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SUMMARY

Mosquito-borne Sindbis virus (SINV) causes rash-arthritis syndrome in Finland. Major

outbreaks with approximately 7-year cycles have caused substantial burden of illness. Forest

dwelling grouse are suspected to be amplifying hosts, with the infection transmitted to humans by

mosquito bites. SINV infection surveillance data for 1984–2010 were used to create a negative

binomial hurdle model, with seasonality, long-term cycles, climatic, ecological and socioeconomic

variables. Climatic factors during early summer and amount of snow in April described the

occurrence and incidence of SINV infections. Regulated water shore and hatch-year black grouse

density described the occurrence, while population working in agriculture, agricultural land

(negative) and income (negative) described the incidence of the disease. The prediction for 2009

was 85 cases (95% prediction interval 2-1187), while the actual occurrence was 106. We identified

novel and known risk factors. The prevention of SINV infections in regulated water areas by

infected mosquito populations should be targeted.
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INTRODUCTION

Mosquito-borne Sindbis virus (SINV) of the genus

Alphavirus is the causative agent of rash-arthritis

syndrome in Finland [1, 2]. The emergence of a

Chikungunya virus, a globally important mosquito-

borne alphavirus, has increased the interest in climatic

factors [3]. SINV antibodies have been detected

globally in humans and birds. The clinical SINV in-

fection is known as Pogosta disease in Finland,

Ockelbo disease in Central Sweden and Karelian fever

in Russian Karelia [4, 5], with similar microbiological

and epidemiological characteristics [6]. SINV has a
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local circulation in Northern Europe and no signifi-

cant changes in the genotype have been observed

during the past decades [7].

The laboratory diagnosis of SINV infection is

by serology [8]. Most cases occur between ages

40–60 years with female predominance [9, 10]. The

incubation period of SINV infection is 4 days (range

2–18 days), and the disease is characterized by

fever, myalgia, rash and joint symptoms [1, 2]. About

25–50% of cases have severe long-term articular

symptoms [1, 11, 12]. The highest seroprevalence has

been reported from Eastern Finland, while the disease

is virtually non-existent in some parts of the country

[9]. Major SINV infection outbreaks have occurred

mostly in 7-year cycles : in 1981, 1988, 1995 and 2002

[9]. Cases occur exclusively within a seasonal cycle

from the end of July until October [9]. The disease has

probably only relatively recently (less than five dec-

ades ago) been introduced to Finland [9, 13], as no

cases were identified and no SINV seroprevalence in

animals or humans has been observed before 1965

[9, 13]. The major public health burden is due to the

high number of asymptomatic infections and articular

symptoms [9].

SINV infection is transmitted to humans exclus-

ively by mosquito bites [2]. Wild birds have been

suspected as viral reservoirs and as amplifying

hosts, especially Passeriformes of the genera Turdus

and Fringilla [14]. The introduction of SINV to

Northern Europe probably occurred through mi-

gratory birds from South Africa [10]. Forest-dwelling

grouse species (Tetraonidae), black grouse (Tetrao

tetrix) and capercaillie (Tetrao urogallus) had high

SINV antibody titres following outbreaks [9, 10].

Experimentally SINV-infected birds have had suf-

ficient titres to infect mosquitoes [14]. The tempera-

ture between May and July and the depth of the snow

cover in the preceding winter have coincided with in-

creasing numbers of SINV infections in the following

July–September [9]. Late summer Culex and Culiseta

mosquito species are considered to be the primary

vectors for SINV infection [15], although the more

human-adapted Ochlerotatus species may also play a

role [5, 7]. There is a paucity of up-to-date infor-

mation about the distribution of the mosquito species

in Finland, yet all the above-mentioned species are

considered abundant in most of the country [7, 16].

A time-series regression model with monthly in-

dicators and sinusoidal terms for annual cycles has

been used with time-series count data [17]. One im-

portant feature of the data was the excess of zeros

and therefore, a two-part hurdle or zero-inflated

model that models the zero counts and positive counts

separately may be necessary [18, 19]. We have pre-

viously applied a hurdle model with Verotoxigenic

Escherichia coli surveillance data with low case

counts, which has distinguished between significant

risk factors for the occurrence (binary part) and inci-

dence of disease (count part) [20]. These types of

models have also been applied to cholera prevalence

[21] and bacterial counts [22].

The aim of this study was to model SINV infections

by healthcare district (HCD) in Finland between

1984 and 2010, taking into account seasonal monthly

fluctuation, seasonality, long-term cycles and time

lags in the observations to identify risk factors and

predict the number of SINV infections. Climatic,

ecological and socioeconomic data were used as ex-

planatory variables in a hurdle model to identify fac-

tors for the occurrence and incidence of SINV

infection. Furthermore, we used the obtained model

to predict the cases for the years 2009, 2010 and 2011,

in order to further justify the model’s applicability.

MATERIALS AND METHODS

Serology and surveillance data

The laboratory diagnosis of SINV infection is based

on enzyme immunoassays and the haemagglutination

inhibition test [8]. A case was defined as a person with

serologically confirmed acute SINV infection by the

Department of Virology, University of Helsinki

(Haartman Institute) during the period 1984–1994.

This included about 70–80% of the laboratory-

confirmed SINV infections in Finland. All cases from

Helsinki University Hospital Laboratory (HUSLAB,

or its predecessors) and other clinical microbiology

laboratories were reported to the National Infectious

Disease Register (NIDR) after its establishment in

1995. These two datasets were combined, collating

information on sex, year of birth, place of residence or

a proxy by place of treatment and date of sampling.

The date of sampling was established as the latter if

paired samples were taken.

Explanatory variables

We selected a range of explanatory variables based on

a knowledge of known risk factors for SINV infec-

tions [2, 9]. Weather variables used in the models were

precipitation, temperature and snow cover from the
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database of the Finnish Meteorological Institute.

Two types of weather variables were used; first,

monthly precipitation and mean temperature for

May, June, July and August as a mean for each HCD

calculated from the gridded datasets [23, 24] and

depth of snow cover on 15 March and 15 April, and

second, weather variables with different monthly

lags with respect to the reporting month of the case :

precipitation and temperature (t – 1 to t – 6 months)

and depth of snow cover (t – 5 to t – 7 months). The

annual wildlife data for the density of grouse

adults and juveniles (hatch-year grouse) in August

were also included [25]. We also included more

time-independent variables, such as habitation, agri-

cultural, and land usage variables, as shown in

Supplementary Table S1, with all explanatory vari-

ables adjusted by HCD (n=21), year and month.

Hurdle model

We applied a two-part hurdle model with log of lag 1

of the outcome as an autoregression replacement term

for SINV infection surveillance data and created a

model with covariates explaining the occurrence of

the cases in the binary part of the model and the in-

cidence in the negative binomial regression part. With

an excess of zeros in the data for SINV infections

(mean number of cases 0.52 per HCD, month and

year with variance of 18.1), we applied a negative bi-

nomial distribution-based hurdle model [19] as pre-

viously described in detail [20].

Serologically diagnosed acute SINV infections were

included in the analysis as outcome variables for the

26-year follow-up period by HCD, month and year

of diagnosis based on date of sampling. We included

data from June to October, as there were essentially

no cases outside this time-frame. We performed a

univariable analysis with all explanatory variables in

the hurdle model applying a clog log link function and

using the data for 1984–2009. Those variables with

P values of <0.20 in the univariate analysis were

selected for the multivariable model. Of the correlated

variables with correlation coefficients of >0.80, only

those with P values of <0.20, i.e. the most significant

ones, were included in the final model within each

group as shown in Supplementary Table S1. To

identify explanatory variables in the final multi-

variable model, we used forward selection according

to Akaike’s Information Criteria (AIC) due to its

ability to increase goodness of fit while simul-

taneously penalizing for increasing the number of

estimated parameters to avoid overfitting. We also

tested the linear trend with splines, estimated the

sinusoidal terms, and performed collinearity diag-

nostics to identify possible multicollinearity for the

final model. The autocorrelation and partial auto-

correlation for scaled residuals by HCD with lags

1–10 (2 years) were checked by visual inspection for

any remaining autocorrelation. We also tested for the

spatial autocorrelation of the residuals for each year

and month. The permutation test for Moran’s I stat-

istics (Bonferroni) was used to assess the possible

spatial autocorrelation in the scaled residuals by time.

We evaluated further the spatial accuracy of the

model by calculating the point estimates for the pre-

dictions of each HCD for 1984–2009 using other

HCD as learning data. The comparison between

Poisson vs. negative binomial hurdle model and

hurdle vs. zero-inflated model was performed with

Vuong’s test [26]. The statistical packages included

R version 2.14.1 (R Foundation, Austria), SPSS

version 19 (SPSS Inc., USA) and Stata version 9.2

(StataCorp., USA).

Prediction of the occurrence of acute SINV infections

Data for the periods 1984–2008, 1984–2009 and

1984–2010 were used with the obtained model to

predict cases for 2009, 2010 and 2011, respectively. As

there were no packages available to calculate the

prediction intervals (PI) for the hurdle model in R, we

calculated predicted point estimate values and stan-

dard errors by simulation. Subsequently the partial

likelihood estimators were calculated for the par-

ameters. We assumed that the distribution of the

prediction estimates could be approximated by

normal distribution [27]. The predicted estimates

and PIs were sampled 100 times using a normal

distribution to simulate a fiducial distribution for

parameters for the years 2009, 2010 and 2011. We

used only marginal normal distributions for the

parameters (R code in Supplementary Material S2,

abbreviations in Table 1).

RESULTS

Descriptive epidemiology

There were 339 cases with acute SINV infection

diagnosed by the Department of Virology, University

of Helsinki (Haartman Institute) for the period

1984–1994. Altogether 3042 SINV infection cases

Modelling Sindbis virus infections in Finland 1859
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Table 1. Significant explanatory variables in the multivariable hurdle model

Explanatory variable

(Supplementary Material

S2 abbreviation)

Time period

(lags t in months

if applicable)

Estimate (P value) ; hurdle model

Relative change (%) in approximated

odds for the occurrence (zero part)* :

increase in the standardized incidence

ratio (negative binomial part)# when

changing the respective variable by 1%

Zero part

Negative

binomial part

Zero

part

Negative

binomial part

Income per household (mean)

(Income)

t n.a. x2.5 (<0.001) n.a. x2.5

Agricultural area per total area

(Agricultural_land)

t n.a. x6.1 (<0.001) n.a. x5.9

Number of cases in previous

month (ln transformed), (Cases_1month_ln)

t – 1 0.53 (<0.001) 0.42 (<0.001) 0.4 0.4

Proportion of population working

in agriculture (Agricultural_work_population)

t n.a. 20.6 (<0.001) n.a. 22.9

Depth of snow cover on 15 April

(Snowcover_april)

April 0.019 (<0.001) 0.018 (<0.001) 0.01 0.02

Monthly mean temperature in June

(Temperature_June)

June 0.19 (<0.001) 0.24 (<0.001) 0.1 0.2

Monthly precipitation in June

(Rainfall_June)

June 0.0074 (<0.05) 0.013 (<0.001) 0.005 0.01

Monthly mean temperature in May

(Temperature_May)

May 0.19 (<0.001) 0.35 (<0.001) 0.1 0.4

Length of regulated water shore per

total area (Reg_watershore)

t 2.06 (<0.001) n.a. 1.5 n.a.

Monthly precipitation in previous month

(Rainfall_month_t_1)

t – 1 0.0048 (<0.05) n.a. 0.004 n.a.

Hatch-year black grouse density

(Hatch_year_grouse)

t 0.14 (<0.001) n.a. 0.1 n.a.

sin12 n.a. x8.7 (<0.001) n.a. x8.3

cos12 n.a. x2.3 (<0.001) n.a. x2.3

sin24 n.a. 0.20 (0.22) n.a. 0.2

cos24 n.a. 0.61 (<0.001) n.a. 0.6

sin36 x0.19 (<0.05) x0.34 (<0.001) x0.1 x0.3

cos36 x0.098 (0.16) x0.10 (0.13) x0.07 x0.1

sin60 x0.13 (0.077) n.a. x0.09 n.a.

cos60 0.098 (0.18) n.a. 0.07 n.a.

sin72 n.a. 0.33 (<0.05) n.a. 0.3

cos72 n.a. 0.10 (0.37) n.a. 0.1

sin84 x0.43 (<0.001) x0.35 (<0.001) x0.3 x0.3

cos84 0.17 (<0.05) x0.11 (0.36) 0.1 x0.1

July, month of notification (month2) 0.66 (0.059) n.a. 0.5 n.a.

August, month of notification (month2) 3.25 (<0.001) n.a. 2.4 n.a.

September, month of notification (month2) 3.52 (<0.001) n.a. 2.6 n.a.
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were reported to NIDR for the period 1995–2010.

Major outbreaks of SINV infection occurred in a

cyclic manner with the largest outbreak recorded in

1995 (1310 cases) (Fig. 1). Of all cases, 3320 (98%)

occurred between the end of July and October. The

first cases were detected every year around week 30

(end of July), peaking in week 33 (mid August)

and declining by weeks 37–47 (September–October).

There is a delay of about 2 days between onset of

symptoms and first medical contact [2]. Half of the

cases, 1965 (58%) were female, while 1135 (34%)

were identified in the 45–54 years age group. Cases

were geographically clustered in central latitudes of

approximately 61x–64x (Fig. 2).

Hurdle model

The splines for the piecewise linear trend with knots at

years 1995 and 2002 (major outbreak years), several

sinusoidal sin/cos terms, and month of reporting were

significant, as shown in Table 1. As some of the vari-

ables were most likely to be on the same pathway for

infection, the ecological variables (grouse and water-

related variables) were used mostly in the binary part

and population variables (income, working in agri-

culture) in the negative binomial part, as judged by

AIC. In the multivariable analysis, a high monthly

mean temperature in May and June, high monthly

precipitation in June, thick snow cover in April

(melting waters) and a high number of cases in the

previous month (natural logarithm) were positively

significant both for occurrence of the disease (zero

part) and incidence (negative binomial part) of SINV

infection. The early summer weather conditions and

depth of the previous winter’s snow cover probably

predict the number of mosquitoes in late summer. In

addition for the occurrence of the disease, hatch-year

black grouse density, regulated water shore area and

previous month’s precipitation were significant.

In addition to the those mentioned above, the most

significant variables for the incidence of the disease

were the level of income (negative), proportion of

population working in agriculture (positive), and

proportion of agricultural land (negative). The people

most likely to become exposed are those working in

agriculture or picking berries or mushrooms or hunt-

ing in the forest, possibly reflecting a lower level of

income. The negative binomial-based hurdle model

was chosen as best fitting the data based on Vuong’s

test, the AIC for the fully fitted model was 3866. The

residuals were satisfactory for autocorrelations andT
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partial autocorrelations as analysed by visual inspec-

tion for any lags over the 95% confidence intervals.

There was essentially no remaining spatial auto-

correlation in the scaled residuals. The predictions by

HCD were within the magnitude of the true total

counts and therefore considered satisfactory (Table 2).

The fit of the final model is presented in Figure 1.

Prediction of cases for 2009–2011

Using the hurdle model for the period 1984–2009, a

prediction for the number of cases for 2009 was 85

(95% PI 2-1187) cases, with 106 actual cases occur-

ring. The prediction for 2010 was 37 cases (95% PI

5-241), with an actual occurrence of 54 cases and

for 2011, 44 cases (95% PI 11-392), with an actual

occurrence of 63. It should be noted that the predic-

tions can be done only in the preceding month.

DISCUSSION

This study identified ecological cycles and variables

explaining the occurrence and incidence of SINV

infections and provided accurate predictions. SINV

infection dynamics between 1984 and 2011 were

characterized by regular annual cycles between late

July and October with larger outbreaks in 1988, 1995

and 2002. The disease most likely spreads between

black grouse, mosquitoes and humans when suitable

climatic conditions for the reproduction of mos-

quitoes occur, such as warm temperature and high

precipitation with thick snow cover during the

previous winter. These conditions are likely to be met

in the area of Central-Eastern Finland. The develop-

ment of infected mosquitoes is probably further

expedited by the amount of regulated waters. Hatch-

year black grouse may be one of the main amplifi-

cation hosts for SINV. People are likely become

infected during outdoor activities when exposed to

infected mosquitoes. As SINV surveillance data were

characterized by an overdispersion of zeros, we were

able to model SINV infections by applying a hurdle

model.

The higher occurrence of SINV infections in mid-

dle-aged women was as expected [2]. Cases are known

to cluster in Eastern Finland [9, 28], but we found

them also concentrated within Central Finland, in-

dicating the importance of local geographical and

climatic factors for the incidence of the disease.

Ockelbo disease also clusters in certain latitudes in

Sweden [6] and Karelian fever in Russia [5]. However,

host genetic factors may also contribute to the geo-

graphical distribution of clinical SINV infections,

producing potentially more clinical disease in Eastern

Finland [29]. The study combined two datasets, one

prior to initiation of surveillance of infectious diseases

in Finland, and the other the NIDR data from 1995 to

2010. We tested the distribution of cases by HCD

during these two periods by x2 test and found that

they were not comparable (data not shown), yet the

number of cases during the early period was only

about 10% of the total number of cases. This was

mostly due to the history of the disease as it was in-

itially discovered in one HCD only in the beginning of
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Fig. 1 [colour online]. SINV infection cases and the fit of the final model in Finland for the period 1984–2009. The fit was
calculated from the original model by healthcare district, month and year of diagnosis, subsequently these were summed up
by year for the whole of Finland.
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1980s, so most of the early cases stem from that area.

However, when the hurdle model was applied to the

NIDR data only (1995–2009), the model remained

essentially the same, temperature in May and sin/

cos72 terms were not significant (data not shown).

The seasonal timing of the cases was identical each

year, indicating a biological explanation for the am-

plification of the virus. We suspect that this may be

due to hatching of black grouse chicks. Our data

indicate that suitable climatic conditions enable the

development of mosquito populations, allowing ef-

fective transmission between hosts, including amplifi-

cation in hatch-year black grouse, thereby increasing

the number of infective mosquito vectors that

subsequently infect humans. This is also supported by

a recent study on the prediction of tularaemia out-

breaks by mosquito surveillance data where similar

weather variables explained the development of mos-

quito populations [30]. More virological and epi-

demiological data is needed to validate this finding.

We expected weather variables to be important for

the epidemiology of SINV infection as high tempera-

ture and increased precipitation have been shown to

be important variables for SINV infections in South

Africa [31, 32]. The early summer weather variables

and melting water from the previous winter’s snow

cover were significant for both parts of the model,

indicating their role in the occurrence and incidence of

2021
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2014
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2003 >7·5 cases per million
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Fig. 2 [colour online]. Incidence of serologically confirmed SINV infections in Finland in the period 1984–2009 by healthcare
district.
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the infection. Mosquito larvae development depends

on temperature and precipitation and melting water

from snow [33]. The temperature in June is also an

important factor for the survival of the newly hatched

grouse chicks [34, 35]. The model supported the role

of hatch-year black grouse as an amplifying host for

SINV infections in Finland [2, 9]. The hatch-year

birds have been found to be an important amplifying

host for West Nile virus [36]. Despite the overall de-

cline in black grouse density in the late 1980s and

early 1990s in Finland, it is still comparatively high in

areas with high SINV incidence. Grouse chicks

feed on insects for the first few weeks of their life

and hatching occurs around mid-June in Northern

Finland and about 1 week earlier in Southern Finland

[34, 35]. Hatch-year chicks are also more accessible to

mosquitoes due to as yet undeveloped plumage and

may be more susceptible to infection due to a lack of

immunity. These factors and the density of the mos-

quito population during late summer may together

explain the exact timing of the annual SINV infection

outbreaks.

The negative effect of agricultural land in the model

possibly indicates the importance of other land areas

where people spend time and may become exposed to

mosquitoes. The significance of the negative effect of

income perhaps indicates that people with lower in-

come are more likely to pick berries and mushrooms

rather than purchase them, thereby becoming exposed

to mosquito bites. The effect of income level may

also be a coincidental finding, as the level of income is

generally lower in high SINV infection rate areas.

There was a negative correlation between income level

compared to the proportion of population working in

agriculture (data not shown). Spending time in the

forest or swamps is an established risk factor for ac-

quiring SINV infection [2]. It may be that overall

outdoor activities are more common in the country-

side where the level of income is also lower.

The significance of the proportion of regulated lake

water shore-length for the occurrence of the disease is

a novel finding. This finding should be interpreted

with caution as this study is of an ecological nature

and ecological fallacy may account for this finding.

However, there is also strong supportive evidence that

this association is valid. Water regulation probably

creates ecological changes in the lake banks favouring

the development of suitable environments for the de-

velopment of mosquitoes or its bloodmeal supplier,

i.e. birds. Regulated water areas have been found to

be a risk factor for West Nile virus, which has a

similar biological cycle to SINV infection [37].

Notably, the heavily regulated Koitere Lake is located

in the hotspot of SINV infections, in the Ilomantsi

municipality (the disease was named Pogosta disease

by the Ilomantsi Centre) with one of the highest

prevalence and incidence rates for SINV infection. A

power plant was built in 1955, creating changes in the

level of water surfaces, which was further enforced

by initiation of water regulation in 1980 [38]. The

lakeshore was trimmed of trees prior to regulation,

but the regulation was conducted at a lower level than

initially planned, creating bushy vegetation on the

lakeshore [38]. The first major SINV infection out-

break was diagnosed by serology in Finland in 1981,

although a probable SINV infection outbreak

was described clinically in 1974 [9, 39]. With the

geographical spread of the cases and the importance

of local climatic factors and regulated waters, it is

tempting to speculate that the prevalence of SINV

infections in Sweden and Russian Karelia may be due

to similar phenomena.

We found the hurdle model suitable for character-

izing the cyclic SINV infections. Distinguishing ex-

planatory variables for the occurrence and incidence

Table 2. Point estimates of the predictions of SINV

infection cases by healthcare district for 1984–2009

between July and October

Healthcare

district

Point estimate of
prediction of cases
(true number of

total count)

2003 118 (64)
2004 111 (110)
2005 41 (39)

2006 244 (348)
2007 76 (83)
2008 81 (50)

2009 74 (70)
2010 163 (190)
2011 64 (101)

2012 344 (518)
2013 621 (421)
2014 322 (441)
2015 102 (200)

2016 37 (109)
2017 36 (62)
2018 253 (212)

2019 48 (53)
2020 16 (4)
2021 15 (8)

2025 368 (353)
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of the infections was beneficial. Based on this and our

previous study [40], we believe that the hurdle model

provides more information on the nature of the ex-

planatory variables for the pathways of infections. A

model with an estimated mosquito variable based on

weather variables would be useful [33]. We speculate

that the variable for cases in the previous month (ln) is

a useful proxy for the magnitude of the mosquito

population. Several sinusoidal terms remained sig-

nificant in the final model. We do not have biological

explanations for all these terms, except the 12-month

term, which reflects the seasonal variation of the in-

fections and the 84-month term, which slightly reflects

the cycles in the forest grouse populations detected

prior to the mid-1980s [41]. Overall, our knowledge of

SINV cycles is still rudimentary, while unknown and

important factors may remain to be identified, in-

cluding entomological variables. There may be cyclic

fluctuations in the density of other potential amplify-

ing hosts or similarly other factors influencing SINV

epidemiology. We also fitted the model without the

cyclic and trend terms to assess the adequate fit of the

model (data not shown). All other variables remained

significant, but temperature in May and hatch-year

grouse density in the zero part and income in the

negative binomial part became non-significant.

However, leaving any of these variables out of the

original model increases AIC by a factor of 25 units.

Therefore we conclude that the model with the trend

terms and external variables as listed above was ad-

equately fitted.

We identified climatic, ecological and socio-

economic determinants for both the occurrence and

incidence of human SINV infections in Finland, ap-

plying a negative binomial distribution based hurdle

model. For public health interventions, water regu-

lation guidelines should be adapted to prevent an in-

crease in infected mosquito populations. The study

was hampered by the lack of mosquito surveillance

data, although climatic factors are known estimators

for mosquito quantities [30, 33, 42].

A shortcoming of our hurdle model is that data

were unadjusted for age and sex distribution for the

HCDs, and we ignored the possible change in effects

by time and area. The spatial correlations of the re-

siduals were tested with the limitations of the study

material and found non-significant, this is in accord-

ance with the intuitive observation that the spread of

the disease is localized.

This study clarifies interactions between ecological

and biological phenomena and the occurrence of

SINV infections in Finland. Furthermore, the use of a

hurdle model is justified for identifying risk factors for

the occurrence and incidence of an infectious disease

with an excess of zero counts in the data.
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