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Abstract
We investigate the number of maximal cliques, that is, cliques that are not contained in any larger clique,
in three networkmodels: Erdős–Rényi random graphs, inhomogeneous random graphs (IRGs) (also called
Chung–Lu graphs), and geometric inhomogeneous random graphs (GIRGs). For sparse and not-too-dense
Erdős–Rényi graphs, we give linear and polynomial upper bounds on the number of maximal cliques. For
the dense regime, we give super-polynomial and even exponential lower bounds. Although (G)IRGs are
sparse, we give super-polynomial lower bounds for these models. This comes from the fact that these
graphs have a power-law degree distribution, which leads to a dense subgraph in which we find many
maximal cliques. These lower bounds seem to contradict previous empirical evidence that (G)IRGs have
only fewmaximal cliques.We resolve this contradiction by providing experiments indicating that, even for
large networks, the linear lower-order terms dominate, before the super-polynomial asymptotic behavior
kicks in only for networks of extreme size.

Keywords: maximal cliques; Erdős–Rényi random graphs; Chung–Lu random graphs; geometric inhomogeneous random
graphs; power-law degree distribution

1. Introduction
While networks appear in many different applications, many real-world networks were found to
share some important characteristics. First of all, often their degree distribution is heavy-tailed,
which is sometimes denoted as the network being scale-free. Second, they often have a high clus-
tering coefficient, implying that it is likely that two neighbors of a vertex are connected themselves
as well. For this reason, random graph models that can achieve both scale-freeness and a high
clustering coefficient have been at the center of attention over the last years.

One example of such a model is the popular hyperbolic random graph (HRG) Krioukov
et al. (2010), which has for example been used to model the network of world wide trade García-
Pérez et al., (2016) or the Internet on the Autonomous Systems level Boguñá, Papadopoulos, and
Krioukov (2010); Kleinberg (2007). This random graph model embeds the vertices in an under-
lying hyperbolic space and connects them with probabilities depending on their distances, where
nearby vertices are more likely to connect. The triangle inequality then ensures the presence of
many triangles, while the hyperbolic space ensures the presence of a scale-free degree distribution.
Recently, the geometric inhomogeneous random graph (GIRG) was proposed as a generaliza-
tion of HRG. It combines power-law distributed weights with Euclidean space, making the model
simpler to analyze Bringmann, Keusch, and Lengler (2015).

While the HRG and the GIRG have been designed to exhibit high clustering and a scale-free
degree distribution, the question remains whether other properties of this model match real-world
data. For this reason, many properties of the GIRG or HRG have been analyzed mathematically,
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such as the maximum clique size Bläsius, Friedrich, and Krohmer (2018), number of k-cliques
Michielan and Stegehuis (2022), spectral gap Kiwi and Mitsche (2018) and separator size Bläsius,
Friedrich, and Krohmer (2016); Lengler and Todorovic (2017).

In this paper, we focus on another network property: the number of maximal cliques, that
is, cliques that are not part of any larger clique. Cliques in general are an important indicator for
structural properties of a network. Indeed, the number of large cliques is ameasure of the tendency
of a network to cluster into groups. Small cliques of size 3 (triangles), on the other hand, can form
an indication of the transitivity of a network or its clustering coefficient.

To study these structural clique-based properties, however, all cliques of a given size need to
be listed, which can be a computationally expensive process. To list all network cliques, it suffices
to list only all maximal cliques, as all smaller cliques can be generated from at least one max-
imal clique. For this reason, enumerating all maximal cliques of a graph is at the heart of our
understanding of cliques in general.

For enumerating all maximal cliques, an output-polynomial algorithm Tsukiyama et al. (1977)
exists, which can enumerate all maximal cliques efficiently if the graph contains only few of them.
This creates a link between enumeration and counting: if the maximal clique count is low, then
it is possible to efficiently enumerate them. There also exist highly efficient implementations to
enumerate all maximal cliques Eppstein, Löffler, and Strash (2010, 2013); Eppstein and Strash
(2011). However, for a given graph, it is usually not known a priori how many maximal cliques
it has. If this number is large, enumerating all maximal cliques can still take exponential time.
However, in practice, enumerating the number of maximal cliques often takes a short amount of
time for many real-world instances as well as in realistic network models Bläsius and Fischbeck
(2022). In this paper, we therefore focus on the number of maximal cliques in the GIRG random
graph, that is, the maximal clique count. As the GIRG possesses the two main characteristics that
are essential to many real-world networks, scale-freeness and an underlying geometry, we believe
that investigating the number of maximal cliques in the GIRG can provide insights into in why
enumerating the number of maximal cliques can often be done efficiently for many real-world
networks.

To investigate the influence of the different properties of scale-freeness and clustering, we
investigate the number of maximal cliques in three steps. First, we investigate a model with-
out heavy-tailed degrees and with a small clustering coefficient, the Erdős–Rényi model G(n, p);
see Section 2. We then investigate the GIRG model (Section 3), which has both clustering and
scale-free degrees. Finally, in Section 4, we investigate the inhomogeneous random graph (IRG),
a model that is scale-free but has a small clustering coefficient. We complement our theoretical
bounds with experiments in Section 5. In all models, we will be interested in the large n limit. That
is, we investigate how the number of maximal cliques scales in the number of nodes n when n
grows large. Our main findings can be summarized as follows; also see Table 1 for an overview of
our results.

• There is a strong dependence on the density of the network. For the Erdős–Rényi model
(G(n, p)) we obtain a linear upper bound for sparse graphs (O(n) edges) and a polynomial
upper bound for non-dense graphs (O(n2−ε) edges for any ε > 0). For dense graphs on
the other hand (�(n2) edges), we obtain a super-polynomial lower bound. If the density is
high enough, our lower bound is even exponential.

• This insight carries over to the IRG and GIRGmodels. Though they are overall sparse, they
contain sufficiently large dense subgraphs that allow us to obtain super-polynomial lower
bounds.

• In the IRG model with power-law exponent τ ∈ (2, 3) the small maximal cliques local-
ize: asymptotically maximal cliques of constant size k> 2 are formed by k− 2 hubs of
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Table 1. Summary of our and other results on the number of maximal cliques in different
random graphmodels and their scaling in the number of vertices

Model Maximal cliques Reference

G(n, p) p= 1− �( 1n ) 2�(n) Theorem 2.3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p ∈ �(1) n�( log n) Theorem 2.1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p ∈ O( 1na ) nO(1) Theorem 2.4
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p ∈ O( 1n ) O(n) Theorem 2.4

IRG exp (�(n
3−τ
4 −ε log n)) Theorem 4.1

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GIRG d-dim torus, T = 0 exp (�(n
3−τ
4 −ε)) Corollary 3.6

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d-dim torus, T > 0 exp (�(n
(3−τ )
5 (ε log n)−(1/2))) Corollary 3.9

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2-dim square, T = 0 exp (�(n
3−τ
10 −ε)) Theorem 3.7

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2-dim square, T > 0 exp (�(n
3−τ
10 −ε)) Theorem 3.10

RGG 2-dim, dense exp (�(n
1
3 )) Yamaji (2023)

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2-dim, dense exp (O(n
1
3+ε)) Yamaji (2023)

HRG exp (�(n
3−τ
6 )) Yamaji (2023)

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

exp (O(n
3−τ
6 +ε)) Yamaji (2023)

high degree proportional to n1/(τ−1) and two vertices of lower degree proportional to
n(τ−2)/(τ−1).

• We complement our theoretical lower bounds with experiments showing that the super-
polynomial growth becomes only relevant for very large networks.

Discussion and related work. Although cliques themselves have been studied extensively in the
literature, there is, to the best of our knowledge, only little previous work on the number ofmax-
imal cliques in network models. In fact, the only theoretical analysis we are aware of is the recent
preprint by Yamaji (2023), giving bounds for HRGs and random geometric graph (RGG), which
are also shown in Table 1. Interestingly, this includes the upper bound of exp (O(n

3−τ
6 +ε)) for the

HRG model. In contrast to that, we give the asymptotically larger lower bound exp (�(n
3−τ
4 −ε))

for the corresponding GIRG variant. Thus, there is an asymptotic difference between the HRG
and the GIRG model.

This is surprising as the GIRG model is typically perceived as a generalization of the HRG
model. More precisely, there is a mapping between the two models such that for every HRG
with average degree dHRG there exist GIRGs with average degree dGIRG and DGIRG with dGIRG ≤
dHRG ≤DGIRG that are sub- and supergraphs of the HRG, respectively. Moreover, dGIRG and
DGIRG are only a constant factor apart and experiments indicate that dHRG = dGIRG · (1+ o(1)),
that is, every HRG has a corresponding GIRG that is missing only a sublinear number of edges
Bläsius et al., (2022). In the case of maximal cliques, however, this minor difference between the
models leads to an asymptotic difference.

Besides this theoretical analysis, it has been observed empirically that the number of maximal
cliques in most real-world networks as well as in the GIRG and the IRG model is smaller than
the number of edges of the graph Bläsius and Fischbeck (2022). This indicates linear scaling in
the graph size with low constant factors and small lower-order terms, which seems to be a stark
contradiction to the super-polynomial lower bounds we prove here. We resolve this contradiction
with our experiments in Section 5, where we observe that the graph size has to be quite large before
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the asymptotic behavior kicks in, that is, we observe the super-polynomial scaling as predicted by
our theorems but on such a low level that it is overshadowed by the linear lower-order terms.

Notation and setting. In the rest of this paper, we will be interested in results in the large n limit,
where n denotes the number of nodes in the random graph. We therefore use classical asymp-
totic notation, in terms of the graph size n. For any two non-negative functions f (n), g(n) we
will write f (n) ∈ o(g(n)) if limn→∞ f (n)/g(n)= 0; f (n) ∈O(g(n)) if lim supn→∞ f (n)/g(n)< ∞;
f (n) ∈ �(g(n)) if lim infn→∞ f (n)/g(n)> 0; f (n) ∈ �(g(n)) if f (n) ∈O(g(n)) and f (n) ∈ �(g(n)).
Moreover, we will say that a sequence of events {En}n≥1 happens with high probability (w.h.p.) if
limn→∞ P (En) = 1.

2. Erdős–Rényi random graph
An Erdős–Rényi random graph Gilbert (1959); Erdős and Rényi (2022) G(n, p) has n vertices, and
each pair of vertices is connected independently with probability p. We give bounds on the num-
ber of maximal cliques in a G(n, p) depending on p. Roughly speaking, we give super-polynomial
lower bounds for the dense regime and polynomial upper bounds for a sparser regime. Specifically,
we first give a general lower bound that is super-polynomial if p is non-vanishing for growing n,
that is, if p ∈ �(1). Note that p ∈ �(1) yields a dense graph with a quadratic number of edges in
expectation. For super-dense graph with p= 1− c/n for a constant c, we strengthen this lower
bound to exponential. In contrast to this, we give a polynomial upper if p ∈O(n−a) for any con-
stant a> 0. For sparse graphs with p ∈O(n−1), yielding graphs with �(n) edges in expectation,
our upper bound on the number of maximal cliques is linear. We start with the general lower
bound.

Theorem 2.1. Let N be the number of maximal cliques in a G(n, p). Then, for n sufficiently large,

E[N]≥ n
log (n)/2−log log n+log log (1/p)

log (1/p) · 1− o(1)
e

. (1)

Proof. Let Nk be the number of maximal cliques of size k. To estimate E[Nk], note that the prob-
ability that a fixed subset C ⊆Vof |C| = k vertices forms a clique is pk(k−1)/2. Moreover, it is
maximal if none of the other n− k vertices is connected to all k vertices of C, which happens
with probability (1− pk)n−k. As the two events are independent and there are

(n
k
)
vertex sets of

size k, we obtain

E[Nk]=
(
n
k

)
pk(k−1)/2(1− pk)n−k. (2)

Using that
(n
k
)≥ (n/k)k and increasing the exponents of the probabilities, we obtain

E[Nk]≥
(n
k

)k
pk

2/2(1− pk)n.

We now set k= log (n)/ log (1/p)= − log (n)/ log (p), which yields pk = n−1. Thus, in the
above bound, the term nkpk2/2 simplifies to nkn−k/2 = nk/2. Moreover, the term (1− pk)n
simplifies to (1− 1/n)n, which converges to 1/e for n→ ∞. Thus, we obtain

E[Nk]≥ nk/2
1
ekk

(1− o(1))

= n
log (n)/2
log (1/p) ·

(
log (n)
log (1/p)

)− log (n)
log (1/p) · 1− o(1)

e
.

https://doi.org/10.1017/nws.2024.13 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2024.13


370 T. Bläsius et al.

Changing the base of the second factor yields

= n
log (n)/2
log (1/p) · e−

log (n)
log (1/p) ·log

(
log (n)
log (1/p)

)
· 1− o(1)

e

= n
log (n)/2
log (1/p) · n− log log n−log log (1/p)

log (1/p) · 1− o(1)
e

= n
log (n)/2−log log n+log log (1/p)

log (1/p) · 1− o(1)
e

.

As there are clearly at least as many maximal cliques as maximal cliques of size k, claimed bound
for E[N] follows. �

This means that in a dense Erdős–Rényi random graph (constant p), the expected number of
maximal cliques is super-polynomial in n. In the following, we show that, when the graph gets
even denser, the number of maximal cliques even grows exponentially. For this, we prove the
existence of an induced subgraph that has many maximal cliques. Specifically, we aim to find a
large co-matching, that is, the complement graph of a matching (or equivalently, a co-matching).

Lemma 2.2. Let G be a co-matching on 2k vertices. Then G has 2k maximal cliques.

Proof. The complement G of G is a matching with k edges. The maximal independent sets of G
are the vertex sets that contain for each edge exactly one of its vertices. Thus, G has 2k maximal
independent sets, which implies that G has 2k maximal cliques. �

With this, we can show an exponential lower bound for super-dense Erdős–Rényi graphs.

Theorem 2.3. For every c> 0, there exists a ζ > 0 and n′ > 0 such that G(n, 1− c/n) contains
at least 2ζn cliques with high probability for all n≥ n′.
Proof. A co-matching in G(n, 1− c/n) corresponds to an induced matching in G(n, c/n). Now fix
M > 1. Then, by [van der Hofstad, (2017), Theorem 5.12], with high probability the Erdős–Rényi
random graph contains a linear number of vertices of degree at mostM and at least 1. Denote the
reduced graph with only vertices of degree at mostM byG≤M , which has a linear number of edges.
Now we construct an induced matching of linear size in G≤M as follows. Start with any edge {u, v}
in G≤M , and add it to the matching. Then, remove u, v and all neighbors of u and v from G≤M .
This removes at most 2M2 edges from G≤M , as all degrees are bounded byM. Then, pick another
edge and continue this process until G≤M contains no more edges. As this process removes only a
constant number of edges after picking a new edge, at least a linear number of edges will be added
before the process finishes. Thus, there is an inducedmatching of at least ζnwith high probability,
which yields the claim due to Lemma 2.2. �

Next we consider less dense Erdős–Rényi graphs with p ∈O(n−a) for a constant a ∈ (0, 1] and
prove a polynomial upper bound on the number of maximal cliques. The degree of the polynomial
depends on a. For sparse graphs with p ∈O(n−1), our bound is linear.

Theorem 2.4. Let p= (c/n)a for constants c> 0 and a ∈ (0, 1] and let N be the number of maximal
cliques in a G(n, p). Then E[N] ∈O(nx) with

x=
⌈
1
a

⌉
− a ·

(⌈ 1
a
⌉

2

)
.

Proof.As in Theorem 2.1, letNk be the number of maximal cliques of size k. Note that the number
of maximal cliques is upper bounded by the number of (potentially non-maximal) cliques. Thus,
we obtain

E[Nk]≤
(
n
k

)
p

k(k−1)
2 .
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Using that
(n
k
)≤ (en/k)k, inserting p= (c/n)a, and rearranging yields

E[Nk]≤
(en
k

)k ( c
n

)a k(k−1)
2

=
( ce
k

)k ( c
n

)a k(k−1)
2 −k

. (3)

We first argue that we can focus on the case where k is constant as the above term vanishes
sufficiently quickly for growing k. For this, note that ak(k− 1)/2− k≥ k if k≥ 4/a+ 1. Thus,
as c/n< 1 for sufficiently large n, the second factor of Equation (3) is upper bounded by (c/n)k.
For k≥ 4/a+ 1, it then follows that E[Nk]≤ (c2e/(kn))k. For sufficiently large n, the fraction is
smaller than 1 and thus the sum over all Nk for larger values of k is upper bounded by a constant
due to the convergence of the geometric series.

Focusing on k ∈ �(1) and ignoring constant factors, we obtain

E[N] ∈O
(
max
k∈N+

{
nx(k)

})
with x(k)= k− a

k(k− 1)
2

.

To evaluate the maximum, note that x(k) describes a parabola with its maximum at k0 = 1/a+
1/2. However, k0 may not be integral. To determine the integer k that maximizes x(k), note that
for a ∈ [ 1i ,

1
i−1 ] with i ∈N

+, we get k0 ∈ [i− 1
2 , i+ 1

2 ]. Thus, i is the closest integer to k0. As the
parabola is symmetric at its maximum k0, the exponent x(k) is maximized for the integer k= i=

 1
a�. Substituting k(k− 1)/2= (k

2
)
yields the claim. �

3. Geometric inhomogeneous random graphs (GIRGs)
While the Erdős–Rényi random graph is homogeneous, and does not contain geometry, we now
investigate the number of maximal cliques in a model that contains both these properties, the
GIRG Bringmann, Keusch, and Lengler (2015). We will use similar notation as in Bringmann,
Keusch, and Lengler (2015), except for the parameters α and β , which we will replace by 1/T
and τ , respectively, to be more consistent with the literature on other similar models Krioukov
et al. (2010). In this model, each vertex v has a weight, wv and a position xv. The weights are
independent copies of a power-law random variableW with exponent τ , that is,

1− F(w):= P(W >w)=w1−τ , (4)

for all w≥ 1. We impose the condition τ ∈ (2, 3), to ensure that the weights have finite mean but
unbounded variance. The parameterμ denotes themean of this distribution and can be computed
as μ = (τ − 2)−1. The vertex positions x1, . . . , xn are independent copies of a uniform random
variable on the d-dimensional torus Td =R

d/Zd.
An edge between any two vertices u, v ∈V of the GIRG appears independently with a

probability puv determined by the weights and the positions of the vertices:

puv =min

{(
wuwv

nμ‖xu − xv‖d
)1/T

, 1

}
, (5)

where ‖ · ‖ denotes the maximum norm on the torus, μ is a parameter controlling the average
degree, and 0< T < 1 is the temperature and controls the influence of the geometry. We say that
T = 0 is the threshold case of the GIRG. That is, when T = 0,

puv =
{
1 wuwv

nμ‖xu−xv‖d ≥ 1
0 else.

(6)
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(a) (b)

Figure 1. Illustration of the gray shaded boxes Bi on the 1- and 2-dimensional torus.

In general, we will be interested in results for the GIRGmodel when the number of nodes, n, tends
to infinity. We will then often refer to the family of GIRGs generated for varying n by G(n), where
we assume that all other parameters (μ, τ , γ , d) remain fixed.

In the following, we first give a lower bound for the threshold case (Section 3.1). The proof
makes use of the toroidal structure of the ground space. To prove that this is not essential to
obtain a super-polynomial number of maximal cliques, we additionally give a lower bound for a
variant of the model where the ground space is a 2-dimensional unit square with Euclidean norm
(Section 3.2). Finally, in Section 3.3, we show how to extend these results to the general case with
non-zero temperatures.

3.1 Threshold case
Here we show that a d-dimensional threshold GIRGG= (V , E) has, with high probability, a super-
polynomial number of maximal cliques. To achieve this, we proceed as follows to show that G
has a large co-matching as induced subgraph (also see Lemma 2.2). We consider the vertex set
S⊆V containing all vertices whose weight lies between a lower bound w
 and an upper bound
wu. As a co-matching is quite dense, it makes sense to think of these as rather large weights. We
then define disjoint regions B1, . . . , B2k. For i ∈ [k], we call Bi and Bi+k a pair of opposite regions.
These regions will satisfy the following three properties. First, every Bi contains a vertex from S
with high probability. Second, pairs of vertices from S in opposite regions are not connected. And
third, vertices from S that do not lie in opposite regions are connected. Note that these properties
imply the existence of a co-matching on 2k vertices, as choosing an arbitrary vertex of S for each
region Bi makes it so that each chosen vertex has exactly one partner from the opposite region to
which it is not connected, while it is connected to the vertices from all other regions.

In the following we first give a parameterized definition of the regions Bi and then show how to
choose the parameters for the above strategy to work; also see Figure 1. Each Bi is an axis-aligned
box, that is, the cross product of intervals. Let g(n), h(n)> 0 such that 1/(g(n)+ h(n)) is an even
number. Think of h(n) of as the height of each box and of g(n) as the gap between the boxes,
yielding 2k= 1/(g(n)+ h(n)) boxes. Now we define Bi = [(i− 1) · (g(n)+ h(n)), (i− 1) · (g(n)+
h(n))+ h(n)]× [0, 12 − g(n)]d−1 for i ∈ [2k]. We call the resulting regions B1, . . . , B2k the evenly
spaced boxes of height h(n) and gap g(n), see Figure 1 for an illustration for d = 1 and d = 2. As
before, Bi and Bi+k for i ∈ [k] are opposite boxes.

https://doi.org/10.1017/nws.2024.13 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2024.13


Network Science 373

With this, note that the distance between any pair of points in opposite boxes is at least
u= 1

2 − h(n) (recall that we assume the infinity norm). Moreover, the distance between any pair
of points in non-opposite regions is at most 
 = 1

2 − g(n). This yields the following lemma.

Lemma 3.1. Let B1, . . . , B2k be evenly spaced boxes of height h(n) and gap g(n) in T
d. Let w
 =

( 12 − g(n))d/2√μn and wu = ( 12 − h(n))d/2√μn. If a GIRG on n vertices with T = 0, τ ∈ (2, 3) and
μ places one vertex of weight in [w
,wu) in each box Bi, then these vertices form a co-matching.

Proof. As observed above, the vertices in opposite boxes have distance at least u= 1
2 − h(n).

Moreover, the vertices considered here have weight less than wu = ud/2√μn. As w2
u/(μnud)= 1,

these vertices are not connected because the weight interval [w
,wu) is open at wu (see
Equation (6)). Similarly, vertices in non-opposite boxes have distance at most 
 = 1

2 − g(n) and
weight at least w
 = 
d/2

√
μn. As w2


/(μn

d)= 1, such vertices are connected. Hence, we get a

co-matching. �
It now remains to choose g(n) and h(n) appropriately. First observe that, for the weight range

in Lemma 3.1 to be non-empty, we needw
 <wu and thus g > h. Beyond that, we want to achieve
the following three goals. First, the weight range needs to be sufficiently large such that we actually
have a sufficient number of vertices in this range. For this, we want to choose g(n) substantially
larger than h(n). Second, we want to make each box Bi sufficiently large for it to contain a vertex
with high probability. For this, we mainly want h(n) to be large. Third, we want the number of
boxes 2k= 1/(g(n)+ h(n)) to be large to obtain a large co-matching. For this, we want g(n) and
h(n) to be small.

Note that the restrictions of choosing h(n) large, g(n) larger than h(n), and g(n)+ h(n) small
are obviously conflicting. In the following, we show how to balance these goals out to obtain a
co-matching of polynomial size. We start by estimating the number of vertices in the given weight
range in the following lemma, which is slightly more general then we need.

Lemma 3.2. Let the vertex weights independently be sampled as in (4), with τ ∈ (2, 3). Let a, b> 0
be constants and let g(n), h(n) be functions of n such that g(n), h(n) ∈ o(1). Let S be the set of vertices
with weight in [(a− g(n))b√μn, (a− h(n))b√μn). Then

E[|S|]= n
3−τ
2 · μ 1−τ

2 bab(1−τ )−1 · (g(n)− h(n)±O(g(n)2 + h(n)2)). (7)

Proof.Recall from (4) that the cumulative distribution function for the weights is F(x)= 1− x1−τ .
Thus, we get

E[|S|]= n ·
(
F
(
(a− h(n))b

√
μn

)
− F

(
(a− g(n))b

√
μn

))
= n ·

(
((a− g(n))b

√
μn)1−τ − ((a− h(n))b

√
μn)1−τ

)
= μ

1−τ
2 n

3−τ
2

(
(a− g(n))b(1−τ ) − (a− h(n))b(1−τ )

)
. (8)

We can now use the Taylor expansion of f (x)= (a− x)c at 0 to obtain the bound f (x)= ac −
cac−1x±O(x2), which is valid for x ∈ o(1). Since g(n), h(n) ∈ o(1) we can thus bound the above
term in parentheses for c= b(1− τ ) as

(a− g(n))c − (a− h(n))c = −cac−1g(n)+ cac−1h±O(g(n)2 + h(n)2)
= −cac−1(g(n)− h(n)±O(g(n)2 + h(n)2))
= b(τ − 1)ab(1−τ )−1(g(n)− h(n)±O(g(n)2 + h(n)2)). (9)

Equations (8) and (9) together yield the claim. �

https://doi.org/10.1017/nws.2024.13 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2024.13


374 T. Bläsius et al.

Note that, if additionally h(n) ∈ o(g(n)), we can write the last factor as g(n)(1− h(n)/g(n)±
O(g(n)))= g(n)(1± o(1)) and obtain the following corollary.

Corollary 3.3. Let a, b> 0 be constants and let g(n), h(n) be functions of n such that g(n) ∈ o(1)
and h(n) ∈ o(g(n)). Let S be the set of vertices with weight in [(a− g(n))b√μn, (a− h(n))b√μn).
Then

E[|S|]= g(n)n
3−τ
2 · μ 1−τ

2 bab(1−τ )−1 · (1± o(1)). (10)

Consider again the weights w
 and wu as given in Lemma 3.1 and let S be the set of vertices
in [w
,wu). Then Corollary 3.3 in particular implies that S contains �(g(n) · n 3−τ

2 ) vertices in
expectation.

With this, we turn to our second goal mentioned above, namely that each box Bi should be
sufficiently large.

Lemma 3.4. Let B1, . . . , B2k be evenly spaced boxes of height h(n) and gap g(n) in Td. If g(n) ∈ o(1)
then each box Bi has volume h/2d−1 · (1− o(1)).

Proof. Recall that the height of Bi is h(n) while its extent in all other dimensions is 
 = 1
2 − g(n).

Thus its volume is h(n) · ( 12 − g(n))d−1 = h(n)/2d−1 · (1− 2g(n))d−1. The claim follows from the
fact that (1− 2g(n))d−1 approaches 1 from below for n→ ∞ as g(n) ∈ o(1) and d constant. �

Corollary 3.3 and Lemma 3.4 together tell us that the expected number of vertices in each box
that have a weight in the desired range is in �(h(n) · g(n) · n 3−τ

2 ). Recall we want to choose h(n)
and g(n) as small as possible such that each box still contains a vertex with high probability. We
set h(n)= c · n− 3−τ

4 and g(n)= c · n− 3−τ
4 +ε for arbitrary constants c> 0 and ε > 0. Note that this

satisfies the condition h(n) ∈ o(g(n)) of Corollary 3.3 and yields an expected number of �(nε)
vertices with the desired weight in each box. Since the number of vertices in a given box follows
a binomial distribution and since nε ∈ ω( log (n)), we can apply a Chernoff bound to conclude
that actual number of vertices matches the expected value (up to constant factors) with proba-
bility 1−O(n−c′) for any c′ > 0 [Bläsius et al., (2022) Corollaries 2.3 and 2.4]. Together with a
union bound, it follows that every box contains �(nε) vertices (and thus at least one vertex) with
probability 1−O(2k · n−c′). By choosing g(n), h(n), and k appropriately, we obtain the following
theorem.

Theorem 3.5. Let G(n) be a d-dimensional GIRG with T = 0, μ > 0 and τ ∈ (2, 3) and let s> 0
and ε > 0 be arbitrary constants. Then, with high probability, G(n) contains a co-matching of size
s · n 3−τ

4 −ε as induced subgraph.

Proof. Let B1, . . . , B2k be evenly spaced boxes of height h(n)= c · n− 3−τ
4 and gap g(n)= c ·

n− 3−τ
4 +ε (for appropriately chosen c> 0, which will be determined later). Letw
 andwu be defined

as in Lemma 3.1. As argued above, Corollary 3.3 and Lemma 3.4 imply that, with high probabil-
ity, each box Bi includes at least one vertex with weight in [w
,wu). By Lemma 3.1 any set that
contains exactly one vertex of each box forms a co-matching of size 2k.

Recall that 2k= 1/(g(n)+ h(n)). Thus, we can choose c such that 2k= s · n 3−τ
4 −ε . Again, by

the above argumentation, it follows that every box contains at least one vertex with probability
1−O(2kn−c′)= 1−O(n

3−τ
4 −ε−c′) for any constant c′ > 0. Choosing c′ sufficiently large then

yields the claim. �
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(a) (b) (c)

Figure 2. Lower bound on the number of maximal cliques of Corollary 3.6 (with b= 2, ε ↓ 0), 3.7 (for ε ↓ 0, b= 2 and C= 1),
4.1 (for ε ↓ 0 and b= 2) against n for different values of τ . The black line is the line n.

This theorem together with Lemma 2.2 directly imply the following corollary.

Corollary 3.6. Let G(n) be a d-dimensional GIRG with T = 0, μ > 0 and τ ∈ (2, 3), and let b> 0
and ε > 0 be arbitrary constants. Then, with high probability, the number of maximal cliques in
G(n) is at least bn(3−τ )/4−ε .

Figure 2a shows this lower bound for b= 2 against n. Interestingly, while Corollary 3.6 shows that
the number of maximal cliques grows super-polynomially in n, for τ > 2, this growth may still be
slower than the linear slope n for large geometric networks. This is of particular importance as the
smaller order terms of the number of maximal cliques contain terms of at least �(n). Indeed, the
number of maximal 2-cliques is lower bounded by the number of vertices of degree 1, which scales
linearly by Equation (4). Thus, for practical purposes, the dominant term could be the linear term
instead of the super-polynomial term, especially if the degree exponent is close to 3.

3.2 GIRG with 2-dimensional square
Our previous lower bound for the number of maximal cliques relies on the toroidal structure
of the underlying space. We now show that even if the vertex positions are constrained to be
positioned in the square [0, 1]2 instead, the GIRG still contains a super-polynomial number of
maximal cliques. In this setting, we will also switch from the infinity norm to the 2-norm. We will
discuss possible extensions to other norms in Section 6.

Theorem 3.7. For any ε > 0 and b> 0, a 2-dimensional GIRG G(n) on n vertices with vertex posi-
tions uniformly distributed over [0, 1]2 equipped with the 2-norm and T = 0, μ > 0, and τ ∈ (2, 3)
contains with high probability at least

Cbn
3−τ
10 −ε

(11)

maximal cliques for some C > 0.

Proof. Let S be the set of vertices with weights within [a
√

μn(1− c · n−β), a√μn] for some
0< a< 1/4, β > 0 (and appropriately chosen c> 0, which will be determined later). By
Corollary 3.3,

E[|S|]= n(3−τ )/2−β(1+ o(1)) (12)

Let C be a circle on [0, 1]2 of constant radius R< 1/4. We now create an even number of areas
B1, . . . , B2k of height h(n), evenly distributed over C as illustrated in Figure 3a. That is, we consider
2k identical and evenly spaced circular segments B1, . . . , B2k of height h and chord length q. We
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(a) (b)

Figure 3. Clique minus a matching in the 2-dimensional GIRG.

ensure that any pair of vertices in two opposite areas Bi and Bi+k are disconnected. That is, the
distance t between the two ends of these areas should equal

t = a. (13)

We also ensure that any pair of vertices in non-opposite areas connect. This means that the dis-
tance 
 between the rightmost part of Bi and the leftmost part of any non-opposite Bj is at most


 = a
√
1− c · n−β . (14)

The width q of one of the Bi’s is given by
q
2

=
√
R2 − (R− h)2 =

√
h(2R− h)=

√
h(n)(h(n)+ t)=

√
h(n)(h(n)+ a). (15)

Thus, the area of Bi is given by

c1h(n)3/2
√
h(n)+ a, (16)

for some constant c1 > 0. The probability that a given area contains no vertices from S is given by

(
1− c1h(n)3/2

√
h(n)+ a

)|S| = exp (−c2n(3−τ )/2−βh(n)3/2)(1+ o(1)), (17)

for some c2 > 0.
We now calculate the maximal number of areas that we can pack on C. The circumference of C

is 2πR. The arc length of a single area is at most qπ/2. Furthermore, the arc length of the section
with a chord of length 
, a(
), is given by

a(
)= 2R sin−1 (
/(2R))= 2R sin−1
(a√1− c · n−β

a+ 2h(n)

)

= 2R sin−1
(
1− a+ 2h(n)− a

√
1− c · n−β

a+ 2h(n)

)

= πR− 23/2R

√
a+ 2h(n)− a

√
1− c · n−β

a+ 2h(n)
(1+ o(1)), (18)
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using the Taylor series of sin−1 (1− x) around x= 0. Now take h(n)= c · n−γ (n). Then, by
Equation (18), a(
) scales as

a(
)= πR− R�
(√

(1−
√
1− c · n−β)+ c · n−γ (n)

)
= πR− R�(

√
c · n−β + c · n−γ (n)). (19)

Now the arc length between two adjacent sections Bi and Bi+1 is equal to πR− a(
). This
means that the arc length between Bi and Bi+1 scales as πR− (πR− R�

√
c · n−β + c · n−γ (n)))=

R�(
√
c · n−β + c · n−γ (n)).

The maximal value of the number of possible areas 2k, is the total circumference of C divided
by the arc length of an interval Bi and the arc length between Bi and Bi+1, which yields

2k= 2πR
R�(

√
c · n−β + c · n−γ (n))+ √

h(n)(h(n)+ a)
∈ �

(
min (nβ/2, nγ (n)/2)

)
. (20)

Thus, by choosing c correctly, we can let 2k= s ·min (nβ/2, nγ (n)/2) for any s> 0.When all i ∈ [2k]
contain at least one vertex in S, any set of 2k vertices with exactly one vertex in each Bi forms a co-
matching, as illustrated in Figure 3b. Furthermore Equation (17) shows that with high probability,
all Bi are non-empty, as long as n(3−τ )/2−βh(n)3/2 → ∞ as n→ ∞.

We therefore choose β = (3− τ )/5− ε and γ (n)= (3− τ )/5. Then, with high probability
there is a co-matching of size 2k= s · n(3−τ )/10−ε . Thus, by Lemma 2.2 and choosing s sufficiently
large yields that for fixed b> 0 the number of maximal cliques can be bounded from below by

bn
(3−τ )/10−ε

(21)

�
Figure 2b shows the lower bound of Theorem 3.7 against n. As for the toroidal case, the super-

polynomial growth may be dominated by lower-order linear terms.

3.3 Non-threshold case
We now show how our constructions extend to the non-threshold GIRG, where the connection
probability is given by Equation (5) instead of Equation (6).

Theorem 3.8. Let G(n) be a d-dimensional GIRG on n vertices with T > 0, μ > 0 and τ ∈ (2, 3) and
let s> 0 be an arbitrary constant. Then, there exists an ε > 0 such that, with high probability, G
contains a co-matching of size s · n(3−τ )/5 · (ε log n)−(1/2) as induced subgraph.

Proof. As before, we consider 2k boxes B1, . . . , B2k with height h(n) and gap g(n), though now we
choose

g(n)= h(n) · (ε log n)1/2 and h(n)= 1
2s

· n− 3−τ
5 ,

for a constant ε > 0, which we determine below. We again focus on the vertex set S containing all
vertices with weights in [w
,wu], though our choice for wu is slightly different. In particular, we
choose

w
 = (1/2− g(n))d/2
√

μn and wu = (1/2− (T/d + 1)h)d/2
√

μn.

Our goal now is to show that, with high probability, there exists at least one co-matching that
contains one vertex from each box. That is, if M denotes the number of such co-matchings, we
want to show thatM > 0 with high probability.

We start by bounding the number of vertices from S that lie in a given box Bi, denoted by S(Bi).
Since T and d are constants and (ε log n)1/2 ∈ ω(1), we have (T/d + 1)h(n) ∈ o(g(n)), allowing us
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to bound E[|S|] using Corollary 3.3, which yields

E[|S|] ∈ �
(
gn

3−τ
2
)
.

Moreover, since the vertices are distributed uniformly at random in the ground space, the expected
fraction of vertices from S that lie in the box Bi is proportional to its volume, which is �(h)
according to Lemma 3.4. It follows that

E[|S(Bi)|] ∈ �
(
ghn

3−τ
2
)

∈ �
(
h(n)2n

3−τ
2 (ε log n)1/2

)
∈ �

(
n(3−τ )(1/2−2/5)(ε log n)1/2

)
.

Analogous to the proof of Lemma 3.4 we can apply a Chernoff bound to conclude that the number
of vertices in S(Bi) matches the expected value (up to constant factors) with probability 1−O(n−c)
for any c> 0. Note that the number of boxes is given by

2k= 1
g(n)+ h(n)

= 1
h((ε log n)1/2 + 1)

= 2s · n 3−τ
5

(ε log n)1/2 + 1
, (22)

which is at most n. Thus, applying the union bound yields that with high probability every box
contains n′ ∈ �(n(3−τ )(1/2−2/5)(ε log n)1/2) vertices. In the following, we implicitly condition on
this event to happen. Now recall that a co-matching consisting of one vertex from each box forms
if each vertex is adjacent to the vertices in all other boxes, except the vertex from the opposite box.

Despite the temperature, vertices in non-opposite boxes are still adjacent with probability 1,
since the weight of two such vertices i and j is at least w
 and their distance is at most 1

2 − g(n)
and, thus, according to Equation (5)

pij =min

⎧⎨
⎩
(

wiwj

nμ||xi − xj||d2

)1/T

, 1

⎫⎬
⎭≥min

⎧⎨
⎩
(

w2



nμ(1/2− g(n))d

)1/T

, 1

⎫⎬
⎭= 1.

In contrast to the threshold case, however, the probability for vertices in opposite boxes to be
adjacent is no longer 0. Since two such vertices i and j have distance at least 1

2 − h(n) and weight at
most wu = ( 12 − (T/d + 1)h)d/2√μn, we can bound the probability for them to be adjacent using
Equation (5), which yields

pij =min

⎧⎨
⎩
(

wiwj

nμ||xi − xj||d2

)1/T

, 1

⎫⎬
⎭

≤min

⎧⎨
⎩
(

w2
u

nμ( 12 − h(n))d

)1/T

, 1

⎫⎬
⎭

=min

{(
1− (T/d + 1)2h(n)

1− 2h(n)

)d/T
, 1

}

=min

{(
1− T

d
· 2h(n)
1− 2h(n)

)d/T
, 1

}

≤min

{(
1− T

d
· 2h(n)

)d/T
, 1

}
.

Since 1− x≤ e−x, we obtain pij ≤ e−2h(n).
With this we are now ready to bound the probability P (M > 0), that at least one co-matching

forms that contains one vertex from each box. To this end, we need to find one non-edge in each
pair of opposite boxes, that is, each such pair needs to contain two vertices (one from each box)
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that are not adjacent. Conversely, the only way to not find a co-matching is if there exists one pair
of opposite boxes such that all vertices in one box are adjacent to all vertices in the other. This
happens with probability at most (pij)(n

′)2 . Since there are k pairs of opposite boxes, applying the
union bound yields

P (M = 0) ≤ k(pij)(n
′)2 ≤ k exp (−2h(n)(n′)2). (23)

Now recall that n′ ∈ �(n(3−τ )(1/2−2/5)(ε log n)1/2) and that h(n)= 1/(2s) · n−(3−τ )/5.
Consequently, we obtain

P (M = 0) ≤ k exp
(
−�

(
n−(3−τ )/5 · n(3−τ )(1−4/5) · ε log n

))
= k exp

(−�(ε log n)
)

= kn−�(ε).

Moreover, since k ∈O(n(3−τ )/5) (see Equation 22), we have

P (M = 0) ∈O
(
n(3−τ )/5−�(ε)

)
,

meaning, for sufficiently large n, we can choose ε such that P (M = 0) ∈O(n−1) and, conversely,
P (M > 0) = 1−O(n−1). So with high probability there exists at least one co-matching of size

2k= 2s · n 3−τ
5

(ε log n)1/2 + 1
≥ 2s · n 3−τ

5

2(ε log n)1/2
= s · n 3−τ

5

(ε log n)1/2
,

where the inequality holds for sufficiently large n. �
Together with Lemma 2.2 we obtain the following corollary.

Corollary 3.9. Let G(n) be a d-dimensional GIRG on n vertices with T > 0, μ > 0, and τ ∈ (2, 3)
and let b> 0 be an arbitrary constant. Then there exists an ε > 0 such that, with high probability,
the number of maximal cliques in G(n) is at least

bn
(3−τ )/5·(ε log n)−(1/2)

. (24)

We can extend Theorem 3.7 to non-zero temperature in a very similar fashion (proof is in
Appendix A)

Theorem 3.10. For any ε > 0 and b> 1, a 2-dimensional GIRG G(n) on n vertices with T > 0 and
vertex positions uniformly distributed over [0, 1]2 contains with high probability at least

bn
3−τ
12 −ε log (n)1−ε

(25)
maximal cliques.

4. Inhomogeneous random graphs (IRGs)
We now turn to a random graph model that is scale-free, but does not contain a source of geome-
try, the IRG, or Chung–Lu random graph Chung and Lu (2002). We show that also in this model,
the number of maximal cliques scales super-polynomially in the network size n. Again, every ver-
tex i draws its weight wi independently from the power-law distribution Equation (4), where we
will again assume that τ ∈ (2, 3). Then, all pairs of vertices u and v connect independently with
probability:

p(wu,wv)=min
(wuwv

μn
, 1
)
, (26)

where μ controls the expected average degree.
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To show a lower bound on the number of maximal cliques, we make use of the fact that an IRG
contains a not too small rather dense subgraph with high probability. The following theorem is
obtained by looking just at the subgraph induced by vertices with weights in a certain range. We
chose the specific range to satisfy three criteria. First, the range is sufficiently large, such that the
subgraph contains many vertices. Second, the range is sufficiently small such that all vertex pairs
in the subgraph are connected with a similar probability. And third, the weights are large enough
such that a densely connected subgraph forms, but not so large that the vertices merge into a single
clique.

Theorem 4.1. Let G(n) be an IRG on n vertices with τ ∈ (2, 3) and μ > 0 and let b> 1 and
ε ∈ (0, 3−τ

4 ) be arbitrary constants. Then, the expected number of maximal cliques in G(n) is in

�
(
bn

(3−τ )/4−ε log n). (27)

Proof.We show that already the subgraph G′ induced by the vertices in a certain weight range has
the claimed expected number of maximal cliques. To define G′, we consider weights in [w
,wu]
with w
 =√

(1− g(n))μn and wu =√
(1− h(n))μn. To abbreviate notation, let

γ (n)= n
3−τ
4 .

For constants a and c we determine later, we choose g(n) and h(n) as:

g(n)= ah(n) and h(n)= cnε log (n)γ (n)−1.
Note that w
 <wu if and only if a> 1. Let n′ be the number of vertices in G′. From Lemma 3.2 it
follows:

E[n′] ∈ �(γ (n)2 · nε log (n)γ (n)−1) ∈ �(nεγ (n) log n).
As every vertex has independently the same probability to be in G′, a Chernoff bound implies that
n′ ∈ �(nεγ (n) log n) holds with high probability. Thus, in the following, we implicitly condition
on this event to happen.

To give a lower bound on the number of maximal cliques in G′, we only count the number Nk
of maximal cliques of size k with

k= 3ε
c
n−εγ (n).

We note that this is the same constant c as in the definition of h(n) above. As the number of
maximal cliques in G′ is a lower bound for the number of maximal cliques in G(n), we lower
bound the expectation of Nk, by the expected number of maximal cliques in G′,

E[Nk]≥
(
n′

k

)
P
(
C is a clique

)
P
(
Cmaximal | C is a clique

)
. (28)

In the following, we give estimates for the three terms individually.
We start with the event that C is a clique. Due to the lower and upper bound on the weights

in G′, it follows that any pair of vertices in G′ is connected with probability at least p
 = 1− g(n)
and at most pu = 1− h(n). Thus, for a fixed subset C of vertices of size |C| = k, the probability that
all k vertices are pairwise connected is at least pk(k−1)/2


 = (1− g(n))k(k−1)/2. As g(n) goes to 0 for
growing n and 1− x ∈ �( exp (−x)) in this case, we get

P
(
C is a clique

)≥ (1− g(n))k(k−1)/2 ∈ �

(
exp

(
−gk(k− 1)

2

))
. (29)

For C to be a maximal clique (conditioning on it being a clique), additionally no other ver-
tex can be connected to all vertices from C. This probability is at least (1− pku)n

′−k = (1−
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(1− h(n))k)n
′−k. As 1− x≤ exp (−x), it follows that (1− h(n))k ≤ exp (−hk)= n−3ε , where the

last equality follows from plugging in the values we chose for h(n) and k. Again using 1− x ∈
�( exp (−x)) for sufficiently small x, we can conclude that

P
(
Cmaximal | C is a clique

)≥ (1− (1− h(n))k)n
′−k

≥ (1− n−3ε)n
′−k

∈ �
(
exp

(− n−3ε(n′ − k)
))
. (30)

Finally, for the binomial coefficient, we get(
n′

k

)
≥

(
n′

k

)k
= exp

(
log

(
n′

k

)
k
)
. (31)

Our goal is to show that log (E[Nk])≥ n(3−τ )/4−ε log (n) log (b). Thus, plugging Equations (29),
(30), and (31) into the logarithm of (28) yields that we need to show that for every constant b> 1,
we can choose the constants a> 1 and c in the definitions of g(n) and h(n) such that

log
(
n′

k

)
k− gk(k− 1)

2
− n−3ε(n′ − k)

(to be shown)
> n−εγ (n) log n log b= n

3−τ
4 −ε log n log b.

(32)
This can be achieved by simply plugging in the values for n′, k, and g(n). For the first (and only
positive) term, we obtain

log
(
n′

k

)
k= log

(
�(nε log (n)γ (n))
3ε/cn−εγ (n)

)
3ε
c
n−εγ (n)

= log
(
n2ε�( log n)

) 3ε
c
n−εγ (n)

and thus for sufficiently large n

≥ 6ε2

c
n−εγ (n) log n.

For the negative terms, we start with the latter and obtain

n−3ε(n′ − k) ∈ �(n−3εnεγ (n) log n)= �(n−2εγ (n) log n).
This is asymptotically smaller than the positive term and can thus be ignored. For the other
negative term, first note that gk= 3aε log n. Thus, we obtain

gk(k− 1)
2

≤ 3aε
2

log (n)k= 3aε
2

log (n)
3ε
c
n−εγ (n)= 9aε2

2c
n−εγ (n) log n.

Together with the positive term, we obtain that for sufficiently large n, it holds

log
(
n′

k

)
k− gk(k− 1)

2
≥ 6ε2

c
n−εγ (n) log n− 9aε2

2c
n−εγ (n) log n

=
(
6− 9a

2

)
ε2

c
n−εγ (n) log n.

With this, we can choose a> 1 such that the first factor is positive and we can choose c such that
ε2/c= log b, which proves (32), as then(

6− 9a
2

)
ε2

c
n−εγ (n) log n= Cn(3−τ )/4−ε log (n) log (b).

for some C > 0. �
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Figure 2c shows that the lower bound provided by Theorem 4.1 may still be smaller than linear
for networks that are quite large, especially when τ ≈ 3.

4.1 Small maximal cliques are rare
We now focus on the maximal cliques of a fixed size in the IRG. How many maximal cliques of
size k are present in an IRG?

Let N(Kk) denote the number of maximal cliques of size k. Furthermore, letMn(ε) denote

Mn(ε)= {(v1, . . . , vk) : wi ∈ [ε, 1/ε](μn)
τ−2
τ−1 for i= 1, 2 and wi ∈ [ε, 1/ε](μn)

1
τ−1 ∀i ∈ {3, . . . , k}}.

(33)
Thus, Mn(ε) is the set of sets of k vertices such that two vertices have weight proportional to
n(τ−2)/(τ−1), and all other vertices have weights proportional to n1/(τ−1). Denote the number of
maximal k-cliques with sets of vertices in Mn(ε) by N(Kk,Mn(ε)). Then, the following theorem
shows that these ‘typical’ maximal cliques are asymptotically all maximal cliques. Furthermore,
it shows that all maximal cliques of size k> 2 occur equally frequently in scaling, and they also
appear on the same types of vertices. Here we use P−→ to denote convergence in probability.

Theorem 4.2 (Maximal clique localization). Let G(n) be an IRG on n vertices with τ ∈ (2, 3) and
μ > 0. For any fixed k≥ 3,

For any εn such that limn→∞ εn = 0,

N
(
Kk,Mn (εn)

)
N(Kk)

P−→1. (34)

Furthermore, for any fixed 0< ε < 1,

E [N(Kk,Mn(ε))]= �(n(3−τ )(2τ−3)/(τ−1)). (35)

Theorem 4.2(i) states that asymptotically all maximal k-cliques are formed between two ver-
tices of weights proportional to n(τ−2)/(τ−1) and all other vertices of weights proportional to
n1/(τ−1). Theorem 4.2(ii) then shows that there are proportional to n(3−τ )(2τ−3)/(τ−1) such maxi-
mal k-cliques. As visualized in Figure 4, this scaling is significantly smaller than the scaling of the
total number of k-cliques, which scales as nk/2(3−τ ) Hofstad, Leeuwaarden, and Stegehuis (2021).
Interestingly, the scaling of the number of maximal cliques is k-independent, contrary to the total
number of cliques. In particular, the number of k maximal cliques is always o(n), contrary to the
number of k-cliques which scales larger than n when τ < 3− 2/k. This shows once more that
the large number of maximal cliques in the IRG is caused by extremely large maximal cliques, as
fixed-size maximal cliques are only linearly many.

To prove this theorem, we need the following technical lemma, which is proven in
Appendix B:

Lemma 4.3.When τ ∈ (2, 3), then

∫ 1

0
. . .

∫ 1

0
x1−τ
3 · · · x1−τ

k

∫ ∞

0

∫ ∞

x1
xk−1−τ
1 x1−τ

2

k∏
i=3

min
(
x2xi, 1

)
e−μ1−τ x1xτ−2

2 dx2dx1 . . . dxk < ∞.

(36)
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Figure 4. Scaling of the number of maximal k-cliques, and the total number of (not necessarily maximal) 3,4,5-cliques.

Furthermore, we need a lemma that bounds the probability that a given clique on vertices of
weights x1 ≤ x2 · · · ≤ xk is maximal:

Lemma 4.4. Let G be an IRG with τ ∈ (2, 3) and μ > 0. Then, the probability that a given clique
between k vertices of weights x1 ≤ x2 · · · ≤ xk is maximal is bounded by

exp
(
−C1n2−τμ1−τx1xτ−2

2

)
(1+ o(1))≤ P

(
clique on weights x1, . . . , xk maximal

)
≤ exp

(
−C2n2−τμ1−τx1xτ−2

2

)
, (37)

for some 0< C1 ≤ C2 < ∞.

Proof. When x1 ≤ x2 ≤ · · · ≤ xk, we can compute the probability that this k clique is part of a
larger clique with a randomly chosen vertex as:∫ ∞

1
w−τ

∏
i∈[k]

min
(wxi

μn
, 1
)
dw

= x1 . . . xk
(μn)k

∫ μn/xk

1
wk−τdw+ x1 . . . xk−1

(μn)k−1

∫ μn/xk−1

μn/xk
wk−1−τdw

+ · · · + x1x2
(μn)2

∫ μn/x2

μn/x3
w2−τdw+ x1

μn

∫ μn/x1

μn/x2
w1−τdw+

∫ ∞

μn/x1
w−τdw

= ck
x1 . . . xk
(μn)k

(μn
xk

)k+1−τ + · · · + c2
x1
μn

(μn
x2

)2−τ + c1
(μn
x1

)1−τ

, (38)

for some c1, . . . , ck > 0. When x1 ≤ x2 ≤ · · · ≤ xk, this term becomes

(μn)1−τ
k∑

l=1

clx−l+τ
l

∏
i<l

xi. (39)

The ratio between two consecutive terms of this summation equals

xτ−l
l x1 . . . xl−1

xτ−l−1
l+1 x1 . . . xl

=
( xl
xl+1

)τ−l−1
. (40)

Now as xl ≤ xl+1 and τ ∈ (2, 3), this ratio is larger than 1 for l≥ 2, and smaller than one for l= 1.
This means that the summation can be dominated by
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(μn)1−τ
k∑

l=1

clx−l+τ
l

∏
i<l

xi ≤ C(μn)1−τx1xτ−2
2 , (41)

for some C > 0.
Thus, the probability that a clique on vertices with weights x1, . . . , xk is maximal can be upper

bounded by:

P
(
(x1, . . . , xk) clique maximal

)≤
(
1− C(μn)1−τx1xτ−2

2

)n
≤ exp

(
−Cn2−τμ1−τx1xτ−2

2

)
. (42)

We lower bound the probability that the clique is maximal by using that

(μn)1−τ
k∑

l=1

clx−l+τ
l

∏
i<l

xi ≥ c2(μn)1−τx1xτ−2
2 . (43)

Thus,

P
(
(x1, . . . , xk) clique maximal

)≥
(
1− c2(μn)1−τx1xτ−2

2

)n
≥ exp

(
−c2n2−τμ1−τx1xτ−2

2 /(1+ c2n1−τμ1−τx1xτ−2
2 )

)

= exp
(
−c2n2−τμ1−τx1xτ−2

2

)
(1+ o(1)). (44)

�
Now we are ready to prove Theorem 4.2:

Proof of Theorem 4.2. Fix 
i ≤ ui for i ∈ [k]. We now compute the expected number of maximal
k-cliques in which the vertices have weights n(τ−2)/(τ−1)[
i, ui] for i= 1, 2, and n1/(τ−1)[
i, ui] for
i≥ 3.

We bound the expected number of such maximal copies of Kk by:∑
v

E

[
I(Kk, v)1{

wvi∈[
i,ui]n(τ−2)/(τ−1), i=1,2, wvi∈[
i,ui]n1/(τ−1), i≥3
}]

= nk
∫ u1n(τ−2)/(τ−1)


1n(τ−2)/(τ−1)

∫ u2n(τ−2)/(τ−1)


2n(τ−2)/(τ−1)
· · ·

∫ ukn1/(τ−1)


kn1/(τ−1)
(x1 · · · xk)−τ

∏
1≤i<j≤k

min
(xixj

n
, 1
)

· P (
(x1, . . . , xk) clique maximal

)
dxk · · · dx1,

where I(Kk, v) is the indicator that a maximal k-clique is present on vertices v, and the sum over
v is over all possible sets of k vertices. Now the probability that a clique is maximal can be upper
bounded as in Lemma 4.4.

We bound the minimum in Equation (45) by:

xixj/n for {i, j} = {1, 2} or i= 1, j≥ 3;
1 for i, j≥ 3 .

Making the change of variables xi = yin1/(τ−1) for i= 3, . . . , k and xi = yi/n(τ−2)/(τ−1) otherwise,
we obtain the bound
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∑
v

E

[
I(Kk, v)1{

wvi∈[
i,ui]n(τ−2)/(τ−1), i=1,2, wvi∈[
i,ui]n1/(τ−1), i≥3
}]

≤ K̃nkn2(τ−2)/(τ−1)−k+1

×
∫ u1


1

∫ u2

y1

∫ u3


3

· · ·
∫ uk


k

y2−τ
1 y1−τ

2 y1−τ
3 . . . y1−τ

k

∏
j≥3

min (y2yj, 1) exp (−μ1−τ y1yτ−2
2 )dyk · · · dy1,

(45)

for some K̃ > 0. Because the weights are sampled i.i.d. from a power-law distribution, the maximal
weightwmax satisfies that for any ηn → 0,wmax ≤ n1/(τ−1)/ηn with high probability. Thus, wemay
assume that ui ≤ 1/ηn when i≥ 3. Now suppose that at least one vertex has weight smaller than
εnn(τ−2)/(τ−1) for i= 1, 2 or smaller than εnn1/(τ−1) for i≥ 3. This corresponds to taking ui = εn
and 
i = 0 for at least one i, or at least one integral in Equation (45) with interval [0, εn]. Similarly,
when vertex 1 or 2 has weight higher than 1/εnn(τ−2)/(τ−1), this corresponds to taking 
i = 1/εn
and ui = ∞ for i= 1 or 2, or at least one integral in (45) with interval [1/εn,∞]. Lemma 4.3 then
shows that these integrals tends to zero when choosing ui = ηn fixed for i≥ 3 and εn → 0. Thus,
choosing ηn → 0 sufficiently slowly compared to εn yields that∑

v
E
[
I(Kk, v)1{v/∈�n(εn,ηn)}

] ∈ o((n(3−τ )(2τ−3)/(τ−1)), (46)

where
�n(εn, ηn)= {(v1, . . . , vk) : wvi ∈ n(τ−2)/(τ−1)[εn, 1/εn], i= 1, 2 n1/(τ−1)[εn, 1/ηn]}. (47)

Let �̄n(εn, ηn) be the complement of �n(εn, ηn). Denote the number of maximal cliques
with vertices in �̄n(εn, ηn) by N(Kk, �̄n(εn, ηn)). Since wmax ≤ n1/(τ−1)/ηn with high probability,
�n(εn, ηn)=Mn(εn) with high probability. Therefore, with high probability,

N
(
Kk, M̄n (εn)

)
=N

(
Kk, �̄n(εn, ηn)

)
, (48)

where N
(
Kk, M̄n (εn)

)
denotes the number of maximal k-cliques on vertices not in Mn (εn). By

(46) and the Markov inequality, we have for all ε > 0

lim
n→∞ P

⎛
⎝
∣∣∣∣∣∣
N
(
Kk, �̄n(εn, ηn)

)
n(3−τ )(2τ−3)/(τ−1)

∣∣∣∣∣∣> ε

⎞
⎠= 0. (49)

Furthermore, Lemma 4.3 combined with the lower bound in (45) shows that when choosing
ui = 1/ε and 
i = ε for some fixed ε > 0 for all i,

E [N(Kk,Mn(ε))] ∈ �(n(3−τ )(2τ−3)/(τ−1)). (50)
Thus, for fixed ε > 0,

N(Kk)=N(Kk,Mn(ε))+N(Kk, M̄n(ε))= �p(n(3−τ )(2τ−3)/(τ−1)), (51)
which shows that

N
(
Kk,Mn (εn)

)
N(Kk)

P−→1, (52)

as required. This completes the proof of Theorem 4.2. �

5. Experiments
As mentioned in the introduction, empirical evidence suggests that the number of maximal
cliques in IRGs and GIRGs is small Bläsius and Fischbeck (2022). In fact, all generated networks
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with n= 50 k nodes and expected average degree 10 have fewer maximal cliques than edges.
This stands in stark contrast to our super-polynomial lower bounds. This discrepancy proba-
bly comes from the fact that n= 50 k is low enough that a linear lower-order term dominates
the super-polynomial terms. In this section, we complement our theoretical lower bounds with
experiments1 with an n that is sufficiently large to make the super-polynomial terms dominant.
Additionally, we consider dense and super-dense Erdős–Rényi graphs.

5.1 Cliques in the dense subgraph of GIRGs and IRGs
Our theoretical lower bounds are based on the existence of a dense subgraph among the vertices
with weights �(

√
n). To experimentally observe the super-polynomial scaling, we generate IRGs

and GIRGs restricted to vertices of high weight. This restriction lets us consider much larger val-
ues of n. In the following, we first describe the exact experiment setup, before describing and
discussing the results.

Experiment setup. We generate IRGs and GIRGs with varying number of vertices n and deter-
ministic power-law weights where the vth vertex has weight

wv =
(n
v

) 1
τ−1 .

Note that the minimum weight is wn = 1.
We use the power-law exponents τ ∈ {2.2, 2.5, 2.8} and for GIRGs we consider the tem-

peratures T ∈ {0, 0.4, 0.8} and dimension d = 1. For each parameter setting, we consider two
subgraphs: The subgraph induced by vertices with 0.5

√
n≤wi ≤ √

n and within the larger inter-
val 0.5

√
n≤wi ≤ n. In preliminary experiments, we also tried constant factors other than 0.5,

yielding comparable results.
As connection probability for the IRGs between the uth and vth vertex, we use min{1,wuwv/n},

that is, vertices of weight 1 have connection probability 1/n and vertices of weight at least
√
n are

deterministically connected. For GIRGs, we choose the constant factor μ in Equation (5) such
that we obtain the same expected2 average degree as for the corresponding IRG in the considered
subgraph. For each of these configurations, we generate 10 graphs. Figure 5 shows the average.
General observations. One can clearly see in Figure 5 (top row) that the scaling of the number of
cliques depending on the graph size is super-polynomial (upward curves in a plot with logarithmic
axes). Thus, on the one hand, this agrees with our theoretical analysis. On the other hand, the
plots also explain why previous experiments Bläsius and Fischbeck (2022) showed a small number
of cliques: While the scaling is super-polynomial, the constant factors are quite low. In the top-
left plot for τ = 2.5, more than 200M nodes are necessary to get just barely above 1M maximal
cliques in the dense subgraph. For τ = 0.8 this is even more extreme with n= 200 T yielding
only 10 k maximal cliques. Thus, unless we deal with huge graphs, the maximal cliques in the
dense part of the graph are dominated by the number of cliques in the sparser parts, despite the
super-polynomial growth of the former.
Effect of the power-law exponent τ . The top plots of Figure 5 show that a smaller power-law expo-
nent τ leads to more maximal cliques. The bottom plots show the number of cliques with respect
to the size of the dense subgraph and not with respect to the size of the full graph. One can see
that the difference for the different power-law exponents solely comes from the fact that the dense
subgraph is larger for smaller τ . For the same size of the dense subgraph, the scaling is almost
independent of the power-law exponent.
Effect of the geometry. In the left plots of Figure 5, we can see that geometry leads to fewer
maximal cliques. For T = 0, the super-polynomial scaling is only barely noticeable. Higher
temperatures lead to a larger number of cliques, and we get even more cliques for IRGs.

https://doi.org/10.1017/nws.2024.13 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2024.13


Network Science 387

Figure 5. The number of maximal cliques of the dense subgraph of GIRGs and IRGs. The considered subgraphs contain all
vertices with weights in [0.5

√
n,

√
n] (left column) and [0.5

√
n, n] (right column). The top and bottom plots show the number

of cliques with respect to the size of the full graph, and with respect to the size of the considered subgraph, respectively. All
axes are logarithmic. Each point is the average of 10 sampled graphs.

Interestingly, the scaling is slower for IRGs when additionally considering the core of vertices
with weight more than

√
n (see next paragraph).

Effect of the core. When not capping the weight at
√
n but also considering vertices of even higher

weight (right plots), we can observe the following. The overall picture remains similar, with a
slightly increased number of cliques. However, this increase is higher for GIRGs than it is for
IRGs. A potential explanation for this is the following. For IRGs, the core forms a clique and
adding a large clique to the graph does not change the overall number of maximal cliques by too
much. For GIRGs, however, it depends on the constant μ controlling the average degree whether
this subgraph forms a clique or not. Thus, for the same average degree, the maximum clique is
probably somewhat smaller for GIRGs and thus adding the vertices of weight at least

√
n leads to

more additional cliques than in IRGs.

5.2 Cliques in the dense and super-dense Erdős–Rényi graphs
Here we count the cliques for dense Erdős–Rényi graphs with constant connection proba-
bilities p ∈ {0.6, 0.7, 0.8, 0.9} and super-dense Erdős–Rényi graphs with connection probability
p= 1− c/n for c ∈ {1, 2, 4, 8}. Note that the complement of a super-dense Erdős–Rényi graph
has constant expected average degree. The scaling of the number of cliques with respect to the
number of vertices is shown in Figure 6, where each point represents 20 samples.

Note that for constant p, the left plot with logarithmic y-axis is curved downward, indicating
sub-exponential scaling, while the middle plot with logarithmic x- and y-axis is bent upward,
indicating super-polynomial scaling. This is in line with our lower bound in Theorem 2.1.

For the super-dense case, the right plot indicates exponential scaling, in line with Theorem 2.3.
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Figure 6. The number of maximal cliques in dense and super-dense G(n, p)s. For the left and middle plot, p is constant. For
the right plot, p= 1− c/n for constant c. Note that the y-axes are logarithmic and the x-axis in themiddle plot is logarithmic.
Each point is the average of 20 sampled graphs.

6. Conclusion and discussion
In this paper, we have investigated the number of maximal cliques in three random graph models:
the Erdős–Rényi random graph, the IRG and the GIRG. We have shown that sparse Erdős–Rényi
random graphs only contain a polynomial amount of maximal cliques, but in the other two sparse
models, the number of maximal cliques scales at least super-polynomially in the network size.
This is caused by the degree-heterogeneity in these models, as many large maximal cliques are
present close to the core of these random graphs. We prove that there only exist a linear amount
of small maximal cliques. Interestingly, these small maximal cliques are almost always formed by
two low-degree vertices, whereas all other vertices are hubs of high degree.

We have then shown that this dominant super-polynomial behavior of the number of maximal
cliques often only kicks for extreme network sizes, and that experimentally, lower-order linear
terms instead drive the scaling of the number of maximal cliques until large values of the net-
work size. This explains the dichotomy between the theoretical super-polynomial lower bounds
for these models, and the observation that in real-world networks, the amount of maximal cliques
is often quite small.

Several of our results only constitute lower bounds for the number of maximal cliques. We
believe that relatively close upper bounds can be constructed in a similar fashion, but leave this
open for further research.

While Theorem 3.7 only holds for 2-norms, we believe that the theorem can be extended to any
Lp-norm for p �= 1,∞, by looking at the Lp norm-cycle instead of the regular cycle. For p= 1,∞
this approach fails, shortest distance paths to non-opposing segments pass through the center of
the cycle. Therefore, opposing segments are just as close as many non-opposing ones. Whether
Theorem 3.7 also holds with 1 or ∞ norms is therefore a question for further research. We also
believe that this approach also extends to the underlying space [0, 1]d for general d, where instead
of looking at a cycle inside [0, 1]2, one studies a d-ball inscribed in [0, 1]d instead.
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Notes
1 The corresponding code is available at: https://github.com/thobl/maximal-cliques-scale-free-rand-graph
2 We do not sample the positions before computing the expected average degree but we compute the expectation with
respect to random positions.
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Appendix A. Proof of Theorem 3.10

Lemma A.1. Let (Ai)i∈[k] be a set of areas of size A, and let S be a set of vertices, such that A|S| > nε

for some ε > 0. Then, for any 0< λ < 1 and k< exp (λA|S|), with high probability all areas contain
at least (1− λ)A|S| vertices.
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Proof. The Chernoff bound gives for the number of vertices from S within area A, NS,A:

P
(
NS,A < (1− λ)A|S|)≤ exp

(
−λA|S|

)
. (53)

This implies that when A|S| > nε for some ε > 0, then, with high probability, all areas contain at
least (1− λ)A|S| vertices. �

We follow the same construction of areas and sets as in the proof of Theorem 3.7. By Equation
(20), this creates 2k= s · nmin (β/2,γ (n)/2) areas of size A= n−3/2γ (n), with on average E[|S|]=
n(3−τ )/2−β vertices. Thus, Lemma A.1 shows that as long as β + 3/2γ (n)< (3− τ )/2, then all
areas contain with high probability at least

n′ = c1n(3−τ )/2−β−3/2γ (n)

vertices for some c1 > 0.
From Equation (5), it follows that any set of vertices that contains one in each given area still

satisfies the requirement that all vertices in non-opposite boxes connect, as in non-opposite boxes,
the connection probability equals 1 by Equation (14). Now to form a co-matching, vertices in
opposite boxes should not connect.

With high probability, a positive proportion of vertices in two opposing areas have distance
at least t + h= a+ n−γ (n), by the uniform distribution within areas, and the fact that a positive
proportion of the two areas have distance t + h.

By Equation (5), the probability that vertices i, j ∈ S at distance at least a+ n−γ (n) are connected
is bounded by

pij ≤min

(( a2(1− n−β)
(a+ n−γ (n))2

)1/T
, 1

)

= (1− n−β)(1− n−γ (n))(1+ o(1))
= (1−max (n−β , n−γ (n)))(1+ o(1)). (54)

Similarly as in Equation (23),

P (M = 0) ≤ k(1−max (n−β , n−γ (n))(n
′)2 ≤ k exp (−max (n−β , n−γ (n))(n′)2) (55)

Using that n′ = c1n(3−τ )/2−β−3/2γ (n) therefore yields

P (M = 0) ≤ k exp (−c21n
(3−τ )−β−3γ (n) max (n−β , n−γ (n))). (56)

Thus, choosing β = γ (n)= (3− τ )/5− ε ensures that there is a co-matching of size k= s ·
n(3−τ )/10−ε

B. Proof of Lemma 4.3

Proof.This integral equals∫ 1

0
. . .

∫ 1

0
x1−τ
3 · · · x1−τ

k

∫ 1

0

∫ x2

0
xk−1−τ
1 xk−1−τ

2 exp
(
−μ1−τx1xτ−2

2

)
dx1dx2 . . . dxk

+
∫ 1

0
. . .

∫ 1

0
x2−τ
3 · · · x2−τ

k

∫ ∞

1

∫ x2

0
xk−1−τ
1 x1−τ

2

k∏
i=3

min
(
x2xi, 1

)
exp

(
−μ1−τx1xτ−2

2

)
dx1dx2 . . . dxk (57)
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Now the first integral is bounded by∫ 1

0
. . .

∫ 1

0
x2−τ
3 · · · x2−τ

k

∫ 1

0

∫ x2

0
xk−1−τ
1 xk−1−τ

2 dx2dx1 . . . dxk < ∞, (58)

as 2− τ > −1, and k− 1− τ > −1 for k≥ 3 as well. We now turn to the second integral. The
second integral is finite if∫ 1

0
. . .

∫ 1

0
x1−τ
3 · · · x1−τ

k

∫ ∞

1

∫ x2

0
xk−1−τ
1 x1−τ

2

k∏
i=3

min
(
x2xi, 1

)
1{

xτ−2
2 x1<1

}dx1dx2 . . . dxk < ∞.

(59)

This results in∫ 1

0
. . .

∫ 1

0
x1−τ
3 · · · x1−τ

k

∫ ∞

1

∫ x2−τ
2

0
xk−1−τ
1 x1−τ

2

k∏
i=3

min
(
x2xi, 1

)
dx1 . . . dxk

=
∫ 1

0
. . .

∫ 1

0
x1−τ
3 · · · x1−τ

k

∫ ∞

1
x(2−τ )(k+1−τ )−1
2

k∏
i=3

min
(
x2xi, 1

)
dx2 . . . dxk (60)

W.l.o.g. we assume that x3 > x4 > . . . > xk. Then, the inner integral evaluates to∫ ∞

1
x(2−τ )(k+1−τ )−1
2

k∏
i=3

min
(
x2xi, 1

)
dx2

=
∫ 1/x3

1
x(2−τ )(k+1−τ )+k−3
2 x3 · · · xkdx2 + · · · +

∫ ∞

1/xk
x(2−τ )(k+1−τ )−1
2 dx2

= C3x(τ−2)(k+1−τ )+3−k
3 x4 · · · xk + C4x(τ−2)(k+1−τ )+4−k

4 x5 · · · xk + · · · + Ckx
(τ−2)(k+1−τ )
k (61)

We now show that all these terms evaluate to a finite integral when plugged into Equation (60).
Indeed, ∫ 1

0

∫ x3

0
. . .

∫ xk−1

0
x(τ−2)(k+1−τ )+l−k
l xl+1 · · · xkx1−τ

3 · · · x1−τ
k dxkdxk−1 . . . dx3

=
∫ 1

0

∫ x3

0
. . .

∫ xl−1

0
x(τ−2)(l−τ )−1
l x1−τ

3 · · · x1−τ
l−1 dxldxl−1 . . . dx3

=
∫ 1

0

∫ x3

0
. . .

∫ xl−2

0
x(τ−2)(l−1−τ )−1
l−1 x1−τ

3 · · · x1−τ
l−2 dxldxl−2 . . . dx3 < ∞ (62)

as the index l− k remains at least 3. Therefore, Equation (36) is finite as well. �
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