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A STOCHASTIC SIS INFECTION MODEL
INCORPORATING INDIRECT TRANSMISSION
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Abstract

We describe a stochastic susceptible–infective–susceptible (SIS) model for transmission
of infectious disease through a population, incorporating both direct host–host trans-
mission and indirect transmission via free-living infectious stages (e.g. environmental
bacteria). Existence of a quasi-stationary distribution conditional upon nonextinction
of infection is established. A bivariate Ornstein–Uhlenbeck approximation is used to
investigate the long-term behaviour of the process conditional upon nonextinction of
infection. We show that indirect transmission leads to lower variability in the number
of infected hosts present in quasi-stationarity and, consequently, to a greater tendency
of infection to persist, compared with a model with direct transmission only and the
same average individual infectivity. Some numerical work illustrating these results is
presented.
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1. Introduction

In stochastic modelling of infectious disease transmission, the most commonly considered
route of infection is direct transmission from infected hosts to susceptible hosts. One widely
studied alternative mechanism is the host–vector route appropriate, for example, for malaria,
where infection passes from the infected host to an intermediate vector (mosquito) and can then
be passed on from the vector to susceptible hosts. Another alternative, suggested by Anderson
and May [1], is the existence of free-living infectious stages. That is, the microparasites that
cause infection may be able to exist outside the host, so that after being shed (for instance
in faeces), the free-living infectious stages survive in the environment for a time and may be
consumed by susceptible hosts, potentially infecting them.

In [1] the interest was in infections of invertebrate hosts, and the model with free-living
infectious stages (model G of [1]) did not allow for any other means of transmission. More
recently, Turner et al. [15] formulated and analyzed a deterministic (ordinary differential
equation) model for the spread of the Escherichia coli O157 bacterial infection amongst dairy
cattle, incorporating both direct host–host transmission and indirect transmission via free-living
environmental bacteria, as well as vertical transmission. Their model is designed to represent
transmission within a typical UK dairy herd and incorporates a variety of realistic features,
including demographic processes and herd structure as well as multiple transmission routes.
One reason why the free-living infectious stages are explicitly modelled in [15] is that, after an
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initial major epidemic followed by apparent disease extinction, one or more secondary outbreaks
may occur. While it is possible that later outbreaks are caused by reinfection by external sources,
another possibility is that, after infection has died out from the host population, it may persist
in the environment in the form of bacteria shed in the faeces of infected animals, and may later
be transmitted back from the environment to the hosts.

In this paper, we focus upon the role of indirect versus direct transmission, looking at
inherently stochastic features that are not well described by the deterministic models of [1] and
[15]. Specifically, we consider an extension of the classical susceptible–infected–susceptible
(SIS) logistic infection model, defined as follows.

Consider a closed population of size N , which at time t ≥ 0 consists of S(t) susceptible
and I (t) infective host individuals, and associated with which is a population of W(t) free-
living infectious stages. When a host individual becomes infected, it remains so for a time
that is exponentially distributed with mean γ −1, before returning to the susceptible class.
During its infectious period, each infective host makes contacts at the points of a homogeneous
Poisson process of rate β. Each contact is with an individual chosen uniformly at random from
the host population, and the susceptible individuals thus contacted then themselves become
infective. During its infectious period, the infective host also sheds infectious stages into the
environment at the points of a homogeneous Poisson process of rate λ. Each host, whether
infective or susceptible, consumes free-living infectious stages from the environment according
to a Poisson process of rate (ν/N)W(t); whenever a susceptible host consumes a free-living
infectious stage, with probability p the susceptible host becomes infected. Finally, free-living
infectious stages, if not consumed, survive in the environment for a time that is exponentially
distributed with mean µ−1. We refer to this as the SIS/W model.

More precisely, we suppose that the process {(I (t), W(t)) : t ≥ 0} is a continuous-time
Markov chain on the state space {(i, w) ∈ {0, 1, . . . , N} × Z

+} with infinitesimal transition
rates

q(i,w),(i+1,w) = (β/N)i(N − i), (1.1)

q(i,w),(i+1,w−1) = (pν/N)w(N − i), (1.2)

q(i,w),(i−1,w) = γ i, (1.3)

q(i,w),(i,w+1) = λi, (1.4)

q(i,w),(i,w−1) = µw + (ν/N)(1 − p)w(N − i) + (ν/N)wi, (1.5)

for some constants β, γ , λ, µ, ν ≥ 0, and p, 0 ≤ p ≤ 1 (all other transition rates being zero).
We further suppose that S(t) = N − I (t).

In the case pν = 0, the process I (t) reduces to the classical SIS infection model of
Weiss and Dishon [16]. The classical SIS model, and likewise our extended SIS/W model,
can model either short-term minor outbreaks of infection or long-term endemic behaviour,
depending upon parameter values. We shall be concerned mainly with the endemic case
and, in particular, the long-term behaviour of the process prior to eventual disease extinction.
Long-term (quasi-stationary) behaviour of the classical SIS model was analyzed in some
detail in Nåsell [10], [11]. Our aim here being to study the effect of indirect versus direct
transmission in endemic behaviour, the model defined by (1.1)–(1.5) is intended to be the
simplest possible model incorporating these features. A more complex stochastic SIS/W
model, incorporating demographic processes and also vertical transmission of infection, was
investigated by Xiao et al. [17] by simulation and by numerical investigation of a normal
approximation similar to that of Section 3 below.
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The basic reproduction ratio R0 for our SIS/W model (being the average number of new
infections directly attributable to a typical infective individual in an otherwise wholly susceptible
population) is given by

R0 = β

γ
+ pνλ

γ (µ + ν)
.

A deterministic version of our model can be defined by

dı̂

dt
= βı̂(1 − ı̂) + pνŵ(1 − ı̂) − γ ı̂,

dŵ

dt
= λı̂ − (µ + ν)ŵ,

(1.6)

where Nı̂(t) and Nŵ(t) respectively correspond to the numbers of infected hosts and free-
living infectious stages present at time t ≥ 0 in a population of N hosts. The deterministic
system (1.6) has equilibrium points at (ı̂, ŵ) = (0, 0) and

(ı̂∗, ŵ∗) = R0 − 1

R0

(
1,

λ

µ + ν

)
. (1.7)

If R0 ≤ 1 then the system is below threshold; the only equilibrium point (ı̂, ŵ) with ı̂, ŵ ≥ 0 is
the disease-free equilbrium (0, 0), and this is a stable point. If R0 > 1 then the system is above
threshold, there is a second equilibrium with ı̂, ŵ ≥ 0 at (ı̂∗, ŵ∗), and this endemic equilibrium
point is stable whereas the disease-free equilibrium (0, 0) is unstable.

2. Existence of a quasi-stationary distribution

The state space of our stochastic SIS/W model consists of a single absorbing state (0, 0)

together with the irreducible class C = {(i, w) ∈ {0, 1, . . . , N} × Z
+} \ {(0, 0)}, provided that

β, γ , λ, µ, ν, p, N > 0. Our interest is in the long-term behaviour of the infection process
prior to eventual extinction, that is, in the limiting conditional distribution miw defined by

miw = lim
t→∞ Pr((I (t), W(t)) = (i, w) | (I (t), W(t)) ∈ C), (i, w) ∈ C, (2.1)

provided such a distribution miw exists. Such limiting conditional distributions are closely
connected to quasi-stationary distributions. A probability distribution πiw defined on C is said
to be a quasi-stationary distribution if, given πiw as the initial distribution of the process, we
have Pr((I (t), W(t)) = (i, w) | (I (t), W(t)) ∈ C) = πiw for all t ≥ 0. Every limiting
conditional distribution is a quasi-stationary distribution; while the converse usually holds,
counterexamples can be constructed (see Pakes [13] and references therein).

General results regarding the existence of both quasi-stationary and limiting conditional
distributions for processes with infinite state space are rather scarce, although certain one-
dimensional processes, notably the birth-and-death process, have been studied extensively (see
Kijima et al. [7] and references therein). For two-dimensional population processes, such as our
SIS/W model, it is often necessary to simply assume the existence of the limiting conditional
distribution before considering methods for its approximation (see, for example, Nåsell [12]
and Clancy et al. [4]). In the present case, our SIS/W process may be treated using the results
of Ferrari et al. [6]. The details are as follows.

First of all, the transition rate matrix defined by (1.1)–(1.5) is clearly conservative and,
since the rates at which new infective hosts and free-living infectious stages are created
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(given by (1.1)–(1.2) and (1.4), respectively) are bounded, it is immediate from Proposition 3.1
of Anderson [2] that it is also regular.

In order to apply the results of Ferrari et al. [6], we relabel the states by defining X(t) =
I (t) + (N + 1)W(t), so that {X(t) : t ≥ 0} is a Markov chain with state space {0, 1, 2, . . .},
with state x = 0 corresponding to the absorbing state (i, w) = (0, 0), and there is a one-to-one
correspondence between states (i, w) ∈ C and states x ∈ {1, 2, . . .}.

Defining R = inf{t ≥ 0 : X(t) = 0}, we first need to check the ‘asymptotic remoteness’
condition (1.4) of [6]. That is, we require that limx→∞ Pr(R < t | X(0) = x) = 0 for all
t ≥ 0. Now, if we start from any state X(0) = x = i + (N + 1)w then, before extinction can
occur, it is necessary that all w of the free-living infectious stages initially present either die
or are consumed. The times until death or consumption of the free-living infectious stages are
independent exponential random variables of mean (µ + ν)−1; hence, for any t > 0, it follows
that

Pr(R < t | X(0) = x) ≤ (1 − e−(µ+ν)t )w

→ 0 as w → ∞,

as required.
From Theorem 1.1 of [6], if asymptotic remoteness holds then a sufficient condition for the

existence of a quasi-stationary distribution is that E[eθR | X(0) = x] < ∞ for some θ > 0
and some x ≥ 1. Furthermore, Ferrari et al. [6] showed, in their Lemma 4.3, that this condition
is implied by their conditions (1.9)–(1.13). Essentially, we must find a suitably well-behaved
nonnegative function f (x) such that the process f (Xt ) has negative drift bounded away from 0
(except possibly when Xt < D6 for some integer D6 < ∞) and is sufficiently well behaved
for Xt < D6.

For our SIS/W process, we can take f (x) = w for x = i + (N + 1)w. In condition (1.10)
of [6], there appears to be a slight misprint, in that the transition rates q(x, y) should be
replaced by the transition probabilities p(x, y) = q(x, y)/(−q(x, x)) of the embedded
discrete-time jump chain. With this correction, we then require that, for some D1 > 0 and
some integer D6 < ∞,

∑
y �=x

p(x, y)f (y) ≤ f (x) − D1 for x ≥ D6. (2.2)

For our SIS/W model, recalling that x = i(N + 1)w, with f (x) = w we have from (1.1)–
(1.5) that

∑
y �=x

p(x, y)f (y) − f (x) = λi − (µ + ν)w

−q(x, x)

≤ λN − (µ + ν)w

(β + γ + λ)N + (µ + ν)w
for w ≥ λN

µ + ν

→ −1 as x → ∞,

and, so, by taking any D1 with 0 < D1 < 1, a suitable integer D6 < ∞ can be found and
condition (2.2) is satisfied.

Conditions (1.9) and (1.11)–(1.13) of [6] are now straightforward to verify and, by applying
Lemma 4.3 and Theorem 1.1 of [6], we thus establish the existence of a quasi-stationary
distribution for our SIS/W model (provided that β, γ , λ, µ, ν, p, N > 0).
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The existence of a quasi-stationary distribution is a necessary condition for the existence
of a limiting conditional distribution, and, if the initial distribution of our process is taken to
equal the quasi-stationary distribution, then clearly the limiting conditional distribution will also
equal the quasi-stationary distribution. However, note that the existence of a quasi-stationary
distribution does not guarantee the existence of the limiting conditional distribution of the
process starting from some fixed initial state (i, w) (see [13]).

3. Normal approximation and the effect of indirect transmission

We now approximate our SIS/W model using a diffusion approximation developed by
Kurtz [8], [9]. We will find it more convenient to refer to the more specialized versions of
Kurtz’s main theorems which appeared in [14]. Regarding our SIS/W model as a density-
dependent process, we define a family of scaled processes, indexed by N , by

VN(t) = 1

N
(IN(t), WN(t))�.

Consider the limit as N → ∞ of VN(t), with β, γ , λ, µ, ν, and p held constant as N varies.
Setting v∗ = (ı̂∗, ŵ∗)�, where ı̂∗ and ŵ∗ are given by (1.7), it follows from Theorem 3.2 of [14]
that, provided limN→∞

√
N(VN(0) − v∗) = z exists, the sequence of processes ZN(·) =√

N(VN(·) − v∗) converges weakly, in the space of all sample paths on any given finite time
interval, to a bivariate Ornstein–Uhlenbeck process Z(·) starting at Z(0) = z with local drift
matrix

B =
⎛
⎝−βı̂∗ − pνλ

µ + ν
pν(1 − ı̂∗)

λ −(µ + ν)

⎞
⎠

and local covariance matrix

G =

⎛
⎜⎜⎝

2γ ı̂∗ − pνλ

µ + ν
ı̂∗(1 − ı̂∗)

− pνλ

µ + ν
ı̂∗(1 − ı̂∗) 2λı̂∗

⎞
⎟⎟⎠ .

This Ornstein–Uhlenbeck process has as its stationary distribution the bivariate normal distri-
bution with zero mean vector and covariance matrix � satisfying

B� + �B� = −G. (3.1)

What this means in practice is that, for fixed N , by taking z = √
N(VN(0) − v∗), we

can approximate the quasi-stationary distribution of our SIS/W model by a bivariate normal
distribution with mean (Nı̂∗, Nŵ∗) and covariance matrix N�. For the approximation to
be valid, we require that the step size 1/N of the scaled process is sufficiently small for it
to be approximated by a process with continuous sample paths; that the equilibrium point
v∗ = (ı̂∗, ŵ∗)� is stable, so that the process will tend to spend a long time in the vicinity of v∗;
and that both ı̂∗ and ŵ∗ are sufficiently large that the Ornstein–Uhlenbeck process is unlikely
to reach the boundaries at I = 0 and W = 0. Thus, we expect the approximation to be good
provided that the infection process is above threshold, in that R0 > 1 and N is sufficiently large.
In the remainder of this section we investigate the approximating normal distribution, assuming
it to provide a good approximation to the true quasi-stationary distribution; in Section 4 we will
investigate the accuracy of the approximation numerically.
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A question of some practical interest is the effect of indirect, as opposed to direct, transmis-
sion on the quasi-stationary distribution of the process. Suppose that we allow the parameters to
vary in such a way that R0 remains fixed. That is, we keep the total infectivity of each individual
constant, while varying the proportion of transmission that is indirect. Then ı̂∗ remains fixed,
meaning that varying the proportion of transmission that is indirect does not affect the mean of
the approximating normal distribution of infected hosts. However, ŵ∗ and the variance matrix
� may be affected.

Specifically, by first writing s = 1 − ı̂∗ and then solving (3.1) for � and eliminating β using
the substitution β = γ /s − pνλ/(µ + ν), we find, after some tedious algebra, that (in obvious
notation)

σ 2
I = s

(
1 − pνλs2

D

)
, (3.2)

σ 2
W = λ(1 − s)

µ + ν
+ λ2s2

D
,

σIW = λ(µ + ν)s2

D
,

where D = γ (µ + ν)(1 − s) + (µ + ν)2s + pνλs2.
First notice that σ 2

I ≤ s, with equality when pνλ = 0, which is when all transmission is
via the direct route. Thus, any transmission via the indirect route results in a marginal quasi-
stationary distribution for I with smaller variance than if all transmission were via the direct
route, assuming a fixed total infectivity per individual.

To investigate further the effect of indirect versus direct transmission, we consider the effect
of varying any one of the parameters p, λ, µ, or ν, while simultaneously varying β in such a
way that s (or, equivalently, R0) remains constant. We find from (3.2) that

d(σ 2
I )

dp
= −(γ (1 − s) + (µ + ν)s)(µ + ν)

νλs3

D2 < 0,

d(σ 2
I )

dλ
= −(γ (1 − s) + (µ + ν)s)(µ + ν)

pνs3

D2 < 0,

d(σ 2
I )

dµ
= (γ (1 − s) + 2(µ + ν)s)

pνλs3

D2 > 0,

d(σ 2
I )

dν
= −(γµ(1 − s) + (µ2 − ν2)s)

pλs3

D2 .

An increase in indirect transmission corresponds to an increase in any one of p, λ, or ν, or to
a decrease in µ. We see that increasing p or λ, or decreasing µ, leads to a decrease in σ 2

I . In the
case of ν, the situation is a little more complicated; increasing ν results in a decrease in σ 2

I as
long as γµ(1−s)+ (µ2 −ν2)s > 0 or, equivalently, ν < (µ2 +γµ(1−s)/s)1/2. In particular,
if ν < µ then d(σ 2

I )/dν < 0. Thus, as long as the rate ν, at which free-living infectious stages
are consumed by the host population, is no greater than their natural death rate µ, then any
increase in the proportion of transmission via the indirect, rather than the direct, route results
in a reduction in the variance of (our approximation to) the quasi-stationary distribution of I .
It does not seem particularly obvious a priori that this should be the case, but may perhaps be
intuitively understood as a result of the environmental reservoir of infection having a damping
effect upon stochastic fluctuations of the process.
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Note that we would not generally expect to observe the behaviour of the free-living infectious
stages directly, which is why we have focused on the marginal process I describing the behaviour
of the observed host population. A related point is that, because we only expect to observe the
host population, miw is not the only limiting conditional distribution of interest. An alternative
is the limiting conditional distribution m̃iw, defined by

m̃iw = lim
t→∞ Pr((I (t), W(t)) = (i, w) | I (s) > 0 for 0 ≤ s ≤ t). (3.3)

Whereas miw describes the long-term behaviour of the process prior to total extinction
of infection, m̃iw describes the long-term behaviour during a single observed outbreak in
the host population. In Section 2 we proved the existence of a quasi-stationary distribution
conditional upon nonextinction of infection within the combined population of hosts and
free-living infectious stages. It is not clear how one would go about proving the existence
of a quasi-stationary distribution conditional upon nonextinction of infection from the host
population alone (corresponding to the limiting conditional distribution m̃iw). There are an
infinite number of states

(i, w) = (1, w), w = 0, 1, 2, . . . ,

all of which are adjacent to the set {(i, w) : i = 0}, so the asymptotic remoteness condition
no longer holds and it seems that the methods of [6] are not applicable. On the other hand,
assuming its existence, the bivariate normal distribution derived above should be equally useful
as an approximation to either miw or m̃iw. This is because the Ornstein–Uhlenbeck process
can only give a valid approximation provided that the probability of reaching the boundaries
I = 0 and W = 0 is sufficiently small. We discuss the range of validity of the approximation
further in the next section.

4. Numerical results and persistence times

All numerical work was carried out in MATLAB® 6.5 running under Microsoft® Windows®

on a desktop personal computer.
In choosing parameter values for numerical work, we shall be guided by the work of

Turner et al. [15] on E. coli O157 infection in dairy cattle. The model of [15] takes the
total herd size to be 175 animals, the herd being split into four management groups of which
the most important is the lactating group of around 95 animals. Thus, we shall take a host
population size of N = 100. It was stated in [15] that the infectious dose is 100 c.f.u. (colony
forming units, or viable bacteria), so we reflect this by setting p = 0.01. In the lactating group,
the recovery rate is given as γ = 0.143 (days)−1 and the shedding rate as λ = 1.3 × 1010 c.f.u.
(cattle)−1 (days)−1. The death rate of bacteria in the environment, in the absence of outside
intervention, is given as µ = 0.118 (days)−1. The transmission parameters β and ν were
described in [15] as ‘unknown’, and values then chosen to try to reflect knowledge of observed
E. coli O157 epidemiology. We will choose values for β and ν with the aim of understanding
the behaviour of our SIS/W model, rather than to reflect a specific real-life infection. Note that
the parameter sets used in this section all satisfy the condition ν < µ of Section 3.

When simulating using plausible parameter values, a problem arises in that the free-living
infectious stages process W(t) undergoes transitions at a much greater rate than the infective
hosts process I (t) and, thus, to observe the development of the process I (t) is extremely
time consuming. Since the problem is that the W(t) process makes a very large number of
transitions in a small time, we can circumvent this difficulty by treating W(t) as deterministic,
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at least between the transitions of I (t). That is, we approximate our original SIS/W model by
a piecewise-deterministic Markov process (see [5]) with the following transition rates:

I → I + 1 at rate (β/N)I (N − I ) + (pν/N)WD(N − I ), (4.1)

I → I − 1 at rate γ I. (4.2)

Here, WD(t) evolves deterministically between transitions of I (t) according to

dWD

dt
= λI − (µ + ν)WD. (4.3)

For the parameter values that we use, as long as any infective hosts are present, W(t) will
be of order 1011, which is certainly sufficiently large that the piecewise-deterministic Markov
process described above is realistic.

Suppose that the I (t) process makes a transition at time T , and that (I (T ), WD(T )) = (i, w).
Denote by τ the time until the next transition of I (t). Then, solving (4.3) gives

WD(t) = we−(µ+ν)t + λ

µ + ν
i(1 − e−(µ+ν)t ), T ≤ t < T + τ.

It follows from (4.1) and (4.2) that τ has distribution function

Pr(τ ≤ t) = 1 − exp

{
−

((
β + pλν

µ + ν

)
(N − i)

i

N
+ γ i

)
t

− pν

N(µ + ν)
(N − i)

(
w − λ

µ + ν
i

)
(1 − e−(µ+ν)t )

}
. (4.4)

For i > 0, it is straightforward to simulate from the distribution (4.4) of τ by rejection sampling,
using an exponential proposal distribution with mean M−1, where

M =
(

β + pλν

µ + ν

)
(N − i)

i

N
+ γ i + min

{
0,

pν

N
(N − i)

(
w − λ

µ + ν
i

)}
.

When i = 0 we have M = 0, meaning that the rejection sampling method breaks down;
however, in this case we can simulate τ by inverting the distribution function (4.4), noting
that, for i = 0, there is a nonzero probability that τ = ∞. To determine whether the event at
time T + τ is an infection or a recovery, we observe that the probabilities of these two events
are in the proportions given by (4.1) and (4.2), respectively, with WD evaluated at time T + τ .

Note that our simulation process (I (t), WD(t)) can never reach a state with WD = 0 within
finite time (unless I (0) = WD(0) = 0). Consequently, in our numerical work we shall
focus upon the limiting conditional distribution m̃iw, defined by (3.3), rather than miw, defined
by (2.1). We shall also focus on the marginal distribution of the number of infected hosts I , as
this is what we would expect to observe.

Since we expect the normal approximation of Section 3 to perform well for R0 values
sufficiently greater than the threshold value R0 = 1, we first consider the situation well above
threshold. Specifically, in order to obtain R0 = 2 with direct and indirect transmissions
making equal contributions to R0, with N = 100, p = 0.01, γ = 0.143 (days)−1, λ =
1.3 × 1010 c.f.u. (cattle)−1 (days)−1, and µ = 0.118 (days)−1, we take β = 0.143 (days)−1

and ν ≈ 1.298×10−10 (days)−1. We carried out 100 000 simulation runs with these parameter
values, each initiated at a point close to the deterministic endemic equilibrium point (Nı̂∗, Nŵ∗)
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Figure 1: The simulated quasi-stationary distribution compared to the normal approximation: dots
indicate the empirical distribution from simulation, while the smooth curve represents the normal
approximation of Section 3. The parameter values are N = 100, p = 0.01, γ = 0.143 (days)−1,
λ = 1.3 × 1010 c.f.u. (cattle)−1 (days)−1, µ = 0.118 (days)−1, β = 0.143 (days)−1, and ν ≈
1.298 × 10−10 (days)−1, meaning that R0 = 2. Simulation results are from 100 000 simulation runs,
each initiated at a point close to the deterministic endemic equilibrium point (Nı̂∗, Nŵ∗) and run until

time t = 100 days.

and run until time t = 100 days (and similarly for all subsequent simulation results). The
results are shown in Figure 1, in which the dots indicate the simulated empirical distribution
and the smooth curve represents the normal approximation of Section 3. We see that our
normal approximation does indeed perform well for these parameter values. No simulation
runs became extinct in the host population (I = 0) within 100 days.

To investigate the effect of indirect versus direct transmission when the process is well above
threshold, we again take R0 = 2, but now consider the two extreme cases

β = 0.286 (days)−1, ν = 0 (days)−1

(direct transmission only) and

β = 0 (days)−1, ν ≈ 2.596 × 10−10 (days)−1

(indirect transmission only), with the other parameter values as before. For indirect transmission
only, we used simulation to evaluate the quasi-stationary distribution. With direct transmission
only, the process I (t) is precisely the classical SIS infection model, a Markov process on
the finite state space {0, 1, . . . , N}. Consequently, the quasi-stationary distribution of I can
be computed exactly. Denoting by Q the transition rate matrix of the SIS infection process,
and by QC the matrix Q truncated by deleting the row and column corresponding to the
absorbing state i = 0, the quasi-stationary distribution of I is given by the left eigenvector of
QC corresponding to the eigenvalue of maximal real part, normalized such that its components
sum to 1. (The distribution computed in this way corresponds to m̃iw rather than miw.)

The results are shown in Table 1. These numerical results confirm that direct transmission
leads to greater variability than indirect transmission and that the approximating formula σI

√
N ,

where σI is given by (3.2), gives a reasonably good idea of the extent of the difference.
Graphs corresponding to Figure 1 for the cases β = 0.286 (days)−1, ν = 0 (days)−1 and β =
0 (days)−1, ν ≈ 2.596 × 10−10 (days)−1 also confirm that the normal approximation performs
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Table 1: Mean and standard deviation (SD) values for the quasi-stationary distribution of the number of
infected hosts I , and approximating formulae from Section 3. The quasi-stationary distribution was
computed by the eigenvector method in the cases with direct transmission only (ν = 0 (days)−1),
and by simulation (100 000 runs until time t = 100 days) in the cases with indirect transmission only

(β = 0 (days)−1).

Simulation/Eigenvector Normal approximation

R0 β ((days)−1) ν ((days)−1) Mean SD Mean = Nı̂∗ SD = σI

√
N

2 0.286 0 48.93 7.23 50 7.07
2 0 2.596 × 10−10 49.69 5.72 50 5.68
1.25 0.178 75 0 16.89 8.63 20 8.94
1.25 0 1.623 × 10−10 18.78 6.37 20 6.44
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Figure 2: Quasi-stationary distributions comparing direct with indirect transmission: the continuous
curve shows direct transmission only (β = 0.178 75 (days)−1, ν = 0 (days)−1), the dashed curve indirect
transmission only (β = 0 (days)−1, ν ≈ 1.623 × 10−10 (days)−1). In each case, N = 100, p = 0.01,
γ = 0.143 (days)−1, λ = 1.3 × 1010 c.f.u. (cattle)−1 (days)−1, µ = 0.118 (days)−1, and R0 = 1.25.

reasonably well, although it appears a little less accurate in the case that all transmission is via
the direct route. (These graphs are quite similar to Figure 1, and are omitted.)

If the process is not well above threshold, we would not expect our normal approximation
to perform so well. Thus, we next consider the case R0 = 1.25, looking at the two extremes
of direct transmission alone versus indirect transmission alone. To obtain R0 = 1.25, we take
either β = 0.178 75 (days)−1, ν = 0 (days)−1 (direct transmission only) or β = 0 (days)−1,
ν ≈ 1.623 × 10−10 (days)−1 (indirect transmission only). The other parameter values are as
before. Figure 2 shows the computed marginal quasi-stationary distributions of the number of
infected hosts I ; mean and standard deviation values are presented in Table 1.

With indirect transmission only, the normal approximation again performs reasonably well,
in terms of both the shape of the distribution and the mean and standard deviation values.
With direct transmission only, however, it is clear from Figure 2 that our normal approximation
will perform considerably less well, since the computed quasi-stationary distribution is notice-
ably truncated at I = 0. We see from Table 1 that, although the standard deviation estimate for
this case is reasonably close to the true value, the mean is significantly overestimated.
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Nåsell [11], with reference to the classical SIS infection model, suggested as a rule of
thumb that the normal approximation of the quasi-stationary distribution tends to perform well
when ı̂∗ > 0 and the coefficient of variation, CVI = σI /ı̂

∗√N , satisfies CVI < 1
3 . This is

because a normally distributed random variable takes values within three standard deviations
of its mean with high probability, so that, provided CVI < 1

3 , the probability assigned to
negative I values by the approximation is small. To be confident that our bivariate normal
approximation for the SIS/W model will perform well, we require both CVI < 1

3 and CVW < 1
3 ,

where CVW = σW/ŵ∗√N . All of the above simulation results satisfy this except for the case
β = 0.178 75 (days)−1, ν = 0 (days)−1, when we have CVI = 0.45 and CVW = 0.39.

All the results of the eigenvector method were checked by simulation (100 000 runs until
t = 100 days in each case), starting from a fixed state close to the deterministic equilibrium point
(Nı̂∗, Nŵ∗). All of the simulation results were conditioned on I (t) > 0 for 0 ≤ t ≤ 100. With
R0 = 2, all the simulation runs satisfied I (t) > 0 for 0 ≤ t ≤ 100. With R0 = 1.25, within
100 days there were 169 extinctions of infection from the host population in the case of indirect
transmission only (β = 0 (days)−1, ν ≈ 1.623 × 10−10 (days)−1), compared with 13 074
extinctions in the case of direct transmission only (β = 0.178 75 (days)−1, ν = 0 (days)−1).
This suggests that indirect transmission may tend to increase persistence of infection, compared
to direct transmission.

In fact, the results of Section 3 are of particular interest with regard to persistence times.
When σI

√
N is large relative to Nı̂∗, the quasi-stationary distribution of I attaches substantial

probability to I values close to 0, meaning that infection tends to die out of the host population
quickly. More specifically, the time to extinction of an outbreak from the host population,
for a process initiated from the quasi-stationary distribution m̃iw, is exponentially distributed
with constant hazard rate γ

∑
w m̃1w. (Similarly, the time to complete extinction of infection,

for a process initiated from the quasi-stationary distribution miw, is exponentially distributed
with constant hazard rate γm10 + (µ + ν(1 − p))m01.) As an explicit formula for

∑
w m̃1w

is not available, a simple alternative measure is given by CVI . Large values of CVI suggest
that outbreaks will die out quickly, whereas small values suggest likely long-term persistence
in the host population. Returning to our numerical results for the case R0 = 1.25, we find
that in the case β = 0.178 75 (days)−1, ν = 0 (days)−1, we have CVI = 0.45, whereas with
β = 0 (days)−1, ν ≈ 1.623 × 10−10 (days)−1, we have CVI = 0.32. The estimate of expected
time to outbreak extinction starting from quasi-stationarity ((γ

∑
w m̃1w)−1) is found to be

436 days in the case β = 0.178 75 (days)−1, ν = 0 (days)−1, compared with 17 900 days in
the case β = 0 (days)−1, ν ≈ 1.623×10−10 (days)−1. Thus, transmission via the indirect route
can lead to much longer outbreaks of infection in the host population than direct transmission,
for the same R0 value. In many deterministic infection models, long-term endemic persistence
is predicted precisely when R0 > 1; here, we see clearly that, when stochastic effects are taken
into account, the value of R0 is not in itself sufficient to determine whether persistence is likely.

In the classical SIS infection model, Andersson and Djehiche [3] have studied persistence
times in some detail; the case in which R0 is close to 1 has been more fully investigated by
Nåsell [11]. Their results indicate that CVI does not give a very precise estimate of the expected
time to extinction; nonetheless, CVI does at least give a rough idea of whether outbreaks are
likely to persist in the long term, based on a simple explicit formula.
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