
tion (1.6) is the unique rank two, divergenceless and symmetric tensor
made from the metric (and its first and second derivatives), and hence
can be allowed to be equated to the stress tensor.

When the stress tensor is zero, i.e. when there is no matter to act as a
source, the vanishing of the left hand side is equivalent to the vanishing

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press


https://doi.org/10.1017/9781009401371

1.1 The classical dynamics of geometry 5

R, = 0, and solutions of this equation are said to be ‘Ricci-flat’. This
includes highly non-trivial spacetimes such as Schwarzschild black holes,
which follows from the non-linearity of the left hand side, representing
the fact that the stress-energy in the gravitational field itself can act as
its own source (‘gravity gravitates’).

The physical foundation behind the geometric approach is of course
the Principle of Equivalence, which begins by observing that gravity is
indistinguishable from acceleration, and tells one how to find a locally
inertial frame: one must simply ‘fall’ under the influence of gravity (i.e.
just follow a geodesic) and one does not feel one’s own weight, and so
one is in an inertial frame where the Laws of Special Relativity hold. See
insert 1.2 for a reminder of this in equations. The sourceless field equations
then follow from the recasting of the relative motion observed between
frames on neighbouring geodesics in terms of an apparent ‘tidal’ force.

The full statement of the field equations to include sources is also guided
by covariance, which means that it is a physical equation between ten-
sors of the same type, and with the same divergenceless property (which
is a physical statement of continuity). The equations are therefore true
in all coordinate systems obtained by an arbitrary change of variables
x# — 2'P(z), since they transform as tensors in a way generalising the
transformation of the metric in equation (1.1).

Note that the statement of divergencelessness is a covariant one too,
ie. V,TH = 0 uses the covariant derivative®, which is designed to yield
a tensor after acting on one, say V:

VoV =0Vl + T VI 4 =T VI — (1.9)

Finally, note that the field equations themselves may be derived from
an action principle, the extremising of the Einstein—Hilbert action coupled

to matter:
S = Sv + Sen
_ 1 D. ——
SEH_lGﬂTGN/dx 9
i = 295 (1.10)

_\/ -9 59uu’

where ¢ is the determinant of the metric.

* In fact, this (not entirely unambiguous) procedure of replacing the ordinary derivative
by the covariant derivative, together with the replacement of the Minkowski metric
Nuv by the curved spacetime metric g, (z) is often called the principle of ‘minimal
coupling’ as a procedure for how to generalise Special Relativistic quantities to curved
spacetime.
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In order to find an inertial frame, we must find coordinates so that
at least locally, at a point z¥, say, we can can do special relativity.
This means that we perform a change of coordinates z# — z/#(x) so
that when the metric changes, according to (1.1), the result is

9w (T5) = Ny

where 7, is the Minkowski metric, diag(—1,+1,...,). How accu-
rately can we achieve this? In our coordinate transformation, we have
in the neighbourhood of xJ:

WiV (o Ozt I
P (@) = (k) + 5 (o o)
1 0%t
+ §W(xlu _ l’gj)(l‘m _ l'gﬁ)
1 PBH
+ ém(l’w - IIZ/OV)(ZL’/H - .’13/0’6)(!13/)\ — .’Ifg)\) e

so we have, at first order, D? coefficients to adjust. Since gy has
D(D + 1)/2 components, we are left with

D(D+1) D(D-1)
D*~ 2 2

transformations at our disposal. Happily, this is precisely the dimen-
sion of the Lorentz group, SO(D —1, 1) of rotations and boosts avail-
able in our inertial frame. At second order, we have D?(D + 1)/2
coefficients to adjust, which is precisely the same number of first
derivatives 391“/ /0z'% of the metric that we need to adjust to zero,
cancelling all of the ‘forces’ in the geodesic equation (1.2). At third
order, we have D?(D + 1)(D +2)/6 coefficients to adjust, while there
are D?(D + 1)?/4 second derivatives of the metric, 0%g),, /0z"0z" |
to adjust, which is rather more. In fact, this failure to adjust

D*(D+1)* D*D+1)(D+2) D?*D?-1)
4 B 6 - 12

second derivatives is of course a statement of physics. This is pre-
cisely the number of independent components of the Riemann tensor
RQMW which appears in the field equations determining the metric.
So everything fits together rather nicely.
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A favourite example of a stress tensor for a matter system is the Maxwell
system of electromagnetism. Combining the electric potential ¢ and vector

potential A into a four-vector A(x) = (¢, Z), with components A, the

magnetic induction B and electric field E are captured in the rank two
antisymmetric tensor field strength:

F., =0,A,—0,A,,
and an observer with four-velocity u reads the fields as:
E, = E,u", By =€, Fou’, (1.11)

where €., is the totally antisymmetric tensor in four dimensions, with
€0123 = —1. (See insert 1.3 for more on this covariant presentation of
electromagnetism.) The action is:

Su = /dD:rﬁ = _16% /(—9)1/2FWF“”dD:1:, (1.12)

and so it is easily verified that the Euler-Lagrange equations

oL o (_oL \_,
04, 01 \ 00,4, )

give the field equations

V,F* =0,
where we have used a very useful identity which is easily derived:
6(_9)1/2 = %(_g)l/quyég,uz/' (1'13)

On the other hand, since

oL (—g)l/2 N
- _ FHPARVE _ Lo pop 1.14
0guw & (g)‘ﬂ 19" Fop ) ( )
the stress tensor is
1
™" = An (g)\,@FM)\FVﬂ - %g/ﬂ/} a'pl (7,0). (115)

1.2 Gravitons and photons

The quantum Field Theorist’s most sacred tool is the idea of associating
a particle to every sort of field, whether it be matter or force. So a force is
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Insert 1.3. Maxwell written covariantly

Probably most familiar is the flat space writing:

0 Ey Ey Es
-FE 0 Bs —Dy
—-FEy —Bs O B
—E3 By —-Bp 0

P = (1.16)

for the Maxwell tensor. In addition to the four-vector A(x) = (¢, Z),
one in general will have a four-current for the source, which com-

bines the current and electric charge density: J(x) = (p, j) With
these definitions, Maxwell’s equations take on a particularly simple
covariant form:

V,F" = —4x JH, OuFor + OuFp + O by =0, (1.17)

for the equations with sources, and the source-free equations (Bianchi
identity). The energy-momentum tensor for electromagnetism is
given in terms of F in equation (1.15), and is subject to the con-
servation equation (when the sources J* = 0): V,7#” = 0. This
contains familiar physics. Specialising to flat space:

1 - - 1 — -
Too = —((E)* + (B)?), Toi=——(F X B),
8 4

which is the familiar expression for the energy density and the mo-
mentum density (Poynting vector) of the electromagnetic field

mediated by a particle which propagates along in spacetime between ob-
jects carrying the charges of that interaction. There is great temptation to
do this for gravity (by allowing all sources of stress-energy-momentum to
emit and absorb appropriate quanta), but we immediately run into a con-
ceptual log jam. On the one hand, we have just reminded ourselves of the
beautiful picture that gravity is associated to the dynamics of spacetime
itself, while on the other hand we would like to think of the gravitational
force as mediated by gravitons which propagate on a spacetime back-
ground. A technical way of separating out this problem into manageable
pieces (up to a point) is to study the linearised theory.

The idea is to treat the metric as split between the background which is
say, flat spacetime given by the Minkowski metric 1, diag(—1,+1,...,),
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and some position dependent fluctuation h,,(x) which is to be small
huv(x) < 1. Then the equations determining hy, (z) are derived from
Einstein’s equations (1.6) by substituting this ansatz:

Juv = NMuv + hm,(l‘),

and keeping only terms linear in hy,.

Let us carry this out. We will raise and lower indices with 7, and
note that ¢g"” will continue to be the inverse metric, which is distinct
from ntenP Jap- Note also that g"” = n#¥ — h#*”, to the accuracy to which
we are working. The affine connection becomes:

7, = 30" (Ouhve + Ovhpa — Oahyuw) | (1.18)
and to this order, the Ricci tensor and scalar are:

Ry = 0%0, b0 — 20%0ahy — 0" 0,h + O(h?),
R = 0°9%has — 0“0sh + O(h?), (1.19)

where h = hf;. Thus we learn that
Ry — 3w R = 0%, hyye — 30%0ahyy — 50" 0uh
~ 1 (090 has — 0°0ah) + O(h?).
Defining 4., = hyy — %nuyh, we find our linearised field equations:
1000y + 00y — 31w 0% 0 hgy = 8TGNT . (1.20)

There is an explicit gauge degree of freedom (recognisable from equa-
tion (1.1) as an infinitesimal coordinate transformation)

hw/ - hm/ + 8M€IJ + 81/5;“ (121)

for arbitrary an arbitrary vector ,. Using this freedom, we choose the
gauge 0"hy, =0 (using a gauge transformation satisfying 90,¢, +
0”hy, = 0), which implies

0%Onhyy = —16mGNT - (1.22)

This is highly suggestive. Consider the system of electromagnetism, with
equations of motion (1.17). The equations are invariant under the gauge
transformation

Ay — Ay + O,
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where A is an arbitrary scalar. We can use this freedom to choose a gauge
O A* = 0, (with a parameter satisfying 0,0*A + 0V A, = 0), which gives
the simple equation

0,0 A, = —4wl,.

This is of a very similar form to what we achieved in equation (1.22)
for the system of linearised gravity. The analogy is clear. The Maxwell
system has yielded a field equation for a vector (spin one) particle (the
photon A, (x)) sourced by a vector current (J,(x)), while the gravitational
system yields the precisely analogous equation for a spin two particle (the
graviton hy,(x)) sourced by the stress tensor T),,(x).

This is the starting point for treating gravity on the same footing as
field theory, and in many places later we will have cause to use the word or
idea ‘graviton’, and it is in this sense (a spin two particle propagating on
a reference background) that we will mean it. We have seen how to make
the delicate journey from the Relativist’s geometrical understanding of
gravity to a perturbative Field Theorist’s. To make the return journey,
reconstructing a picture of, say the non-trivial spacetime metric due to
a star by starting from the graviton picture is a bit harder, but roughly
it is conceptually similar to the same problem in electromagnetism. How
does one go from the picture of the photon moving along in spacetime
to building up a picture of the strong magnetic fields around a pair of
Helmholtz coils? Words and phrases which are offered include ‘coherent
state of photons’, or ‘condensation of photons’, and these should invoke
the idea that the coils’ field cannot be constructed using only the per-
turbative photon picture. One can instead use the photon description to
describe processes in the background of the Helmholtz field, and we can
similarly do the same thing for gravity, describing the propagation of
gravitons in the background fields produced by a star. In this way, we see
that there is a possibility that there are situations where the conceptual
separation between particle quanta and background in principle needs be
no more dangerous in gravitation than it is in electromagnetism.

Eventually, however, we would like to compute beyond tree level, and
the celebrated problems of the theory of gravity treated as a quantum
theory will be encountered. Then, the linearised Einstein—Hilbert action

_ 1 D a a0 _ 9«
S = 16“GN/d i (000 — 0 0ah). (1.23)

will eventually reveal itself to be non-renormalisable once we add interac-
tions coming from the next order above linear. In particular, the process
of recursively adding counterterms to the bare action in order to define
physically measurable quantities does not terminate. As Field Theorists
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(and perhaps as Relativists) we would have cause to be discouraged, and
it is a much celebrated statement that as String Theorists, we won’t be.

1.3 Beyond classical gravity: perturbative strings

A reason for dwelling on some of the previous points is that it is custom-
ary to do a lot of moving back and forth between the picture of quanta
moving on a flat background and other pictures, for example ones in-
volving considerably curved background fields. This is not because string
theorists have a clever collection of new technological tools for seeing how
to move from one to the other (although as we shall see with the aid of su-
persymmetry, in some cases we can often keep track of many properties of
objects in moving between pictures) but because as was said before, string
theory is a developing subject which has borrowed and hybridised intu-
ition from the Relativist’s and the (perturbative and non-perturbative)
quantum Field Theorist’s worlds.

This borrowing is not to be taken as a sign of intellectual bankruptcy,
but quite the opposite. The adoption of terminology and concepts from a
wide range of other fields is as a result of the richness of genuinely novel
physical phenomena, with (as a whole) no precise precedent or analogue,
which the theory appears to be revealing. This is very similar to what
happened almost precisely a century ago. The treatment of quanta in a
context dependent manner either as a wave or as a particle, an under-
standing still called ‘Wave—Particle Duality’ by many, grew out of the
attempt to grasp a new physical phenomenon — Quantum Mechanics — by
reference to established physical concepts from the century before.

In the next chapter we will review how one proceeds to describe the
relativistic string propagating in a flat background. There are two very
broad categories, open strings which have end-points, and closed strings
which do not. The basic input parameter is the mass per unit length of

the string, its tension:
1 1

© 2ma/ T 2ml2
As is well known, the characteristic length scale of the string, /s, is tradi-
tionally very small compared to scales on which we do current-day physics.
This means that string excitations will have a good description as point-
particle-like states on scales much longer than ¢5. After quantisation, it
rapidly becomes clear that the spectrum of string theory is rather rich
and demands application. Since finite masses in the spectrum are set by
the inverse of /g, the infinite tower of massive excitations of the string
(see figure 1.2) will be very inaccessible at low energy (long distance, or
infra-red (IR)). The tower is of course crucial to the properties of the
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O__

Fig. 1.2. The string spectrum has a massless sector separated by a gap
(set by the tension) after which there is an infinite tower of massive states.

high energy (short distance, or ultra-violet (UV)) physics of the string. Tt
is the massless part of the spectrum which is accessible at low energy and
hence relevant to phenomenology.

For example, closed string theories describe a massless spin two particle
which is identified with the graviton. The questions of non-renormalisa-
bility which arose in quantum field theory turn out to be circumvented
by the remarkable ultra-violet properties of string theory, which give rise
to an extremely well-behaved perturbative description of multi-loop pro-
cesses involving gravitons'. The simple fact is that string theory is very
unlike field theory at short distances, since it assembles together an in-
finity of increasingly massive excitations (in a particular way) which all
play a role in the UV. The theory’s supplying a satisfactory perturba-
tive quantum theory of gravity is just the beginning of the many phe-
nomena which arise from its properties as an extended object, as we
shall see.

Other massless fields which arise in string spectra are Abelian and non-
Abelian gauge fields, and various fermions and scalars, some of which one
might expect give rise to the observed gauge interactions and matter fields.
There is also a family of higher rank antisymmetric tensor fields general-
ising the photon on which we will focus in some detail. Remarkably, the
value of one scalar excitation of interest, the dilaton ®, determines the
strength of the string self-interaction, gs = e®, and hence (since closed
strings excitations can be gravitons) the value of G. It is a striking fact
that string theory dynamically determines its own coupling strength. (See
figure 1.3.)

t Sadly, lack of space will 5prevent us from describing this here, and we refer the reader
to a textbook on this®
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o0 L/

Fig. 1.3. The basic three-string interaction for closed strings, and its ana-
logue for open strings. Its strength, g, along with the string tension,
determines Newton’s gravitational constant Gy.

Just as with the particle, it is straightforward to generalise the treat-
ment of the string to motion in a curved background with metric g, (z),
and one can derive the analogue of classical geodesic equations of motion
(if desired) for the string.

The string sweeps out a ‘world-sheet’ with coordinates (o', 0?) = (7, 0).
The string’s path in spacetime is described by X#(r,0), giving the shape
of the string’s world-sheet in target spacetime (see figure 1.4). There is
an ‘induced metric’ on the world-sheet given by (9, = 0/0c%):

hap = 0o X" O X" g, (1.24)
with which we can perform meaningful measurements on the world-sheet

as an object embedded in spacetime. Using this, we can define an action
analogous to the one we thought of first for the particle, by asking that

XO

Fig. 1.4. A string’s world-sheet. The function X*(7,0) embeds the world-
sheet, parametrised by (7, ), into spacetime, coordinatised by X*.
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we extremise the area of the world-sheet:

5= —T/dA _ —T/dea (—dethgy)? = /deU LX, X" 0,7).

(1.25)
Expanded, this is
axmaxXM\?  [axm\? rox,\?]"*
S__T/deUK Oo 87’) _<80> <87'>
12 12 y-2] /2
= —T/dea (X7 X)? - x2X2] (1.26)

where X’ means 0X/0o.

This is very analogous to the case of the particle, and we will analyse
it further in the next chapter. However, there is much more to the story
than this. The thorny question arises concerning what dynamics govern
the allowed metrics, and it is a riddle of considerable depth: the string
has revealed itself as generating the basic quantum of gravity as one of its
modes of oscillation. Our experience from before allows us to trust that
there ought to be a manner in which one can treat the graviton (and hence
the string that carries it) as a small disturbance on a fixed background,
but there is an additional problem which we did not have last time. Since
the string is also the source of gravity, and if it dynamically generates
the strength of the coupling, it ought to also determine gravitational dy-
namics. How does it go about determining the gravitational background
in which it is supposed to propagate? In the terms we used previously,
where do the field equations governing the background come from?

The surprise turns out to be that internal quantum mechanical consis-
tency of the string theory does make certain demands on the properties of
spacetime, in ways that no previous theory has managed before. First of
all, it requires that it only propagates in spacetimes of certain dimension-
ality (for example, 26 for bosonic strings, 10 for superstrings). Secondly,
it demands that at low energy the background metric satisfies Einstein’s
equations (sourced by the stress tensor due to the other massless fields)!
This should be contrasted with the case of a particle where the issue of
how it propagates in a metric is completely divorced from whether the
metric satisfies Einstein’s equations.

Somehow, the simple generalisation of a particle to a string has captured
something very new. Is there an analogue of the Equivalence Principle at
work which gives Einstein’s equations at low energy and then new physics®

1t is hoped that this new physics will cure a number of problems in strongly coupled
gravity, like the loss of predictability of relativistic physics at spacetime singularities
such as in black holes or at the Big Bang.
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at high energy? Even though this remarkable fact is relatively old by now,
there is no simple thought experiment which explains why a generalisation
from a particle to a string quantum-mechanically demands the solution
of field equations for which the underlying principle is covariance and
equivalence.

1.4 Beyond perturbative strings: branes

The reader may have noticed that the word ‘perturbative’ was used a
lot in the last section, even when describing the remarkable successes of
string theory in the arena of quantum gravity. The Second Superstring
Revolution gets its name from the remarkable change of perspective which
occurred with breakthroughs in understanding of this very issue, and the
resulting flow of ideas and results. A great deal of quite surprising insight
was gained about the supersymmetric string theories (whose existence and
consistency followed from discoveries in the First Superstring Revolution)
in the limit of very strong coupling, much of which we will cover later.
The big question which arose time and again in string theory over the
years before the revolution was the issue of its description beyond pertur-
bation theory. Actually, there were possibly two problems and not just
one, however they usually are discussed together, although they may be
logically distinct. Motivated by analogy with field theory, string theorists
sought for something like a field theory of strings, which would allow for
the non-perturbative exploration of the landscape in which vacua lie, in
a way which is familiar in field theory, allowing the study of important
phenomena like tunnelling, instantons, solitons, etc. The idea was that
there would be a ‘string field” ¥ whose role was to create and destroy
a string in a particular configuration. This begins by being conceptually
on a par with the successful ordinary field theory concept about the role
of a field in creating and destroying particle quanta, but this view soon
changes when one remembers that the string is like an infinite number of
particles from the point of view of field theory. The ideally next simplest
step would be to find a simple way of writing a kinetic energy and po-
tential V(X), which would allow a study of dynamics and hence ‘second
quantised’ strings (to use another old misnomer). See figure 1.5. In prin-
ciple, some type of field theory is not an altogether crazy thing to want
to find. Given the success of the field theory framework, it would be an
understatement to say that it would have been neglectful if the possibil-
ity had not been explored. There is another problem, however, into which
experience with field theory seems to offer little insight. This is ‘back-
ground independence’. In ordinary quantum field theory, a Lagrangian
for the theory is defined with reference to a spacetime background. This
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A
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) o o >

Fig. 1.5. A fanciful view of a slice through the infinite dimensional land-
scape of non-perturbatively accessible string vacua. ¥ represents the en-
tire field content of a string theory, and V() is a potential. Locations
(1) and (3) represent perturbatively stable vacua, while (2) is unstable.
Important physics may be found in the non-perturbative effects relating
these vacua.

is of course fine, since the fields are supposed to propagate on this back-
ground. However, it is not clear that this luxury should be available to
us in the string theory, since it is supposed to determine the background
upon which it is propagating, given that it generates gravity and the value
of GN.

The search for string field theories were not entirely unsuccessful, but
since they are very difficult to work with, at the time of writing, it is not
clear what they have taught us. It is a remarkable achievement in itself
that one could define a string field X, and find a sensible Lagrangian.
Both the kinetic and potential are on the face of it, written in such a way
that there is a chance of background independence since the ‘derivative’
and the means of multiplying together string fields do not seem to di-
rectly refer to spacetime. Sadly, the means of unpacking the Lagrangian
to perform a computation require one to make reference to objects which
originally were defined with perturbative intuition about backgrounds
again, and so background independence is still not apparent.

This is not really a failure, if one reduces ones expectations about what
a string field theory is supposed to do for us. It is possible to imagine
that such a theory can tell us interesting physics involving various types
of string vacua, and how they are inter-related, without ever addressing
the background independence issue.

This possibility was regarded as unsatisfactory for a long time, since it
made string theory seem logically incomplete, with no physical principle
or mechanism to appeal to, given that it was supposed to be the theory
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of everything. Happily, the Second Revolution happened, and now we
have a new possibility. String theory is not a theory of strings after all.
There are two clear signs of this (which we will discuss later in detail).
One is that there are extended objects in the theory (‘D-branes’) which
carry?® the basic charges of a special class of higher rank antisymmet-
ric fields which the string theory necessarily describes, but cannot it-
self source. Coupled with this fact is that at arbitrarily strong coupling,
these objects can become arbitrarily light (see insert 1.4), indeed lighter
that the string itself, and so their behaviour dominates the low energy
physics, undermining the fundamental role of the strings. A second sign
is that some string theories are directly related at strong coupling (some-
times by a condensation of a tower of increasingly light D-particles) to a
field theory — at low energy — which includes gravity. The short-distance
completion of this gravitational theory does not seem to involve the dy-
namics of strings, and the new degrees of freedom are unknown. This
unknown theory, whose existence is strongly suggested by the intricate
web of strong/weak coupling dualities between the superstrings in diverse
situations'®h 152 193 is often called ‘M-theory’, and it seems that all of
the superstring theories that we know of may be obtained as a limit of it.
In this sense, we see that string theory is itself an effective theory, albeit
a remarkably interesting one. All of the various string theories that we
know are perturbative corners of a larger coupling space. See figure 1.6.
From this new picture (in which in some cases the extended objects
which become light at strong coupling are weakly coupled strings of an

11d supergravit
P Y Eg¢XEg heterotic

Type HA

Type 1

Type IIB
SO(32) heterotic

Fig. 1.6. A schematic diagram of the statement that all superstring the-
ories, and eleven dimensional supergravity, are effective descriptions of
certain dynamical corners of a larger theory, called ‘M-theory’.
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Insert 1.4. Soliton properties and the kink solution

Everybody’s favourite soliton example is the kink solution of ¢* the-
ory in 141 dimensions. The mass m and the coupling A combine into
a dimensionless coupling ¢ = A\/m?, and we write:

1 m?\’
L==30"60,0-U9), U6)= <¢ - —) .
The kink (or anti-kink) solution is

m(x\/—ﬁa:@)7

and so it is clearly an interpolating solution between the two vacua
(located at £¢o = +1/,/g) of the double well potential.

1
o1(x) = :I:% tanh (

U(9) P(x) R —

X X

_¢0 I ¢o ¢ _¢0

The parameter xg is a constant, corresponding to the ability to trans-
late the solution. The configuration’s mass-energy is:

E= / <<%) +U(¢i)>dac—iﬂ,

3 g

which is inversely proportional to the dimensionless coupling. So at
weak coupling, this is a very heavy localised lump of energy. If we
could trust this formula at strong coupling (and for various types
of soliton in e.g. supersymmetric theories, we can), it is clear that
for large g this solution becomes a light, sharply localised particle. In
fact, it has a conserved charge, due to the existence of the topological
current j, = (1/9/2)€u 0" ¢, which is:

Q= /_O:ojodﬂc‘ = g (p(+00) — p(—00)) = £1.

All of these properties will appear for solitons of theories which we
shall study. The validity of the mass formula at strong coupling will
allow various ‘dualities’ of supersymmetric theories to be uncovered.
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entirely different type from the starting theory, giving a ‘string—string’
strong/weak coupling duality), it is clear that the string field theory
approach would have had to produce a completely unlooked-for phe-
nomenon, and convert the world-sheet expansion of one type of string
(say a closed one) into the completely different type of world-sheet ex-
pansion of another type of string (say an open one). It would also have
to point to new directions in which there is a perturbation theory not
involving strings at all. Lastly, it would also have to be background
independent.

Of course, this may yet happen (but we might not call it a field theory
any more!), but another possibility is that string field theory (at least in
the intuitive form in which it was conceived) will be useful as an effective
theory (arising from M-theory) useful for the study of a restricted but
important set of non-perturbative effects.

1.5 The quantum dynamics of geometry

The issue of background independence may be tied up with matters which
the theory is only really still just touching on, and so it may have been
premature to worry about it previously. This is the fact that there are
dynamical signs that clearly show that string theory avoids a definite pic-
ture of some of the properties of spacetime which we would have thought
were fixed, if we were field theorists.

Scattering of strings seems to show that attempts to confine the string
to a small domain of spacetime are defeated by the strings’ tendency to
increasingly extend itself and spread out. From T-duality!? (to be first
encountered in chapter 4, but probably in every chapter beyond that),
we learn that when a string theory is compactified on a circle, there is
an ambiguity in the spectrum about whether the propagation is on a
circle of radius R or radius ¢2/R. The standard ‘momentum’ states with
energy in multiples of 1/R are joined by ‘winding’ states whose energy is
in multiples of R/¢2, coming from winding around the circle. The ‘duality’
exchanges these two types of mode. This is remarkable, especially if one
considers the limit that R — 0, since it says that an arbitrarily small circle
compactification (reducing an effective spacetime dimension) is physically
equivalent to having an arbitrarily large dimension (restoring an effective
dimension). The outcome of this reasoning is that there appears to be
an effective minimum distance arising in the dynamics of (perturbative)
strings, of order the string scale ¢5. This is qualitatively just the sort of
granularity of spacetime which one might have anticipated (and indeed it
was) in thinking about expectations for a quantum theory of gravity. We
can go even further, however.
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As already mentioned, at strong coupling some string theories turn into
something which at low energy is a field theory in one dimension higher
than the target spacetime of the weakly coupled string. Since the string
coupling is dynamically generated by the string itself, we arrive at the
result that the dimension of spacetime itself is dynamical.

Also, the coordinates describing various objects like D-branes located
in string theory’s target space arise as not just numbers, but matrices?®.
For example, in superstring theory for N pointlike D-branes (known as
DO-branes or D-particles), there are nine N x N matrices, X*(7), de-
scribing their world-lines parametrised by 7. When the D-branes are
widely separated from each other, it is dynamically favourable for these
matrices to be diagonal, and we have N copies of the usual coordi-
nates x* describing the positions of N pointlike objects in nine spatial

directions:
(1) 0 0
0 zh(t) 0
Xi(r)y=| O 0 ag(r) - - . (1.27)

iy (7)

When the branes are close together, there are dynamically favourable re-
gimes when these matrices are non-commuting, and correspondingly, the
spacetime coordinate interpretation is now in terms of a non-commutative
picture. There is more here, actually. Since DO-branes turn out to be mo-
mentum modes, in a compact direction, of an eleven dimensional graviton,
this picture turns out to be a sort of light cone formulation of the eleven
dimensional theory. This is the beginning of the Matriz Theory'®” formu-
lation of M-theory.

Spacetime is clearly a far more interesting place when the dynamics of
string/M-theory are explored, and so it may be a while before we know
even if we are asking the right sorts of questions about its nature. This
includes the issue of background independence, and it may be that we
have to wait for a complete formulation of M-theory (which may well
have nothing to do with spacetime at all) before we get an answer.

1.6 Things to do in the meantime

While we wait for a complete formulation of M-theory to show up, there is
a lot to do in the meantime. String theory’s second revolution has provided
us with a large number of tools to explore many regimes of fundamental
physics, both old and new.
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Gauge theories arise in string theories in many different (and often in-
terrelated) ways, for example by dimensional reduction and the Kaluza—
Klein mechanism (described in section 4.1.1), or as the collective dynamics
on the world-volume of branes (described in section 4.10), or from gauge
fields intrinsic to the structure of a closed string theory (described in sec-
tion 7.2). So string theory is an arena for studying gauge theories. The
very geometrical way in which string theories treat gauge fields allows
for many gauge theory phenomena to be usefully recast in geometrical
terms. This also means that known gauge theory phenomena, correctly
interpreted in this context, can also teach us new things about the ge-
ometry of string theories. Many of the applications of D-branes which we
will discuss later in this book are concerned with this powerful dialogue.

In this way, useful tools can be extracted for application to very concrete
and pragmatic questions in the dynamics of strongly coupled gauge theory,
of great concern to us of course in the physics being explored or shortly
to be explored in experiments.

Since string theory is also a theory of gravity, it is exciting to learn
that there are regimes where much progress may be made in the study
of situations where hard questions about quantum gravity arise. The
most celebrated example of this is the precise statistical interpretation
of Bekenstein’s thermodynamical black hole entropy?%2, for a large class
of black holes. This thermodynamical quantity can arise as the inevitable
conclusion of semi-classical treatments of quantum gravity, where quan-
tum fields are studied in a classical black hole background (a useful con-
ceptual and technical compromise alluded to earlier). Such a treatment
led Hawking?! to realise that there is thermal radiation (at a specific
temperature) from a black hole, after other suggestive properties?s? 292
led Bekenstein to the realisation that there is an entropy associated to
the area of the horizon. The universal Bekenstein—-Hawking entropy for a
black hole is: 4

TeNk

and is at the heart of the laws of black hole thermodynamics. This was
a bit awkward, since there was no underling theory of quantum gravity
to supply the ‘statistical mechanics’ which account for the precise rela-
tion between the entropy and the properties of the black hole. As we will
describe in detail, for a large class of black holes, string theory provides
the precise answer, in terms of D-brane constituents, and the gauge the-
ories which describe them. In fact, (for a smaller class of black holes) the
spacetime dynamics of individual D-branes conspires to provide a micro-
scopic mechanism for the operation of the second law of thermodynamics
as well”.

S (1.28)
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One of the most profound insights of the revolution which might have
the furthest-reaching consequences, is the identification of tractable
regimes where a duality between gravitation and gauge theory can be
found. This grew out of the above results concerning black holes, and
even the ideas concerning the translation of gauge theory phenomena
into geometry, but it is in some sense logically distinct from those. There
is a very striking and intricate dynamical duality between the two, which
again crosses dimensionality and is indicative of a very rich underlying pic-
ture. The ‘AdS/CFT correspondence’®’® 271 272 the title under which the
simplest examples are known, is also the sharpest known example of what
is known as the ‘Holographic Principle’?®® 287 which states (roughly) that
there should be a lower dimensional non-gravitational representation of
the degrees of freedom of any quantum theory of gravity. Matrix theory
is another example!58.

The idea of the principle arises from the realisation that any high energy
density scattering used to probe the short distance degrees of freedom in
a theory including gravity will ultimately create black holes. Black holes
seem to exhibit all of their degrees of freedom on their horizon, an object
which is of one dimension fewer than the parent theory. This suggests (but
of course does not supply a definite constructive tip for how to find it) that
there is a more economical description of theories of D-dimensional gravity
in terms of a theory in D — 1 dimensions. The AdS/CFT correspondence
manages this by relating a theory of gravity in an anti-de Sitter back-
ground (a highly symmetric spacetime with negative cosmological con-
stant, reviewed in section 10.1.7) to a strongly coupled SU(N) gauge
theory (of large N) in one dimension fewer. This is remarkable, since the-
ories of gravity and gauge theory are so very different in crucial dynamical
respects, and we explore this in detail in chapter 18, showing how it arises
from our study of D-branes, and exploring some of the consequences for
new descriptions of strongly coupled gauge theory phenomena.

Exploring the correspondence in more complicated cases is of great
interest, as it might give us insights and new tools which we can apply
to more phenomenologically relevant gauge theories, and we spend some
time discussing some examples of this.

1.7 On with the show

It is apparently an Irish saying that one will never plough a field by turning
it over in one’s mind, and so we should now begin the task of exploring
things more carefully. In setting the scene, we have begun to unpack some
of the more difficult concepts and some of the language which we will
encounter many times as we go along. We will proceed by developing the
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basic language of string theory, uncovering many remarkable phenomena
and vacua, using perturbation theory only. Certain perturbative hints of
non-perturbative physics will appear from time to time, and with the help
of D-branes and supersymmetry, we later uncover such physics using many
‘duality’ relations. Much later, we combine these techniques and ideas to
probe and map out aspects of M-theory, and also to study certain aspects
of duality in field theory. It will be an exciting journey.
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2

Relativistic strings

This chapter is devoted to an introduction to bosonic strings and their
quantisation. There is no attempt made at performing a rigourous or
exhaustive derivation of some of the various formulae we will encounter,
since that would take us well away from the main goal. That goal is to
understand some of how string theory incorporates some of the familiar
spacetime physics that we know from low energy field theory, and then
rapidly proceed to the point where many of the remarkable properties
which make strings so different from field theory are manifest. That will
be a good foundation for appreciating just what D-branes really are. The
careful reader who needs to know more of the details behind some of what
we will introduce is invited to consult texts devoted to the study of string
theory.

2.1 Motion of classical point particles

Let us start by reminding ourselves about a description of a point particle.
We already touched on it in section 1.1, but we want to take it a bit further
now, in preparation for doing the same thing for the analogous formula-
tion for strings. The particle moves in the ‘target spacetime’ (with coordi-
nates (t = X, X' ..., XP~1)) sweeping out a ‘world-line’ (see figure 1.1,
page 2) parametrised by 7. We want to write an action principle which
yields equations of motion for the allowed paths, X#(7).

2.1.1 Two actions

The most obvious action is the total path length swept out in spacetime.
The infinitesimal path length traversed is:

db = (—ds®)M/? = (=dXHdX"n,,)Y? = (—dXPdX,)Y?,  (2.1)

24
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and we have assumed that the particle is massive and hence that ds? < 0.
The massless case will be discussed below. So the action is

So=—m / dt = —m / dr(—XPX,)\?, (2.2)

where a dot denotes differentiation with respect to 7. Let us vary the
action:

55, = m / dr(—X"X,)"V2XV$X, = m / dru”5X,,

= —m/deyéXy, (2.3)
where the last step used integration by parts, and
u’ = (—X“XM)_1/2X”. (2.4)
So for 6 X arbitrary, we get ¥ = 0, which is Newton’s Law of motion:
G
=0 2.5
=0 (25)

where we have used df/dr = (= X"X,)"/2. There is another action from
which we can derive the same physics. Consider the action

1 —1yrpy 2
s_ﬁ/df(n X1 X, —nm?), (2.6)

for some independent function 7(7) defined on the world-line.

N.B. In preparation for the coming treatment of strings, think
of the function 7 as related to the particle’s ‘world-line metric’,
Yrry a8 9(7) = [=y7r(7)]/2. The function () ensures world-line
reparametrisation invariance:

ds® = yprdrdr = yppdr'dr.

This is all a bit redundant in 0 + 1 dimensions, but the structure
will make more sense when we consider the 141 dimensions of the
string’s world-sheet.

If we vary S with respect to n:

68 = %/dT [—n_QX“XM — mg] on. (2.7)
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So for ém arbitrary, we get an equation of motion
n’m? + XFX, =0, (2.8)

which we can solve with 7 = m~'(—X*X,)"/2. Upon substituting this
into our expression (2.6) defining S, we get:

§ = =1 [ =X 24 (XX ity = 5,0 (20)

showing that the two actions are equivalent.

Notice, however, that the action S allows for a treatment of the mass-
less, m = 0, case, in contrast to S,. Another attractive feature of S is that
it does not use the awkward square root that S, does in order to compute
the path length. The use of the ‘auxiliary’ parameter n allows us to get
away from that.

2.1.2 Symmetries

There are two notable symmetries of the action.
e Spacetime Lorentz/Poincaré:

XM — XM= AP XY+ AM,

where A is an SO(1,3) Lorentz matrix and A* is an arbitrary con-
stant four-vector. This is a trivial global symmetry of S (and also
S,), following from the fact that we wrote them in covariant form.

e world-line reparametrisations:

ox = (&
b = L1l

for some parameter ((7). This is a non-trivial local or ‘gauge’ sym-
metry of S. This large extra symmetry on the world-line (and its
analogue when we come to study strings) is very useful. We can, for
example, use it to pick a nice gauge where we set = m~!. This
gives a nice simple action, resulting in a simple expression for the
conjugate momentum to X*:

o
oXn

We will use this much later.

I = mX*. (2.10)
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2.2 Classical bosonic strings

Turning to strings, we parametrise the ‘world-sheet’ which the string
sweeps out with coordinates (0!, 0?) = (7,0). The latter is a spatial coor-
dinate, and for now, we take the string to be an open one, with 0 < o <=
running from one end to the other. The string’s evolution in spacetime is
described by the functions X#(7,0), u = 0,...,D — 1, giving the shape

of the string’s world-sheet in target spacetime (see figure 1.4, p. 13).

2.2.1 Two actions

As we already discussed in section 1.3, using the induced metric on the
world-sheet which we recall here:

hap = 8aX“8bX”nW, (2.11)

we can measure distances on the world-sheet as an object embedded in
spacetime, and hence define an action analogous to the one for the particle:
the total area swept out by the world-sheet (equation (1.25)), which we
repeat here:

S, = —T/dA _ —T/dnza(—dethab)l/2 = /dea L(X, X" 0,7).

(2.12)
_T/drd [( ;i“‘?i”) <%>2<38{u>2]
}1/2

1/2

So

= —T/dea (X7 X2 - x2X2] (2.13)

where X’ means 0X/0o and a dot means differentiation with respect to 7.
This is the Nambu-Goto action.
Varying the action, we have generally:

~ o o .,
68 = /dea{ﬁéX“-i— o X M}

o oL 9 OL
= _— _ H
/deU{ afax‘u do an}éX

g=Tr

7z
/ dr { 8X/M6X } B (2.14)
Requiring this to be zero, we get:
0 oL 0 oL oL
o oxn + Yo X 0 and X 0 at o=0,m (2.15)
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do

Fig. 2.1. The infinitesimal momenta on the world sheet.

which are statements about the conjugate momenta:

%PT“ + %ij =0 and P!/'=0 at o=0,m. (2.16)
Here, P! is the momentum running along the string (i.e. in the o di-
rection) while P# is the momentum running transverse to it. The total
spacetime momentum is given by integrating up the infinitesimal (see

figure 2.1):
dP" = Ptdo + Pldr. (2.17)

Actually, we can choose any slice of the world-sheet in order to compute
this momentum. A most convenient one is a slice 7 = constant, revealing
the string in its original paramaterisation: P* = [ PFdo, but any other
slice will do.

Similarly, one can define the angular momentum:

M = / (PEXY — PYX")do. (2.18)

It is a simple exercise to work out the momenta for our particular
Lagrangian:

XPX"? - X'M(X - X')
VX - X7)2 - X2x0
X'MX? - XMX - X')
JX - x7)2 = X2x7

Pr=T

Pl =T (2.19)

It is interesting to compute the square of P¥ from this expression, and
one finds that

P?=P!P,, = —2T°X">. (2.20)
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This is our first (perhaps) non-intuitive classical result. We noticed that
P, vanishes at the endpoints, in order to prevent momentum from flow-
ing off the ends of the string. The equation we just derived implies that
X? = 0 at the endpoints, which is to say that they move at the speed of
light.

Just like we did in the point particle case, we can introduce an equiva-
lent action which does not have the square root form that the current one
has. Once again, we do it by introducing a independent metric, v4(o, 7),
on the world-sheet, and write the ‘Polyakov’ action:

1
S = _47ra /dea(—fy)I/QA/“bﬁaXuabX”nW
= /d2 )24 B, (2.21)

If we vary v, we get

1
6S = //dQU {_5(_7)1/26ﬁ/ﬁ/abhab+ (_A/)I/Q(S,yabhab} ) (2'22)

4o

Using the fact that v = 986y = —v7a67%, (which we already used
in higher dimensions, see equation (1.13)) we get

1
" dmd / ao (=) 25’Yab{hab— §7ab’76dhcd}- (2.23)

Therefore we have

1
hab = 5¥ab7 " hed = 0, (2:24)

from which we can derive
VPhay = 2(=h) 2 (—y) V2, (2.25)

and so substituting into S, we recover (just as in the point-particle case)
that it reduces to the Nambu—Goto action, Sq.

2.2.2 Symmetries

Let us again study the symmetries of the action.
e Spacetime Lorentz/Poincaré:

XH— X' =AM XY + AV,
where A is an SO(1,3) Lorentz matrix and A* is an arbitrary con-
stant four-vector. Just as before this is a trivial global symmetry

of S (and also S,), following from the fact that we wrote them in
covariant form.
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e world-sheet reparametrisations:

XM = (19, X"
5’7ab = gcacﬁ/ab — acgaﬁ/d) - acgbﬁ/aca (2'26)

for two parameters (%(7,0). This is a non-trivial local or ‘gauge’
symmetry of S. This is a large extra symmetry on the world-sheet
of which we will make great use.

e Weyl invariance:

Yab = Vap = €% Vab, (2.27)

specified by a function w(7, o). This ability to do local rescalings of
the metric results from the fact that we did not have to choose an
overall scale when we chose 7% to rewrite S, in terms of S. This can
be seen especially if we rewrite the relation (2.25) as (—h)~/2hgy, =

(_A/)_l/zﬁ/ab'

N.B. We note here for future use that there are just as many pa-
rameters needed to specify the local symmetries (three) as there are
independent components of the world-sheet metric. This is very use-
ful, as we shall see.

2.2.8 String equations of motion

We can get equations of motion for the string by varying our action (2.21)
with respect to the X*:

aa N9, X, }6X“

/dT N0, x,0x0 T (228)
- 2ma! =0

which results in the equations of motion:

Da (=)0 X 1) = (=)' PV X" = 0, (2.29)
with either:
X'"(1,0)=0 Open string (2.30)
X'H(r,m) =0 (Neumann b.c.s) ’
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or:

Closed string

p — Xxn
XH(7,0) = X¥#(r,m) periodic b.c.s)

7&17(7-7 0) = 7ab(Ta ’IT)
We shall study the equation of motion (2.29) and the accompanying
boundary conditions a lot later. We are going to look at the standard
Neumann boundary conditions mostly, and then consider the case of
Dirichlet conditions later, when we uncover D-branes, using T-duality.
Notice that we have taken the liberty of introducing closed strings by
imposing periodicity (see also insert 2.1 (p. 32)).

X'H(1,0) = XM (7, m)
} ( (2.31)

2.2.4 Further aspects of the two dimensional perspective

The action (2.21) may be thought of as a two dimensional model of D
bosonic fields X#(7, o). This two dimensional theory has reparameterisa-
tion invariance, as it is constructed using the metric v44(7, o) in a covariant
way. It is natural to ask whether there are other terms which we might
want to add to the theory which have similar properties.

With some experience from General Relativity two other terms spring
effortlessly to mind. One is the Einstein—Hilbert action (supplemented
with a boundary term):

/<F 1”R+ dsK, (2.32)
411 27 Jom

where R is the two dimensional Ricci scalar on the world-sheet M and K
is the trace of the extrinsic curvature tensor on the boundary dM. This
latter quantity may be less familiar to some, and we will use it a lot in
diverse dimensions much later in this book. (There is a discussion of it in
insert 10.2 (p. 229), and we will not worry about it in detail here lest we
get sidetracked.)

The other term is:

/)f )2, (2.33)

which is the cosmological term. What is the role of these terms here?
Well, under a Weyl transformation (2.27), it can be seen that (—v)'/? —

e2(=7)/2 and R — ¢~ %*(R — 2V2w), and so  is invariant, (because R
changes by a total derivative which is cancelled by the variation of K)
but © is not.

So we will include x, but not © in what follows. Let us anticipate some-
thing that we will do later, which is to work with Euclidean signature to
help make sense of the topological statements to follow: 7, with signa-
ture (—+) has been replaced by ¢, with signature (++). Now, since as

47ra
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Insert 2.1. 7T is for tension

As a first non-trivial example (and to learn that 7', a mass per unit
length, really is the string’s tension) let us consider a closed string
lying in the (X!, X?2) plane.

X% = 2R,
X! = Rsin 20
X? = Rcos20.

We have made it by arranging that the o = 0, = ends meet, that
momentum flows across that join. An examination of the equations
of motion shows that this configuration is not a solution, and there
are terms which do not vanish corresponding to the fact that the
string does not want to stay at rest: since the string has tension, it
is likely to want to shrink its length away if put into this shape. So
let us think of this as a snapshot of such a situation, ignoring the
non-vanishing terms which involve time derivative. It is worth taking
the time to use this to show that one gets

Pt =T(2R,0,0), P! =T(0,—2Rcos20,2Rsin20),

which is interesting, as a sketch shows.

X2

avy

Xl

There is momentum flowing around the string (which is lying in a
circle of radius R). The total momentum is

e
PH = / do P
0

The only non-zero component is the mass-energy: M = 2wRT =
lengthxT.
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Insert 2.2. A rotating open string

As a second non-trivial example consider the following open string
rotating at a constant angular velocity in the (X!, X?) plane. Such
a configuration is:

X0=7r X! =A<O’— g) COS WT, X?=A <U— g) sinwt,

where it should be checked that the equations of motion fix A = %
This is what it looks like (the spinning string is shown in frozen

snapshots).

\sz\ Xl

It is again a worthwhile exercise to compute P#, and also M*”. With
J = M" and M = P°, some algebra shows that

Mo,
M? 2w '

This parameter, o, is the slope of the celebrated ‘Regge’ trajectories:
the straight line plots of .J vs. M? seen in nuclear physics in the 1960s.
There remains the determination of the intercept of this straight line
graph with the J-axis. It turns out to be one for the bosonic string
as we shall see.
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we said earlier, the full string action resembles two dimensional gravity
coupled to D bosonic ‘matter’ fields X#, and the equations of motion are,
of course,

1
Ruy — §'yabR = Tup. (2.34)

The left hand side vanishes identically in two dimensions, and so there
are no dynamics associated to (2.32). The quantity x depends only on
the topology of the world-sheet (it is the Euler number) and so will only
matter when comparing world sheets of different topology. This will arise
when we compare results from different orders of string perturbation the-
ory and when we consider interactions.

We can see this in the following. Let us add our new term to the action,
and consider the string action to be:

/ &% g12g 0, X 9, X,
+)\{ / d20'gl/2R-|-2

where A is — for now — and arbitrary parameter that we have not fixed to
any particular value.

4Tra

dsK} . (2.35)
oM

N.B. It will turn out that A is not a free parameter. In the full
string theory, it has dynamical meaning, and will be equivalent to
the expectation value of one of the massless fields — the ‘dilaton’ —
described by the string.

So what will A do? Recall that it couples to Euler number, so in the
full path integral defining the string theory:

Z = / DXDg e, (2.36)

resulting amplitudes will be weighted by a factor e=*X, where y = 2—2h—
b — c. Here, h, b, c are the numbers of handles, boundaries and crosscaps,
respectively, on the world sheet. Consider figure 2.2. An emission and
reabsorption of an open string results in a change §x = —1, while for
a closed string it is 6y = —2. Therefore, relative to the tree level open
string diagram (disc topology), the amplitudes are weighted by e* and
e?*, respectively. The quantity gs = e* therefore will be called the closed
string coupling. Note that it is the square of the open string coupling,
which justifies the labelling we gave of the two three-string diagrams in
figure 1.3.
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Sy =—

oy=-—2

Fig. 2.2. World-sheet topology change due to emission and reabsorption
of open and closed strings.

2.2.5 The stress tensor

Let us also note that we can define a two dimensional energy-momentum

tensor:
2 ) 1 1
T%(r,0) = _—fﬁ/éﬁ—i == {3GXM3bX“ - §’Vab%d30Xu3qu} :
V a
(2.37)
Notice that
T% = 7, T% = 0. (2.38)

This is a consequence of Weyl symmetry. Reparametrisation invariance,
645" = 0, translates here into (see discussion after equation (2.34))

7% = 0. (2.39)

These are the classical properties of the theory we have uncovered so far.
Later on, we shall attempt to ensure that they are true in the quantum
theory also, with interesting results.

2.2.6 Gauge fizing

Now recall that we have three local or ‘gauge’ symmetries of the action:

2D reparametrisations : 0,7 — &(0,7),7(0,T),
Weyl: va — exp(2w(0, 7)) Yab- (2.40)
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The two dimensional metric v, is also specified by three independent
functions, as it is a symmetric 2 X 2 matrix. We may therefore use the
gauge symmetries (see equations (2.26) and (2.27)) to choose 74, to be a
particular form:

-1 0
’Vab = nabe¢ = ( 0 1) €¢, (241)

i.e. the metric of two dimensional Minkowski, times a positive function
known as a conformal factor. In this ‘conformal’ gauge, our X* equations
of motion (2.29) become:

< o o > XH(r,0) =0, (2.42)

do? 072

the two dimensional wave equation. (In fact, the reader should check that
the conformal factor cancels out entirely of the action in equation (2.21).)
As the wave equation is d,+0,- X* = 0, we see that the full solution to
the equation of motion can be written in the form:

X4(0,7) = Xt(o™) + Xho), (2.43
where 0t =7+ 0.
N.B. Write 6& = 7 + ¢. This gives metric ds?> = —dr? + do? —
—dotdo~. So we have n_y =n,_ = —1/2, n~" =7~ = -2 and
Nitr =n——=nTt=n""=0.Also, 0 =94 +0_ and 9, = d4 —O_.

Our constraints on the stress tensor become:

1 .
Tro = Tpr = S XMX], =0
(87
_ _ 1 VY ! —
TO’O’ — 47T — 2_0/ (X X,u +X XM) - 07 (244)
or
1 1 L 1.
T++ = §(T7-7- +T7-g-) - 33+X 8+X’u = JXL - 0
1 1 1.
T _ = §(TTT —Try) = Ja_xﬂa_){u = JX}% =0, (2.45)

and T_, and Ty _ are identically zero.
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2.2.7 The mode decomposition
Our equations of motion (2.43), with our boundary conditions (2.30) and
(2.31) have the simple solutions:
1 ‘
XH(r,0) = 2t + 2o/p"r + i(2a))/? Z Eaﬁe_”” cosno, (2.46)
n#0

for the open string and

XH(r,0) = Xlh(o7) + XP(o™)

Wy _— 1 I 1o — . o Y2 1 w,—2ino~
Xp(o )=§x +a'pto” +i| — Zﬁane

2 n#0
1 o'\ M2 1 ino+
XMooty = za# + o'prot +i (—) Z —aHeT2noT L (2.47)
2 2 n
n#0
for the closed string, where, to ensure a real solution we impose o, =
(a)* and &, = (&)*. Note that x# and p! are the centre of mass

position and momentum, respectively. In each case, we can identify p#
with the zero mode of the expansion:

open string: ag = (20/)1/2pu;
o 1/2
closed string: ag = <5> I (2.48)

N.B. Notice that the mode expansion for the closed string (2.47) is
simply that of a pair of independent left and right moving travelling
waves going around the string in opposite directions. The open string
expansion (2.46) on the other hand, has a standing wave for its solu-
tion, representing the left and right moving sector reflected into one
another by the Neumann boundary condition (2.30).

2.2.8 Conformal invariance as a residual symmetry

Actually, we have not gauged away all of the local symmetry by choosing
the gauge (2.41). We can do a left-right decoupled change of variables:

ot = fleT) =0 07 —glo7)=0". (2.49)

Then, as
, o do?

'Vab = ao_/a ao_/b F)/Cd7 (250)
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we have

ot o -
- (82; s )) . (251)

However, we can undo this with a Weyl transformation of the form
v\ = exp(2wi(oT) + 2wr (07 )) V4, (2.52)

if exp(—2wr,(c7)) = 91 f(0™) and exp(—2wr(c™)) = d_g(oc™). So we
still have a residual ‘conformal’ symmetry. As f and g are independent
arbitrary functions on the left and right, we have an infinite number of
conserved quantities on the left and right. This is because the conserva-
tion equation V,T% = 0, together with the result Ty_ = T_, = 0, turns
into:

8_T++ =0 and 8+T__ = 0, (253)

but since d_ f = 0 = d,g, we have
O_(f(e)Tha) =0 and 0.(g0T)T_) =0,  (2.5)

resulting in an infinite number of conserved quantities. The fact that we
have this infinite dimensional conformal symmetry is the basis of some
of the most powerful tools in the subject, for computing in perturbative
string theory. We will return to it not too far ahead.

2.2.9 Some Hamiltonian dynamics
Our Lagrangian density is

1
4w

L= (0 X1, X, — 0-X"10:X ), (2.55)

from which we can derive that the conjugate momentum to X* is

oL 1 .
H — = H
II 510, X7 27ra’X . (2.56)

So we have the equal time Poisson brackets:

[XH(0), 11" (6")]p g = 1" 6(c — '), (2.57)
[HM(U%HU(O‘/)}P‘B‘ =0, (2.58)

with the following results on the oscillator modes:

[, O‘Z]P.B. = [ah,, dryz]P,B‘ = imOmnn™”
[P 2" lp s = 0" o, anlp g =0. (2.59)
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We can form the Hamiltonian density
. 1
H = XMHM — E - m (8O-XM80-XM + 87-XM87-XM) ; (260)

from which we can construct the Hamiltonian H by integrating along the
length of the string. This results in:

™ 1

H = /0 doH(o) = 3 ;oa_n - (open) (2.61)
2m 1 & N N

H = ; doH(o) = 5 _ZO:O (- + Gy - ) (closed).

(We have used the notation o, - o, = afiavyy,.) The constraints Ty =
0 = T__ on our energy-momentum tensor can be expressed usefully in
this language. We impose them mode by mode in a Fourier expansion,
defining:

T (™ R
Ln=7% / eHMT_do = 23 G+ (2.62)
0 =

and similarly for L,, using T'y ;. Using the Poisson brackets (2.59), these
can be shown to satisfy the ‘Virasoro’ algebra:

[Lm> Ln]P,B, = Z(m - n)Lm—}—n? [I_/ma Ln]p‘B. = Z(m - n)Lm—l—n;
Ly Ln]p gy = 0. (2.63)

Notice that there is a nice relation between the zero modes of our expan-
sion and the Hamiltonian:

H=1L (open); H = Lo+ Lo (closed). (2.64)

So to impose our constraints, we can do it mode by mode and ask that
Ly, =0 and Ly, = 0, for all m. Looking at the zeroth constraint results
in something interesting. Note that

L ——1 2+2X—1 E [0 [0
= o e
0 2 0 2 n n

n=1

)
= O/p“pu + Z Q_pn " Qn

n=1

o0
= —o/M? + Z Q_p - Qp. (2.65)

n=1
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Requiring Ly to be zero — diffeomorphism invariance — results in a (space-
time) mass relation:

1 e¢]
M? = 7 E a_p - Oy (open), (2.66)
n=1

where we have used the zero mode relation (2.48) for the open string. A
similar exercise produces the mass relation for the closed string:

2

Oé/

o
M? = Z (a—p -0y + Gy - ) (closed). (2.67)
n=1

These formulae (2.66) and (2.67) give us the result for the mass of a state
in terms of how many oscillators are excited on the string. The masses
are set by the string tension 7' = (2wa’/) ™!, as they should be. Let us not
dwell for too long on these formulae however, as they are significantly
modified when we quantise the theory, since we have to understand the
infinite constant which we ignored.

2.3 Quantised bosonic strings

For our purposes, the simplest route to quantisation will be to promote
everything we met previously to operator statements, replacing Poisson

Brackets by commutators in the usual fashion: [ , |ps — —i[ , |
This gives:
(XH(1,0),11"(1,0")] = in"6(c —o');  [I¥(r,0),11"(1,0")] =0
[y an] = 00, &) = mbmynn™
[z, p'] = s [ok,an] = 0. (2.68)

N.B. One of the first things that we ought to notice here is that
vmall,, are like creation and annihilation operators for the harmonic
oscillator. There are actually D independent families of them — one
for each spacetime dimension — labelled by p.

In the usual fashion, we will define our Fock space such that |0;k)
is an eigenstate of p* with centre of mass momentum k*. This state is
annihilated by o, .

What about our operators, the L,,7 Well, with the usual ‘normal or-
dering’ prescription that all annihilators are to the right, the L,, are all
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fine when promoted to operators, except the Hamiltonian, Lg. It needs
more careful definition, since a¥ and o, do not commute. Indeed, as an
operator, we have that

1 o

Lo = 5&8 + Z Q_y - ap + constant, (2.69)
n=1

where the apparently infinite constant is composed of the infinite sum

(1/2)3°0° n for each of the D families of oscillators. As is of course

to be anticipated, this infinite constant can be regulated to give a finite

answer, corresponding to the total zero point energy of all of the harmonic

oscillators in the system.

2.8.1 The constraints and physical states

For now, let us not worry about the value of the constant, and simply
impose our constraints on a state |¢) as*:

(Lo — a)|p) = 0; Ly|¢y =0 for m >0,
(Lo — a)|¢p) = 0; Li|¢) =0 for m >0, (2.70)
where our regulated constant is set by a, which is to be computed. There

is a reason why we have not also imposed this constraint for the L_,;s.
This is because the Virasoro algebra (2.63) in the quantum case is:

D _

[Lm’ Ln] = (m - n)Lm-I—TL + _(m3 - m)(sm-l-n; [Lma Ln] = 0;
12

T = D

[Lm7 Ln} = (m—n)Lpin+ —(m3 — m)Ompn- (2.71)
12

There is a central term in the algebra, which produces a non-zero constant
when m = n. Therefore, imposing both L,, and L_,, would produce an
inconsistency. Note now that the first of our constraints (2.70) produces
a modification to the mass formulae:

M? = é (i Oy - Qpy — a> (open) (2.72)

!
@ n=1

2 _ 2 [ - -
M* =~ Z (p - an+ @ p-an) —2a (closed).

* This assumes that the constant a on each side are equal. At this stage, we have no
other choice. We have isomorphic copies of the same string modes on the left and the
right, for which the values of a are by definition the same. When we have more than
one consistent conformal field theory to choose from, then we have the freedom to
consider having non-isomorphic sectors on the left and right. This is how the heterotic
string is made, for example, as we shall see later.
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Notice that we can denote the (weighted) number of oscillators excited as
N=Ya_, a, (=Y nN,) on the left and N =Y a_,, - &, (= Y. nN,)
on the right. N, and N,, are the true count, on the left and right, of the
number of copies of the oscillator labelled by n is present.

There is an extra condition in the closed string case. While Lo+ Lo gen-
erates time translations on the world sheet (being the Hamiltonian), the
combination Lg — Lg generates translations in . As there is no physical
significance to where on the string we are, the physics should be invari-
ant under translations in o, and we should impose this as an operator
condition on our physical states:

(Lo — Lo)l¢) = 0, (2.73)

which results in the ‘level-matching’ condition N = N, equating the num-
ber of oscillators excited on the left and the right. This is indeed the
difference between the two equations in (2.70).

In summary then, we have two copies of the open string on the left and
the right, in order to construct the closed string. The only extra subtlety
is that we should use the correct zero mode relation (2.48) and match
the number of oscillators on each side according to the level matching
condition (2.73).

2.8.2 The intercept and critical dimensions

Let us consider the spectrum of states level by level, and uncover some
of the features, focusing on the open string sector. Our first and simplest
state is at level 0, i.e. no oscillators excited at all. There is just some
centre of mass momentum that it can have, which we shall denote as k*.
Let us write this state as |0; k). The first of our constraints (2.70) leads
to an expression for the mass:

(Lo —a)|0; k) =0 = o'k? = a, so M2=_2. (2.74)

Oé/

This state is a tachyonic state, having negative mass-squared (assuming
a > 0.

The next simplest state is that with momentum k*, and one oscillator
excited. We are also free to specify a polarisation vector (*. We denote
this state as |(,k) = (( - «—1)|0;k); it starts out the discussion with D
independent states. The first thing to observe is the norm of this state:

(GEIGE) = (0;k[CF - an€ - aq]0; &)
= (G (0; klay a1 ]0; &)
= - C(0; k|0 Ky = ¢-c2m)PsP (k= k),  (2.75)
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where we have used the commutator (2.68) for the oscillators. From this
we see that the timelike (s will produce a state with negative norm. Such
states cannot be made sense of in a unitary theory, and are often called?
‘ghosts’.

Let us study the first constraint:

(Lo —a)|C; k) =0 = dE+1=a, M? =

The next constraint gives:

(Ll)\C;k>=@k-alc-a_l\o;l@:o =, k-¢=0. (277)

Actually, at level one, we can also make a special state of interest:
|t) = L_1|0; k). This state has the special property that it is orthogonal
to any physical state, since (¢|¢)) = (¢|¢)* = (0;k|L1|¢) = 0. It also has
Ly |) = 2Lo|0; k) = o/k?|0; k). This state is called a ‘spurious’ state.

So we note that there are three interesting cases for the level one
physical state we have been considering.

l.a<l=M?>0:

e momentum k is timelike,
e we can choose a frame where it is (k,0,0,...),
e spurious state is not physical, since k2 # 0,

e k- ( =0 removes the timelike polarisation; D — 1 states left.
2.a>1=M*<0:

e momentum k is spacelike,

e we can choose a frame where it is (0, k1, ko, . . .),

e spurious state is not physical, since k2 # 0,

e k- (¢ = 0 removes a spacelike polarisation; D — 1 tachyonic
states left, one which is including ghosts.

3.a=1=M?2=0:

e momentum k is null,
e we can choose a frame where it is (k, k,0,...),

e spurious state is physical and null, since k% = 0,

t These are not to be confused with the ghosts of the friendly variety — Faddeev—Popov
ghosts. These negative norm states are problematic and need to be removed.
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e k-( =0 and k? = 0 remove two polarisations; D — 2 states
left.

So if we choose case (3), we end up with the special situation that we
have a massless vector in the D dimensional target spacetime. It even has
an associated gauge invariance: since the spurious state is physical and
null, and therefore we can add it to our physical state with no physical
consequences, defining an equivalence relation:

@) ~ o) + Ay = e AR (2.78)

Case (1), while interesting, corresponds to a massive vector, where the
extra state plays the role of a longitudinal component. Case (2) seems
bad. We shall choose case (3), where a = 1.

It is interesting to proceed to level two to construct physical and spu-
rious states, although we shall not do it here. The physical states are
massive string states. If we insert our level one choice a = 1 and see what
the condition is for the spurious states to be both physical and null, we
find that there is a condition on the spacetime dimensiont: D = 26.

In summary, we see that @ = 1, D = 26 for the open bosonic string
gives a family of extra null states, giving something analogous to a point
of ‘enhanced gauge symmetry’ in the space of possible string theories.
This is called a ‘critical” string theory, for many reasons. We have the 24
states of a massless vector we shall loosely called the photon, A, since it
has a U(1) gauge invariance (2.78). There is a tachyon of M2 = —1/a’ in
the spectrum, which will not trouble us unduly. We will actually remove
it in going to the superstring case. Tachyons will reappear from time
to time, representing situations where we have an unstable configuration
(as happens in field theory frequently). Generally, it seems that we should
think of tachyons in the spectrum as pointing us towards an instability,
and in many cases, the source of the instability is manifest.

Our analysis here extends to the closed string, since we can take two
copies of our result, use the appropriate zero mode relation (2.48), and
level matching. At level zero we get the closed string tachyon which has
M? = —4/a’. At level zero we get a tachyon with mass given by M? =
—4/d’, and at level 1 we get 242 massless states from o/';&",|0; k). The
traceless symmetric part is the graviton, G, and the antisymmetric part,
By, is sometimes called the Kalb-Ramond field, and the trace is the
dilaton, .

We get a condition on the spacetime dimension here because level two is the first
time it can enter our formulae for the norms of states, via the central term in the
Virasoro algebra (2.71).
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2.3.3 A glance at more sophisticated techniques

Later we shall do a more careful treatment of our gauge fixing procedure
(2.41) by introducing Faddeev—Popov ghosts (b, ¢) to ensure that we stay
on our chosen gauge slice in the full theory. Our resulting two dimensional
conformal field theory will have an extra sector coming from the (b, c)
ghosts.

The central term in the Virasoro algebra (2.71) represents an anomaly
in the transformation properties of the stress tensor, spoiling its properties
as a tensor under general coordinate transformations. Generally:

1+ 2 3 7 /I 2 192 1
(30’ ) T, (") = Tuy (o) c {280.0' Oy0' — 3050'050 }, (2.79)

Jdot 12 20,0'0,0'

where here ¢ is a number, the central charge which depends upon the con-
tent of the theory. In our case, we have D bosons, which each contribute
1 to ¢, for a total anomaly of D.

The ghosts do two crucial things: They contribute to the anomaly the
amount —26, and therefore we can retain all our favourite symmetries for
the dimension D = 26. They also cancel the contributions to the vacuum
energy coming from the oscillators in the p = 0,1 sector, leaving D — 2
transverse oscillators’ contribution.

The regulated value of —a is the vacuum or ‘zero point’ energy (z.p.e.)
of the transverse modes of the theory. This zero point energy is simply the
Casimir energy arising from the fact that the two dimensional field theory
is in a box. The box is the infinite strip, for the case of an open string, or
the infinite cylinder, for the case of the closed string (see figure 2.3).

A periodic (integer moded) boson such as the types we have here, X*,
each contribute —1/24 to the vacuum energy (see insert 2.3 (p. 46) on a
quick way to compute this). So we see that in 26 dimensions, with only

—
o 0<og2m

Fig. 2.3. String world-sheets as boxes upon which lives two dimensional
conformal field theory.
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Insert 2.3. Zero point energy from the exponential map

After doing the transformation to the z-plane, it is interesting to note
that the Fourier expansions we have been working with to define the
modes of the stress tensor become Laurent expansions on the complex
plane, e.g.
[e.¢] Lm
Ta(2)= ) prTE
m=—0o0

One of the most straightforward exercises is to compute the zero point
energy of the cylinder or strip (for a field of central charge c) by
starting with the fact that the plane has no Casimir energy. One
simply plugs the exponential change of coordinates z = e into the
anomalous transformation for the energy momentum tensor and com-
pute the contribution to T, starting with T,,:

Tww = _ZQTzz - ia
which results in the Fourier expansion on the cylinder, in terms of
the modes:
Tp(w) = — 3 (Lm — ﬂémﬁo) e
m=—0o0

24 contributions to count (see previous paragraph), we get that —a =
24 x (—1/24) = —1. (Notice that from equation (2.69), this implies that
S0 n = —1/12, which is in fact true (!) in (-function regularisation.)

Later, we shall have world-sheet fermions ¥* as well, in the supersym-
metric theory. They each contribute 1/2 to the anomaly. World sheet
superghosts will cancel the contributions from ¢, ¢'. Each anti-periodic
fermion will give a z.p.e. contribution of —1/48.

Generally, taking into account the possibility of both periodicities for
either bosons or fermions:

1
z.p.e. = S for boson; 5w for fermion (2.80)
1 1 2 6 = 0 (integer modes)
= ———(20-1) 1 .
24 8 g = 5 (half-integer modes).

This is a formula that we shall use many times in what is to come.
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2.4 The sphere, the plane and the vertex operator

The ability to choose the conformal gauge, as first discussed in
section 2.2.6, gives us a remarkable amount of freedom, which we can
put to good use. The diagrams in figure 2.3 represent free strings coming
in from 7 = —oco and going out to 7 = 400. Let us first focus on the
closed string, the cylinder diagram. Working with Euclidean signature by
taking 7 — —i7, the metric on it is

ds? = dr? + do?, —00 < T < 400 0<o<2m
We can do the change of variables
z=e 1, (2.81)
with the result that the metric changes to
ds® = dr? + do* — |z| ?dzdz.

This is conformal to the metric of the complex plane: dé? = dzdz, and so
we can use this as our metric on the world-sheet, since a conformal factor
e? = |z|72 drops out of the action, as we already noticed.

The string from the infinite past 7 = —oo is mapped to the origin while
the string in the infinite future 7 = 400 is mapped to the ‘point’ at infin-
ity. Intermediate strings are circles of constant radius |z|. See figure 2.4.
The more forward-thinking reader who prefers to have the 7 = 400 string
at the origin can use the complex coordinate Z = 1/z instead.

One can even ask that both strings be placed at finite distance in z.
Then we need a conformal factor which goes like |2|~2 at z = 0 as before,
but like || at z = co. There is an infinite set of functions which do that,
but one particularly nice choice leaves the metric:

AR?dzdz
(B? +[2)*

ds? = (2.82)

X0

Fig. 2.4. The cylinder diagram is conformal to the complex plane and the
sphere.
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which is the familiar expression for the metric on a round $? with radius
R, resulting from adding the point at infinity to the plane. See figure 2.4.
The reader should check that the precise analogue of this process will
relate the strip of the open string to the upper half plane, or to the disc.
The open strings are mapped to points on the real axis, which is equivalent
to the boundary of the disc. See figure 2.5.

We can go even further and consider the interaction with three or more
strings. Again, a clever choice of function in the conformal factor can be
made to map any tubes or strips corresponding to incoming strings to a
point on the interior of the plane, or on the surface of a sphere (for the
closed string) or the real axis of the upper half-plane of the boundary of
the disc (for the open string). See figure 2.6.

2.4.1 States and operators

There is one thing which we might worry about. Have we lost any infor-
mation about the state that the string was in by performing this reduction
of an entire string to a point? Should we not have some sort of marker
with which we label each point with the properties of the string it came
from? The answer is in the affirmative, and the object which should be
inserted at these points is called a ‘vertex operator’. Let us see where it
comes from.

As we learned in the previous subsection, we can work on the complex
plane with coordinate z. In these coordinates, our mode expansions (2.46)
and (2.47) become:

Oé/ 1/2 Oé/ 1/2 1
XMz, 2) =at —i <5> aﬁlnzé—l—i(?) Zﬁaﬁ (z7"+z7"),
n#0
(2.83)

Fig. 2.5. The strip diagram is conformal to the upper half of the complex
plane and the disc.
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Fig. 2.6. Mapping any number of external string states to the sphere or
disc using conformal transformations.

for the open string, and for the closed:

XH(z,2) = X|'(2) + XR(Z)
1 o\ M2 o\ V2 1
m . I . —
X (2) 51"“ —1 <?> aglnz 41 <?> g Eaﬁfz n

e 1 L ) Oé/ 1/2 u ~ ‘ a 1/2 P
Xp(z) = ¥ —ilg agInz 4+ 5 Z oz, (2.84)

/ 1/2
Dz XH(2) = —i (%) > akzl (2.85)

and that we can invert these to get (for the closed string)

1/2 - y 2\Y2 rdz

o ( ) f—z”aXM 2) Mn:(&) ETOXN(z),
(2.86)

which are non-zero for n > 0. This is suggestive: equations (2.85) define

left—-moving (holomorphic) and right-moving (anti-holomorphic) fields.

We previously employed the objects on the left in (2.86) in making states
by acting, e.g. a”]|0;k). The form of the right hand side suggests that
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this is equivalent to performing a contour integral around an insertion of a
pointlike operator at the point z in the complex plane (see figure 2.7). For
example, o | is related to the residue 9, X*(0), while the o, correspond
to higher derivatives 97" X*#(0). This is course makes sense, as higher lev-
els correspond to more oscillators excited on the string, and hence higher
frequency components, as measured by the higher derivatives. The state
with no oscillators excited (the tachyon), but with some momentum k,
simply corresponds in this dictionary to the insertion of

0:k) = / &2z X (2.87)

We have integrated over the insertions’ position on the sphere since the
result should not depend upon our parameterisation. This is reasonable,
as it is the simplest form that allows the right behaviour under transla-
tions: A translation by a constant vector, X# — X* 4+ A*, results in a
multiplication of the operator (and hence the state) by a phase ¢4, The
normal ordering signs :: are there to remind us that the expression means
to expand and keep all creation operators to the left, when expanding in
terms of the q4,s.

The closed string level one vertex operator corresponds to the emission
or absorption of G, B, and ®:

Cuata” 1105 k) = /dgz w0 X0 XV e X L (2.88)

where the symmetric part of (,, is the graviton and the antisymmetric
part is the antisymmetric tensor.

a a | 10;k)

uv
Fig. 2.7. The correspondence between states and operator insertions. A
closed string (graviton) state (™ ;&7 |0; k) is set up on the closed string

at 7 = —oo and it propagates in. This is equivalent to inserting a graviton
vertex operator V#(z) =: CW(?ZXMGZX”elk‘X cat 2 =0.
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For the open string, the story is similar, but we get two copies of the
relations (2.86) for the single set of modes a”, (recall that there are
no as). This results in, for example the relation for the photon:

¢t 1105 k) — / dl : 0 X et X (2.89)

where the integration is over the position of the insertion along the
real axis. Also, d; means the derivative tangential to the boundary. The

tachyon is simply the boundary insertion of the momentum : e**¥: alone.

2.5 Chan—Paton factors

Let us endow the string endpoints with a slightly more interesting prop-
erty. We can add non-dynamical degrees of freedom to the ends of the
string without spoiling spacetime Poincaré invariance or world-sheet con-
formal invariance. These are called ‘Chan-Paton’ degrees of freedom??
and by declaring that their Hamiltonian is zero, we guarantee that they
stay in the state that we put them into. In addition to the usual Fock
space labels we have been using for the state of the string, we ask that
each end be in a state ¢ or j for 7,5 from 1 to N (see figure 2.8). We use
a family of N x N matrices, A}, as a basis into which to decompose a
string wavefunction

N
kia) = > |k, if) A (2.90)
i,j=1

These wavefunctions are called ‘Chan—Paton factors’. Similarly, all open
string vertex operators carry such factors. For example, consider the tree-
level (disc) diagram for the interaction of four oriented open strings in
figure 2.9. As the Chan—Paton degrees of freedom are non-dynamical, the
right end of string number 1 must be in the same state as the left end of
string number 2, etc., as we go around the edge of the disc. After summing
over all the possible states involved in tying up the ends, we are left with
a trace of the product of Chan—Paton factors,

AGAALAG = Tr(AIAAY), (2.91)

P T~

Fig. 2.8. An open string with Chan—Paton degrees of freedom.
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4 3

Fig. 2.9. A four-point scattering of open strings, and its conformally re-
lated disc amplitude.

All open string amplitudes will have a trace like this and are invariant
under a global (on the world-sheet) U(N):

N UNUTY (2.92)

under which the endpoints transform as N and N.

Notice that the massless vector vertex operator V% = AfJ; X" exp X
(ik - X)) transforms as the adjoint under the U(N) symmetry. This means
that the global symmetry of the world-sheet theory is promoted to a gauge
symmetry in spacetime. It is a gauge symmetry because we can make a
different U(N) rotation at separate points X*(o, 7) in spacetime.

2.6 Unoriented strings
2.6.1 Unoriented open strings

There is an operation of world-sheet parity {2 which takes ¢ — w — 0, on
the open string, and acts on z = €" ' as z «» —Z. In terms of the mode
expansion (2.83), X#(z,z) — XH(—z,—z) yields

¢ — M
' — pt
al — (=1)"ak. (2.93)

This is a global symmetry of the open string theory and so we can, if we
wish, also consider the theory that results when it is gauged, by which we
mean that only Q-invariant states are left in the spectrum. We must also
consider the case of taking a string around a closed loop. It is allowed to
come back to itself only up to an over all action of €2, which is to swap
the ends. This means that we must include unoriented world-sheets in
our analysis. For open strings, the case of the Mobius strip is a useful
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example to keep in mind. It is on the same footing as the cylinder when
we consider gauging ). The string theories which result from gauging €2
are understandably called ‘unoriented string theories’.

Let us see what becomes of the string spectrum when we perform this
projection. The open string tachyon is even under () and so survives the
projection. However, the photon, which has only one oscillator acting,
does not:

Qlk) = +|k)
Qo k) = —a | |k). (2.94)

We have implicitly made a choice about the sign of €2 as it acts on the vac-
uum. The choice we have made in writing equation (2.94) corresponds to
the symmetry of the vertex operators (2.89): the resulting minus sign
comes from the orientation reversal on the tangent derivative 9, (see
figure 2.10).

Fortunately, we have endowed the string’s ends with Chan—Paton fac-
tors, and so there is some additional structure which can save the photon.
While  reverses the Chan—Paton factors on the two ends of the string,
it can have some additional action:

QXijlk,if) — Njlk,ji), N =MNTM™L (2.95)

This form of the action on the Chan—Paton factor follows from the re-
quirement that it be a symmetry of the amplitudes which have factors
like those in equation (2.91).

If we act twice with €, this should square to the identity on the fields,
and leave only the action on the Chan—Paton degrees of freedom. States
should therefore be invariant under:

A= MM IAM M. (2.96)

O O

&% o

Fig. 2.10. The action of €2 on the photon vertex operator can be deduced
from seeing how exchanging the ends of the string changes the sign of the
tangent derivative, 0.
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Now it should be clear that the A must span a complete set of N x N
matrices: If strings with ends labelled ik and jl are in the spectrum for
any values of k and [, then so is the state ¢j. This is because jI implies lj
by CPT, and a splitting—joining interaction in the middle gives ik +1j —
ij + k.

Now equation (2.96) and Schur’s lemma require M M ~7 to be propor-
tional to the identity, so M is either symmetric or antisymmetric. This
gives two distinct cases, modulo a choice of basis?*. Denoting the n x n
unit matrix as I,,, we have the symmetric case:

M=MT =1Iy. (2.97)

In order for the photon \;ja |k, ij) to be even under Q and thus survive
the projection, A must be antisymmetric to cancel the minus sign from
the transformation of the oscillator state. So A = —A”, giving the gauge
group SO(N). For the antisymmetric case, we have:

AT 0 Inp
M=-M _Z[_IN/Q v (2.98)

For the photon to survive, A = —MAT M, which is the definition of the
gauge group USp(N). Here, we use the notation that USp(2) = SU(2).
Elsewhere in the literature this group is often denoted Sp(N/2).

2.6.2 Unoriented closed strings

Turning to the closed string sector. For closed strings, we see that the
mode expansion (2.84) for X#(z,z) = X7 (z) + X(2) is invariant under
a world-sheet parity symmetry ¢ — —o, which is z — —Zz. (We should
note that this is a little different from the choice of 2 we took for the
open strings, but more natural for this case. The two choices are related
to each other by a shift of w.) This natural action of € simply reverses
the left- and right-moving oscillators:

O al — abl. (2.99)

Let us again gauge this symmetry, projecting out the states which are
odd under it. Once again, since the tachyon contains no oscillators, it is
even and is in the projected spectrum. For the level one excitations:

QoM a” k) = a" a4 k), (2.100)

and therefore it is only those states which are symmetric under p < v — the
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graviton and dilaton — which survive the projection. The antisymmetric
tensor is projected out of the theory.

2.6.3 World-sheet diagrams

As stated before, once we have gauged €2, we must allow for unoriented
world-sheets, and this gives us rather more types of string world-sheet
than we have studied so far. Figure 2.11 depicts the two types of one-loop
diagram we must consider when computing amplitudes for the open string.
The annulus (or cylinder) is on the left, and can be taken to represent an
open string going around in a loop. The Mobius strip on the right is an
open string going around a loop, but returning with the ends reversed.
The two surfaces are constructed by identifying a pair of opposite edges
on a rectangle, one with and the other without a twist.

Figure 2.12 shows an example of two types of closed string one-loop
diagram we must consider. On the left is a torus, while on the right is a
Klein bottle, which is constructed in a similar way to a torus save for a
twist introduced when identifying a pair of edges.

In both the open and closed string cases, the two diagrams can be
thought of as descending from the oriented case after the insertion of the
normalised projection operator %Tr(l + ) into one-loop amplitudes.

Similarly, the unoriented one-loop open string amplitude comes from
the annulus and Mobius strip. We will discuss these amplitudes in more
detail later.

The lowest order unoriented amplitude is the projective plane RPZ,
which is a disk with opposite points identified (see figure 2.13). Shrinking

(@) b

Fig. 2.11. (a) Constructing a cylinder or annulus by identifying a pair of
opposite edges of a rectangle. (b) Constructing a M&bius strip by identi-
fying after a twist.

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press


https://doi.org/10.1017/9781009401371

56 2 Relativistic strings

> =

Fig. 2.12. (a) Constructing a torus by identifying opposite edges of a
rectangle. (b) Constructing a Klein bottle by identifying after a twist.

= O

Fig. 2.13. Constructing the projective plane RP? by identifying opposite
points on the disk. This is equivalent to a sphere with a crosscap insertion.

the identified hole down, we recover the fact that RP? may be thought of
as a sphere with a crosscap inserted, where the crosscap is the result of
shrinking the identified hole. Actually, a Mobius strip can be thought of as
a disc with a crosscap inserted, and a Klein bottle is a sphere with two
crosscaps. Since a sphere with a hole (one boundary) is the same as a disc,
and a sphere with one handle is a torus, we can classify all world-sheet
diagrams in terms of the number of handles, boundaries and crosscaps that
they have. Insert 2.4 (p.57) summaries all the world-sheet perturbation
theory diagrams up to one loop.

2.7 Strings in curved backgrounds

So far, we have studied strings propagating in the (uncompactified)
target spacetime with metric 7). While this alone is interesting, it is
curved backgrounds of one sort or another which will occupy much of
this book, and so we ought to see how they fit into the framework
so far.
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2.7 Strings in curved backgrounds
Insert 2.4. World-sheet perturbation theory diagrams
It is worthwhile summarising all of the string theory diagrams up to
one-loop in a table. Recall that each diagram is weighted by a factor
gX = ggh_2+b+c where h, b, ¢ are the numbers of handles, boundaries
and crosscaps, respectively.
9:° s 98
sphere S? torus 12
(plane)
closed
oriented
disc Do cylinder Cs
(half-plane) (annulus)
open
oriented ‘
projective
plane RP? Klein bottle KB
closed
unoriented @ @ (X)
R N
Moébius strip MS
open
unoriented O @
=
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A natural generalisation of our action is simply to study the ‘c-model’
action:

Sy = ! / % (=) 2% G (X) D X H O XY (2.101)

4o’

Comparing this to what we had before (2.21), we see that from the two
dimensional point of view this still looks like a model of D bosonic fields
XH#. but with field dependent couplings given by the non-trivial spacetime
metric G, (X). This is an interesting action to study.

A first objection to this is that we seem to have cheated somewhat:
strings are supposed to generate the graviton (and ultimately any curved
backgrounds) dynamically. Have we cheated by putting in such a back-
ground by hand? Or a more careful, less confrontational question might
be: is it consistent with the way strings generate the graviton to introduce
curved backgrounds in this way?

Well, let us see. Imagine, to start off, that the background metric is
only locally a small deviation from flat space: G (X) = nu + hu (X),
where h is small.

Then, in conformal gauge, we can write in the Fuclidean path integral
(2.36):

e % = ¢ (1 + 41;, / d*2hy (X)0,X10: XY + - ) : (2.102)
and we see that if h,,(X) o« gsCu exp(ik - X), where ¢ is a symmetric
polarisation matrix, we are simply inserting a graviton emission vertex
operator. So we are indeed consistent with that which we have already
learned about how the graviton arises in string theory. Furthermore, the
insertion of the full G, (X) is equivalent in this language to inserting
an exponential of the graviton vertex operator, which is another way of
saying that a curved background is a ‘coherent state’ of gravitons.

It is clear that we should generalise our success, by including o-model
couplings which correspond to introducing background fields for the an-
tisymmetric tensor and the dilaton:

1
Sy, = - /dQO' 91/2 {(gabGW(X) + ieabBW(X))ﬁaX“(%X” + O/(IDR} ,
(2.103)

where B, is the background antisymmetric tensor field and @ is the
background value of the dilaton. The coupling for B,,, is a rather straight-
forward generalisation of the case for the metric. The power of ¢ is there
to counter the scaling of the dimension one fields X*#, and the antisym-
metric tensor accommodates the antisymmetry of B. For the dilaton, a
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coupling to the two dimensional Ricci scalar is the simplest way of writing
a reparametrisation invariant coupling when there is no index structure.
Correspondingly, there is no power of o’ in this coupling, as it is already
dimensionless.

N.B. It is worth noting that o’ is rather like % for this two dimensional
theory, since the action is very large if @/ — 0, and so this is a good
limit to expand around. In this sense, the dilaton coupling is a one-
loop term. Another thing to notice is that the o/ — 0 limit is also like
a ‘large spacetime radius’ limit. This can be seen by scaling lengths
by G — 172G, which results in an expansion in o/ /r2. Large radius
is equivalent to small o/.

The next step is to do a full analysis of this new action and ensure that
in the quantum theory, one has Weyl invariance, which amounts to the
tracelessness of the two dimensional stress tensor. Calculations (which we
will not discuss here) reveal that:

1 L , 1
T = —TdﬂfygabﬁaX“@bX — 2—O/ﬁfyeab8aX“8bX — §ﬁ@R, (2.104)

G — o (R +2V,V,® — 2 H o H,™ +0(a'?)

nuv a v uwyv 4 urotLy a )

1
@i =d (—gv*@HKW + V“<I>H,W> + 0(a'?), (2.105)
D—-26 1 1
63} 2 K K 2
6 = o ( oo~V O+ VOV — i H W) + 0(a'?),

with Hyx = 0y Buk + 0y By + 0By For Weyl invariance, we ask that
each of these f-functions for the o-model couplings actually vanish. (See
insert 3.1 for further explanation of this.) The remarkable thing is that
these resemble spacetime field equations for the background fields. These
field equations can be derived from the following spacetime action:

1 1
- dDX _ 1/2 _—29 4 d ;L@__HU Hul/)\
S %3/ (~G)/2e7 | R+ AV, 0V D — — H

— % +0(d)]. (2.106)
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N.B. Now we note something marvellous: ® is a background field
which appears in the closed string theory o-model multiplied by the
Euler density. So comparing to equation (2.35) (and discussion fol-
lowing), we recover the remarkable fact that the string coupling gs is
not fixed, but is in fact given by the value of one of the background
fields in the theory: gs = e{®). So the only free parameter in the
theory is the string tension.

Turning to the open string sector, we may also write the effective action
which summarises the leading order (in o) open string physics at tree
level:

5= _% / dPX e~ TYF,, F 4+ 0(d), (2.107)

with C a dimensionful constant which we will fix later. It is of course of
the form of the Yang-Mills action, where Fj,, = 0,4, — 0, A,. The field
A, is coupled in o-model fashion to the boundary of the world sheet by
the boundary action:

dr A0, X", (2.108)

mimicking the form of the vertex operator (2.89).

One should note the powers of €® in the above actions. Recall that the
expectation value of e® sets the value of gs. We see that the appearance
of @ in the actions are consistent with this, as we have e~ in front of
all of the closed string parts, representing the sphere (g5 ?2) and e~® for
the open string, representing the disc (g5 !).

Notice that if we make the following redefinition of the background
fields:

G (X) = X0 q,, = AP0 ®/(D2q (2.109)

and use the fact that the new Ricci scalar can be derived using:
R=e [R-2(D-1)V?Q— (D -2)(D-1)3,00"0],  (2.110)

the action (2.106) becomes:

_ Y [ oosvi_evelp A T
S_M/d X(=G)'2| R - ==V, 8740 (2.111)

1 sé/p-2) wx  2(D—26) 45/(p-2) /
12° HunH 30 ¢ +0()|,
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with & = & — @, Looking at the part involving the Ricci scalar, we see
that we have the form of the standard Einstein-Hilbert action (i.e. we
have removed the factor involving the dilaton @), with Newton’s constant
set by

K = ket = (87Gx)Y2. (2.112)
The standard terminology to note here is that the action (2.106) written
in terms of the original fields is called the ‘string frame action’, while the
action (2.111) is referred to as the ‘Einstein frame action’. It is in the
latter frame that one gives meaning to measuring quantities like gravita-
tional mass-energy. It is important to note the means, equation (2.109),
to transform from the fields of one to another, depending upon dimension.

2.8 A quick look at geometry

Now that we are firmly in curved spacetime, it is probably a good idea
to gather some concepts, language and tools which will be useful to us in
many places later on. We have already reminded ourselves in chapter 1 of
aspects of the classical differential geometry that is used to formulate the
dynamics of gravity, introducing the metric, affine connection, Riemann
tensors, etc. We will have reason to use another very pleasant way of
writing of the various geometrical objects which appear in dynamical
gravity, so we will quickly review it now, visiting a few other useful objects
like differential forms along the way:.

2.8.1 Working with the local tangent frames

We can introduce “vielbeins’ which locally diagonalise the metrict:

Guv () = navey; ()e) ().
The vielbeins form a basis for the tangent space at the point z, and
orthonormality gives
e (x)e (x) = .
These are interesting objects, connecting curved and tangent space,
and transforming appropriately under the natural groups of each (see
figure 2.14). It is a covariant vector under general coordinate transforma-

tions z — z: -
x
a la a
— = —
eﬂ e,u o'k €vs

§ “Vielbein’ means ‘many legs’, adapted from the German. In D = 4 it is called a ‘vier-
bein’. We shall offend the purists henceforth and not capitalise nouns taken from the
German language into physics, such as ‘ansatz’, ‘bremsstrahlung’ and ‘gedankenex-
periment’.
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Fig. 2.14. The local tangent frame to curved spacetime is a copy of
Minkowski space, upon which the Lorentz group acts naturally.

and a contravariant vector under local Lorentz:

enlz) — € (x) = A% (2)ep,(z),

where A% (2)A°q(x)nae = mpg defines A as being in the Lorentz group
SO(1,D-1).

So we have the expected freedom to define our vielbein up to a local
Lorentz transformation in the tangent frame. In fact the condition A is
a Lorentz transformation guarantees that the metric is invariant under
local Lorentz:

G = nabe’Ze’g. (2.113)

Notice that we can naturally define a family of inverse vielbiens as well,
by raising and lowering indices in the obvious way, e/ = g el,. (We
use the same symbol for the vielbien, but the index structure will make
it clear what we mean.) Clearly,

g = neley, epey = 0. (2.114)

In fact, the vielbien may be thought of as simply the matrix of coeffi-
cients of the transformation (discussed in insert 1.2) which finds a locally
inertial frame £*(x) from the general coordinates z# at the point x = x,:

a(l
=20

r=xo

which, by construction, has the transformation properties ascribed to it
above.
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As a not-unrelated aside, note that the prototype contravariant vector
in curved spacetime is in fact the object whose components are the in-
finitessimal coordinate displacements, dx#, since by the elementary chain
rule, under z — x':

ox'H
dzt — da'™ = ———dx". (2.115)

oxr¥
They are often thought of as the coordinate basis elements, {dz*}, for
the ‘cotangent’ space at the point x, and are a natural dual coordinate
basis to that of the tangent space, the objects {0/0x*}, via the perhaps

obvious relation:

0
Of course, the {9/0x*} are the prototype covariant vectors:
v
0 0 ox¥ 0 (2117)

oxk | Ozt Ok Ozv

The things we usually think of as vectors in curved spacetime have a
natural expansion in terms of these bases:
V=V“i or V=V,dz"
oxh’ pe
where the latter is sometimes called a ‘covector’, and is also in fact a
one-form.

2.8.2 Differential forms

Since we’ve seen some one-forms appearing, let’s pause to introduce them
properly, if briefly. As might be apparent, it is the dz* which are useful
for constructing p-forms, objects whose components are rank p tensors
which are totally antisymmetric¥.

As already stated, the dz# are themselves the basis for one-forms. Any
one-form A has components A, and is expanded A = A,dx". To make
higher rank forms, we need the idea of the wedge product A. The basis
for two-forms for example, is made by the antisymmetric tensor product

dz" A dz¥ = dz* @ dz¥ — da¥ @ da = —da¥ A dzt,

and we may then define a two-form F' to have totally antisymmetric com-
ponents F,,,, so that F' = (F),, /2)dz* A dx. After noting paranthetically

Y We will not give an exhaustive account of these objects here, but enough detail to
get an intuitive feel for what we need. We shall uncover more features as we need
them.
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and for completeness that ordinary functions are zero-forms, the gener-
alisation to higher rank forms is obvious: we make a basis for a p-form
by making a totally antisymmetric combination of tensor multiplications
of the one-forms, by adding together the results of taking products in all
possible permutations, including a result with a minus sign if the permu-
tation is odd, and a plus sign if it is even, giving us for example:

dxMt A dxH2 A dxt?
= dz" @ dzM? @ da"? 4 dzM? @ dat? @ dxMt + dx? @ daxHt @ dxM?
—dz" @ daM? @ daM? — dz*? @ dzM? @ daft — dzM? ® dxHt @ dat3.

So in general we have, for rank p:
dz#t ANdxt? A A dat?,

with which we can define a p-form G,y with totally antisymmetric com-
ponents G, y,...p,- We have:

1
G(p) = EGumzmupdl"ul AdxH? A Adatr.

It is natural to define the ‘exterior derivative’ which makes a (p + 1)-
form from a p-form:

dG oy = l'% (Guipnpy) dz” Ndxht Ndxh? A - N\ dxh.
pl Ox
Notice that d? always gives zero, since (as the reader should check) this
would give a symmetric combination of partial derivatives, which is being
summed with the antisymmetric basis, which can’t help but give zero.

A form G which can be written everywhere as the result of having acted
with d on a form of lower rank is said to be ‘exact’. A form H for which
dH = 0 is ‘closed’. Exact forms are trivially closed, since d?> = 0, and so
the interesting exercise is to find the closed forms on a space which are
not exact. This is a problem of cohomology, and we shall have some more
to say about this matter in chapter 9.

Forms are extremely natural objects to integrate over some manifold, M.
In fact, a manifold of dimension p has a natural form defined on it, of rank
p, which is simply the volume form, w = da' A- - - AdzP. All p-forms on M
are made by taking this object and multiplying it by some function. So
the meaning of integrating a p-form on a manifold of dimension p is simply
the standard multiple integration of the function:

1
[ Ry = /M Fi et A A

= [ Frpd'A--Ada? = | Fy,di,
M M
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where the reader should notice that this required no metric on the mani-
fold to be defined at all. Putting this observation together with the state-
ments about cohomology, it should be apparent that forms give tools for
computing topological properties of manifolds, since they can be inte-
grated on various submanifolds to give numbers, and we never have to
specify a metric.

The wedge or exterior product between a p-form and a ¢-form, which
gives a (p + ¢) form, is straightforward to define. On components, the
result is:

(p+4q)!

(A(p) A B(Q))Ml‘ﬂzﬂrq = plg!

oty Bl g1 tip]-

It is worth noting that
Ay A B = (=1)"Bg) A Ay

More subtle is the observation that the space of independent p-forms
on a D-dimensional spacetime is in fact of the same dimension as that of
the D — p-forms. There is a map which takes one into the other, called
‘Hodge duality’, which takes any p-form and gives back a (D — p)-form.
On the basis it is:

(dat Adat? Ao Ndatr) =

1/2
(=9) / eHab2p

(D - p)' Mp+1Mp+2"'MDdpr+1 AdxFrt2 Ao A dLEMD,

from which its action on components of any form gives:

(—g)'/?
p!
Notice that it is the totally antisymmetric tensor (normalised to unity

for its non-zero components) which appears in this definition, and indices

are raised and lowered with the metric.
A most useful object is the “inner product’ between two p-forms, A
and By), which yields a number. It is defined as:

(A, By) = /MA<p> A" By = p! /Ag—g)1/2Au1u2~~3“1“2"'dx1 Ao da?.

* V1l
Guypp_, = €prpip_p | PGy

2.8.8 Coordinate vs. orthonormal bases

Yet another way of thinking of the vielbiens is as a means of converting
that coordinate basis into a basis for the tangent space which is orthonor-
mal, via {e® = ef(z)dx"}. We see that we have defined a natural family of
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Insert 2.5. Yang—Mills theory with forms

Just in case differential forms which we are briefly introducing have
not been encountered before, let us familiarise ourselves with how
they work using Yang-Mills theory as an example. The gauge po-
tential, which is valued in the Lie algebra of some gauge group G
can be written as a matrix-valued one-form: A = {*Afdz", where
the t* are generators of the Lie algebra. (The index a here is a label
of generators in the adjoint representation of the Yang—Mills gauge
group G.) Recall also that the generators of the Lie algebra satisfy

[ta7 tb] — ifabc tc’

where the f“bc are the ‘structure constants’. We shall discuss some Lie
algebra and group theory more carefully in section 4.6.1.
We write the Yang—Mills field strength as a matrix-valued 2-form:

F=dA+ANA=TF% = %t‘lFﬁydm“ Ada”,
where Ff, = 0,A% — 0,A% + i f* A} A

Note that we’ll sometimes suppress the A and write F' = dA + A2 for
short.
A gauge transformation is

A—-TAY P —dxyTl, T e,
or infinitessimally, writing X = e, it is:
0A =dA+[A A
The field strength transforms under this as
F - YFY™l or 6F=|[F Al
The action for the theory is
Sym = /le‘\/—_g <—4 12 Tr(F2)>,

Iy M

where by Tr(F?) we mean FﬁyFbWTr(tatb) and the trace is on the
gauge indices. Here g%M is the Yang—Mills coupling.
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one-forms. Similarly, using the inverse vielbiens, we can make an orthonor-
mal basis for the dual tangent space via e, = e#d/dzH.

As an example, for the two-sphere, S2, of radius R, the metric in stan-
dard polar coordinates (6, ¢) is ds> = R?(d#? + sin? 0d¢?) and so we have:

es = R, ei = Rsinb, ie. el = Rdf, e* = Rsinfdp. (2.118)

The things we think of as vectors, familiar from flat space, now have
two natural settings. In the local frame, there is the usual vector prop-
erty, under which the vector has Lorentz contravariant components V*(z).
But we can now relate this component to another object which has an in-
dex which is contravariant under general coordinate transformations, V*.
These objects are related by our handy vielbiens: V¢(x) = ef(z)V*.

2.8.4 The Lorentz group as a gauge group

The standard covariant derivative which we defined earlier in equation
(1.9), e.g. on a contravariant vector V#, has a counterpart for V = e, Vi

DVF =0, V¥ +Th V" = D,V*=0,V*+u", V"

where w%,, is the spin connection, which we can write as a 1-form in either
basis:
why = whdat = whellendr” = wyeet.

We can think of the two Minkowski indices (a, b) from the space tangent
structure as labelling components of w as an SO(D—1, 1) matrix in the
fundamental representation. So in the analogy with Yang—Mills theory,
(see insert 2.5), wy, is rather like a gauge potential and the gauge group
is the Lorentz group.

Actually, the most natural appearance of the spin connection is in the
structure equations of Cartan. One defines the torsion T%, and the curva-
ture R%,, both two-forms, as follows:

1
T = §T“bcea Ael = de® +w Aed

1
RY = §R“bcdec A et = dw® + W AWy, (2.119)
Now consider a Lorentz transformation e® — ¢/ = A%e®. It is amusing
to work out how the torsion changes. Writing the result as 7% = A%T?,

the reader might like to check that this implies that the spin connection
must transform as (treating everything as SO(1, D — 1) matrices):

w— AwA™t—dA AT des wy — Aw, AT =9, AT (2.120)
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© and it is:

or infinitessimally we can write A = e~
bw = dO + [w, O]. (2.121)
A further check shows that the curvature two-form does

R— R =ARA™', or 6R=|[R, 6], (2.122)

which is awfully nice. This shows that the curvature two-form is the ana-
logue of the Yang—Mills field strength two-form in insert 2.5. The following
rewriting makes it even more suggestive:

1
RY% = iRadea:“ ANdz”, R, = 0w — Ouw sy + [wp, wy]”,-

2.8.5 Fermions in curved spacetime

Another great thing about this formalism is that it allows us to discuss
fermions in curved spacetime. Recall first of all that we can represent the
Lorentz group with the I'-matrices as follows. The group’s algebra is:

[Jabs Jed] = —i(MadJoc + Mbedad — NacTod = NdbJac), (2.123)
with Ju = —Jpe, and we can define via the Clifford algebra:
(re, 1) = 2%, J® = _i [ra,rb} : (2.124)

where the curved space I'-matrices are related to the familiar flat (tan-
gent) spacetime ones as I'* = e (z)['*(z), giving {I'*, T} = 2¢"”. With
the Lorentz generators defined in this way, it is now natural to couple a
fermion % to spacetime. We write a covariant derivative as

Dyib(x) = Duib(r) + %Jabwabﬂ(:r)w(:rL (2.125)

and since the curved space I'-matrices are now covariantly constant, we
can write a sensible Dirac equation using this: I'*D 1 = 0.

2.8.6 Comparison to differential geometry

Let us make the connection to the usual curved spacetime formalism now,
and fix what w is in terms of the vielbiens (and hence the metric). Asking
that the torsion vanishes is equivalent to saying that the vielbeins are
covariantly constant, so that D,e; = 0. This gives D, V¢ = e D,V,,
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allowing the two definitions of covariant derivatives to be simply related
by using the vielbeins to convert the indices.

The fact that the metric is covariantly constant in terms of curved
spacetime indices relates the affine connection to the metric connection,
and in this language makes w® antisymmetric in its indices. Finally, we
get that

s = iV el = el(Opel + Thel).

We can now write covariant derivatives for objects with mixed indices
(appropriately generalising the rule for terms to add depending upon the
index structure), for example, on a vielbien:

Dyl = dyel — T e + w,% el (2.126)

[ v

Revisiting our two-sphere example, with bases given in equation (2.118),
we can see that

0 = de! +why A €? =0+w12/\e2,
0 = de® +w?; Ael = Rcos0df A dp + w?y A el (2.127)

from which we see that w's = —cosd¢. The curvature is:
1
Ry = dw'y = sin8dd A do = ﬁel Ae? = Rlggel A €. (2.128)

Notice that we can recover our friend the usual Riemann tensor if we
pulled back the tangent space indices (a,b) on R%,,, to curved space
indices using the vielbiens ef.

One last thing to note is the usefulness of forms for writing volume
elements for integration:

dV=e=ec Ne?N---NeP = (=) 2da Nda? A - NdaP = (—g)?dP.
Commonly, we will take the totally antisymmetric symbol € and make
a tensor out of it by multiplying by (—g)'/2, defining:
Eprpp = (—9)1/2%1"1@’

and the reader should check that this is a tensor, noting that the factor of
the tensor density (—g)l/ 2 will produce just the right non-tensorial parts
to cancel those of the permutation symbol.

We can write the Einstein—Hilbert Lagrangian as:

L~ eR, (2.129)

where R is the Ricci scalar, with de®4+we® = 0 as an additional condition.
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A closer look at the world-sheet

The careful reader has patiently suspended disbelief for a while now, al-
lowing us to race through a somewhat rough presentation of some of the
highlights of the construction of consistent relativistic strings. This en-
abled us, by essentially stringing lots of oscillators together, to go quite
far in developing our intuition for how things work, and for key aspects
of the language.

Without promising to suddenly become rigourous, it seems a good idea
to revisit some of the things we went over quickly, in order to unpack
some more details of the operation of the theory. This will allow us to
develop more tools and language for later use, and to see a bit further
into the structure of the theory.

3.1 Conformal invariance

We saw in section 2.2.8 that the use of the symmetries of the action to fix a
gauge left over an infinite dimensional group of transformations which we
could still perform and remain in that gauge. These are conformal trans-
formations, and the world-sheet theory is in fact conformally invariant.
It is worth digressing a little and discussing conformal invariance in arbi-
trary dimensions first, before specialising to the case of two dimensions.
We will find a surprising reason to come back to conformal invariance in
higher dimensions much later, so there is a point to this.

3.1.1 Diverse dimensions

Imagine®” that we do a change of variables x — /. Such a change, if
invertible, is a ‘conformal transformation’ if the metric is invariant up to
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an overall scale Q(z), which can depend on position:

I (2") = Q) g (). (3.1)

The name comes from the fact that angles between vectors are unchanged.
If we consider the infinitessimal change

ot — o't = 2P + (), (3.2)
then from equation (1.1), we get:
Gy = Guw — (Opew + Opey), (3.3)
and so we see that in order for this to be a conformal transformation,
Ouew + Ovey = F(2) g, (3.4)

where, by taking the trace of both sides, it is clear that:
2
F(z) = 59 Opéu.

It is enough to consider our metric to be Minkowski space, in Cartesian
coordinates, i.e. g, = 1, We can take one more derivative J,; of the
expression (3.4), and then do the permutation of indices Kk — p,u —
v,v — K twice, generating two more expressions. Adding together any
two of those and subtracting the third gives:

281131/6;.@ = 3MF771/& + 81/F77/-W - 8/£F77m/a (3.5)
which yields
90e,, = (2 — D)9, F. (3.6)

We can take another derivative this expression to get 20,0¢, = (2 —
D)0,,0,.F, which should be compared to the result of acting with O on
equation (3.4) to eliminate € leaving:

nwOF = (2—D)3,0,F = (D—1)0F =0, (3.7)

where we have obtained the last result by contraction.

For general D we see that the last equations above ask that 9,0, F = 0,
and so F'is linear in x. This means that € is quadratic in the coordinates,
and of the form:

en = Ay + B’ + Cuppa’z”, (3.8)

where C' is symmetric in its last two indices.
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Table 3.1. The finite form of the conformal transformations and their infinites-
simal generators

Operation Action Generator
translations 't =gt 4 AF P, =—io,
rotations 't = M+ x” Ly =i(x,0, —x,0,)
dilations 'H = gt D = —iztd,
special oH — phg2
conformal 't = K, = —i(2z,2"0, — 220
; 1—2(x-b)—bux2 | (222”0 2
transformations

The parameter A, is obviously a translation. Placing the B term in
equation (3.8) back into equation (3.4) yields that By, is the sum of an
antisymmetric part wy,, = —w,, and a trace part A:

By = wuw + A (3.9)

This represents a scale transformation by 1 + A and an infinitessimal
rotation. Finally, direct substitution shows that

Cuvr = Murby + b — Murby, (3.10)
and so the infinitesimal transformation which results is of the form
' = 2" + 2(x - b)zH — ba?, (3.11)
which is called a ‘special conformal transformation’. Its finite form can be
written as: R
il bH, (3.12)

and so it looks like an inversion, then a translation, and then an inver-
sion. We gather together all the transformations, in their finite form, in
table 3.1.

Poincaré and dilatations together form a subgroup of the full confor-
mal group, and it is indeed a special theory that has the full conformal
invariance given by enlargement by the special conformal transformations.

It is interesting to examine the commutation relations of the generators,
and to do so, we rewrite them as

J—LM = %(PM_KM)7 JO,uzé(PM—i_KM)a
J1o0=D, Ju=Lu, (3.13)
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with Jup = —Jpg, a,b=—1,0,..., D, and the commutators are:

[Jaba Jc ] = _i(nadjbc + nchad - nachd - ndeac)' (314)

Note that we have defined an extra value for our indices, and 7 is now
diag(—1,—1,41,...). This is the algebra of the group SO(D,2) with
$(D + 2)(D + 1) parameters.

3.1.2 The special case of two dimensions

As we have already seen in section 2.2.8, the conformal transformations
are equivalent to conformal mappings of the plane to itself, which is an
infinite dimensional group. This might seem puzzling, since from what
we saw just above, one might have expected SO(2,2), or in the case
where we have Euclideanised the world-sheet, SO(3,1), a group with six
parameters. Actually, this group is a very special subgroup of the infinite
family, which is distinguished by the fact that the mappings are invertible.
These are the global conformal transformations. Imagine that w(z) takes
the plane into itself. It can at worst have zeros and poles, (the map is
not unique at a branch point, and is not invertible if there is an essential
singularity) and so can be written as a ratio of polynomials in z. However,
for the map to be invertible, it can only have a single zero, otherwise
there would be an ambiguity determining the pre-image of zero in the
inverse map. By working with the coordinate Z = 1/z, in order to study
the neighbourhood of infinity, we can conclude that it can only have a
single simple pole also. Therefore, up to a trivial overall scaling, we have

az+b

dowlE) =Ty

(3.15)
where a, b, ¢, d are complex numbers, with for invertability, the determi-
nant of the matrix

a b

c d

should be non-zero, and after a scaling we can choose ad — bc = 1. This is
the group SL(2,C) which is indeed isomorphic to SO(3,1). In fact, since
a, b, ¢, d is indistinguishable from —a, —b, —c, —d, the correct statement is
that we have invariance under SL(2,C)/Z,.

For the open string we have the upper half-plane, and so we are re-
stricted to considering maps which preserve (say) the real axis of the
complex plane. The result is that a, b, ¢, d must be real numbers, and the
resulting group of invertible transformations is SL(2,R)/Zs. Correspond-
ingly, the infinite part of the algebra is also reduced in size by half, as the
holomorphic and antiholomorphic parts are no longer independent.
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N.B. Notice that the dimension of the group SL(2,C) is six, equiva-
lent to three complex parameters. Often, in computations involving
a number of operators located at points, z;, a conventional gauge
fixing of this invariance is to set three of the points to three values:
z1 = 0,22 = 1, 23 = oco. Similarly, the dimension of SL(2,R) is three,
and the convention used there is to set three (real) points on the
boundary to z; = 0,290 = 1, 23 = o0.

3.1.8 States and operators

A very important class of fields in the theory are those which transform
under the SO(2, D) conformal group as follows:
| Oz 2

= oz Hlat) = Q2 g(at). (3.16)

$(ah) — o)

oz

oz’
of the field, as mentioned earlier.) Such fields are called ‘quasi-primary’,
and the correlation functions of some number of the fields will inherit such
transformation properties:

Here,

is the Jacobian of the change of variables. (A is the dimension

Ay Ap
Oz | D Ox | D
#1(x1) ... Pn(an)) = Gy P . P1(2)) . dn(ay).  (3.17)
In two dimensions, the relation is
_ _ oz \" 1 9z \" _
d(z,2) — (2, 7)) = (@) <£> (2, 2), (3.18)

where A = h+ h, and we see the familiar holomorphic factorisation. This
mimics the transformation properties of the metric under z — 2/(z):

() ()
gzZ - 8,2/ 82/ g227

the conformal mappings of the plane. This is an infinite dimensional fam-
ily, extending the expected six of SO(2,2), which is the subset which is
globally well-defined. The transformations (3.18) define what is called a
‘primary field’, and the quasi-primaries defined earlier are those restricted
to SO(2,2). So a primary is automatically a quasi-primary, but not vice
versa.
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In any dimension, we can use the definition (3.16) to construct a def-
inition of a conformal field theory (CFT). First, we have a notion of a
vacuum |0) that is SO(2, D) invariant, in which all the fields act. In such
a theory, all of the fields can be divided into two categories: a field is
either quasi-primary, or it is a linear combination of quasi-primaries and
their derivatives. Conformal invariance imposes remarkably strong con-
straints on how the two- and three-point functions of the quasi-primary
fields must behave. Obviously, for fields placed at positions x;, trans-
lation invariance means that they can only depend on the differences
T — Zj.

3.1.4 The operator product expansion

In principle, we ought to be imagining the possibility of constructing
a new field at the point x* by colliding together two fields at the same
point. Let us label the fields as ¢, then we might expect something of the
form:

lim 6i(2)6; (1) = 3 ;" (x = 9) i (v). (3.19)
k

where the coefficients cijk (x —y) depend only on which operators (labelled

by i,7) enter on the left. Given the scaling dimensions A; for ¢;, we see

that the coordinate behaviour of the coefficient should be:

1
Ai—I—AJ‘—Ak :

¢ (@ = y) ~

’ (z —y)
This ‘operator product expansion’ (OPE) in conformal field theory is
actually a convergent series, as opposed to the case of the OPE in ordinary
field theory where it is merely an asymptotic series. An asymptotic series
has a family of exponential contributions of the form exp(—L/|z — y|),
where L is a length scale appropriate to the problem. Here, conformal
invariance means that there is no length scale in the theory to play the
role of L in an asymptotic expansion, and so the convergence properties
of the OPE are stronger. In fact, the radius of convergence of the OPE is
essentially the distance to the next operator insertion.

The OPE only really has sensible meaning if we define the operators
as acting with a specific time ordering, and so we should specify that
2% > y0 in the above. In two dimensions, after we have continued to
Euclidean time and work on the plane, the equivalent of time ordering is
radial ordering (see figure 2.4). All OPE expressions written later will be
taken to be appropriately time ordered.
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Actually, the OPE is a useful way of giving us a definition of a normal
ordering prescription in this operator language*. It follows from Wick’s
theorem, which says that the time ordered expression of a product of
operators is equal to the normal ordered expression plus the sum of all
contractions of pairs of operators in the expressions. The contraction is a
number, which is computed by the correlator of the contracted operators.

¢i(x)pj(y) =: i(2)9i(y) : +i(2)5(y)- (3.20)

Actually, we can compute the OPE between objects made out of products
of operators with this sort of way of thinking about it. We’ll compute some
examples later (for example in equations (3.37) and (3.39)) so that it will
be clear that it is quite straightforward.

3.1.5 The stress tensor and the Virasoro algebra

The stress-energy-momentum tensor’s properties can be seen directly from
conformal invariance in many ways, because of its definition as a conjugate
to the metric via equation (1.10) which we reproduce here:

2 68
vV—9g 69;11/‘

A change of variables of the form (3.2) gives, using equation (3.3):
1 1
S— 5 - 5 /dD:L’\/—g T’ 69, = S + 5 /dDa:\/—g TH (Opey + Opey) -
In view of equation (3.4), this is:
1
S— S+ D /dD:C\/—g T%,00€"

for a conformal transformation. So if the action is conformally invariant,
then the stress tensor must be traceless, 7%, = 0.

We can formulate this more carefully using Noether’s theorem, and also
extract some useful information. Since the change in the action is

08 = /de V=90, TH,

given that the stress tensor is conserved, we can integrate by parts to
write this as

T = (3.21)

65 = / e, T dS,,.
a

* For free fields, this definition of normal ordering is equivalent to the definition in
terms of modes, where the annihilators are placed to the right.

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press


https://doi.org/10.1017/9781009401371

3.1 Conformal invariance 7

We see that the current j* = TH¢,, with €, given by equation (3.4) is
associated to the conformal transformations. The charge constructed by
integrating over an equal time slice

Q= [a s

is conserved, and it is responsible for infinitessimal conformal transforma-
tions of the fields in the theory, defined in the standard way:

bep(x) = €[Q, 9. (3.22)

In two dimensions, infinitesimally, a coordinate transformation can be
written as
/ = =/ - | ==
z— 2 =z4¢€(z), z—zZ =z4¢€32).
As we saw in the previous chapter, or can be verified using the above

discussion, the tracelessness condition yields T,z = T, = 0 and the con-
servation of the stress tensor is

8szz(Z) =0= 82T52(Z).
For simplicity, we shall often use the shorthand: T'(z) = T,.(z) and T(2) =
T:z(Z). On the plane, an equal time slice is over a circle of constant radius,
and so we can define

Q—l

oo § (TW)ey)dy + T@)e(r)dp).
i
Infinitesimal transformations can then be constructed by an appropriate
definition of the commutator [Q), ¢(z)] of @ with a field ¢.

Notice that this commutator requires a definition of two operators at
a point, and so our previous discussion of the OPE comes into play here.
We also have the added complication that we are performing a y-contour
integration around one of the operators, inserted at z or z. Under the
integral sign, the OPE requires that |z| < |y|, when we have Q¢(y), or
that |z| > |y| if we have ¢(y)Q. The commutator requires the difference
between these two, and after consulting figure 3.1, can be seen in the limit
y — z to simply result in the y contour integral around the point z of the
OPE T'(2)¢(y) (with a similar discussion for the antiholomorphic case):

F U)ol 2)ely)dy + {TG)6(= 2)}e()dn)- (3.23)

The result should simply be the infinitesimal version of the defining
equation (3.18), which the reader should check is:

deep(2,2) = (h o+ 68¢> <h —p + ea(b) (3.24)

66,€¢('z7 2)

i

0 0
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Fig. 3.1. Computing the commutator between the generator (), defined
as a contour in the y-plane, and the operator ¢, inserted at z. The result
in the limit y — z is on the right.

This defines the operator product expansions T'(2)¢(z, ) and T(2)¢(z, 2)
for us as:

T(4)d(2.7) = — ' d(z.2) +

e 0.6(2,2) + -+

1

- (y—2)

(D)t (22 4o, (325)
= o P% 2 7 — Zy % Cy .
G-22"7" (F-2)"
where the ellipsis indicates that we have ignored parts which are regular
(analytic). These OPEs constitute an alternative definition of a primary
field with holomorphic and antiholomorphic weights h, h, often referred
to simply as an (h, h) primary.

We are at liberty to Laurent expand the infinitesimal transformation
around (z,z) = 0:

e¢] e¢]
e(z) = — Z anz", €(z)=— Z anz"

n=—oo n=—oo

T(y)d(z,2) =

where the ay,a, are coefficients. The quantities which appear as genera-
tors, €, = 2"T10,, £, = 2"10;, satisfy the commutation relations

[bn, bm] = (0 — m)lntm,

[fmgm} =0,

[lns bm] = (n = m)lnsm, (3.26)
which is the classical version of the Virasoro algebra we saw previously in

equation (2.63), or the quantum case in equation (2.71) with the central
extension, ¢ = ¢ = 0.
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Now we can compare with what we learned here. It should be clear af-
ter some thought that £_1, ¢y, ¢1 and their antiholomorphic counterparts
form the six generators of the global conformal transformations generating
SL(2,C) = SL(2,R) x SL(2,R). In fact, {_1 = 9, and /_; = O: generate
translations, ¢y + ¢y generates dilations, i({y — Zo) generates rotations,
while ¢; = 220, and ¢, = z20; generate the special conformal transfor-
mations.

Let us note some useful pieces of terminology and physics here. Recall
that we had defined physical states to be those annihilated by the ¢, ¢,
with n > 0. Then ¢y and ¢y will measure properties of these physical
states. Considering them as operators, we can find a basis of ¢y and £
eigenstates, with eigenvalues h and h (two independent numbers), which
are the ‘conformal weights’ of the state: £o|h) = h|h), fo|h) = h|h). Since
the sum and difference of these operators are the dilations and the rota-
tions, we can characterise the scaling dimension and the spin of a state
orﬁeldaSA h+h,s=h—h.

It is worth noting here that the stress-tensor itself is not in general a
primary field of weight (2,2), despite the suggestive fact that it has two
indices. There can be an anomalous term, allowed by the symmetries of

the theory:
TTW) = §r—as + e TW) + =0T
T(2)T(y) = g(z_lw + G fy)gf(y) + Z%gayf(g). (3.27)

The holomorphic conformal anomaly ¢ and its antiholomorphic counter-
part ¢, can in general be non-zero. We shall see this occur below.

It is worthwhile turning some of the above facts into statements about
commutation relation between the modes of T'(z), T(2), which we remind
the reader are defined as:

o¢]
Z Lnz "2 L, %dz 2T (2),

s " 2mi

OO — —

Yo Ly " Ly 7{ dz 2"\ T(z (3.28)
e 21’rz

In these terms, the resulting commutator between the modes is that dis-
played in equation (2.71), with D replaced by ¢ and c on the right and left.
The definition (3.24) of the primary fields ¢ translates into

L 9l0)] = 5= § d=="HT()60) = bl + Dy"o() + 510,600,
(3.29)
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It is useful to decompose the primary into its modes:

P(z) = i bz n = 2%” fdz P 1e(2). (3.30)

n=—oo

In terms of these, the commutator between a mode of a primary and of
the stress tensor is:

[Ln, &m] = [n(h — 1) = m]dnim, (3.31)

with a similar antiholomorphic expression. In particular this means that
our correspondence between states and operators can be made precise
with these expressions. Lg|h) = h|h) matches with the fact that ¢_,|0) =
|h) would be used to make a state, or more generally |h, k), if we include
both holomorphic and antiholomorphic parts. The result [Lo, ¢_p] = ho_p,
guarantees this.

In terms of the finite transformation of the stress tensor under z — 2/,
the result (3.27) is

P ¢ (82N 7? |_8z’ 2 3 (02
T =) e+ S (&) (292 222 3.32
(2) <82> (Z)+12<3z> [32 0z3 2\ 022 » (3.32)
where the quantity multiplying ¢/12 is called the ‘Schwarzian derivative’,
S(z,2'). Tt is interesting to note (and the reader should check) that for
the SL(2,C) subgroup, the proper global transformations, S(z,z") = 0.

This means that the stress tensor is in fact a quasi-primary field, but not
a primary field.

3.2 Revisiting the relativistic string

Now we see the full role of the energy-momentum tensor which we first
encountered in the previous chapter. Its Laurent coefficients there, L,, and
L,, realised there in terms of oscillators, satisfied the Virasoro algebra,
and so its role is to generate the conformal transformations. We can use
it to study the properties of various operators in the theory of interest
to us.

First, we translate our result of equation (2.44) into the appropriate

coordinates here:

T(z) = —% 10, XH(2)0, X u(2) 1,
T(z) = —é  D.XP(2)0:X,(2) :. (3.33)
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We can use here our definition (3.20) of the normal ordering at the op-
erator level here, which we construct with the OPE. To do this, we need
to know the result for the OPE of 0X* with itself. This we can get by
observing that the propagator of the field X#(z,2) = X (z) + X (%) is

Oé/

(X)X (y)) = —5 0" log(z —y),
Y /(5 YV (5 O/ v > —
(X)X () = —5 0" log(z — ). (3.34)
By taking a couple of derivatives, we can deduce the OPE of 9, X*(z) or
0:XM(Z):
o 77,uz/
9:XM(2)0, X" (y) = EPACETIE +
9. X"(2)0, K1) = L (3.35)
! 2 (z-9)

So in the above, we have, using our definition of the normal ordered
expression using the OPE (see discussion below equation (3.20)):
1 1 .. D
T(Z) = _J IazX'U’(Z)aqu(z) = — J 7}1_% 8zX’U’(Z)8qu(y) - W ’
(3.36)

with a similar expression for the antiholomorphic part. It is now straight-
forward to evaluate the OPE of T'(z) and 0,X"(y). We simply extract the
singular part of the following:

T(2)0,X"(y) = é 10, XH(2)0: X u(2) : 0, X" (y)

= 20X ()0 X, ()0 X7 () + -

1

— t . (3.37)
(z—y)?

In the above, we were instructed by Wick to perform the two possible
contractions to make the correlator. The next step is to Taylor expand
for small (z — y): X¥(2) = X¥(y) + (2 — y)9y, X" (y) + - - -, substitute into
our result, to give:

= 9,X"(2)

_ 0 X"y) |, X)
(z—y)? z—y ’

and so we see from our definition in equation (3.25) that that the field
0,XV(z) is a primary field of weight h = 1, or a (1,0) primary

T(2)0,X" (y) (3.38)
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field, since from the OPEs (3.35), its OPE with T obviously vanishes.
Similarly, the antiholomorphic part is a (0,1) primary. Notice that we
should have suspected this to be true given the OPE we deduced
in (3.35).

Another operator we used last chapter was the normal ordered expo-
nentiation V(z) =: exp(tk - X(z)) :, which allowed us to represent the
momentum of a string state. Here, the normal ordering means that we
should not contract the various Xs which appear in the expansion of
the exponential with each other. We can extract the singular part to de-
fine the OPE with T'(z) by following our noses and applying the Wick
procedure as before:

T()V(y) = = : 0, X*(2)0,X,(2) == XXV .

((0:X"(2)ik - X(y)))? : XXV

Q\l »—\Q\l —

1 | N
12 0. X1 (2)(0:X,(2)ik - X(y) : X

Oé/]fQ 1 kX( ik - 8 X.(Z) Te.
- - . el Y) . +; . elk X(y)
4 (z—y)? (z—w)
ok V(y) | 0,V(y)
= + . 3.39
TGy () (3.39)

We have Taylor expanded in the last line, and throughout we only dis-
played explicitly the singular parts. The expressions tidy up themselves
quite nicely if one realises that the worst singularity comes from when
there are two contractions with products of fields using up both pieces
of T(z). Everything else is either non-singular, or sums to reassemble
the exponential after combinatorial factors have been taken into account.
This gives the first term of the second line. The second term of that line
comes from single contractions. The factor of two comes from making
two choices to contract with one or other of the two identical pieces of
T'(z), while there are other factors coming from the n ways of choosing
a field from the term of order n from the expansion of the exponential.
After dropping the non-singular term, the remaining terms (with the n)
reassemble the exponential again. (The reader is advised to check this
explicitly to see how it works.) The final result (when combined with the
antiholomorphic counterpart) shows that V (y) is a primary field of weight
('k?/4,d'k?/4).

Now we can pause to see what this all means. Recall from section 2.4.1
that the insertion of states is equivalent to the insertion of operators into
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the theory, so that:
S8 =5+ )\/d2z(’)(z, 5). (3.40)

In general, we may consider such an operator insertion for a general the-
ory. For the theory to remain conformally invariant, the operator must
be a marginal operator, which is to say that O(z,z) must at least have
dimension (1, 1) do that the integrated operator is dimensionless. In prin-
ciple, the dimension of the operator after the deformation (i.e. in the new
theory defined by S’) can change, and so the full condition for the operator
is that it must remain (1, 1) after the insertion (see insert 3.1). It in fact
defines a direction in the space of couplings, and A can be thought of as an
infinitessimal motion in that direction. The statement of the existence of
a marginal operator is then referred to the existence of a ‘flat direction’.

In the first instance, we recall that the use of the tachyon vertex op-
erator V(z,%) corresponds to the addition of [d?zV(z,%) to the ac-
tion. We wish the theory to remain conformal (preserving the relativis-
tic string’s symmetries, as stressed in chapter 1), and so V(z,Z) must
be (1,1). In fact, since our conformal field theory is actually free, we
need do no more to check that the tachyon vertex is marginal. So we
require that (a/k%/4,a'k?/4) = (1,1). Therefore we get the result that
M? = —k%? = —4/d/, the result that we obtained previously for the
tachyon.

Another example is the level one closed string vertex operator:

10, X10; X" exp(ik - X) .

It turns out that there are no further singularities in contracting this with
the stress tensor, and so the weight of this operator is (1 + o/k%/4,1 +
a'k?/4). So, marginality requires that M? = —k? = 0, which is the mass-
less result that we encountered earlier.

Another computation that the reader should consider doing is to work
out explicitly the T'(2)T(y) OPE, and show that it is of the form (3.27)
with ¢ = D, as each of the D bosons produces a conformal anomaly of
unity. This same is true from the antiholomorphic sector, giving ¢ = D.
Also, for open strings, we get the same amount for the anomaly. This result
was alluded to in chapter 2. This is problematic, since this conformal
anomaly prevents the full operation of the string theory. In particular,
the anomaly means that the stress tensor’s trace does not in fact vanish
quantum mechanically.

This is all repaired in the next section, since there is another sector
which we have not yet considered.
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Insert 3.1. Deformations, RG flows, and CFTs

A useful picture to have in mind for later use is of a conformal field
theory as a ‘fixed point’ in the space of theories coordinatised by the
coefficients of possible operators such as in equation (3.40). (There
is an infinite set of such perturbations and so the space is infinite
dimensional.) In the usual reasoning using the renomalisation group
(RG), once the operator is added with some value of the coupling, the
theory (i.e. the value of the coupling) flows along an RG trajectory
as the energy scale p is changed. The ‘B-function’, B(A) = puoA/ou
characterises the behaviour of the coupling. One can imagine the
existence of ‘fired points’ of such flows, where S(A\) = 0 and the
coupling tends to a specific value, as shown in the diagram.

pA) pA)

N
>~

N A A

On the left, X is an ‘infra-red (IR) fixed point’, since the coupling is
driven to it for decreasing p, while on the right, X is an ‘ultra-violet
(UV) fixed point’, since the coupling is driven to it for increasing .
The origins of each diagram of course define a fixed point of the
opposite type to that at A. A conformal field theory is then clearly
such a fixed point theory, where the scale dependence of all couplings
exactly vanishes. A ‘marginal operator’ is an operator which when
added to the theory, does not take it away from the fixed point. A
‘relevant operator’ deforms a theory increasingly as p goes to the IR,
while an ‘irrelevant operator’is increasingly less important in the IR.
This behaviour is reversed on going to the UV. When applied to a
fixed point, such non-marginal operators can be used to deform fixed
point theories away from the conformal point, often allowing us to
find other interesting theories, as we will do in later chapters. D =4
Yang-Mills theories, for sufficiently few flavours of quark (like QCD),
have negative g-function, and so behave roughly as the neighbour-
hood of the origin in the left diagram. ‘Asymptotic freedom’is the
process of being driven to the origin (zero coupling) in the UV. Later,
we will see examples of both type of fixed point theory.
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3.3 Fixing the conformal gauge

It must not be forgotten where all of the riches of the previous section —
the conformal field theory — came from. We made a gauge choice in equa-
tion (2.41) from which many excellent results followed. However, despite
everything, we saw that there is in fact a conformal anomaly equal to D
(or a copy each on both the left and the right hand side, for the closed
string). The problem is that we have not made sure that the gauge fixing
was performed properly. This is because we are fixing a local symme-
try, and it needs to be done dynamically in the path integral, just as in
gauge theory. This is done with Faddeev—Popov ghosts in a very similar
way to the methods used in field theory. Let us not go into the details
of it here, but assume that the interested reader can look into the many
presentations of the procedure in the literature. The key difference with
field theory approach is that it introduces two ghosts, ¢* and by, which
are rank one and rank two tensors on the world sheet. The action for
them is:

1
Sgh = —E /dza\/ggabCCVbec7 (3'41)

and so by, and ¢, which are anticommuting, are conjugates of each other.

3.8.1 Conformal ghosts

Once the conformal gauge has been chosen, (see equation (2.41)) picking
the diagonal metric, we have

e — _2i / % (c(2)9:b(2) + 2(2)0.5(2)). (3.42)
v
From equation (3.41), the stress tensor for the ghost sector is:
T (2) =: c(2)0.b(2) : + : 2(0.¢(2))b(2) (3.43)

with a similar expression for T, shost (Z). Just as before, as the ghosts are free
fields, with equations of motion 0,c = 0 = 0,b, we can Laurent expand
them as follows:

b(z) = i b2 "2 c(z) = i cn 2 (3.44)

n=—oo n=—oo

which follows from the property that b is of weight 2 and c is of weight —1,
a fact which might be guessed from the structure of the action (3.41). The
quantisation yields

(b, cn} = Smn- (3.45)
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and the stress tensor is
(o]

L%h = Z (27’L — m) : bmcn—m : _571,0’ (346)

m=—0o0

where we have a normal ordering constant —1, as in the previous sector,
[LEY b,] = (m — )b, [LED ] = —(2m + n)eman. (3.47)
The OPE for the ghosts is given by

b(z)ely) = ﬁ Fe, e2)by) = (f—y)
b(2)b(y) = O(z — y), c(z)e(y) = O(z — y), (3.48)

where the second expression is obtained from the first by the anticom-
muting property of the ghosts. The second line also follows from the an-
ticommuting property. There can be no non-zero result for the singular
parts there.

As with everything for the closed string, we must supplement the above
expressions with very similar ones referring to 2, &(2) and b(Z). For the
open string, we carry out the same procedures as before, defining every-
thing on the upper half-plane, reflecting the holomorphic into the anti-
holomorpic parts, defining a single set of ghosts (see also insert 3.2).

+...7

3.3.2 The critical dimension

Now comes the fun part. We can evaluate the conformal anomaly of the
ghost system, by using the techniques for computation of the OPE that
we refined in the previous section. We can do it for the ghosts in as simple
a way as for the ordinary fields, using the expression (3.43) above. In the
following, we will focus on the most singular part, to isolate the conformal
anomaly term. This will come from when there are two contractions in
each term. The next level of singularity comes from one contraction, and
SO on:

T (2) T (y)
= (' 9:b(2)c(2) + + 1 2b(2)0zc(2) r)(r 0 b(y)C(y) 1 20(y)9ye(y) 1)
9:b(2)c(z) : 0 1 Oyb(y)e(y) :
b(y)dyc(y) :

)9 )
< ( C(y ><C(Z)3yb 2c(2)3yb(y))

-2 i?’y) . (3.49)
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Insert 3.2. Further aspects of conformal ghosts

Notice that the flat space expression (3.42) is also consistent with the
stress tensor

T(z) =: 0.b(z)c(z) : —k : O4[b(2)e(2)] -, (3.50)

for arbitrary k, with a similar expression for the antiholomorphic
sector. It is a useful exercise to use the OPEs of the ghosts given in
equation (3.48) to verify that this gives b and ¢ conformal weights
h =k and h = 1 — k, respectively. The case we studied above was
k = 2. Further computation (recommended) reveals that the con-
formal anomaly of this system is ¢ = 1 — 3(2k — 1)2, with a similar
expression for the antiholomorphic version of the above.

The case of fermionic ghosts will be of interest to us later. In that
case, the action and stress tensor are just like before, but with b — 3
and ¢ — -, where 8 and 7, are fermionic. Since they are fermionic,
they have singular OPEs

Bla)v(y) = — +o (2)BY) = = + . (3.51)

A computation gives conformal anomaly 3(2x — 1)2 — 1, which in
the case k = 3/2, gives an anomaly of 11. In this case, they are
the ‘superghosts’, required by supersymmetry in the construction of
superstrings later on.

and so comparing with equation (3.27), we see that the ghost sector has
conformal anomaly ¢ = —26. A similar computation gives ¢ = —26.

So recalling that the ‘matter’ sector, consisting of the D bosons, has
¢ = ¢ = D, we have achieved the result that the conformal anomaly
vanishes in the case D = 26. This also applies to the open string in the
obvious way.

3.4 The closed string partition function

We have all of the ingredients we need to compute our first one-loop
diagram!. It will be useful to do this as a warm up for more complicated

t Actually, we’ve had them for some time now, essentially since chapter 2.
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examples later, and in fact we will see structures in this simple case which
will persist throughout.

Consider the closed string diagram of figure 3.2(a). This is a vacuum
diagram, since there are no external strings. This torus is clearly a one loop
diagram and in fact it is easily computed. It is distinguished topologically
by having two completely independent one-cycles. To compute the path
integral for this we are instructed, as we have seen, to sum over all possible
metrics representing all possible surfaces, and hence all possible tori.

Well, the torus is completely specified by giving it a flat metric, and
a complex structure, 7, with Im7 > 0. It can be described by the lattice
given by quotienting the complex w-plane by the equivalence relations

w~ w4 2w, w e~ w4 2amT, (3.52)

for any integers m and n, as shown in figure 3.2(b). The two one-cycles can
be chosen to be horizontal and vertical. The complex number 7 specifies
the shape of a torus, which cannot be changed by infinitesimal diffeomor-
phisms of the metric, and so we must sum over all all of them. Actually,
this naive reasoning will make us overcount by a lot, since in fact there
are a lot of 7s which define the same torus. For example, clearly for a
torus with given value of 7, the torus with 7 + 1 is the same torus, by
the equivalence relation (3.52). The full family of equivalent tori can be
reached from any 7 by the ‘modular transformations’:

T: 7—74+1

1
S T (3.53)

which generate the group SL(2,Z), which is represented here as the group

Imw)
27

1 Rew)
2%

(@) (b)

Fig. 3.2. (a) A closed string vacuum diagram. (b) The flat torus and its
complex structure.
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of 2 x 2 unit determinant matrices with integer elements:

ar+b
R .

SL(27Z) . m,

with CL Z) . ad—bec=1. (3.54)
(It is worth noting that the map between tori defined by S exchanges
the two one-cycles, therefore exchanging space and (Euclidean) time.)
The full family of inequivalent tori is given not by the upper half-plane
H, (i.e. 7 such that Im7 > 0) but the quotient of it by the equiva-
lence relation generated by the group of modular transformations. This is
F = H,/PSL(2,7), where the P reminds us that we divide by the extra
Zs which swaps the sign on the defining SL(2,Z) matrix, which clearly
does not give a new torus. The commonly used fundamental domain in
the upper half-plane corresponding to the inequivalent tori is drawn in
figure 3.3. Any point outside that can be mapped into it by a modular
transformation.

The fundamental region F is properly defined as follows: Start with the
region of the upper half-plane which is in the interval (—3, +1) and above
the circle of unit radius. we must then identify the two vertical edges, and
also the two halves of the remaining segment of the circle. This produces
a space which is smooth everywhere except for two points about which
there are conical singularities, described in insert 3.3.

The string propagation on our torus can be described as follows. Imag-
ine that the string is of length 1, and lies horizontally. Mark a point on the
string. Running time upwards, we see that the string propagates for a time
t = 2wlm7 = 2m7o. Once it has got to the top of the diagram, we see that

Im(r)‘
F
i
-3 LT Re(n)

Fig. 3.3. The space of inequivalent tori.
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Insert 3.3. Special points in the moduli space of tori

Actually, there are two very special points of interest on F, depicted
in figure 3.3. They can be clearly seen in the figure. The point 7 =
1 and the point 7 = esz7 which is one sharp corner (its mirror
image is also visible). The significance of these points is that they
are fixed points of certain elements of SL(2,7Z). The point 7 = i
is fixed by the element S, while the other point is fixed by the ele-
ment ST

These points are ‘orbifold’ singularities, a term that will become
more widely used here after chapter 4. For our purposes here, this
means that they have a conical deficit angle. For example, the point
T = i, because it is at the tip of a region formed by folding the plane
in half (remember we identified the two halves of the circle segment),
has a deficit angle of «. In other words, because of the folding, one
only needs to go half way around a circle in order to return to where
one started. Similalry, the other orbifold point has a deficit angle of
4w /3: one only needs to go a third of the way around a circle in order
to return to where one started.

One may visualise the significance of these points, recalling that
we make the tori from lattices in the plane. The lattices for these
two points have special, and familiar, symmetry. The 7 = ¢ point is
simply a square lattice, and S is in fact just a w/2 rotation. Notice

that S* = 1, which fits with this fact nicely. The 7 = eI point is
an heragonal lattice, and ST is a rotation by /3, which dovetails
nicely with the relation (ST)% = 1. We draw the lattice below, with
appropriate basis vectors. It might be worth studying the action of
S and ST, and considering the tori to which they correspond.

+ + + +
+ + +
+ + + + + +
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our marked point has shifted rightwards by an amount x = 2wRer = 2n7.
We actually already have studied the operators that perform these two
operations. The operator for time translations is the Hamiltonian (2.64),
H = Lo+ Lo — (c + ¢)/24 while the operator for translations along the
string is the momentum P = Lo — Lo discussed above equation (2.73).
Recall that ¢ = ¢ = D—2 = 24. So our vacuum path integral is

7 — T\I‘{e—QﬁTQH€21TiT1P} — Tquo—Tiqio—i‘ (355)
Here, ¢ = ¢®™7, and the trace means a sum over everything which is
discrete and an integral over everything which is continuous, which in
this case, is simply 7. This is easily evaluated, as the expressions for Lg

and Lg give a family of simple geometric sums (see insert 3.4 (p. 92)),
and the result can be written as:

d2
Z= | —Z(q), where (3.56)
F 7'2
o 2
Z(q) = |ma| ~"( 1—q = (), (3.57)

is the ‘partition function’, Wlth Dedekind’s function
P 1
) = q21 H (1-¢"); n <—;> =V —iTn(T). (3.58)

This is a pleasingly simple result. One very interesting property it
has is that it is actually ‘modular invariant’. It is invariant under the
T transformation in equation (3.52), since under 7 — 7 + 1, we get that
Z(q) picks up a factor exp(2mwi(Lg — Lo)). This factor is precisely unity,
as follows from the level matching formula (2.73). Invariance of Z(q)
under the S transformation 7 — —1/7 follows from the property men-
tioned in equation(3.58), after a few steps of algebra, and using the result
S m— 7|t

Modular invariance of the partition function is a crucial property. It
means that we are correctly integrating over all inequivalent tori, which is
required of us by diffeomorphism invariance of the original construction.
Furthermore, we are counting each torus only once, which is of course
important.

Note that Z(q) really deserves the name ‘partition function’ since if
it is expanded in powers of ¢ and ¢, the powers in the expansion — after
multiplication by 4/a’ — refer to the (mass)? level of excitations on the left

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press


https://doi.org/10.1017/9781009401371

92 3 A closer look at the world-sheet

Insert 3.4. Partition functions

It is not hard to do the sums. Let us look at one dimension, and so
one family of oscillators a,,. We need to consider

Tr qLO =Tr qEZO:O Q—nOn
We can see what the operator quj:o @-n% means if we write it explic-

itly in a basis of all possible multiparticle states of the form a_,|0),
(_n)?|0), etc.:

and so clearly Trg®—n% = >~ (g")! = (1 — ¢")~!, which is remark-
ably simple! The final sum over all modes is trivial, since

0 0
’I‘rqzn:o A—nQn __ H Tr qOé—nOén — H (1 _ qn)—l‘
n=0 n=0

We get a factor like this for all 24 dimensions, and we also get con-
tributions from both the left and right to give the result.

Notice that if our modes were fermions, ¥, things would be even
simpler. We would not be able to make multiparticle states (¢/_,)?|0),
(Pauli), and so we only have a 2x2 matrix of states to trace in this
case, and so we simply get

Trq—¥" = (1+¢").

Therefore the partition function is

o0 o0
Tr an:O Y_nPn — H Trqw—nwn — H (1 + qn)
n=0 n=0

We will encounter such fermionic cases later.
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and right, while the coefficient in the expansion gives the degeneracy at
that level. The degeneracy is the number of partitions of the level number
into positive integers. For example, at level three this is three, since we
have a_3,a_1a_92, and a_ja_ja_7.

The overall factor of (¢7) ! sets the bottom of the tower of masses. Note
for example that at level zero we have the tachyon, which appears only
once, as it should, with M? = —4/a’. At level one, we have the mass-
less states, with multiplicity 242, which is appropriate, since there are
242 physical states in the graviton multiplet (Guvs By, ®). Introducing
a common piece of terminology, a term ¢“!'q"“2, represents the appear-
ance of a ‘weight’ (wy,ws) field in the 141 dimensional conformal field
theory, denoting its left-moving and right-moving weights or ‘conformal
dimensions’.
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4

Strings on circles and T-duality

In this chapter we shall study the spectrum of strings propagating in a
spacetime that has a compact direction. The theory has all of the prop-
erties we might expect from the knowledge that at low energy we are
placing gravity and field theory on a compact space. Indeed, as the com-
pact direction becomes small, the parts of the spectrum resulting from
momentum in that direction become heavy, and hence less important,
but there is much more. The spectrum has additional sectors coming
from the fact that closed strings can wind around the compact direction,
contributing states whose mass is proportional to the radius. Thus, they
become light as the circle shrinks. This will lead us to T-duality, relat-
ing a string propagating on a large circle to a string propagating on a
small circle!®. This is just the first of the remarkable symmetries relating
two string theories in different situations that we shall encounter here.
It is a crucial consequence of the fact that strings are extended objects.
Studying its consequences for open strings will lead us to D-branes, since
T-duality will relate the Neumann boundary conditions we have already
encountered to Dirichlet ones” ', corresponding to open strings ending
on special hypersurfaces in spacetime.

4.1 Fields and strings on a circle

Let us remind ourselves of what happens in field theory, for the case of
placing gravity on a spacetime with a compact direction. This will help
us appreciate the extra features encountered in the case of strings, and
will also prepare for remarks to be made in a variety of cases much later.
We start with the idea of Kaluza, later refined by Klein.

94
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4.1.1 The Kaluza—Klein reduction

Imagine that we are in five dimensions, with metric components Gusn,
M,N =0,...,4, and that the spacetime is actually of topology R* x S,
and so has one compact direction. So we will have the usual four dimen-
sional coordinates on R, (zf,pp = 0,...,3) and a periodic coordinate,
zt = 2% 4+ 27 R, where R is the radius of the circle.

Now as we have seen before, the five dimensional coordinate transfor-
mation M — /M = M 4 M (z) is an invariance of our five dimensional

theory, under which
Gun — G'un = Gun — Ouen — Onenr. (4.1)

The metric has the natural decomposition into GW)7 4(14) , and GEA) , where
the superscript is necessary to distinguish similar-looking quantities in
four dimensions, as we shall see.

Let us consider the class of transformations es(z*), €, = 0, which cor-
responds to an x¥-dependent isometry (rotation) of the circle. Then GW)

(5
and G44 are invariant, and

G — @' = GY) — duea(a). (4.2)

However, from the four dlmensmnal point of view, GEM) is a scalar, G,(W) is
proportlonal to the metric, and G is a vector, proportional to What we
will call A,,, and so equation (4.2) i 1s simply a U (1) gauge transformation:
A, — A, — 0uA(z). So the U(1) of electromagnetism can be thought of
as resulting from compactifying gravity, the gauge field being an internal
component of the metric. The idea of using this, as a first attempt at
unifying gravity with electromagnetism, was that R is small enough that
the world would be effectively four dimensional on larger scales, so an
observer would have to work hard to see it. On distance scales much
longer than that set by R, physical quantities in the theory would be
effectively z*-independent.

Let us be a bit more precise. Explicitly, we can write the most general
metric consistent with the translation invariance in 2 as

, 2
= Gg\?Nd:era:N = Gfﬁ)dm“dm” + G (daz4 + Auda:“> , (4.3)
and we write Gas = €2?. The five dimensional Ricci scalar decomposes as

R(5) _ R(4) . 26—¢v26¢ i %62¢FMVFIW7 (4.4)
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where F,,, = 0,4, — 0, A,,. Notice for future reference that the lower di-
mensional metric components in the 0, 1, 2, 3 directions are a modification
of the higher dimensional metric components:

G =G) — e A4,

which is an important observation for later. So, suppressing the z* de-
pendence of the fields, we get

1
S = —/(—G(5))1/2R(5)d5x
16#@%)
1 v

where we have defined C:’Eﬁ,) = e¢GEL4l,) and used equation (2.110). Now we
have a relation between the five dimensional and four dimensional Newton
constants:

2R 1
N = AN (4.5)
G G

and the gauge coupling is set by ¢ and Newton’s constant.

Let us be more careful about following how the z*-independence of the
theory arises. Since momentum in z* is quantised as py = n/R, any scalar
(or component of a field) in D = 5 (which obeys 9 dy;¢ = 0) can be

expanded:
Bat) = 3 dnlat)e ™/, (4.6)
NnEL
giving
n2
0"0,dn — ﬁ‘ﬁ =0, (4.7)

and so we see that the ¢, appear in four dimensions as a family of scalars
of mass m = n/R, and U(1) charge n. We get a tower of states which
becomes extremely heavy for very small R, and are therefore hard to
excite. We shall see this sort of spectrum arise in the closed string theory
as well (since it contains gravity at low energy), but accompanied by new
features.

4.1.2 Closed strings on a circle

The mode expansion (2.84) for the closed string theory can be written as:

XH(z,2) = =+ = —iy| =(af + a5)T + a—(ozg — af)o + oscillators.
(4.8)
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We have already identified the spacetime momentum of the string:
Pt = —(af + af). (4.9)

If we run around the string, i.e. take 0 — o + 2, the oscillator terms are
periodic and we have

XH(2,7) — XH(2, %) + Qw\/g(ag — &b, (4.10)

So far, we have studied the situation of non-compact spatial directions
for which the embedding function X#(z, z) is single-valued, and therefore
the above change must be zero, giving

ab = aly = | =p". (4.11)

Indeed, momentum p* takes a continuum of values reflecting the fact that
the direction X* is non-compact.

Let us consider the case that we have a compact direction, say X2°, of
radius R. Our direction X2° therefore has period 2w R. The momentum
p?® now takes the discrete values n/R, for n € Z. Now, under o ~ o + 2,
X?3(z, z) is not single valued, and can change by 2nwR, for w € Z. Solving

the two resulting equations gives:

. 2n o
0485+0485 = E ?

ad® —ad® =/ =wR (4.12)

and so we have:
%5 n whik o o
= =4 — — =Pt/ =
@0 <R L ) 2 =\
!/ !
a2 = <ﬁ - @> Sl Y (4.13)

We can use this to compute the formula for the mass spectrum in
the remaining uncompactified 2441 dimensions, using the fact that
M? = —pup", where now p =0,...,24.

2 4
2 9512
M* = —p'p, = J(Oéo) +J(N—1)
2 4  _
= 5(0485)2 + J(N— 1), (4.14)
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where N, N denote the total levels on the left- and right-moving sides, as
before. These equations follow from the left and right Lg, Ly constraints.
Recall that the sum and difference of these give the Hamiltonian and the
level-matching formulae. Here, they are modified, and a quick computa-
tion gives:

2 2 p2
2_ o wR 2 v
M= 5+ 5+ = (N+ N —2)
nw+ N — N =0. (4.15)

The key features here are that there are terms in addition to the usual
oscillator contributions. In the mass formula, there is a term giving the
familiar contribution of the Kaluza—Klein tower of momentum states for
the string (see section 4.1.1), and a new term from the tower of winding
states. This latter term is a very stringy phenomenon. Notice that the
level matching term now also allows a mismatch between the number of
left and right oscillators excited, in the presence of discrete winding and

momenta.
In fact, notice that we can get our usual massless Kaluza—Klein states™

by taking
n=w=0; N=N-=1, (4.16)

exciting an oscillator in the compact direction. There are two ways of
doing this, either on the left or the right, and so there are two U(1)s
following from the fact that there is an internal component of the metric
and also of the antisymmetric tensor field. We can choose to identify the
two gauge fields of this U(1) x U(1) as follows:

1 1
AM(R) = §(G — B)M725; A,u(L) = §(G + B)m%.

We have written these states out explicitly, together with the correspond-
ing spacetime fields, and the vertex operators (at zero momentum), below.

| field | state | operator |
G (" 6% 4+ a” 18" )|0; k) IXHIXY + 0XFOXY
B, (a"ia” ) —a¥ 6" ))|0;k) | OXFOXY — OXHOXY
Aur) o’ 1@ 10; k) OXHOX
AM(L) d’ila2_51\0; ]{7> 8X258XM
¢ = 5 log Glas 25 o a5 |0; k) OXBOX®

* We shall sometimes refer to Kaluza—Klein states as ‘momentum’ states, to distinguish
them from ‘winding’ states, in what follows.
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So we have these 25-dimensional massless states which are basically
the components of the graviton and antisymmetric tensor fields in 26
dimensions, now relabelled. (There is also of course the dilaton ®, which
we have not listed.) There is a pair of gauge fields giving a U(1),xU(1)r
gauge symmetry, and in addition a massless scalar field ¢. Actually, ¢
is a massless scalar which can have any background vacuum expectation
value (vev), which in fact sets the radius of the circle. This is because the
square root of the metric component G5 25 is indeed the measure of the
radius of the X% direction.

4.2 T-duality for closed strings

Let us now study the generic behaviour of the spectrum (4.15) for different
values of R. For larger and larger R, momentum states become lighter,
and therefore it is less costly to excite them in the spectrum. At the same
time, winding states become heavier, and are more costly. For smaller
and smaller R, the reverse is true, and it is gets cheaper to excite winding
states while it is momentum states which become more costly.

We can take this further: as R — oo, all of the winding states, i.e.
states with w # 0, become infinitely massive, while the w = 0 states with
all values of n go over to a continuum. This fits with what we expect
intuitively, and we recover the fully uncompactified result.

Consider instead the case R — 0, where all of the momentum states,
i.e. states with n # 0, become infinitely massive. If we were studying field
theory we would stop here, as this would be all that would happen — the
surviving fields would simply be independent of the compact coordinate,
and so we have performed a dimension reduction. In closed string theory
things are quite different: the pure winding states (i.e. n = 0, w # 0,
states) form a continuum as R — 0, following from our observation that
it is very cheap to wind around the small circle. Therefore, in the R — 0
limit, an effective uncompactified dimension actually reappears!

Notice that the formula (4.15) for the spectrum is invariant under the
exchange

n<w  and R+~ R =d/R. (4.17)
The string theory compactified on a circle of radius R’ (with momenta
and windings exchanged) is the ‘T-dual’ theory'*, and the process of going
from one theory to the other will be referred to as ‘T-dualising’.

The exchange takes (see (equation 4.13))

o o, P —ad. (4.18)

The dual theories are identical in the fully interacting case as well (after a
shift of the coupling to be discussed shortly)!®. Simply rewrite the radius
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R theory by performing the exchange
XB(2,2) = XP(2) + XB(2) — X'®(2,2) = XP(2) — X®(2). (4.19)

The energy-momentum tensor and other basic properties of the conformal
field theory are invariant under this rewriting, and so are therefore all of
the correlation functions representing scattering amplitudes, etc. The only
change, as follows from equation (4.18), is that the zero mode spectrum
in the new variable is that of the o//R theory.

So these theories are physically identical. T-duality, relating the R and
o'/ R theories, is an exact symmetry of perturbative closed string theory.
Shortly, we shall see that it is non-perturbatively exact as well.

N.B. The transformation (4.19) can be regarded as a spacetime parity
transformation acting only on the right-moving (in the world sheet
sense) degrees of freedom. We shall put this picture to good use in
what is to come.

4.3 A special radius: enhanced gauge symmetry

Given the relation we deduced between the spectra of strings on radii R
and o' /R, it is clear that there ought to be something interesting about
the theory at the radius R = v/a'. The theory should be self-dual, and
this radius is the ‘self-dual radius’. There is something else special about
this theory besides just self-duality.

At this radius we have, using (4.13),

oy’ = (n\'}‘;’); ag = = w), (4.20)

and so from the left and right we have:

2 4
M? = —pl'py = S(n+w)*+ (N —1)
[0 (6]
2 4
= J(n—w)z-l-a(]\f—l). (4.21)

So if we look at the massless spectrum, we have the conditions:
(n+w)>+4N =4;  (n—w)>+4N = 4. (4.22)

As solutions, we have the cases n = w = 0 with N =1 and N = 1 from
before. These are include the vectors of the U(1) x U(1) gauge symmetry
of the compactified theory.
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Now, however, we see that we have more solutions. In particular:

n=-w==+1, N=1, N=0; n=w=+1, N=0, N=1.
(4.23)

The cases where the excited oscillators are in the non-compact direction
yield two pairs of massless vector fields. In fact, the first pair go with
the left U(1) to make an SU(2), while the second pair go with the right
U(1) to make another SU(2). Indeed, they have the correct +1 charges
under the Kaluza-Klein U(1)s in order to be the components of the
W-bosons for the SU(2), x SU(2)r ‘enhanced gauge symmetries’. The
term is appropriate since there is an extra gauge symmetry at this special
radius, given that new massless vectors appear there.

When the oscillators are in the compact direction, we get two pairs of
massless bosons. These go with the massless scalar ¢ to fill out the mass-
less adjoint Higgs field for each SU(2). These are the scalars whose vevs
give the W-bosons their masses when we are away from the special radius.

In fact, this special property of the string theory is succinctly visible at
all mass levels, by looking at the partition function (4.30). At the self-dual
radius, it can be rewritten as a sum of squares of ‘characters’ of the su(2)
affine Lie algrebra:

Z(q,R=Vd) = (@) + a9, (4.24)
where ) )
i@ =n">"q", xal@)=ntY ¢ (4.25)
n n

It is amusing to expand these out (after putting in the other factors of
(ni7)~! from the uncompactified directions) and find the massless states
we discussed explicitly above.

It does not matter if an affine Lie algebra has not been encountered
before by the reader. We can take this as an illustrative example, arising in
a natural and instructive way. See insert 4.1 for further discussion'?. In the
language of two dimensional conformal field theory, there are additional
left- and right-moving currents (i.e. fields with weights (1,0) and (0,1))
present. We can construct them as vertex operators by exponentiating
some of the existing fields. The full set of vertex operators of the SU(2), x
SU(2)r spacetime gauge symmetry:

SU2)L: 0XMOXP(2), XM exp(£2iXP(2)/V)
SU2)r: 0XMOXP(2), 0XMexp(x2iX2°(2)/Ve/),  (4.26)

corresponding to the massless vectors we constructed by hand above.
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Insert 4.1. Affine Lie algebras

The key structure of an affine Lie algebra is just what we have seen
arise naturally in this self-duality example. In addition to all of the
nice structures that the conformal field theory has — most pertinently,
the Virasoro algebra — there is a family of unit weight operators,
often constructed as vertex operators as we saw in equation (4.26),
which form the Lie algebra of some group G. They are unit weight as
measured either from the left or the right, and so we can have such
structures on either side. Let us focus on the left. Then, as (1,0)
operators, J%(z), (a is a label) we have:

(L, J&] = mJ%, s (4.27)
where 1
Jo = ﬂj{dz 2L (), (4.28)
n
and
(T8, J2) = i f 0 TE  + mkd™Sysm, (4.29)

where it should be noticed that the zero modes of these currents
form a Lie algebra, with structure constants fabc. The constants d*
define the inner product between the generators (t%, %) = d®. Since
in bosonic string theory a mode with index —1 creates a state that
is massless in spacetime, J%; can be placed either on the left with
&" | on the right (or vice versa) to give a state J%;&";]|0) which is
a massless vector A** in the adjoint of GG, for which the low energy
physics must be Yang—Mills theory.

The full algebra is called an ‘affine Lie algebra’, or a ‘current
algebra’, and sometimes a ‘Kac-Moody’ algebra?™®. In a standard
normalisation, k is an integer and is called the ‘level’ of the affinisa-
tion. In the case that we first see this sort of structure, the string at
a self-dual radius, the level is 1. The currents in this case are:

J3(2) = i/ V20, XP(2),
J(z) = cos(2a’_l/2X25(z)) Lo JAH2) = sin(2a’_1/2X25(z)) :

which satisfy the algebra in (4.29) with f®¢ = ¢%®¢ k = 1, and
dw = %(Wb, as appropriate to the fundamental representation.
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The vertex operator for the change of radius, IX?9X?, correspond-
ing to the field ¢, transforms as a (3,3) under SU(2)1, x SU(2)g, and
therefore a rotation by m in one of the SU(2)s transforms it into minus
itself. The transformation R — o'/ R is therefore the Zy Weyl subgroup
of the SU(2) x SU(2). Since T-duality is part of the spacetime gauge
theory, this is a clue that it is an exact symmetry of the closed string
theory, if we assume that non-perturbative effects preserve the spacetime
gauge symmetry. We shall see that this assumption seems to fit with non-
perturbative discoveries to be described later.

4.4 The circle partition function

It is useful to consider the partition function of the theory on the circle.
This is a computation as simple as the one we did for the uncompactified
theory earlier, since we have done the hard work in working out Ly and
Ly for the circle compactification. Each non-compact direction will con-
tribute a factor of (ni7)~!, as before, and the non-trivial part of the final
T-integrand, coming from the compact X2 direction is:

o\ o p2 _of p2
Z(q,R) = ()~ "> g T g R, (4.30)
n,w

where Pp,r are given in (4.13). Our partition function is manifestly
T-dual, and is in fact also modular invariant. Under 7', it picks us a
phase exp(wi(P2 — P2)), which is again unity, as follows from the second
line in (4.15): P — P2 = 2nw. Under S, the role of the time and space
translations as we move on the torus are exchanged, and this in fact ex-
changes the sums over momentum and winding. T-duality ensures that
the S-transformation properties of the exponential parts involving P, r
are correct, while the rest is S invariant as we have already discussed.

It is a useful exercise to expand this partition function out, after com-
bining it with the factors from the other non-compact dimensions first,
to see that at each level the mass (and level matching) formulae (4.15)
which we derived explicitly is recovered.

In fact, the modular invariance of this circle partition function is part
of a very important larger story. The left and right momenta P, g are
components of a special two dimensional lattice, I'1 ;. There are two basis
vectors k = (1/R,1/R) and k = (R,—R). We make the lattice with
arbitrary integer combinations of these, nk + wk, whose components are
(PL, Pr). (cf. equation (4.13)). If we define the dot products between our
basis vectors to be k-k = 2 and k-k = 0 = k - l%, our lattice then
has a Lorentzian signature, and since Pﬁ — PEQ{ = 2nw € 27, it is called
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‘even’. The ‘dual’ lattice I'] | is the set of all vectors whose dot product
with (P, Pr) gives an integer. In fact, our lattice is self-dual, which is to
say that I'y; = I} ;. It is the ‘even’ quality which guarantees invariance
under 1" as we have seen, while it is the ‘self-dual’ feature which ensures
invariance under S. In fact, S is just a change of basis in the lattice, and
the self-duality feature translates into the fact that the Jacobian for this
is unity.

4.5 Toriodal compactifications

It will be very useful later on for us to outline how things work more
generally. The case of compactification on the circle encountered above
can be easily generalised to compactification on the torus 7% ~ (S1)?. Let
us denote the compact dimensions by X, where m,n = 1,...,d. Their
periodicity is specified by

X™ ~ X" 4 20RMn™,

where the n™ are integers and R(™ is the radius of the mth circle.
The metric on the torus, G, can be diagonalised into standard unit
Euclidean form by the veilbeins ef}, where a,b=1,...,d:

b
Gmn = 6abeﬁqen7

and it is convenient to use tangent space coordinates X% = X™e? so that
the equivalence can be written:

X% ~ X® + 2mel 0™,

We have defined for ourselves a lattice A = {e% n" n™ € Z}. We now
write our torus in terms of this as

There are of course conjugate momenta to the X*, which we denote
as p®. They are quantised, since moving from one lattice point to an-
other, producing a change in the vector X by 6X € 2mwA are physi-
cally equivalent, and so single-valuedness of the wavefunction imposes
exp(ip- X) = exp(ip - [X + 6X]), i.e.

p-6X € 2nZ,
from which we see that clearly

n __ oymn
p _G nma
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where n,, are integers. In other words, the momenta live in the dual lattice,
A*, of A, defined by

A = {e* "y, N € Z},

where the inverse veilbiens e**"n,, are defined in the usual way using the
inverse metric:

*aM _ _a ,~mn xam b __ cab
e =e,G"", or e e, =06

Of course we can have winding sectors as well, since as we go around
the string via ¢ — o + 2w, we can change to a new point on the lattice
characterised by a set of integers w™, the winding number. Let us write
out the string mode expansions. We have

XUr,0)=X{(1r —0)+ Xg(T+0), where

a

/
Xi{ = af — i“%pi(T — 0) + oscillators xf = % -6

waR(a) xam

1
pl = p* + o =, + Jeﬁlwmﬂ (4.31)

for the left, while on the right we have

/ a

Xg =a% —1 %p“R(T + o) + oscillators Th = % +6°
w* R 1
Py = p® — —— = ey, — Je%wm. (4.32)

The action of the manifest T-duality symmetry is simply to act with a
right-handed parity, as before, swopping p;, < pr, and pr < —pgr, and
hence momenta and winding and X7, «» X1, and Xg < —XRg.

To see more, let us enlarge our bases for the two separate lattices A, A*
into a singe one, via:

a *QAM
é _ 1 em é*m — €
m = a | - xam |
o\ —e,, e
and now we can write

A_<pi>_A m | sem
p= ] = Eenw T+ e Ny,
bR

which lives in a (d 4 d)-dimensional lattice which we will call I'q 4. We
can choose the metric on this space to be of Lorentzian signature (d, d),
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_(bw O
o= (% )

which is achieved by

and using this we see that

b -y =0=¢"".¢"
2

o'

o, (4.33)
which shows that the lattice is self-dual, since (up to a trivial overall
scaling), the structure of the basis vectors of the dual is identical to that
of the original: I'}; ; = 'y 4. Furthermore, we see that the inner product
between any two momenta is given by

2
(emw™ + &0y, - (Eu™ 4+ €Mnyy) = S (wng, + npw™). (4.34)
o

In other words, the lattice is even, because the inner product gives even
integer multiples of 2/a/.

It is these properties that guarantee that the string theory is modu-
lar invariant'™. The partition function for this compactification is the
obvious generalisation of the expression given in (4.30):

Zya = (mi7)"4 Y ¢ TPLGTIR, (4.35)

Taa

where the pr, g are given in (4.32). Recall that the modular group is gen-
erated by T : 7 — 7+ 1, and S : 7 — —1/7. So T-invariance follows
from the fact that its action produces a factor exp(ima/(p} — p3)/2) =
exp(ima/(p?)/2) which is unity because the lattice is even, as shown in
equation (4.34).

Invariance under S follows by rewriting the partition function Z(—1/7)
using the Poisson resummation formula given in insert 4.2, to get the
result that

Zr (-%) = vol(I™) Zp« (7).

The volume of the lattice’s unit cell is unity, for a self-dual lattice, since
vol(A)vol(A*) = 1 for any lattice and its dual, and therefore S-invariance
is demonstrated, and we can define a consistent string compactification.
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Insert 4.2. The Poisson resummation formula

A very useful trick is the following. Assume that we have a function
f(z) defined on R™. Then its Fourier transform is given as

dnk l -
$@) = [ g™ A ).

The formula we need is written in terms of this. If we sum over a
lattice A C R™, then:

dk

lkmf = vol(A™) Z f(2wm).

neA nEA meA*

We shall meet two very important examples of large even and self-dual
lattices later in subsection 7.2. They are associated to the construction of
the modular invariant partition functions of the ten dimensional Fgx Eg
and SO(32) heterotic strings°.

There is a large space of inequivalent lattices of the type under discus-
sion, given by the shape of the torus (specified by background parameters
in the metric G) and the fluxes of the B-field through it. We can work
out this ‘moduli space’ of compactifications. It would naively seem to be
simply O(d, d), since this is the space of rotations naturally acting, tak-
ing such lattices into each other, i.e. starting with some reference lattice
[y, I = GI'y should be a different lattice. We must remember that the
physics cares only about the values of p? and p%“ and so therefore we must
count as equivalent any choices related by the O(d)x O(d) which acts inde-
pendently on the left and right momenta: G ~ G'G, for G’ € O(d) x O(d).
So at least locally, the space of lattices is isomorphic to

O(d, d)

M= 5 < o)

(4.36)
A quick count of the dimension of this space gives 2d(2d — 1)/2 — 2 x
d(d—1)/2 = d?, which fits nicely, since this is the number of independent
components contained in the metric Gy, (d(d 4 1)/2) and the antisym-
metric tensor field By, (d(d—1)/2), for which we can switch on constant
values (sourced by winding).

There are still a large number of discrete equivalences between the
lattices, which follows from the fact that there is a discrete subgroup of
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O(d,d), called O(d,d,Z), which maps our reference lattice Iy into itself:
[y ~ G"Ty. This is the set of discrete linear transformations generated
by the subgroups of SL(2d,Z) which preserves the inner product given
in equations (4.33). This group includes the T-dualities on all of the d
circles, linear redefinitions of the axes, and discrete shifts of the B-field.
The full space of torus compactifications is often denoted:

M = 0(d,d, Z)\O(d,d)/[0(d) x O(d)], (4.37)

where we divide by one action under left multiplication, and the other
under right.

Now we see that there is a possibility of much more than just the
SU(2)1, x SU(2)r enhanced gauge symmetry which we got in the case
of a single circle. We can have this large symmetry from any of the d
circles, of course but there is more, since there are extra massless states
that can be made by choices of momenta from more than one circle,
corresponding to weight one vertex operators. This will allow us to make
very large enhanced gauge groups, up to rank d, as we shall see later in
section 7.2.

4.6 More on enhanced gauge symmetry

The reader is probably keen to see more of where some of the structures
of sections 4.3, 4.4, and 4.5 come from, and so we will pause here to study
a little about Lie groups and algebras.

4.6.1 Lie algebras and groups

Lie algebras are usually described in terms of a basis of gemerators, t%,
which have a specific antisymmetric product:

%, 1% = i f* 1°, (4.38)

where the f%, are often called the structure constants. This product must
satisfy the Jacobi identity, which states that:

[t 18, 490+ %, 29, 2T) + [t [, 2] = 0.

Once we have the algebra, we can form the group G by exponentiating
the generators, to make a group element

g = et
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N.B. One of the reasons why Lie groups are interesting is that the
group elements form a manifold, and so there is a lot of familiar
geometry to be found in their description. For example, one can think
of the Lie algebra as the vector space that is simply the tangent
space to the group manifold, G, and keep in mind a picture like that
in figure 2.14. The natural way to make the Lie algebra from the
group elements ¢ is via the Maurer—Cartan forms, g~ 'dg which give
a family of one-forms which are valued in the Lie algebra. We won'’t
use this much, but the curious reader can look ahead to insert 7.4,
where we make this explicit for SU(2), which is the manifold S3.

There is also an inner product between the generators, which is defined
as (t%,t%) = d®, which is positive if the group is compact. We can lower
and raise indices with this fellow, and having done this on the structure
constants to get f%¢, there is an additional condition that they are totally
antisymmetric in all of their indices. We shall restrict our attention mostly
to the simple Lie algebras, for which a choice can be made to make d*
proportional to §%.

Most familiar is of course the representation of the algebra in (4.38) by
matrices, for which we can use the notation ¢%, where R stands for a repre-
sentation, and the matrix elements are denoted t(}l%,ij' The antisymmetric
product is then the familiar matrix commutator, and the inner product
is matrix multiplication with the trace. Then we have Tr(t%t%) = Tré%,
where T is a number which depends on the representation. Note that we
can define the Casimir invariant of the representation R as t‘}%tb =Qrl.

The Jacobi identity above translates into

fabdfcde + fbcdfade + fcadfbde =0.
A most convenient matrix representation of the algebra is given by
(t4)be = —if g,
and for this we see that we get
[t% th] = if et

and so we see that the structure constants themselves form a representa-
tion of the Lie algebra. This is the adjoint representation. Notice that the
dimension of the representation is the number of generators of the group.
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It is useful to divide the generators t® into two families. There is the
maximal set of commuting generators, which are denoted H?, where i =
1,...,r with r being the rank of the group, and there are the rest, denoted
E“ of reasons to be given very shortly.

The set H', for which

[H', H7] =0,

is the Cartan subalgebra, and the H* are often said to form the mazimal
torus, which we shall discuss more later. These elements are the gener-
alisation of J3 from the familiar case of SU(2). For a representation of
dimension d, we can think of the H' as d x d matrices. We will pick
a specific basis for these and keep in that basis to describe everything
else. Being all mutually commutative, they may be simultaneously diag-
onalised, and there are d distinct eigenvalues for each H. Consider the
nth entry along a diagonal. Each of the H? supplies a component, w', of
a vector w in a space R”. There are d such weight vectors.

Everything else can be given an assignment of ‘charges’ corresponding
to the H-eigenvalues, via

[H', E%] = o' E”.

We can think of the o as components of an r-dimensional vector known
as a root. It is a vector in the space R" mentioned above. Every root is
uniquely associated to a generator E%. The remaining parts of the Lie
algebra are:

ela, B)E*P if a+ 3 is a root,
[E% E°l={ 20 -H/a-a ifa+p=0,
0 otherwise,

where the dot product is defined with the relevant part of the inner prod-
uct form, d;;, and €(«, 3) is £1. It is worth noting that the roots are the
weights of the adjoint representation.

The E® are the generalisations of the J* familiar from SU(2), the
raising and lowering operators. One can decompose weights into three
classes, whether they are positive, negative, or zero. This is given by
whether or not the first non-zero entry is positive, negative or zero (i.e. all
components zero). There is a unique highest weight in any representation.
Specialising to the weights of the adjoint representation, the roots, divides
the £ into raising operators, if « is positive, and lowering operators if «
is negative. One can build the whole representation of the groups starting
with the highest weight and acting with the lowering operators, while
acting on a highest weight with a raising operator gives zero.

The simple roots are the positive roots that cannot be written as the
sum of two positive roots, and they form a linearly independent set. The
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number of them is equal to the rank of the group, r. Using these, it can
be shown that the entire structure of the group may be reconstructed. A
useful way of specifying the simple roots is to give their relative lengths
and the angles between them, which turn out to be restricted to between
90° and 180°. The Dynkin diagram is a very useful way of giving that
information in an easy to read form. Each simple root is a node in the
diagram. There are links between nodes if the angle between them is not
90°. There is a single line if the angle is 120°, a double line if the angle is
135° and a triple line if it is 150°. To denote the odd root which is shorter
than the rest, it is often a practice to make the note a different shade of
colour in the diagram.

4.6.2 The classical Lie algebras

Let us list the classical Lie algebras of Cartan’s classification.

e SU(n) Denoted A,_; in Cartan’s classification. The generators are
traceless n x n Hermitian matrices, and the group elements of SU(n)
are unit determinant unitary matrices.

e SO(n) If n = 2k + 1 this is denoted By, while if n = 2k it is Dy.
The generators are n x n antisymmetric Hermitian matrices, and
the group elements of SO(n) are real orthogonal matrices.

e Sp(k) = USp(2k) This is denoted C, in the classification. The gen-
erators are Hermitian 2k x 2k matrices ¢ satisfying

MtM ™t = —¢T,

where T denotes the transpose and

iy 0 I
M= <_Ik 0 )’
where Iy is the k x k identity matrix. The groups is the set of unitary

matrices u satisfying
MuM™' =471,

where —T denotes the inverse of the transpose.

We will often have cause to encounter some non-compact groups closely
related to these. We obtain them by multiplying some generators by
an 4. In this way we will get the set of traceless imaginary matrices to
make the group of real matrices of unit determinant, SL(n) by continuing
SU(n). We have already encountered O(n, m), which is a continuation of
O(n + m) made by such a continuation.
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Insert 4.3. The simply laced Lie algebras

It turns out that for the Lie algebras A,, Dy, Fg, E7 and Eg, all of the
roots are the same length. These are called the simply laced algebras.
It is very useful to know a bit about their structure, as manifest in
the Dynkin diagrams given below.

(n—1 nodes)
Al @—@— —e SUm)
d
D, (nnodes) o so@n)
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4.6.8 Physical realisations with vertex operators

Now we can return to some of the physical objects that we saw arising in
the string theory and make contact with some of the structures we saw
above. Recall that we represented the weights as vectors in R", where r
was the rank of the Lie algebra, arising as charges under the commuting
generators or maximal torus given by the H*. These vectors came with a
specific set of entries, and we could build all representations out of them,
by adding vectors. The set of points in R" made in this way is the Lie
algebra lattice, and it can be placed on a very physical footing in the
context of toroidal compactification in the following way.

If we placed r directions X? on a torus 77, the weight (0,1) objects
Hi(z) = id —1/29, X parameterise the very object we have been working
with: the maximal torus. The weight vectors that we had, with the addi-
tive structure allowing us to reach other points in the lattice, building up
other representations, are simply the momenta, which are the zero modes
of the H'(z), which are also additive.

In general, we can make states corresponding to the weight vector w?
with the vertex operator exp(2io/_l/2w - ¢). So now we see how to get a
gauge symmetry, following the discussion in insert 4.1, we need to have
vertex operators of weight (0,1) to go with the H*(z). These can be made
with the vertex operators if the w? = 2. So we see that we need the simply
laced algebras to do this. They are listed in insert 4.3, together with their
Dynkin diagrams.

4.7 Another special radius: bosonisation

Before proceeding with the T-duality discussion, let us pause for a moment
to remark upon something which will be useful later. In the case that
R = /(a//2), something remarkable happens. The partition function is:

/ ] w
2(aR=\[5 ] = TG0 g0 )
n,w

Note that the allowed momenta at this radius are (cf. equation (4.13)):

o w
0435 =Py §= <n+§>
- o w
a2 = Py 5 = <n — 5) (4.40)

and so they span both integer and half-integer values. Now when P, is an
integer, then so is Pg and vice versa, and so we have two distinct sectors,
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integer and half-integer. In fact, we can rewrite our partition function as
a set of sums over these separate sectors:

ZR— o' /2
2 2 1 212
1)1 1 1 3 3
= — — Zq%nz + = Z(—l)nq%nz —+ |- Z qQ <n+2) (441)

The middle sum is rather like the first, except that there is a —1 whenever
n is odd. Taking the two sums together, it is just like we have performed
the sum (trace) over all the integer momenta, but placed a projection
onto even momenta, using the projector

p= %(1 + (=1, (4.42)
In fact, an investigation will reveal that the third term can be written
with a partner just like it save for an insertion of (—1)™ also, but that
latter sum vanishes identically. This all has a specific meaning which we
will uncover shortly.
Notice that the partition function can be written in yet another nice
way, this time as

T yeri=3 (1R@P +IB@P +1B@P),  (443)

where, for here and for future use, let us define

filg) = = g7 f[l(l —q") =n(7)

fola) = = V2q7 ﬁl(l +q")

f3(q) = = ¢ f[l(l +¢"72)

filg)==q¢ ﬁ(l -q"2), (4.44)

3
Il
—

and note that

fo (-%) =fu(T); f3 <—%> = f3(7); (4.45)
fa(r+1)=fa(7); fa(r+1)= folr). (4.46)
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While the rewriting as (4.43) might not look like much at first glance,
this is in fact the partition function of a single Dirac fermion in two
dimensions: Z(R = \/a//2) = Zpirac. We have arrived at the result that a
boson (at a special radius) is in fact equivalent to a fermion. This is called
‘bosonisation’ or ‘fermionisation’, depending upon one’s perspective. How
can this possibly be true?

The action for a Dirac fermion, ¥ = (¥, Wg)7 (which has two compo-
nents in two dimensions) is, in conformal gauge:

Spirac = — / P G0, 0 =~ / & b 00;, — L / &% TROUy,
n n
(4.47)
where we have used

o . [0 1 L (0 —1
=i(§ o) =i o)

Now, as a fermion goes around the cylinder ¢ — o + 2w, there are two
types of boundary condition it can have. It can be periodic, and hence
have integer moding, in which case it is said to be in the ‘Ramond’ (R)
sector. It can instead be antiperiodic, have half-integer moding, and is
said to be in the ‘Neveu—Schwarz’ (NS) sector.

In fact, these two sectors in this theory map to the two sectors of allowed
momenta in the bosonic theory: integer momenta to NS and half-integer
to R. The various parts of the partition function can be picked out and
identified in fermionic language. For example, the contribution:

2

Bl =l

’

o
Hl-l—q 5

looks very fermionic, (recall insert 3.4 (p. 92)) and is in fact the trace
over the contributions from the NS sector fermions as they go around
the torus. It is squared because there are two components to the fermion,
U and W. We have the squared modulus beyond that since we have the
contribution from the left and the right.

The fa(q) contribution on the other hand, arises from the NS sector
with a (=) inserted, where F' counts the number of fermions at each
level. The f5(q) contribution comes from the R sector, and there is a
vanishing contribution from the R sector with (—1)f" inserted. We see
that that the projector

P= %(1 + (-1 (4.48)
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is the fermionic version of the projector (4.42) we identified previously.
Notice that there is an extra factor of two in front of the R sector contri-
bution due to the definition of fy. This is because the R ground state is
in fact degenerate. The modes ¥g and U, define two ground states which
map into one another. Denote the vacuum by |s), where s can take the
values :I:%. Then

Wo| = 5) = 0; Tol + 3) = 0; (49)
4.49
ol = 5)=1+35;  Yol+3)=]-13)

and Uy and g therefore form a representation of the two dimensional
Clifford algebra. We will see this in more generality later on. In D dimen-
sions there are D/2 components, and the degeneracy is 27 /2,

As a final check, we can see that the zero point energies work out nicely
too. The mnemonic (2.80) gives us the zero point energy for a fermion
in the NS sector as —1/48, we multiply this by two since there are two
components and we see that that we recover the weight of the ground state
in the partition function. For the Ramond sector, the zero point energy of
a single fermion is 1/24. After multiplying by two, we see that this is again
correctly obtained in our partition function, since —1/24+1/8 =1/12. It
is awfully nice that the function f2(q) has the extra factor of 2¢'/8, just
for this purpose.

This partition function is again modular invariant, as can be checked
using elementary properties of the f-functions (4.46): fo transforms into
f4 under the S transformation, while under T, f; transforms into fs.

At the level of vertex operators, the correspondence between the bosons
and the fermions is given by:

\IJL(Z) — elﬂXES(Z); \TJL(Z) _ e_iﬁXES(Z);
TR(2) = eBXRE); Tp(z) = e BXRG) (4.50)

where 3 = /2/a/. This makes sense, for the exponential factors define
fields single-valued under X?® — X?2° 4 2« R, at our special radius R =

Va'/2. We also have
UL (2)0L(2) = 0, X%, WR(Z)UR(Z) = 0:X%, (4.51)

which shows how to combine two (0, 1/2) fields to make a (0, 1) field, with
a similar structure on the left. Notice also that the symmetry X2° —
— X2 swaps Uy and @L(R), a symmetry of interest in the next subsec-
tion. We will return to this bosonisation/fermionisation relation in later
sections, where it will be useful to write vertex operators in various ways
in the supersymmetric theories.
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4.8 String theory on an orbifold

There is a rather large class of string vacua, called ‘orbifolds’®3, with
many applications in string theory. We ought to study them, as many of
the basic structures which will occur in their definition appear in more
complicated examples later on.

The circle S*, parametrised by X 23, has the obvious Zo symmetry Ros :
X% — — X% This symmetry extends to the full spectrum of states and
operators in the complete theory of the string propagating on the circle.
Some states are even under Rss, while others are odd. Just as we saw
before in the case of €1, it makes sense to ask whether we can define
another theory from this one by truncating the theory to the sector which
is even. This would define string theory propagating on the ‘orbifold’ space
St/ Zs.

In defining this geometry, note that it is actually a line segment, where
the endpoints of the line are actually ‘fixed points’ of the Zs action. The
point X?5 = 0 is clearly such a point and the other is X% = tR ~ —%R,
where R is the radius of the original S*. A picture of the orbifold space is
given in figure 4.1. In order to check whether string theory on this space is
sensible, we ought to compute the partition function for it. We can work
this out by simply inserting the projector

1
P = S(1+ Ry) (4.52)

which will have the desired effect of projecting out the Ros-odd parts
of the circle spectrum. So we expect to see two pieces to the partition
function: a part that is % times Zeircle, and another part which is Zgircle
with Rpgs inserted. Noting that the action of Ros is

95 _, _ 95
Ros - {6}35 _ o, (4.53)

o’ — —aog

the partition function is:

Zontitona = 5 [2(R,7) +2 (150 + @) + i@l )] (454

0 TR 0 TR
Z 2

Fig. 4.1. A Zs orbifold of a circle, giving a line segment with two fixed
points.
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The fo part is what one gets if one works out the projected piece, but
there are two extra terms. From where do they come? One way to see that
those extra pieces must be there is to realise that the first two parts on
their own cannot be modular invariant. The first part is of course already
modular invariant on its own, while the second part transforms (4.46) into
f1 under the S transformation, so it has to be there too. Meanwhile, f4
transforms into f3 under the T-transformation, and so that must be there
also, and so on.

While modular invariance is a requirement, as we saw, what is the
physical meaning of these two extra partition functions? What sectors of
the theory do they correspond to and how did we forget them?

The sectors we forgot are very stringy in origin, and arise in a similar
fashion to the way we saw windings appear in earlier sections. There, the
circle may be considered as a quotient of the real line R by a translation
X% — X?5 4 2nR. There, we saw that as we go around the string, o —
o + 2m, the embedding map X?°(¢) is allowed to change by any amount
of the lattice, 2w Rw. Here, the orbifold further imposes the equivalence
X% ~ —X?% and therefore, as we go around the string, we ought to be
allowed:

XB(o 4 2m,7) = —X®(0,7) + 2mwR,

for which the solution to the Laplace equation is:

o
X25(Z’2):x25+i\/g Z 1 <a25 1Zn+%+&25 15n+%>7
2, (n+d) \ s n+g
(4.55)
with 22> = 0 or wR, no zero mode a2® (hence no momentum), and no
winding: w = 0.

This is a configuration of the string allowed by our equations of motion
and boundary conditions and therefore has to be included in the spectrum.
We have two identical copies of these ‘twisted sectors’ corresponding to
strings trapped at 0 and 7R in spacetime. They are trapped, since 225 is
fixed and there is no momentum.

Notice that in this sector, where the boson X2°(w, @) is antiperiodic as
one goes around the cylinder, there is a zero point energy of 1/16 from
the twisted sector: it is a weight (1/16,1/16) field, in terms of where it
appears in the partition function.

Schematically therefore, the complete partition function ought to be

(1 +2R25)qLo—ﬁqu—ﬁ)

%qLo—ﬁQLo—ﬁ) (4.56)

Zorbifold = Truntwisted <

+ Trtwisted <
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to ensure modular invariance, and indeed, this is precisely what we have
in (4.54). The factor of two in front of the twisted sector contribution is
because there are two identical twisted sectors, and we must sum over all
sectors.

In fact, substituting in the expressions for the f-functions, one can
discover the weight (1/16,1/16) twisted sector fields contributing to the
vacuum of the twisted sector. This simply comes from the ¢~ /4® factor in
the definition of the f3 4-functions. They appear inversely, and for example
on the left, we have 1/48 = —¢/24 + 1/16, where ¢ = 1.

Finally, notice that the contribution from the twisted sectors do not
depend upon the radius R. This fits with the fact that the twisted sectors
are trapped at the fixed points, and have no knowledge of the extent of
the circle.

4.9 T-duality for open strings: D-branes

Let us now consider the R — 0 limit of the open string spectrum. Open
strings do not have a conserved winding around the periodic dimension
and so they have no quantum number comparable to w, so something
different must happen, as compared to the closed string case. In fact, it
is more like field theory: when R — 0 the states with non-zero internal
momentum go to infinite mass, but there is no new continuum of states
coming from winding. So we are left with a theory in one dimension fewer.
A puzzle arises when one remembers that theories with open strings have
closed strings as well, so that in the R — 0 limit the closed strings live in
D spacetime dimensions but the open strings only in D — 1.

This is perfectly fine, though, since the interior of the open string is
indistinguishable from the closed string and so should still be vibrating in
D dimensions. The distinguished part of the open string are the endpoints,
and these are restricted to a D — 1 dimensional hyperplane.

This is worth seeing in more detail. Write the open string mode expan-
sion as

XP(z,7) = XP(2) + X1(2),

N a2 1 _
Xﬂ(z)z——f———Zo/p“]nz—f—z(?) ZEO‘%Z "

2 2 o
TR nNY?2 _q
XH(z) = % - % —id/p’Inz +i <%) Z Eaﬁfz_", (4.57)
n#0

where 2/# is an arbitrary number which cancels out when we make the
usual open string coordinate. Imagine that we place X?° on a circle of
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radius R. The T-dual coordinate is
X/25(Z75) — X25(Z) _ X25(5)

1 .
_ .%/25 i iO/p25 In <§> T i(QO/)l/Q Z —0572156_”” sin no
z n#0 n

1 .
— 2P 1 2d/pP0 +i(2a/)/? > —aXe " sinno
n#0 n
1 ‘
— % 20/%0 +i(22/)Y/? > =a2’e " sinno. (4.58)
n#0 n

Notice that there is no dependence on 7 in the zero mode sector. This is
where momentum usually comes from in the mode expansion, and so we
have no momentum. In fact, since the oscillator terms vanish at the end-
points o = 0, m, we see that the endpoints do not move in the X'* direc-
tion! Instead of the usual Neumann boundary condition 9, X = 9,X = 0,
we have 0, X = i0; X = 0. More precisely, we have the Dirichlet condition
that the ends are at a fixed place:

2ma’n

R

X" () — X™5(0) = = 2mnR. (4.59)

In other words, the values of the coordinate X’?® at the two ends are
equal up to an integral multiple of the periodicity of the dual dimension,
corresponding to a string that winds as in figure 4.2.

25
X

7

0 2R

Fig. 4.2. Open strings with endpoints attached to a hyperplane. The
dashed planes are periodically identified. The strings shown have winding
numbers zero and one.
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This picture is consistent with the fact that under T-duality, the defi-
nition of the normal and tangential derivatives get exchanged:

IXP(z)  IXP(
anX25(Z72) = 8z(2) + 82(2) — atX/25(Z75)
25 25(%
87:X25(Z,Z) _ aXaz(Z) o aXaz(z) _ 8nX/25(2, Z) (460)

Notice that this all pertains to just the direction which we T-dualised,
X2 So the ends are still free to move in the other 24 spatial dimensions,
which constitutes a hyperplane called a ‘D-brane’. There are 24 spatial
directions, so we shall denote it a D24-brane.

4.9.1 Chan—Paton factors and Wilson lines

This picture becomes even more rich when we include Chan—Paton
factors?®. Consider the case of U(N), the oriented open string. When
we compactify the X?® direction, we can include a Wilson line

Ags = diag{01,0s,...,0n}/27R,

which generically breaks U(N) — U(1). (See insert 4.4 (p. 122) for a
short discussion.) Locally this is pure gauge,

Ags = —z’A‘lﬁ%A, A= diag{ein591/2“37 6iX2562/21TR, o eiX2561/21TR}'

(4.61)
We can gauge Ass away, but since the gauge transformation is not peri-
odic, the fields pick up a phase

diag {e‘wl e ,e_wN} (4.62)

under X% — X5 4+ 2nR.

What is the effect in the dual theory? From the phase (4.62) the open
string momenta are now fractional. As the momentum is dual to winding
number, we conclude that the fields in the dual description have frac-
tional winding number, i.e. their endpoints are no longer on the same
hyperplane. Indeed, a string whose endpoints are in the state |ij) picks
up a phase ¢% %) 5o their momentum is (2mn+60;—6;)/2w R. Modifying
the endpoint calculation (4.59) then gives

X" (m) — X"(0) = 2mn + 0, — ;)R (4.67)

In other words, up to an arbitrary additive constant, the endpoint in state
¢ is at position
X/25 = QlR’ = 21TO/A257“'. (468)
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Insert 4.4. Particles and Wilson lines

The following illustrates an interesting gauge configuration which
arises when spacetime has the non-trivial topology of a circle (with
coordinate X?°) of radius R. Consider the case of U(1). Let us make
the following choice of constant background gauge potential:

0 OA
Ry 4.
5T 1 (4.63)

A25(X'u) = - 8X257

i0X2

5
where A(X?%) = ¢~ 2mr . This is clearly pure gauge, but only lo-
cally. There still exists non-trivial physics. Form the gauge invariant
quantity (‘Wilson line’):

W, = exp <iq f{ dX25A25> = e 09, (4.64)

Where does this observable show up? Imagine a point particle of
charge ¢ under the U(1). Its action can be written (see section 4.2)
as:

S = / dr {%XMXM - iqAMX“} - / drL. (4.65)

The last term is just —ig [ A = —iq [ A,dz", in the language of forms.
This is the natural coupling of a world volume to an antisymmetric
tensor, as we shall see.) Recall that in the path integral we are com-
puting e~9. So if the particle does a loop around X2 circle, it will
pick up a phase factor of W,. Notice: the conjugate momentum to
XHis

oL

I = i@X“ =iX", except for % =X — % = %,

where the last equality results from the fact that we are on a circle.
Now we can of course gauge away A with the choice A1, but it will
be the case that as we move around the circle, i.e. X% — X2+ 27R,
the particle (and all fields) of charge ¢ will pick up a phase €%, So
the canonical momentum is shifted to:
n_n, 49

: 4.
R 2R (4.66)
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/25
X

0 OR  O,R O;R 2mR’

Fig. 4.3. Three D-branes at different positions, with various strings at-
tached.

We have in general N hyperplanes at different positions as depicted in
figure 4.3.

4.10 D-brane collective coordinates

Clearly, the whole picture goes through if several coordinates
Xm={X? x% .. xrth (4.69)

are periodic, and we rewrite the periodic dimensions in terms of the dual
coordinates. The open string endpoints are then confined to N (p + 1)-
dimensional hyperplanes, the D(p + 1)-branes. The Neumann conditions
on the world-sheet, 9,X™ (o', %) = 0, have become Dirichlet conditions
0y X'™ (01, 0%) = 0 for the dual coordinates. In this terminology, the orig-
inal 26 dimensional open string theory theory contains N D25-branes.
A 25-brane fills space, so the string endpoint can be anywhere: it just
corresponds to an ordinary Chan—Paton factor.

It is natural to expect that the hyperplane is dynamical rather than
rigid®. For one thing, this theory still has gravity, and it is difficult to see
how a perfectly rigid object could exist. Rather, we would expect that the
hyperplanes can fluctuate in shape and position as dynamical objects. We
can see this by looking at the massless spectrum of the theory, interpreted
in the dual coordinates.

Taking for illustration the case where a single coordinate is dualised,
consider the mass spectrum. The D — 1 dimensional mass is

M2 = () 4 (N - 1)
I\ 2
_ (p“” +2(iia7 bDIR ) + é(l\f ~1). (4.70)
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Note that [2mn + (0; — 0;)]R’ is the minimum length of a string winding
between hyperplanes ¢ and j. Massless states arise generically only for
non-winding (i.e. n = 0) open strings whose end points are on the same
hyperplane, since the string tension contributes an energy to a stretched
string. We have therefore the massless states (with their vertex operators):

ot | |kyid), V= XH,
o™ ki), V=X =0,X". (4.71)

The first of these is a gauge field living on the D-brane, with p + 1 com-
ponents tangent to the hyperplane, A*(£%), p,a =0, ..., p. Here, ¢# = a#
are coordinates on the D-branes’ world-volume. The second was the gauge
field in the compact direction in the original theory. In the dual theory
it becomes the transverse position of the D-brane (see equation (4.68)).
From the point of view of the world-volume, it is a family of scalar fields,
O™(EY), (m=p+1,...,D —1) living there.

We saw this in equation (4.68) for a Wilson line, which was a con-
stant gauge potential. Now imagine that, as genuine scalar fields, the ®™
vary as we move around on the world-volume of the D-brane. This there-
fore embeds the brane into a variable place in the transverse coordinates.
This is simply describing a specific shape to the brane as it is embed-
ded in spacetime. The @ (£{%) are exactly analogous to the embedding
coordinate map X#(o,7) with which we described strings in the earlier
sections.

The values of the gauge field backgrounds describe the shape of the
branes as a soliton background, then. Meanwhile their quanta describe
fluctuations of that background. This is the same phenomenon which
we found for our description of spacetime in string theory. We started
with strings in a flat background and discover that a massless closed
string state corresponds to fluctuations of the geometry. Here we found
first a flat hyperplane, and then discovered that a certain open string
state corresponds to fluctuations of its shape. Remarkably, these open
string states are simply gauge fields, and this is one of the reasons for
the great success of D-branes. There are other branes in string theory (as
we shall see) and they have other types of field theory describing their
collective dynamics. D-branes are special, in that they have a beautiful
description using gauge theory. Ultimately, we can use the long experience
of working with gauge theories to teach us much about D-branes, and
later, the geometry of D-branes and the string theories in which they
live can teach us a lot about gauge theories. This is the basis of the
dialogue between gauge theory and geometry which dominates the field
at present.
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It is interesting to look at the U(N') symmetry breaking in the dual pic-
ture where the brane can move transverse to their world-volumes. When
no D-branes coincide, there is just one massless vector each, or U(1)¥
in all, the generic unbroken group. If £ D-branes coincide, there are new
massless states because strings which are stretched between these branes
can achieve vanishing length. Thus, there are k? vectors, forming the ad-
joint of a U(k) gauge group? 26. This coincident position corresponds to
01 = 03 = --- = 6 for some subset of the original {#}, so in the original
theory the Wilson line left a U(k) subgroup unbroken. At the same time,
there appears a set of k% massless scalars: the k positions are promoted
to a matrix. This is not intuitive at first, but plays an important role in
the dynamics of D-branes?0. We will examine many consequences of this
later in this book. Note that if all N branes are coincident, we recover the
U(N) gauge symmetry.

Although this picture seems quite odd, and will become more so in the
unoriented theory, note that all we have done is to rewrite the original
open string theory in terms of variables which are more natural in the
limit R < vo. Various obscure features of the small-radius limit become
clear in the T-dual picture.

Observe that, since T-duality interchanges Neumann and Dirichlet
boundary conditions, a further T-duality in a direction tangent to a Dp-
brane reduces it to a D(p — 1)-brane, while a T-duality in a direction
orthogonal turns it into a D(p + 1)-brane.

4.11 T-duality for unoriented strings: orientifolds

The R — 0 limit of an unoriented theory also leads to a new extended
object. Recall that the effect of T-duality can also be understood as a
one-sided parity transformation. For closed strings, the original coordi-
nate is X™(z,2) = X" (z) + X™(Z). We have already discussed how to
project string theory with these coordinates by €). The dual coordinate is
X'"™(z,z) = X™(2) — X™(Z). The action of world sheet parity reversal is
to exchange X#(z) and X*(2). This gives for the dual coordinate:

X'"™(2,2) < —X""(z, 2). (4.72)

This is the product of a world-sheet and a spacetime parity operation.
In the unoriented theory, strings are invariant under the action of (2,
while in the dual coordinate the theory is invariant under the product
of world-sheet parity and a spacetime parity. This generalisation of the
usual unoriented theory is known as an ‘orientifold’, a term that mixes
the term ‘orbifold” with orientation reversal.
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Imagine that we have separated the string wavefunction into its internal
part and its dependence on the centre of mass, . Furthermore, take
the internal wavefunction to be an eigenstate of {2. The projection then
determines the string wavefunction at —z™ to be the same as at =™, up
to a sign. The various components of the metric and antisymmetric tensor
satisfy, for example,

GMV(xua _:L,m) = GAW(xMa xm), BIW(‘Z"“a _xm) = _BMV(xua xm),
Gun (2t —2™) = =Gup(2",2™), Bup(z", —z™) = Byp (2", 2™),
G (2, —2™) = G (2, 2™), Bpn(zt, —2™) = =By (a2, 2™). (4.73)

In other words, when we have k compact directions, the T-dual spacetime
is the torus 72°~% moded by a Zs reflection in the compact directions.
So we are instructed to perform an orbifold construction, modified by the
extra sign. In the case of a single periodic dimension, for example, the
dual spacetime is the line segment 0 < 2?° < wR’. The reader should
remind themselves of the orbifold construction in section 4.8. At the ends
of the interval, there are fixed ‘points’, which are in fact spatially 24-
dimensional planes. Looking at the projections (4.73) in this case, we
see that on these fixed planes, the projection is just like we did for the
(2-projection of the 25+1 dimensional theory in section 2.6: the theory
is unoriented there, and half the states are removed. These orientifold
fixed planes are called ‘O-planes’ for short. For this case, we have two
O24-planes. (For k directions we have 2¥ O(25 — k)-planes arranged on
the vertices of a hypercube.) In particular, we can usefully think of the
original case of k = 0 as being on an O25-plane.

While the theory is unoriented on the O-plane, away from the orientifold
fixed planes, the local physics is that of the oriented string theory. The
projection relates the physics of a string at some point = to the string
at the image point —zx™.

In string perturbation theory, orientifold planes are not dynamical. Un-
like the case of D-branes, there are no string modes tied to the orientifold
plane to represent fluctuations in its shape. Our heuristic argument in
the previous subsection that gravitational fluctuations force a D-brane to
move dynamically does not apply to the orientifold fixed plane. This is
because the identifications (4.73) become boundary conditions at the fixed
plane, such that the incident and reflected gravitational waves cancel. For
the D-brane, the reflected wave is higher order in the string coupling.

The orientifold construction was discovered via T-duality® and inde-
pendently from other approaches®” 19, One can of course consider more
general orientifolds which are not simply T-duals of toroidal compactifica-
tions. The idea is simply to combine a group of discrete symmetries with {2
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such that the resulting group of operations (the ‘orientifold group’, Gg) is
itself a symmetry of some string theory. One then has the right to ask what
the nature of the projected theory obtained by dividing by Ggq might be.
This is a fruitful way of construction interesting and useful string vacua®®.
We shall have more to say about this later, since in superstring theory
we shall find that O-planes, like D-branes , are sources of various closed
string sector fields. Therefore there will be additional consistency condi-
tions to be satisfied in constructing an orientifold, amounting to making
sure that the field equations are satisfied.

So far our discussion of orientifolds was just for the closed string sector.
Let us see how things are changed in the presence of open strings. In
fact, the situation is similar. Again, let us focus for simplicity on a single
compact dimension. Again there is one orientifold fixed plane at 0 and
another at wR'. Introducing SO(N) Chan—Paton factors, a Wilson line
can be brought to the form

diag{0h, —01,02, 02, ...,0n/2, —On/2}- (4.74)

Thus in the dual picture there are %N D-branes on the line segment
0 < X < R, and %N at their image points under the orientifold
identification.

Strings can stretch between D-branes and their images, as shown in
figure 4.4. The generic gauge group is U(1)™/2, where all branes are sep-
arated. As in the oriented case, if m D-branes are coincident there is a
U(m) gauge group. However, now if the m D-branes in addition lie at one

\:
> ~ | N

< ns
X

0,k =R’

4

-0,k —OR 0 6,R

Fig. 4.4. Orientifold planes at 0 and wR’'. There are D-branes at 6; R’ and
62 R', and their images at —01 R’ and —0R’. Q) acts on any string by a
combination of a spacetime reflection through the planes and reversing
the orientation arrow.

https://doi.org/10.1017/9781009401371 Published online by Cambridge University Press


https://doi.org/10.1017/9781009401371

128 4 Strings on circles and T-duality

of the fixed planes, then strings stretching between one of these branes
and one of the image branes also become massless and we have the right
spectrum of additional states to fill out SO(2m). The maximal SO(N)
is restored if all of the branes are coincident at a single orientifold plane.
Note that this maximally symmetric case is asymmetric between the two
fixed planes. Similar considerations apply to USp(N). As we saw before,
the difference between the appearance of the two groups is in a sign on
the matrix M as it acts on the string wavefunction. Later, we shall see
that this sign is correlated with the sign of the charge and tension of the
orientifold plane.

We should emphasise that there are %N dynamical D-branes but an N-
valued Chan—Paton index. An interesting case is when k + % D-branes lie
on a fixed plane, which makes sense because the number 2k + 1 of indices
is integer. A brane plus image can move away from the fixed plane, but
the number of branes remaining is always half-integer. This anticipates
a discussion which we shall have about fractional branes much later, in
section 13.2, even outside the context of orientifolds.
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5

Background fields and world-volume
actions

T-duality is clearly a remarkable phenomenon that is highly indicative of
the different view string theory has of spacetime from that of field theo-
ries. This heralds a rather rich landscape of possibilities for new physics,
and indeed T-duality will govern much of what we will study in the rest of
this book, either directly or indirectly. So far, we have uncovered it at the
level of the string spectrum, and have used it to discover D-branes and
orientifolds. However, we have so far restricted ourselves to flat space-
time backgrounds, with none of the other fields in the string spectrum
switched on. In this chapter, we shall study the action of T-duality when
the massless fields of the string theory take on non-trivial values, giving
us curved backgrounds and/or gauge fields on the world-volume of the
D-branes. It is also important to uncover further aspects of the dynam-
ics of D-branes in non-trivial backgrounds, and we shall also uncover an
action to describe this here.

5.1 T-duality in background fields

The first thing to notice is that T-duality acts non-trivial on the dila-
ton, and therefore modifies the string coupling'® 7. After dimensional
reduction on a circle of radius R, the effective 25-dimensional string cou-
pling read off from the reduced string frame supergravity action is now
gs = e (2’ITR)_]'/ 2. Since the resulting 25-dimensional theory is supposed
to have the same physics, by T-duality, as a theory with a dilaton ®, com-
pactified on a circle of radius R, it is required that this coupling is equal to
Gs = €2(2wR")~'/2, the string coupling of the dual 25-dimensional theory:

3 11/2
e

(5.1)
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This is just part of a larger statement about the T-duality transformation
properties of background fields in general. Starting with background fields
G, By and @, let us first T-dualise in one direction, which we shall label
X2 as before. In other words, X2 is a direction which is a circle of radius
R, and the dual circle X'? is a circle of radius R’ = o//R.

We may start with the two dimensional sigma model (2.103) with back-
ground fields G, By, ®, and assume that locally, all of the fields are
independent of the direction X?°. In this case, we may write an equivalent
action by introducing a Lagrange multiplier, which we shall call X'?:

1
dmwed

Se =

/dQUgl/Q{gab [G25725’Ua1)b + 2G25”u'l)aaqu + GWBQX“&)Z,X”]

+ i€ [2325,MvaabXﬂ + B 0o X 0, X" + 2X’25aaub] + o/R(I)}. (5.2)

Since the equation of motion for the Lagrange multiplier is
oL
OX125

we can write a solution as v, = Op¢ for any scalar ¢, which we might
as well call X?°, since upon substitution of this solution back into the
action, we get our original action in (2.103).

Instead, we can find the equation of motion for the quantity v,:

oL 0 oL
o, G0y <a<abva>> =0 (5:3)

= gab [G25725’Ub + G257M8bX’u] + ieab {ngﬁbX“ + abX/%},

= z‘e“bé)avb = O,

which, upon solving it for v, and substituting back into the equations
gives an action of the form (2.103), but with fields G, and B, given by:

- 20
é . 1 . 20 e
25,25 — G ’ - G )
25,25 25,25
G Bos B Gos
u25 — ) n25 — ’
G25,25 G25,25
~ G25Gras — Buas Buas
G;w = G,uu - )
G525
B _np B25Gras — GuasBuas 4
uw — Duv — ) (5 )
G525

where a one loop (not tree level) world-sheet computation (e.g. by checking
the p-function equations again, or by considering the new path integral
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measure induced by integrating out v,), gives the new dilaton. This fits
with the fact that it couples at the next order in o/ (which plays the role
of i on the world-sheet) as discussed previously.

Of course, we can T-dualise on many (say d) independent circles, form-
ing a torus T%. Tt is not hard to deduce that one can succinctly write the re-
sulting T-dual background as follows. If we define the DxD
metric

Ew/ — Guu + Buu, (55)

and if the circles are in the directions X*, i = 1,...,d, with the remaining
directions labelled by X, then the dual fields are given by

Eij = Eij, Eaj = EakEkj, €2<b = €2<b det(Eij),

Eup = Egp — E;EY Ey, (5.6)

where E;,EF = 5ij defines EY as the inverse of E;;. We will find this
succinct form of the O(d, d) T-duality transformation very useful later on.

5.2 A first look at the D-brane world-volume action

The D-brane is a dynamical object, and as such, feels the force of gravity.
In fact, it must be able to respond to the values of the various background
fields in the theory. This is especially obvious if one recalls that the D-
branes’ location and shaped is controlled (in at least one way of describing
them) by the open strings which end on them. These strings respond to
the background fields in ways we have already studied (we have written
world-sheet actions for them), and so should the D-branes. We must find
a world-volume action describing their dynamics.

If we introduce coordinates £%, ¢ = 0, ..., p on the brane, we can begin
to write an action for the dynamics of the brane in terms of fields living
on the world-volume in much the same way that we did for the string, in
terms of fields living on the world-sheet. The background fields will act as
generalised field-dependent couplings. As we discussed before, the fields
on the brane are the embedding X*#(¢) and the gauge field A,(&). We shall
ignore the latter for now and concentrate just on the embedding part. By
direct analogy to the particle and string case studied in chapter 2, the
action is

S, =T, / AP e det! /2y, (5.7)

where Gy is the induced metric on the brane, otherwise known as the
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‘pull-back’ of the spacetime metric G, to the brane:

_ oXHoX”
ab = 8§a 8§b ny-

T, is the tension of the Dp-brane, which we shall discuss at length later.
The dilaton dependence e™® = g5 ! arises because this is an open string
tree level action, and so this is the appropriate function of the dilaton to
introduce.

G (5.8)

N.B. The world-volume reparametrisation invariant action we have
just written is in terms of the determinant of the metric. It is a com-
mon convention to leave the a, b indices dangling in writing this ac-
tion and its generalisations, and we shall adopt that somewhat loose
notation here. More careful authors sometimes use other symbols,
like det'/2P[G], where the P denotes the pull-back, and G' means
the metric, now properly thought of as a matrix whose determinant
is to be taken. Here, the meaning of what we write using the looser
notation should always be clear from the context.

Of course, this cannot be the whole story, and indeed it is clear that
we shall need a richer action, since the rules of T-duality action on the
background fields mean that T-dualising to a D(p+1)—or D(p—1)-brane’s
action will introduce a dependence on B, since it mixes with components
of the metric. Furthermore, there will be mixing with components of a
world-volume gauge field, since some of kinetic terms for the transverse
fields, 9, X™, m = p+1,..., D—1, implicit in the action (5.8), will become
derivatives of gauge fields, 2ma’d, A, according to the rules of T-duality
for open strings deduced in the previous chapter. We shall construct the
full T-duality respecting action in the next subsection. Before we do that,
let us consider what we can learn about the tension of the D-brane from
this simple action, and what we learned about the transformation of the
dilaton.

The tension of the brane controls its response to outside influences
which try to make it change its shape, absorb energy, etc., just as we
saw for the tension of a string. We shall compute the actual value of the
tension in chapter 6. Here, we are going to uncover a useful recursion
relation relating the tensions of different D-branes, which follows from
T-duality”® 2. The mass of a Dp-brane wrapped around a p-torus T? is

Tpe™® ﬁ(%Ri). (5.9)
=1
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T-dualising on the single direction X? and recalling the transforma-
tion (5.1) of the dilaton, we can rewrite the mass (5.9) in the dual vari-

ables:
p—1 /p—l
T,(2nVa)e ™ [[(2nRi) = Tp—1e”® [] (2nR:). (5.10)
=1 i=1
Hence,
T,=T, /2nVa =  T,=T,2nVa )P, (5.11)

where we performed the duality recursively to deduce the general relation.

The next step is to take into account new couplings for the embedding
coordinates/fields which result of other background spacetime fields like
the antisymmetric tensor B,,,. This again appears as an induced tensor
Byp on the worldvolume, via a formula like (5.8).

It is important to notice that that there is a restriction due to spacetime
gauge symmetry on the precise combination of By, and A% which can
appear in the action. The combination By, + 2wa’Fy, can be understood
as follows. In the world-sheet sigma model action of the string, we have
the usual closed string term (2.103) for B and the boundary action (2.108)
for A. So the fields appear in the combination:

1
—_— B A. 5.12
2ma! /M + OM ( )

We have written everything in terms of differential forms, since B and A
are antisymmetric. For example [ A = [ A,d¢°.

This action is invariant under the spacetime gauge transformation 6 A =
dA. However, the spacetime gauge transformation 6 B = d{ will give a sur-
face term which must be cancelled with the following gauge transforma-
tion of A: A = —(/2md/. So the combination B + 2wa/F, where F = dA
is invariant under both symmetries; this is the combination of A and B
which must appear in the action in order for spacetime gauge invariance
to be preserved.

5.2.1 World-volume actions from tilted D-branes

There are many ways to deduce pieces of the world-volume action. One
way is to redo the computation for Weyl invariance of the complete sigma
model, including the boundary terms, which will result in the (p + 1)-
dimensional equations of motion for the world-volume fields Ggp, Bgp and
Ag. One can then deduce the p+ 1-dimensional world-volume action from
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which those equations of motion may be derived. We will comment on
this below.

Another way, hinted at in the previous subsection, is to use T-duality to
build the action piece by piece. For the purposes of learning more about
how the branes work, and in view of the various applications to which we
will put the branes, this second way is perhaps more instructive.

Consider®® a D2-brane extended in the X! and X? directions, and let
there be a constant gauge field Fjo. (We leave the other dimensions un-
specified, so the brane could be larger by having extent in other direc-
tions. This will not affect our discussion.) We can choose a gauge in which
Ay = X'Fi5. Now consider T-dualising along the z2-direction. The rela-
tion (4.68) between the potential and coordinate gives

X% = 2nd/ X g, (5.13)
This says that the resulting D1-brane is tilted at an angle*
0 = tan~ ! (2w Fio) (5.14)

to the XZ?-axis! This gives a geometric factor in the DIl-brane world-
volume action,

S ~ ds=/dX11/1+(€)lX’2) :/dxh/u(zm/ﬂg)z (5.15)

D1

We can always boost the D-brane to be aligned with the coordinate axes
and then rotate to bring Fj, to block-diagonal form, and in this way
we can reduce the problem to a product of factors like (5.15) giving a
determinant:

S ~ / dP X det'?(n,, + 210’ F,,). (5.16)

This is the Born-Infeld action.*?

In fact, this is the complete action (in a particular ‘static’ gauge which
we will discuss later) for a space-filling D25-brane in flat space, and with
the dilaton and antisymmetric tensor field set to zero. In the language
of section 2.7, Weyl invariance of the open string sigma model (2.108)
amounts to the following analogue of (2.105) for the open string sector:

" 1 vA
ﬁ,u = Oé/ <m B(Z/F)\),u = 0, (517)

* The reader concerned about achieving irrational angles and hence densely filling the
(x',2?) torus should suspend disbelief until chapter 8. There, when we work in the
fully consistent quantum theory of superstrings, it will be seen that the fluxes are
quantised in just the right units to make this sensible.
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these equations of motion follow from the action. In fact, in contrast to the
Maxwell action written previously (2.107), and the closed string action
(2.106), this action is true to all orders in o/, although only for slowly
varying field strengths; there are corrections from derivatives of FW.S2

5.3 The Dirac—Born—Infeld action

We can uncover a lot of the rest of the action by simply dimensionally
reducing. Starting with (5.16), where F,, = 9,4, —0, A, as usual (we will
treat the non-Abelian case later) let us assume that D —p—1 spatial coor-
dinates are very small circles, small enough that we can neglect all deriva-
tives with respect to those directions, labelled X™, m =p+1,..., D —1.
(The uncompactified coordinates will be labelled X% a = 0,...,p.) In
this case, the matrix whose determinant appears in (5.16) is:

N —AT
< A M ); (5.18)
where
N =14+ 2"70/Fab§ M = 0y A= 2170/80/4777,' (5.19)

Using the fact that its determinant can be written as |M||N + AT M 1A,
our action becomes®®

S~ — / X det 2 (nap + u X ™ Xon + 21 Fup), (5.20)

up to a numerical factor (coming from the volume of the torus we reduced
on. Once again, we used the T-duality rules (4.68) to replace the gauge
fields in the T-dual directions by coordinates: 2wa’ A, = X™.

This is (nearly) the action for a Dp-brane and we have uncovered how
to write the action for the collective coordinates X representing the fluc-
tuations of the brane transverse to the world-volume. There now remains
only the issue of putting in the case of non-trivial metric, B, and dilaton.
This is easy to guess given that which we have encountered already:

S, =T, / dV1E e det/2(Goy + Bay + 20 Fup). (5.21)

This is the Dirac-Born-Infeld Lagrangian, for arbitrary background fields.
The factor of the dilaton is again a result of the fact that all of this physics
arises at open string tree level, hence the factor g;!, and the By is in
the right place because of spacetime gauge invariance. T}, and Gy are in
the right place to match onto the discussion we had when we computed
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the tension. Instead of using T-duality, we could have also deduced this
action by a generalisation of the sigma model methods described earlier,
and in fact this is how it was first derived in this context3*.

We have re-introduced independent coordinates &% on the world-
volume. Note that the actions given in equations (5.15) and (5.20) were
written using a choice where we aligned the world-volume with the first
p + 1 spacetime coordinates as &% = X% leaving the D — p — 1 trans-
verse coordinates called X™. We can always do this using world-volume
and spacetime diffeomorphism invariance. This choice is called the ‘static
gauge’, and we shall use it quite a bit in these notes. Writing this out (for
vanishing dilaton) using the for<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>