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Cryo-electron tomography (cryoET) provides the highest resolution structural biology findings on cells 

in a hydrated state, but thorough interpretation of these large noisy image volumes is severely 

constrained by image segmentation shortcomings. Image segmentation approaches are often painstaking 

and laborious and remain largely unautomated. We posit that this is the primary reason that many 

tomograms languish, unanalyzed, never being explored to their scientific potential. Given that a single 

microscope can now collect 100 tomograms per day, and this volume of underutilized data is projected 

only to grow [1–2], the structural biology community needs better methods to rapidly parse the 

molecular contents of cryoET data. 

 
Deep learning is succeeding in many scientific 

imaging applications for analysis of large and 

complex datasets [3–8], and early successes in 

cryoET applications are demonstrated by work such 

as TomoSeg [9], DeepFinder [10], Cryo-CARE [11], 

HAL[12], and Isonet [13]. Luckily, sophisticated 

software interface and design has advanced to the 

point where non-experts can effectively train models 

spanning a variety of deep learning architectures, 

extending the platform to a wide audience with a 

diverse set of macromolecular interests. 

 

Given the vast complexity of the biological 

proteome, it is necessary that we adapt our deep 

learning models to segment structures in a variety of 

contexts. Training models is easy to automate and 

upscale when training data are abundant. Drawing 

on the voluminous data archived in protein structure 

databases from around the world (PDB, EMDB, 

AlphaFold, etc.) offers an alternative to relying on 

empirical cryoET data for those trainings. Here we 

describe TomoSIM, our MATLAB-based software 

for producing simulated tomograms (phantoms), and 

we show how they have successfully advanced the 

robustness of our deep learning segmentation 

models. 
 

Figure 1. Simulation outline: 1) Obtain 

appropriate PDB structures. 2) Generate 

Density Map. 3) Create Ground Truth. 4) 

Simulated tomogram is reconstructed after 

missing wedge generation, noise addition and 

CTF convolution. 
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The TomoSIM toolchain starts with importing a model structure and calculating its density map, at a 

pixel size and resolution matching experimental conditions.  Multiple instances of this map (sampling 

rotational space) are positioned within a virtual 3D volume. TomoSIM scripts then array globular 

proteins on a three-dimensional grid or place filamentous polymers (such as actin) within a stack of 

rotated sheets (Fig. 1), in order to better sample the effects of the missing wedge on image 

reconstruction. This simulated volume serves as a cytoplasmic phantom, and a simulated tilt series is 

produced with IMOD. Each tilt-projection is convolved with a computed contrast transfer function [14], 

and various models of noise are added to simulate realistic tomographic conditions. Finally, the tilt 

series is reconstructed by weighted backprojection. 
 

Image processing, deep learning training, image segmentation, and 3D rendering are performed with the 

Dragonfly software package [15]. Training data is generated by pairing the reconstructed phantom with 

labels that identify all of the pixels of the constituent macromolecular assemblies. Assigning pixels to 

their corresponding class is trivial, because of the constraints of how the phantoms were generated. 

Using the simulated tomogram as input data, and the segmentation as target output, a 5-slice U-Net (or 

other models) is trained in the Segmentation Wizard [16]. Within the wizard this network can be applied 

to real data and iteratively trained to improve the segmentation, using only a small volume of empirical 

data. 
 

Large grids of mixed macromolecules can be rapidly generated, and creating training data is as simple as 

thresholding the reconstructed phantoms. Shown below, networks trained only on empirical data 

successfully identify almost all actin filaments, but fail to distinguish between actin filaments in 

different conformations (Fig. 2.2). When a network is trained using the perfectly segmented phantoms, 

however, the accuracy of the segmentation dramatically improves, and different conformations of actin 

can be reliably identified (Fig. 2.3). These results suggest a generalized protocol for training deep 

learning models to identify complex or fine-grained features within cryo-electron tomograms using 

Figure 2. Segmentation with and without simulation strategy. 1) Tomogram to be segmented. Red 

box shows a cofilin-decorated actin rich region. Green box shows f-actin rich region. 2) 3D rendering 

of segmented data from network trained on the tomogram. Green class is f-actin. Red class is cofilin-

decorated actin. 3) 3D rendering of segmented data from network trained with TomoSIM simulated 

data. Green class is f-actin. Red class is cofilin-decorated actin. Blue is a microtubule. 
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independent, a priori training. TomoSim provides a platform for training any networks to high precision 

that can be tested against real world data rapidly [17]. 
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