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Abstract

We extend results of Andrews and Bressoud [‘Vanishing coefficients in infinite product expansions’,
J. Aust. Math. Soc. Ser. A 27(2) (1979), 199–202] on the vanishing of coefficients in the series expansions
of certain infinite products. These results have the form that if

(qr−tk, qmk−(r−tk); qmk)∞
(±qr,±qmk−r; qmk)∞

=:
∞∑

n=0

cnqn

for certain integers k, m, s and t, where r = sm + t, then ckn−rs is always zero. Our theorems also partly
give a simpler reformulation of results of Alladi and Gordon [‘Vanishing coefficients in the expansion
of products of Rogers–Ramanujan type’, in: The Rademacher Legacy to Mathematics (University Park,
PA, 1992), Contemporary Mathematics, 166 (American Mathematical Society, Providence, RI, 1994),
129–139], but also give results for cases not covered by the theorems of Alladi and Gordon. We also give
some interpretations of the analytic results in terms of integer partitions.

2010 Mathematics subject classification: primary 33D15; secondary 11P82, 11P84.
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1. Introduction and background

In the present paper we prove some new results on vanishing coefficients in the series
expansion of certain infinite q-products. These results have the form that if

(qr−tk, qmk−(r−tk); qmk)∞
(±qr,±qmk−r; qmk)∞

=:
∞∑

n=0

cnqn

(where the signs in the denominator are either both + or both −, and where k, m, s
and t are integers to be defined in more detail below, such that r = sm + t), then ckn−rs

is always zero. Some new theorems on integer partitions, which follow from these
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analytic results, are also given. Before coming to these new results, we first recall
some prior work by previous authors on the topic.

In [3], Richmond and Szekeres proved that if

F(q) :=
(q3, q5; q8)∞
(q, q7; q8)∞

=:
∞∑

m=0

cmqm,

then c4n+3 is always zero. They also showed that if

1
F(q)

=:
∞∑

m=0

dmqm,

then d4n+2 is always zero. These results were derived by Richmond and Szekeres
from the Hardy–Ramanujan–Rademacher expansions they developed of the infinite
products. They also conjectured that if

G(q) :=
(q5, q7; q12)∞
(q, q11; q12)∞

=:
∞∑

m=0

amqm,

then a6n+5 is always zero and, if

1
G(q)

=:
∞∑

m=0

bmqm,

then b6n+3 is always zero.
In [2], Andrews and Bressoud proved the following general theorem, which

contains the results of Richmond and Szekeres as special cases.

Theorem 1. If 1 ≤ r < k are relatively prime integers of opposite parity and

(qr, q2k−r; q2k)∞
(qk−r, qk+r; q2k)∞

=:
∞∑

n=0

φnqn,

then φkn+r(k−r+1)/2 is always zero.

Andrews and Bressoud derived their result from Ramanujan’s 1ψ1 summation
formula,

∞∑
n=−∞

(a; q)nzn

(b; q)n
=

(b/a, q, az, q/az; q)∞
(q/a, b, z, b/az; q)∞

, (1)

after replacing q with q2k, specializing a, b and z and employing some q-series
manipulations. The cases (k, r) = (4, 3), (4, 1), (6, 5) and (6, 1), respectively, give the
two results proved by Richmond and Szekeres, and the two results conjectured by
them.

Alladi and Gordon [1] proved a yet more general theorem (we modify their notation
to state their results in the same language used elsewhere in the present paper).
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Theorem 2. Let 1 < m < k and let (s, km) = 1 with 1 ≤ s < mk. Let r∗ = (k − 1)s and
r ≡ r∗ mod mk with 1 ≤ r < mk.
Put r′ = dr∗/mke mod k with 1 ≤ r′ < k. Write

(qr, qmk−r; qmk)∞
(qs, qmk−s; qmk)∞

=

∞∑
n=0

anqn.

Then an = 0 for n ≡ rr′ mod k.

Note that while there is certainly some overlap with our Theorem 4 below, the result
of Alladi and Gordon in Theorem 2 does not provide any information about vanishing
coefficients in the cases where k < m or k = m. In contrast, our Theorem 4 below has
no such restrictions.

Alladi and Gordon [1] also proved a companion theorem to Theorem 2 above.

Theorem 3. Let m, k, s, r∗, r and r′ be as in Theorem 3 with k odd. Write

(qr, qmk−r; qmk)∞
(−qs,−qmk−s; qmk)∞

=

∞∑
n=0

a′nqn.

Then a′n = 0 for n ≡ rr′ mod k.

We also prove a companion theorem to our Theorem 4, namely Theorem 9 below,
which is similar in nature to Theorem 3 of Alladi and Gordon, but, as with Theorem 4,
our result is not restricted to k > m, as is the case in their theorem.

2. Main results

In the present paper our main result, in Theorem 4 below, is in part a reformulation
of Theorem 2 of Alladi and Gordon [1], but also extends to cases not covered by
Theorem 2. The proof of Theorem 4 also uses Ramanujan’s 1ψ1 summation formula.

Theorem 4. Let k > 1, m > 1 be positive integers. Let r = sm + t, for some integers s
and t, where 0 ≤ s < k, 1 ≤ t < m and r and k are relatively prime. Let

(qr−tk, qmk−(r−tk); qmk)∞
(qr, qmk−r; qmk)∞

=:
∞∑

n=0

cnqn;

then ckn−rs is always zero.

Proof. In Ramanujan’s 1ψ1 summation formula (1), replace q with qmk, a with q−tk,
b with qmk−tk and z with qr (note that these choices satisfy the requirements needed for
the series to converge, namely |b/a| < |z| < 1, since r < mk). This gives, after a little
simplification,

−q−tk
∞∑

n=−∞

qrn

1 − qnmk−tk =
(qmk, qmk; qmk)∞

(qtk, qmk−tk; qmk)∞

(qr−tk, qmk−(r−tk); qmk)∞
(qr, qmk−r; qmk)∞

.
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It is clear that to prove the result, all that is necessary is to show that if we expand
∞∑

n=−∞

qrn

1 − qnmk−tk =

∞∑
n=0

qrn

1 − qnmk−tk −

∞∑
n=1

qnmk+tk−rn

1 − qnmk+tk =:
∞∑

n=o

dnqn,

then dkn−rs = 0 for all n. Thus, we just need to consider those n that lead to powers of
q of the form qkn−rs in the two sums in the middle expression just above, and thus all
that is necessary is to show that

∞∑
n=1

qr(nk−s)

1 − q(nk−s)mk−tk −

∞∑
n=0

q(nk+s)mk+tk−r(nk+s)

1 − q(nk+s)mk+tk = 0. (2)

Note that if s = 0, then the first sum should start at n = 0 and the second sum should
start at n = 1, but it can be seen that if s = 0, then the term corresponding to n = 0 in
the first series is 1/(1 − q−tk) = −qtk/(1 − qtk), while the term corresponding to n = 0
in the second series is qtk/(1 − qtk) when s = 0. This means that the assertion above,
namely, that all that is necessary to prove Theorem 4 is to prove (2), is also true for
s = 0. We now show that (2) holds.

∞∑
n=1

qrnk−rs

1 − qnmk2−smk−tk
=

∞∑
n=1

qrnk−rs
∞∑

p=0

qp(nmk2−smk−tk)

=

∞∑
p=0

qp(−smk−tk)−rs
∞∑

n=1

qn(pmk2+rk)

=

∞∑
p=0

qp(−smk−tk+mk2)+rk−rs

1 − qpmk2+rk

=

∞∑
n=0

qn(−(sm+t)k+mk2)+rk−rs

1 − qpmk2+rk
.

We now use the fact that r = sm + t, which easily implies that the last series above and
the second series in (2) are identical, giving the result. �

Remark 5. It may happen that r < tk, in which case it will be necessary to use the
identity

(qr−tk, qmk−(r−tk); qmk)∞
(qr, qmk−r; qmk)∞

=
−1

qtk−r

(qmk−(tk−r), qtk−r; qmk)∞
(qr, qmk−r; qmk)∞

if it is desired that all the exponents in the infinite products be positive.

We give the following example as an illustration of the result in Theorem 4, and
also to highlight the differences between this result and that of Andrews and Bressoud
in Theorem 1. In each case mk = 30, r = t = 1 and s = 0, so that Theorem 4 gives
that ckn = 0 for all n. However, since r − k < 0 in each case, we modify the infinite
products as described above, so that the progressions containing zero coefficients are
thus shifted.

https://doi.org/10.1017/S1446788714000536 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788714000536


[5] Further results on vanishing coefficients 73

Corollary 6.

(a) Let
(q2, q28; q30)∞
(q, q29; q30)∞

=

∞∑
n=0

cnqn.

Then c3n+2 = 0 for all n ≥ 0. (Here k = 3, so r − k = −2.)
(b) Let

(q4, q26; q30)∞
(q, q29; q30)∞

=

∞∑
n=0

cnqn.

Then c5n+4 = 0 for all n ≥ 0. (Here k = 5, so r − k = −4.)
(c) Let

(q5, q25; q30)∞
(q, q29; q30)∞

=

∞∑
n=0

cnqn.

Then c6n+5 = 0 for all n ≥ 0. (Here k = 6, so r − k = −5.)
(d) Let

(q9, q21; q30)∞
(q, q29; q30)∞

=

∞∑
n=0

cnqn.

Then c10n+9 = 0 for all n ≥ 0. (Here k = 10, so r − k = −9.)
(e) Let

(q14, q16; q30)∞
(q, q29; q30)∞

=

∞∑
n=0

cnqn.

Then c15n+14 = 0 for all n ≥ 0. (Here k = 15, so r − k = −14.)

Remark 7. The identity at (e) is also given by Theorem 1 of Andrews and Bressoud
(k = 15 and r = 14 in their theorem), but none of the identities (a)–(d) above follow
from their theorem. Similarly, parts (c), (d) and (e) are given by Theorem 2 of Alladi
and Gordon, but not parts (a) and (b).

We also give the following result to further illustrate the difference between
Theorems 4 and 2 of Alladi and Gordon (which does not imply the result in
Corollary 8, since k = m). In each case in the corollary below, k = m = 3.

Corollary 8.

(a) Let
(q, q8; q9)∞
(q4, q5; q9)∞

=

∞∑
n=0

cnqn.

Then c3n+2 = 0 for all n ≥ 0. (Take s = t = 1, so r = 1(3) + 1 = 4, r − tk =

4 − 1(3) = 1 and −rs ≡ 2 mod 3.)
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(b) Let
(q2, q7; q9)∞
(q, q8; q9)∞

=

∞∑
n=0

cnqn.

Then c3n+2 = 0 for all n ≥ 0. (Take s = t = 2, so r = 2(3) + 2 = 8, r − tk =

8 − 2(3) = 2 and −rs ≡ 2 mod 3.)
(c) Let

(q4, q5; q9)∞
(q2, q7; q9)∞

=

∞∑
n=0

cnqn.

Then c3n+1 = 0 for all n ≥ 0. (Take s = 2, t = 1, so r = 2(3) + 1 = 7, r − tk = 7 − 1(3) = 4
and −rs ≡ 1 mod 3.)

There is also a companion result to Theorem 4, in the same way that Alladi and
Gordon’s Theorems 2 and 3 are companions. However, in contrast to Theorem 3, our
Theorem 9 does not have the restriction that m < k.

Theorem 9. Let k > 1, m > 1 be positive integers with k odd. Let r = sm + t, for some
integers s and t, where 0 ≤ s < k, 1 ≤ t < m and r and k are relatively prime. Let

(qr−tk, qmk−(r−tk); qmk)∞
(−qr,−qmk−r; qmk)∞

=:
∞∑

n=0

dnqn;

then dkn−rs is always zero.

Proof. The argument is essentially the same as that used in the proof of Theorem 4,
so details are omitted. The only additional facts needed are that if k is odd, then
(−1)kn = (−1)n and (−1)n−s = (−1)nk+s. �

Corollary 10.

(a) Let
(q, q8; q9)∞

(−q4,−q5; q9)∞
=

∞∑
n=0

c′nqn.

Then c′3n+2 = 0 for all n ≥ 0.
(b) Let

(q2, q7; q9)∞
(−q,−q8; q9)∞

=

∞∑
n=0

c′nqn.

Then c′3n+2 = 0 for all n ≥ 0.
(c) Let

(q4, q5; q9)∞
(−q2,−q7; q9)∞

=

∞∑
n=0

c′nqn.

Then c′3n+1 = 0 for all n ≥ 0.

Proof. Let k = m = 3 in Theorem 9 and let s and t have the same values as in the
corresponding parts of Corollary 8. �
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Table 1. An illustration of Theorem 11.

j n j = 300 − 15 j2 − 29 j (−1) j p2,15,1(n j)
−5 70 −13
−4 176 203
−3 252 −1654
−2 298 3838
−1 314 −5773
0 300 4673
1 256 −1654
2 182 393
3 78 −13∑

= 0

3. Partition implications

Theorems 4 and 9 also have implications for certain types of restricted partitions.

Theorem 11. Let k > 1, m > 1 be positive integers. Let r = sm + t for some integers s
and t, where 0 ≤ s < k, 1 ≤ t < m and r and k are relatively prime. Let pm,k,r(n) denote
the number of partitions of n into parts ≡ 0,±r mod mk. Then, for each integer n,∑

j

(−1) j pm,k,r(nk − rs − mk j( j + 1)/2 − j(tk − r)) = 0,

where the sum is over those j with nk − rs − mk j( j + 1)/2 − j(tk − r) ≥ 0.

Proof. The coefficient of qnk−rs in

(qr−tk, qmk−(r−tk); qmk)∞
(qr, qmk−r; qmk)∞

=
(qr−tk, qmk−(r−tk), qmk; qmk)∞

(qr, qmk−r, qmk; qmk)∞

is zero for all n, by the theorem. However,

(qr−tk, qmk−(r−tk), qmk; qmk)∞
(qr, qmk−r, qmk; qmk)∞

=
∑
j∈Z

qmk j( j+1)/2(−qtk−r) j
∑
i≥0

pm,k,r(i)qi

=
∑

N

qN
∑

mk j( j+1)/2+(tk−r) j+i=N

(−1) j pm,k,r(i).

The result now follows upon setting N = nk − rs and solving for i. �

As an example, take k = 15, m = 2, s = 0 and t = 1 (so r = 1) and n = 20, so that

nk − rs − mk j( j + 1)/2 − j(tk − r) = 300 − 15 j2 − 29 j.

Table 1 illustrates how Theorem 11 applies to these values. Theorem 9 similarly has
an interpretation in terms of certain restricted partition functions.
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Table 2. An illustration of Theorem 12.

Partitions counted by po
2,15,8,1(149) Partitions counted by pe

2,15,8,1(149)

2 + 13 + 176 + 32 2 + 1310 + 17
2 + 177 + 28 2 + 138 + 43
2 + 174 + 32 + 47 138 + 17 + 28
2 + 175 + 62 136 + 28 + 43
13 + 178 139 + 32
176 + 47 137 + 58

Theorem 12. Let k > 1, m > 1 be positive integers with k odd. Let r = sm + t for some
integers s and t, where 0 ≤ s < k, 1 ≤ t < m and r and k are relatively prime.

Let pe
m,k,s,t(n) denote the number of partitions of n into parts (possibly repeating)

≡ ±r mod mk and distinct parts ≡ ±(r − tk) mod mk, where the total number of
parts, counting multiplicities, is even.

Let po
m,k,s,t(n) denote the number of partitions of n into parts (possibly repeating)

≡ ±r mod mk and distinct parts ≡ ±(r − tk) mod mk, where the total number of
parts, counting multiplicities, is odd.

(a) If r − tk > 0, then, for each integer n,

pe
m,k,s,t(nk − rs) − po

m,k,s,t(nk − rs) = 0.

(b) If r − tk < 0, then, for each integer n,

pe
m,k,s,t(nk − r(s + 1)) − po

m,k,s,t(nk − r(s + 1)). = 0.

Proof. It is clear that if r − tk > 0, then

(qr−tk, qmk−(r−tk); qmk)∞
(−qr,−qmk−r; qmk)∞

=

∞∑
n=0

(pe
m,k,s,t(n) − po

m,k,s,t(n))qn

=

∞∑
n=0

dnqn,

where the dn are as defined in Theorem 9, and part (a) follows. Part (b) also follows
from Theorem 9, after writing (qr−tk, qmk−(r−tk); qmk)∞ as −(qtk−r, qmk−(tk−r); qmk)∞/qtk−r

and then shifting −qtk−r to the series side. �

As an example of this result, again take k = 15, m = 2, s = 8 and t = 1 (so r = 17 and
r − tk = 2 > 0). Then −rs = −126 ≡ 14 mod 15, and we consider n = 9 × 15 + 14 =

149. Then pe
2,15,8,1(149) = po

2,15,8,1(149) (= 6), as indicated by Table 2 (each function
counts partitions into distinct parts ≡ ±2 mod 30 and possibly repeating parts ≡ ±17
mod 30).

It might be illuminating to provide combinatorial proofs of the two partition
theorems in this section.
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