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Abstract

The necessity for high-resolution two-dimensional (2D) simulations in flood modelling often
requires excessively long simulation times. This study evaluates the impact of various hardware
configurations on Hydrologic Engineering Center-River Analysis System (HEC-RAS) 2D with
particular emphasis on Central Processing Unit (CPU) speed, number of cores, Random Access
Memory (RAM) capacity, addressing a critical gap in the optimisation of hardware setups for
time-efficient simulations. These findings are invaluable for flood modellers and the HEC-RAS
community, ultimately supporting more effective flood risk management and decision-making.
Additionally, the study examines how different meshes, numerical solution methods, and
solving equations perform within these hardware setups, aiming to examine the effects of
computational techniques on overall simulation efficiency. Our investigations were carried
out using both virtual machines on the Google Cloud Platform and a desktop PC. The findings
indicate that optimal performance in HEC-RAS 2D simulations does not necessarily correlate
with a higher number of cores or increased RAM. Instead, a well-adjusted configuration with
8 cores and 64 GB of RAM demonstrates superior efficiency. This result questions the usual
assumptions about the need for greater computational power and emphasises the value of
carefully optimising hardware for fast hydraulic modelling.

Impact statement

A key challenge with 2D hydraulic models that analyse water flow in both length and width is
their high computational demand, leading to long processing times. The relationship between
hardware and model is crucial in reducing this time, and a more powerful setup does not always
guarantee better results. Here, we focus on HEC-RAS 2D, a widely used hydraulic model in
academia and industry, and provide insights into how optimising hardware is able to shorten the
processing time of simulations. The impact of the results presented here is reducing the
simulation time that facilitates running multiple simulations, essential for model validation,
and enables the modellers to perform the uncertainty analysis, such as Monte Carlo requiring
1,000s of simulations.

Introduction

In recent years, numerical modelling in the field of hydraulic engineering has rapidly improved,
providing an invaluable platform for conducting risk assessments, forecasting, and supporting
the design of hydraulic structures. Manymodels are available, however, HEC-RAS 2D fromHEC
models developed by the US Army Corps of Engineers Hydrologic Engineering Centre (Loucks,
2023) stands out for its widespread recognition and successful application across industry and
academia supported by benchmarking of Brunner’s (2018) study. However, the two-dimensional
(2D) nature often raises concerns regarding simulation times.

Néelz and Pender (2010) conducted a comprehensive benchmarking study, which tested a
range of 2D hydraulic modelling packages in the UK. The goal of the study was to establish the
capability of these software packages to accurately model natural phenomena for flood risk
assessment. Benchmarking cases were provided to developers of UK flood inundation software,
and the report provided valuable insights into the accuracy and performance of different models.
For all eight test cases, the study compared the performance of 14 modelling packages, docu-
menting details, such as the numerical schemes used, hardware configurations, multi-processor
capabilities, mesh size, time-stepping, and run times, which varied significantly across themodels.
However, while this study offered a general sense of run times, it did not provide specific
recommendations on optimising hardware configurations for more efficient simulations. The
necessity of optimising hardware configurations has been explored in other exiting studies due to
the high computational times associated with 2D hydraulic modelling, such as Neal et al. (2009,
2010), Sanders et al. (2010, 2019), Lacasta et al. (2014), Dazzi et al. (2021), Morales-Hernández
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(2021), and Buttinger-Kreuzhuber et al. (2022). However, specific
evaluation along with recommendations on optimising hardware
configurations in terms of speed of cores, number of cores, Boot
disk, and random access memory (RAM) are still lacking for a
considerable number of hydraulic models.

While HEC-RAS’s manual (Hydrologic Engineering Center,
2021) has recommendations on hardware configurations to optimise
simulation times, a noticeable gap remains in systematic research.
Specifically, there is a lack of comprehensive studies on how varying
hardware setups affect simulation durations. This gap is particularly
evident in the limited guidance available for modellers regarding the
optimal number of processor cores and the precise impact of this
factor on reducing simulation time. Additionally, while the manual
suggests a lower influence of RAM on simulation performance, it
does not provide a detailed quantification of this effect or identify the
specific threshold where additional RAM no longer contributes to
performance improvements. Furthermore, the relationship between
simulation time and factors, such as mesh type and resolution,
solving equations (i.e., DiffusionWave Equations [DWE] or Shallow
Water Original Equations [SWOE]), and numerical solutions, that
is, Finite Difference Classic (FDC) method or Finite Volume
(FV) method across different hardware configurations has yet to
be thoroughly explored. This novel research addresses these gaps
through a comprehensive investigation of the effect of hardware
configurations on the simulation time of the HEC-RAS 2D model
(version 6.4.1) (Figure 1). BothWindows-based virtual machines on
the Google Cloud Platform and a desktop PC were employed for
conducting the tests in this study. A virtual machine emulates a
physical computer in a digital format which can run operating
systems and software, such asHEC-RAS.To evaluate the significance
of optimised hardware, we analyse the impact of a balanced

configuration on time savings and cost efficiency using a hypothet-
ical scenario of 1,000 simulations.

Methods

This section provides an overview of the setup for two Benchmark
cases, which serve as baseline models for optimising hardware
configurations in HEC-RAS 2D simulations. Details of setups and
tests conducted on these two Benchmark cases, including different
hardware configurations, as well as mesh, numerical solution, solv-
ing equations, and associated costs, are presented in the following.

Benchmark Case 1: The modelled area encompasses 2.83 km2,
covering a 7.96-km stretch of the River Chew and the village of
Pensford in Somerset, UK (Figure 2a). To create a flood inundation
map, the Unsteady Flow module of HEC-RAS 2D was employed.
The upstream boundary was defined using a flow hydrograph,
whereas the downstream boundary was set with a normal depth
(corresponding to a friction slope of 0.009). A hydrograph for the
flood event from 20 to 23 November 2016 was generated using
HEC-HMS (Figure 2a).While Sabeti et al. (2024) provides a detailed
discussion of themodel setup and calibration, this study only offers a
brief overview of the HEC-HMS model configuration. The Soil
Conservation Service (SCS)-Curve Number method was used to
account for hydrological losses, and the SCS Unit Hydrograph
method was selected for hydrological routing. For river channel
routing, the Muskingum method was employed. The model accur-
ately reproduced the event, achieving a 73% match with the meas-
ured flow rate. A Digital Elevation Model provided by SCALGO
(https://scalgo.com/) was used in our HEC-RAS 2D setup with the
following specifications: A Digital Terrain Model that incorporates

Figure 1. Overview of research methodology testing the effect of hardware configurations, numerical solution, solving equations, and mesh on HEC-RAS 2D simulation time.
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buildings but not vegetation, resolution of 1 m, and Lidar originated
(Figure 2a). The model includes five bridges, specified in the Geom-
etry section of the HEC-RAS 2D.

In terms of the mesh, HEC-RAS 2D allows for the definition
of varying mesh resolutions along with unstructured and struc-
tured (by default) meshes. The unstructured mesh consists of
irregularly shaped cells with a maximum of eight sides per cell,
offering greater flexibility in representing complex terrains and
boundaries, although the irregularity in cell shapes and connect-
ivity increases computational complexity. For the case of the
River Chew, the initial setup used a structured mesh with a
resolution of 10 m within the entire modelled area which was
defined in the RASMapper. Accordingly, the first set of tests
focused solely on the impact of hardware configurations on
simulation time, using the River Chew setup with a structured
mesh and a resolution of 10 m (Tests 1–9, Table 1). In order to
determine whether increasing the number of cores improves the

efficiency of simulation time in HEC-RAS 2D as the number of
cells increases, a series of tests is designed, in which we varied the
mesh resolution from 10 to 5, 2.5, and 1 m in River Chew case
(Tests 10–15, Table 1).

Additionally, we created a Refined region with a 0.5-m reso-
lution covering the 0.071-km2 residential area of Pensford, which
has historically been affected by flooding (Figure 2a). The Perimeter
spacing and Near repeats were set to 1 m and 4, meaning that for
4 m on either side of the Refined region, the mesh repeats the 1 m
cells. The tests, including the Refined region, used an original mesh
with resolution of 1 m covering the entire setup area, except for the
Refined region. This modification was generated an unstructured
mesh around the Refined region, allowing us to assess the combined
impact of both very fine and unstructured meshes. Accordingly, a
group of tests were designed to assess the impact of the speed of core
and number of cores in simulation timewithin this setup (Tests 16–
19, Table 1).
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Figure 2. HEC-RAS configuration: (a) River Chew, showing the water depth layer for the peak during the 20–23 November 2016 event. The Refined region in River Chew setup is
applied only for Tests 15–18. (b) Bald Eagle Creek, depicting the water-depth layer for the peak during 01–09 January 1999.
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Table 1. Details of tests on the River Chew (RC) and Bald Eagle Creek (BEC) Example to assess the impact of CPU speed, number of CPUs, RAM capacity, Boot disk
type (SSD vs. HDD), number of cells, numerical solutions (FV vs. FDC), solving equations (SWE vs. DWE), and mesh types on simulation time, along with the hourly
cost of each virtual machine on GCP

No#
Platform
type1 CPU (GHz)

Number of
cores2 RAM (GB) Boot disk3

Number of
Cells4

Numerical
solution

Solving
equations

Benchmark
Case Mesh type

Hourly
cost ($)5

1 C2 3.10 15 120 SSD (250 GB) 37,866 FDC DWE RC Structured 2.00

2 C3 2.70 44 352 SSD (250 GB) 37,866 FDC DWE RC Structured 6.65

3 C2 3.10 30 240 SSD (250 GB) 37,866 FDC DWE RC Structured 3.94

4 C2 3.10 8 64 SSD (250 GB) 37,866 FDC DWE RC Structured 1.09

5 C2 3.10 4 64 SSD (250 GB) 37,866 FDC DWE RC Structured 0.53

6 E2 2.20 8 32 SSD (250 GB) 37,866 FDC DWE RC Structured 0.87

7 E2 2.20 8 64 SSD (250 GB) 37,866 FDC DWE RC Structured 0.96

8 E2 2.20 8 128 SSD (250 GB) 37,866 FDC DWE RC Structured 1.15

9 C2 3.10 8 64 HDD (250 GB) 37,866 FDC DWE RC Structured 1.05

10 C2 3.10 8 64 SSD (250 GB) 169,749 FDC DWE RC Structured 1.09

11 C2 3.10 30 240 SSD (250 GB) 169,749 FDC DWE RC Structured 3.94

12 C2 3.10 30 240 SSD (250 GB) 573,698 FDC DWE RC Structured 3.94

13 C2 3.10 8 64 SSD (250 GB) 573,698 FDC DWE RC Structured 1.09

14 C2 3.10 30 240 SSD (250 GB) 1,532,276 FDC DWE RC Structured 3.94

15 C2 3.10 8 64 SSD (250 GB) 1,532,276 FDC DWE RC Structured 1.09

16 E2 2.20 8 64 SSD (250 GB) 1,981,164 FDC DWE RC Structured and
Unstructured

3.94

17 C2 3.10 30 240 SSD (250 GB) 1,981,164 FDC DWE RC Structured and
Unstructured

3.94

18 C2 3.10 8 64 SSD (250 GB) 1,981,164 FDC DWE RC Structured and
Unstructured

1.09

19 C2 3.10 4 64 SSD (250 GB) 1,981,164 FDC DWE RC Structured and
Unstructured

0.53

20 E2 2.20 8 64 SSD (250 GB) 37,866 FV DWE RC Structured 0.96

21 C2 3.10 8 64 SSD (250 GB) 37,866 FV DWE RC Structured 1.09

22 C2 3.10 30 240 SSD (250 GB) 37,866 FV DWE RC Structured 3.94

23 C2 3.10 4 64 SSD (250 GB) 37,866 FV DWE RC Structured 0.53

24 E2 2.20 8 64 SSD (250 GB) 37,866 FDC SWOE RC Structured 0.96

25 C2 3.10 8 64 SSD (250 GB) 37,866 FDC SWOE RC Structured 1.09

26 C2 3.10 30 240 SSD (250 GB) 37,866 FDC SWOE RC Structured 3.94

27 C2 3.10 4 64 SSD (250 GB) 37,866 FDC SWOE RC Structured 0.53

28 E2 2.20 8 64 SSD (250 GB) 24,718 FDC DWE BEC Structured and
Unstructured

0.96

29 C2 3.10 8 64 SSD (250 GB) 24,718 FDC DWE BEC Structured and
Unstructured

1.09

30 C2 3.10 30 240 SSD (250 GB) 24,718 FDC DWE BEC Structured and
Unstructured

3.94

31 C2 3.10 4 64 SSD (250 GB) 24,718 FDC DWE BEC Structured and
Unstructured

0.53

32 Desktop PC 5.2 64 7 SSD (250 GB) 24,718 FDC DWE BEC Structured and
Unstructured

N/A

33 Desktop PC 5.2 64 8 SSD (250 GB) 24,718 FDC DWE BEC Structured and
Unstructured

N/A

34 Desktop PC 5.2 64 9 SSD (250 GB) 24,718 FDC DWE BEC Structured and
Unstructured

N/A

35 Desktop PC 5.2 64 12 SSD (250 GB) 24,718 FDC DWE BEC Structured and
Unstructured

N/A

(Continued)
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The initial setup of the River Chew case utilised the FDCmethod
along with DWE. To evaluate the impact of the numerical solution,
and solver equations, a series of tests was specifically designed to
assess the performance of the alternative approaches, the FV
method and SWOE (Tests 20–23 and Test 24–27, respectively;
Table 1). These variations allowed us to evaluate the impact of
different solver equations and numerical approaches on simulation
time across different hardware configurations.

In the simulations of the River Chew case, the flow velocity ( v)
was 1.5 m/s. For the setups with mesh sizes ( Δs) of 10 m (Tests 1–9
and Tests 20–23), 5 m (Tests 10–11), 2.5 m (Tests 12–13), 1 m
(Tests 14–15) (Table 1), and the setup withmesh size of 1m and the
Refined region of 0.5m (Tests 16–19), the DWEwas used. The time
step (Δt) for these tests was set to 10, 10, 5, 2, and 1 s, respectively, to
satisfy the Courant number criterion C = v Δt

Δs ≤ 1.0 (with a max-
imum C = 5.0), as recommended by the HEC-RAS manual
(Hydrologic Engineering Center, 2021), ensuring model stability.
For simulations using the Shallow Water Equations (Tests 24–27),
which impose a stricter Courant number criterion of maximum
C= 3.0, themesh size was 10m andwe set the Δs to 10 s. Finally, the
number of cores in the setup was matched with the number of the
virtual machine or desktop PC cores, not “All Available” option.
For instance, if the virtual machine’s core had 10 cores, we set the
number of cores in the setup to 10.

BenchmarkCase 2: For the secondBenchmarkCase, we utilised one
of the official examples provided by HEC-RAS, specifically the Bald
Eagle Creek Example (Figure 2b). Within this example, the “Single 2D
Area with Bridges and Break-lines” scenario was selected. This simu-
lation covers a region of 106.84 km2 with a grid spacing ( Δs) of 250m,
resulting in 24,748 computational cells. The majority of the mesh was
structured; however, certain regions, such as thosewith Breaklines (e.g.,
the area shown inFigure 2awithin themain channel of this setup),were
unstructured. Themodelled area includes anurban region of 29.30 km2

and features the SayersDam, seven bridges, and three levees. Regarding
boundary conditions, we maintained the original setup, where the two
downstream boundaries were both set to a normal depth, each with a
friction slope of 0.0003, and the upstream boundary was defined by a
flow hydrograph for the event occurring from 1 to 4 January 1999. It
should be noted that the hydrograph in Figure 2b displays the full
hydrograph from1 to 9 January 1999.However, the original simulation
period, from 1 to 4 January 1999, was retained as the default setting in
our tests. In the Unsteady Flow Analysis settings, the time step was set
to 5 s by default. In terms of the computationalmethods, the numerical
solution was implemented using the FDCmethod. However, to ensure
consistencywithmost of our tests on theRiverChew (BenchmarkCase
1), the solving equations in these setups (BenchmarkCase 2)were set to

DWE. The Bald Eagle Creek example was hydraulically more complex
than the River Chew case due to its coverage of a larger urban area, the
presence of a dam, multiple bridges, and levees. This foundation
allowed us to conduct an additional series of tests to determine the
optimal hardware configurations for efficientHEC-RAS 2D simulation
time (Tests 28–36, Table 1).

Leveraging the ability to adjust the number of cores in the
Computation Options and Tolerances section of HEC-RAS 2D,
alongside the virtual machines (Tests 28–31, Table 1) a desktop PC
was employed in our assessment (Tests 32–36, Table 1) to identify
the optimal core number for minimising simulation time. Bald
Eagle Creek example was used in Tests 32–36. This assessment
was considered to provide insights for modellers who do not have
access to hardware-adjustable virtual machines.

The desktop PC is also used to conduct Test 37 which allows for
a comparison with Test 4 in terms of CPU speed, as both tests share
identical conditions except for the CPU speed.

The setups of Tests 1–9 were designed to be identical in terms of
numerical solutions, solving equations, and the modelled region
(River Chew). Consequently, any variation in simulation time was
solely attributable to hardware configurations. This design was
created a foundation for conducting a hypothetical analysis based
on the assumption of 1,000 simulations, which was a common
scenario in uncertainty analysis using tools, such as the Monte
Carlo approach. By extrapolating the time for a single simulation
to 1,000 runs and calculating the total cost using the hourly rate, we
assessed how different hardware configurations impact overall time
and cost. This analysis highlighted the importance of an optimised
hardware setup in HEC-RAS 2Dmodels in large-scale simulations.
To quantify this impact, we applied an efficiency score (Es) that
incorporates both total time and total cost of simulations, with an
equation derived from the approach presented in Fishburn’s (1979)
study, as outlined below:

Es = 1� wtime ×
ffiffiffiffiffiffiffiffiffi

ntime
p

+wcost ×
ffiffiffiffiffiffiffiffiffi

ncost
pð Þ (1)

where wtime and wcost are the weights assigned to time and cost,
respectively. Both weight values were set to 0.5 in this analysis,
giving equal importance to each. ntime and ncost are the normal-
ised values of total time and total cost, derived for each test using
min–max normalisation method as described by Amiri et al.
(2014).

Normalised Sensitivity Coefficient (NSC) (Equation 2) was used
as a sensitivity analysis index (Hamby, 1995), to quantify the
sensitivity of an output variable (i.e., simulation time) to changes
in input parameters (i.e., hardware configurations). NSC

Table 1. (Continued)

No#
Platform
type1 CPU (GHz)

Number of
cores2 RAM (GB) Boot disk3

Number of
Cells4

Numerical
solution

Solving
equations

Benchmark
Case Mesh type

Hourly
cost ($)5

36 Desktop PC 5.2 64 24 SSD (250 GB) 24,718 FDC DWE BEC Structured and
Unstructured

N/A

37 Desktop PC 5.2 64 24 SSD (250 GB) 24,718 FDC DWE RC Structured and
Unstructured

N/A

1C2, E2, and C3 are different series of virtual machines on GCP, each with similar specifications. The number, such as the “2” in C2, represents the generation of the series.
2In the creation stage of the virtual machines, the virtual CPU-to-core ratio is configured to 1:1 (for all virtual machines), meaning each core is assigned one virtual CPU.
3In GCP Boot disk setup, SSD Persistent Disk use SSD storage, while Standard Persistent Disk is based on HDD storage.
4For the RC case, the number of computational cells increaseswithmesh refinement: 10mmesh results in 37,866 cells, 5mmesh in 169,749 cells, 2.5mmesh in 573,698 cells, 1mmesh in 1,532,276
cells, and a combination of 1 m mesh with a 0.5-m refined region results in 1,981,164 cells. In the BEC case, the mesh size is 250 m.
5For all tests, the US-central1 (Iowa) region was selected for costing.
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nondimensionalises parameter sensitivity, allowing for direct com-
parison and ranking of the most influential variables.

NSC =
ΔSimT=SimT0

Δpi=pi0
× 100 (2)

where SimT is the simulation time, pi is the input parameter
(i.e., RAM), and SimT0 and pi0 are the reference values of the
simulation time and the input parameter, respectively. The tests
used in this assessment were from Tests 1–9 and Test 37, with the
setup of River Chew (Benchmark Case 1).

Results

In this section, the effects of the following factors on simulation
time were analysed: (1) Boot disk and RAM, (2) CPU speed,
(3) number of cores, (4) NSC of hardware configurations,
(5) Mesh, (6) numerical solution and solving equations, and
(7) time and cost efficiency in large-scale simulations.

Boot disk and RAM

Using Tests 4 and 9, we assessed the impact of the Boot disk on
simulation time (Table 1). For these tests, all parameters, including
hardware configurations, mesh, and computational methods, were
kept constant. The results indicate Test 4 which used a SSD,
completed the simulation 0.58 min faster than Test 9 with a
HDD Boot disk (Table 2). This difference is attributed to the read
and write speeds, with the SSD achieving 240 MB/s on average
compared to 122 MB/s for the HDD in these setups.

Regarding the effect of RAMon simulation time, three tests were
conducted (Tests 6, 7, and 8). All other parameters were kept
constant, while the RAM set to 32, 64, and 128 GB, respectively,
for these three tests. The results show an improvement in simula-
tion time from 32 GB in Test 6 to 64 GB in Test 7, with a reduction
of 0.52 min. However, no significant improvement was observed
between 64 GB in Test 7 and 128 GB in Test 8. Increasing the RAM
to 128 GB did not improve the simulation time instead; it caused a
slight increase (0.04 min) in the overall simulation duration. How-
ever, this increase was minimal and almost negligible. This series of
tests on RAM suggests that 64 GB of RAM could be considered
optimal for HEC-RAS 2D setups in a well-balanced hardware
configuration.

CPU speed

The results indicate the simulation time was highly influenced by
CPU speed as demonstrated by Test 4 and Test 7 (Table 2). Both
tests had an identical number of cores, RAM and SSD but differed
in CPU speeds (3.10 and 2.20 GHz, respectively), leading to Test
4 completing the simulation 6.57 min faster than Test 7. The
significant influence of CPU speed is evident in Tests 28 and 29
(Table 2), where the Bald Eagle Creek setup, a more hydraulically
complex scenario, resulted in the higher-speed CPU (Test 29 with
3.10 GHz), completing the simulation 4.5 min faster than Test
28 with 2.20 GHz CPU speed. Another pair of tests that further
emphasise the impact of CPU speed is Test 33 andTest 29 (Table 1).
In these tests, the desktop PC in Test 33 had a CPU speed of
5.20 GHz, compared to 3.10 GHz in Test 4, while all other param-
eters were kept constant. This resulted in a 5.36-min shorter
simulation time for Test 33 (Table 2), representing a 38.07%
improvement. Furthermore, comparing Test 5 (4 cores atTa
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3.10 GHz, Figure 3d) and Test 2 (44 cores at 2.70 GHz, Figure 3a),
Test 5 finished the simulation 5.67min faster despite Test 2’s higher
core count (Table 2). This indicates that core speed has a more
significant impact on simulation efficiency than the number of
cores.

Number of cores

The results of Tests 32–36, conducted using the Bald Eagle Creek
case, show that the difference in simulation time between the
longest (Test 36) and shortest (Test 33) was 2.3 min, driven by
the varying number of cores (Table 2). Test 33, with 8 cores, showed

Figure 3. Summaries of HEC-RAS computation for (a) Test 2, (b) Test 3, (c) Test 4, and (d) Test 5 (see details of configuration of these tests in Table 1 and results in Table 2).

Cambridge Prisms: Water 7

https://doi.org/10.1017/wat.2024.11 Published online by Cambridge University Press

https://doi.org/10.1017/wat.2024.11


the shortest simulation time of 8.72 min. In all these Tests (32–36),
the same desktop PC was used, and all other parameters, except the
number of cores, were kept constant. This finding was consistent in
Tests 29, 30, and 31, which used the Bald Eagle Creek setup and
were conducted on GCP virtual machines (C2). The results indi-
cated that Test 29, with 8 cores, completed the simulation 1.73 min
faster than Test 31, which had fewer cores, and 6.73 min faster than
Test 30, which hadmore cores (Table 2). Similarly, in another set of
tests using the River Chew setup (Tests 1, 3, 4, and 5), Test 4, with
8 cores (Figure 3c), completed the simulation 0.7 min faster than
Test 1, 7.47 min faster than Test 3 (Figure 3b), and 1.75 min faster
that Test important to note that wewere able to compare the impact
of the number of cores on simulation time using Tests 1, 3, 4, and
5, due to the prior finding that RAM sizes greater than 64GB do not
significantly affect simulation time. Although the RAM sizes in
these setups varied, they were all at least 64 GB, which facilitated
this comparison. Based on these various comparisons, we conclude
that using 8 cores results in shorter simulation times than either
fewer or more cores.

NSC of hardware configurations

The calculated NSC values (Table 3) using Equation 2 revealed that
CPU speed has the most significant influence, followed by the
number of cores, whereas RAMandBoot disk having a lesser impact.
Notably, the NSC for CPU speed showed a 94.2% positive impact as
the speed increased from 2.20 to 3.10 GHz (Table 3). Further
increases from 3.10 to 5.20 GHz resulted in a moremoderate impact
of 26.2%, suggesting that further substantial reductions in simulation
time could require disproportionately higherCPU speeds. Increasing
the number of cores from 4 to 8 led to a clear 14.40% improvement,
but additional cores showed diminishing returns, with performance
decreases of�7.7% from8 to 15 cores, and a�60.9%drop from15 to
30 cores (Table 3).While upgrading the Boot disk fromHDD to SSD
and increasing RAM from 32 to 64 GB showed a positive impact,
both improvements were within a modest range of less than 6%;
further increasing the RAM from 64 to 128GB resulted in a relatively
minor negative impact.

Mesh

The results from Tests 10 to 15 show that, although higher grid
resolutions along with the smaller time steps increased simulation
times, setups with 8-core CPUs consistently resulted in shorter

overall simulation durations, even as the number of cells rose to
1,532,276. The same outcome was observed in Tests 16 to 19, where
the number of cells reached 1,981,164, and the mesh was partially
unstructured with the Refined region of 0.5 m. Additionally, Tests
16–19 confirmed earlier findings, demonstrating that setups with
higher core speeds could significantly reduce simulation times. In
Test 18, the simulation using a 3.10-GHz CPU was completed
367.98 min (6.13 h) faster than in Test 16, which used a
2.20 GHz CPU. It is important to note that although HEC-RAS
manual suggests that a larger number of cells necessitates a higher
number of cores for optimal performance (Hydrologic Engineering
Center, 2021), our research indicates that even with as many as
1,981,164 cells, a higher core number does not necessarily translate
to improved efficiency. Note that HEC-RAS does not specify what
constitutes a “high number” of cells, and their advice could still hold
true if the number of cells exceeds those explored here.

Numerical solution and solving equations

In terms of the numerical solution, Tests 20–23 highlight two key
findings that align with our previous observations: (i) the higher
core speeds, along with the use of (ii) 8 cores, generate the shortest
simulation times. Although these tests employed the FV method
instead of the FDC method, the outcomes remained consistent.
Specifically, Tests 20 and 21 demonstrate that the configuration
with a core speed of 3.10 GHz (Test 21) completed the simula-
tion 6.65 min faster than the configuration with a core speed of
2.20 GHz (Test 20). A review of Tests 20, 22, and 23, which focused
on the impact of core count on simulation time, reveals that the
setup in Test 21 with 8 cores completed the simulation faster than
both the 4-core configuration in Test 23 and the 30-core configur-
ation in Test 22. Comparing Tests 20, 21, 22, and 23, which used the
FV method, with their corresponding Tests 7, 4, 3, and 5 that
utilised the Finite Difference method, reveals a longer simulation
time for all tests using the FV method. This rise in simulation time
due to use of FV method is relatively small, with the maximum
difference being less than 0.29 min across all four Tests 20–23 and
their counterparts. The additional computational complexity of the
FV method, particularly in relation to flux calculation and the
enforcement of conservation laws, could result in longer simulation
time than setups using the Finite Difference method.

Regarding the solving equations, results of Tests 24–27, where
the DWE was replaced by the Shallow Water Equations, indicate
that our previous findings still hold. Specifically, a higher core speed
(3.10 GHz in Test 25 vs. 2.20 GHz in Test 24) and the use of 8 cores
(Test 25) instead of 30 cores (Test 26) or 4 cores (Test 27) results in
the shortest simulation time. Comparing Tests 24, 25, 26, and
27 with their corresponding Tests 7, 4, 3, and 5 shows the expected
outcome of longer simulation times due to the use of the Shallow
Water Equations instead of the DWE. This increase is more sig-
nificant with changes in the numerical solution method. On aver-
age, the simulation time increased by 8.15 min for Tests 24–27
compared to their counterparts. This increase is due to the fact that
the ShallowWater Equations account for full dynamic flow behav-
iour, including inertia and momentum, which require more com-
plex calculations. In contrast, the DWE simplifies flow dynamics by
neglecting these terms, leading to faster simulations.

Time and cost efficiency in large-scale simulations

The Efficiency scores calculated using Equations 1 for the hypo-
thetical scenario of 1,000 simulations across Tests 1–9 reveal sig-
nificant differences in performance. Test 4 with higher CPU speed,

Table 3. Quantifying the impact of changing each tested hardware component
on simulation time using Normalised Sensitivity Coefficients (NSC) index,
calculated by Equation 2

Hardware
component Range of change Test number NSC value

CPU speed 2.20–3.10 GHz 7 and 4 +94.27%

CPU speed 3.10–5.20 GHz 4 and 37 +26.25%

Number of cores 4–8 Cores 5 and 4 +14.40%

Number of cores 8–15 Cores 4 and 1 �7.70%

Number of cores 15–30 Cores 1 and 3 �60.99%

RAM 32–64 GB 6 and 7 +2.98%

RAM 64–128 GB 7 and 8 �0.24%

Boot disk speed 122 MB/s (HDD) to
240 MB/s (SSD)

4 and 9 +5.46%
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8 cores, and 64 GB of RAM demonstrated the highest efficiency,
achieving a score of 0.86 and completing 1,000 simulations in 173 h
at a total cost of 188 USD, outperforming all other tests (Figure 4b).
This result highlights the importance of an optimised system
configuration. In contrast, Tests 2 and 3, with unbalanced hardware
configurations (15 cores with core speed of 3.10 GHz; and 44 cores
with 2.7 GHz, respectively), led to much longer simulation times
and significantly higher costs (Figure 4b). Specifically, Test
2 required 296 h and a total cost of 1,972 USD, while Test 3 took
297 h and cost 1,173USD. These inefficiencies resulted in hundreds
of additional hours and dollars. Figure 4b presents a detailed
comparison of the total simulation time, cost, and Efficiency scores
for Tests 1–9.

Conclusion

This study highlights that for achieving the shortest simulation
time, understanding the optimal balance of available hardware
resources is important. Specifically, while faster core speeds reduce
simulation times, merely having the highest number of cores or the
largest amount of RAM does not guarantee improved outcomes.
Notably, a configuration with 8 cores and 64 GB of RAM delivers
superior performance compared to setups with either higher or
lower core counts or varying RAM sizes. This suggests that optimal
hardware configurations for HEC-RAS simulations involve more
than just maximising individual components.
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