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Resolution of Singularities of Null Cones
Weiqiang Wang

Abstract. We give canonical resolutions of singularities of several cone varieties arising from invariant
theory. We establish a connection between our resolutions and resolutions of singularities of closure
of conjugacy classes in classical Lie algebras.

Introduction

The purpose of this paper is to present canonical resolutions of singularities of certain
cone varieties arising naturally in invariant theory. Examples of such cone varieties
are provided by the so-called null cones which are the zero locus of the On (or Spn)
invariant polynomials on Mn,m, where Mn,m denotes the space of n×m complex ma-
trices (cf. e.g. [H]). Another example is the null cone for general linear groups. Our
construction resembles the celebrated Springer resolution of the nilpotent variety in
a complex semisimple Lie algebra which plays a vital role in representation theory
and geometry (cf. [CG]).

It turns out that the cone varieties studied here include as special cases the vari-
ety Z constructed in [KP1], [KP2] associated to two-column partitions. The Kraft-
Procesi variety Z is a complete intersection whose quotient under certain group co-
incide with the closure of a nilpotent conjugacy class in classical Lie algebras. It is
a very interesting problem to construct a canonical resolution of singularities of Z
in general. We establish relations between our resolutions of singularities and those
for closure of conjugacy classes associated to two-column partitions. In the general
linear Lie algebra case, we find more than one canonical resolution of singularities of
null cones and of closure of conjugacy classes.

We mention in passing that the present work grows out of an attempt to generalize
the geometric construction of (gln, glm)-duality [W] in the spirit of [CG] to other
Howe dualities [H].

The paper is divided into two sections. In Section 1 we present resolutions of
singularities of null cones in the On and Spn cases, and establish connections with
resolutions of singularities of closure of conjugacy classes. In Section 2 we treat the
analog of Section 1 for the general linear Lie algebras.

1 Null Cones Associated to On and Spn

Denote by GLn,On, and Sp2n the complex general linear group, orthogonal group,
and the symplectic group respectively. Denote by Mn,m the set of all complex n × m
matrices.
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1.1 The Orthogonal Setup

Let V be a vector space of complex dimension n with a non-degenerate symmetric
bilinear form. We identify V with Cn endowed with the standard symmetric bilinear
form

(u, v) =
n∑

i=1

uivi ,

where u, v denote the n-tuples (u1, . . . , un) and (v1, . . . , vn).
For convenience, we can identify Mn,m with the direct sum (Cn)m of m copies of

Cn. We may write a typical element of (Cn)m as an m-tuple:

A = (v1, v2, . . . , vm), v j ∈ Cn.

We define a set of quadratic polynomials ξ̃i j = ξ̃ ji , 1 ≤ i, j ≤ m on (Cn)m by

ξ̃i j(v) = (vi, v j) =
n∑

a=1

vaiva j .

Remark 1 The First Fundamental Theorem for On (cf. [H]) says that the polyno-
mials ξ̃i j = ξ̃ ji , 1 ≤ i, j ≤ m, generate the algebra of On invariant polynomials on
(Cn)m.

We identify the space S2(Cm) of second symmetric tensors as the space of symmet-
ric m×m matrices. Define a map

Q : Mn,m −→ S2(Cm)

T �→ Tt T.

Here Tt denotes the transpose of T. By identifying Mn,m with (Cn)m, we can equiva-
lently define Q(T) as the m × m symmetric matrix whose (i, j)-th entry is equal to
ξ̃i j .

1.2 The Symplectic Setup

Let V be a vector space of complex dimension n with a non-degenerate symplectic
(i.e., anti-symmetric) bilinear form. It is well known that n has to be an even num-
ber, say 2p. We identify V with Cn endowed with the following standard symplectic
bilinear form

(v, v ′) =

n/2∑
j=1

(x j y ′j − y jx
′
j).

Here v = (x, y) and v ′ = (x ′, y ′) are elements of C2p, expressed as 2-tuples of ele-
ments of Cp.
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We identify Mn,m with the direct sum (Cn)m of m copies of Cn as before. We may
write a typical element of (Cn)m as an m-tuple:

A = (v1, v2, . . . , vm), v j ∈ Cn.

We define a set of quadratic polynomials ξ̌i j = −ξ̌ ji , 1 ≤ i, j ≤ m on (Cn)m by

ξ̃i j(v) = (vi , v j).

Remark 2 The First Fundamental Theorem for Spn (cf. [H]) says that the polyno-
mials ξ̌i j = −ξ̌ ji , 1 ≤ i, j ≤ m, generate the algebra of Spn invariant polynomials on
(Cn)m.

We identify the space Λ2(Cm) of second anti-symmetric tensors in Cm as the space
of anti-symmetric m×m matrices. Denote by

J =

[
0 Ip

−Ip 0

]
,

where Ip denotes the identity p × p matrix. Define a map

Qsp : Mn,m −→ Λ
2(Cm)

T �→ Tt JT.

We also write Qsp as Q when no ambiguity arises. By identifying Mn,m with (Cn)m,
we can equivalently define Q(T) as the m×m anti-symmetric matrix whose (i, j)-th
entry equal to ξ̌i j .

1.3 A Resolution of Singularities of NCQ

Let V be a vector space of complex dimension n with a nondegenerate bilinear form,
either symmetric or anti-symmetric. Let G(V ) be the isometry group of the form,
which is On in symmetric case and Spn in anti-symmetric case. Let g(V ) be its Lie
algebra.

Given A in S2(Cm) (resp. Λ2(Cm)), its inverse image Q−1(A) under the map Q
is referred to as the fiber of Q over A. Of particular interest is the fiber over 0 (cf.
[H]), which we will refer to as the null cone (since it is obviously preserved by scalar
dilations) and denote by NCQ. Equivalently, the variety NCQ is the set of n × m
matrices on which all G(V ) invariant polynomials on Mn,m take value 0. Often we
will think of Mn,m as the space Hom(Cm,V ) of all linear maps from Cm to V (or Cn).
An element in NCQ is called a null mapping. We easily have

Q(gT) = Q(T), T ∈ Mn,m, g ∈ G(V ),(1)

Q(Th) = ht Q(T)h, h ∈ GLm .(2)
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Remark 3 It follows from Equations (1) and (2) that G(V ) acts on NCQ and this
action commutes with the action of GLm. The space of regular functions on NCQ,
under the induced action of G(V )×GLm, has a beautiful decomposition into G(V )×
GLm-modules (cf. [H]).

A subspace of V is called isotropic if any two vectors in the subspace are orthogonal
to each other with respect to the corresponding bilinear form. We observe that T ∈
Mn,m = Hom(Cm,V ) is a null mapping if and only if the image of T, denoted by
�T, form an isotropic subspace of Cn. Denote by Jr(V ) the set of all r-dimensional
isotropic subspaces of V . The set Jr(V ) is nonempty if and only if r ≤ n/2. It is well
known that G(V ) acts on Jr(V ) transitively (cf. [H, Appendix 3]). The dimension of
Jr(V ) (r ≤ n/2) can be calculated to be r(2n− 3r − 1)/2.

Note that the null cone NCQ is a singular variety defined in terms of a finite set of
quadratic equations. The first goal of this paper is to present a canonical resolution of
singularities of NCQ. Our construction is reminiscent of the Springer resolution of
singularities of the nilpotent cone in a complex semisimple Lie algebra (cf. e.g. [CG]).

Set r = min(m, [n/2]) from now on, where [n/2] denotes the integer closest to
and no larger than n/2. We introduce the following variety

ÑCQ = {(T,U ) ∈ NCQ× Jr(V ) | �T ⊂ U}.

We have the following projection maps:

ÑCQ

µ0 π0

NCQ Jr(V ).

The diagram is On × GLm-equivariant, where GLm acts trivially on ÑCQ and Jr(V ).

µ0 is proper since ÑCQ ⊂ NCQ× Jr(V ) and Jr(V ) is compact. It is easy to see that
π0 and µ0 are both surjective.

Denote by TJ the tautological bundle over Jr(V ):

TJ = {(u,U ) ∈ V × Jr(V ) | u ∈ U}.

Denote by Cr the rank r trivial bundle over Jr(V ). Given U ∈ Jr(V ), the fiber of π0

over U is canonically identified with Hom(Cm,U ). Thus we have

dim ÑCQ = mr + dim Jr(V )

= mr + r(2n− 3r − 1)/2

= r(2m + 2n− 3r − 1)/2.

This proves the following characterization of ÑCQ.
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Proposition 1 The variety ÑCQ is isomorphic to the tensor product Taut⊗Cm of vec-
tor bundles Taut and Cm over the variety Jr(V ) such that the following diagram com-
mutes:

ÑCQ ∼= TJ ⊗ Cm

π0

Jr(V ).

In particular, ÑCQ is a smooth variety of dimension r(2m + 2n − 3r − 1)/2, where
r = min(m, [n/2]).

Theorem 1 The map µ0 : ÑCQ −→ NCQ is a resolution of singularities.

Proof It is clear that the set NCQ0 of all null mappings of maximal rank which is
equal to r = min(m, [n/2]) is a Zariski-open subvariety of NCQ. Given T ∈ NCQ0

there exists a unique U ∈ Jr(V ) containing �T, namely �T itself. Thus the map

µ0 : ÑCQ −→ NCQ over an open set µ−1
0 (NCQ0) is one-to-one. Together with the

smoothness of ÑCQ provided by Proposition 1, we conclude the proof.

Remark 4 In the case n ≥ 2m and so r = m, we easily see that the map Q maps
surjectively to the space Symm of m×m symmetric matrices, and it is submersive at
any point T in NCQ0. It follows that

dim NCQ = dim Mn,m − dim Symm

= nm− (m2 + m)/2 = dim ÑCQ.

This of course was also implied by Theorem 1.

It is known that Jr(V ) is disconnected if and only if we are in the orthogonal case
and n = 2m (which implies r = m) (cf. [H, Appendix 2]). Let us assume that we are
in such a case first of all, and so Jr(V ) has two smooth connected components (cf.

[H]). It follows by Proposition 1 that ÑCQ also has two smooth connected compo-

nents, denoted by ÑCQ
+

and ÑCQ
−

respectively. The null cone NCQ also consists
of two irreducible components NCQ±, which are the image of the two connected

components of ÑCQ respectively.
Now assume we are in the symplectic case, or in the orthogonal case but n �= 2m.

Then Jr(V ) is connected smooth and so is ÑCQ. Thus NCQ is irreducible as the

image of the surjective map µ0 of the irreducible variety ÑCQ.

1.4 Relations with Closure of Conjugacy Classes

In this subsection, we always assume that n ≥ 2m, and in addition m is even in the
orthogonal case. We need to reformulate the definition of NCQ.
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Let W be a vector space of complex dimension m with a non-degenerate bilinear
form of type opposite to the one on V . We identify Hom(W,V ) = Mnm. Given any
T ∈ Hom(W,V ) the adjoint T∗ is defined by

(Tw, v)V = (w,T∗v)W , w ∈W, v ∈ V.

Here we use the subscripts to indicate to which vector space a bilinear form belong.

Remark 5 In the setup of Subsection 1.1 and 1.2 and W = Cm, we easily check by
definition that if the bilinear form on V is anti-symmetric then T∗ = − JTt ; if the
bilinear form on V is symmetric, then T∗ = Tt J.

Consider the diagram

Hom(W,V )
Q̃

−−−−→ g(W )�R

g(V )

where Q̃ is given by T �→ T∗T and R by T �→ TT∗. It is easy to check that the images
of Q̃ and R lie in g(W ) and g(V ) respectively. It follows from the definitions and
Remark 5 that Q̃−1(0) = Q−1(0) ≡ NCQ.

Denote by Cλ the conjugacy class of the group G(V ) associated to the partition
λ = (2m, 1n−2m), which is the intersection of g(V ) with the conjugacy class of gl(V )
associated to λ. The closure Cλ is indeed the variety of endomorphisms in g(V ) of
rank no greater than m and whose image is an isotropic subpace of V .

The variety NCQ = Q̃−1(0) appears as a special case of the variety Z in [KP2].
Recall that a quotient of a G-variety M by the group G is by definition the spectrum
of the algebra of G-invariant regular functions on M. A special case of a theorem of
Kraft and Procesi relevant to our considerations can be formulated as follows.

Theorem 2 The map R maps NCQ surjectively to the closure Cλ of the conjugacy class
Cλ associated to the partition λ = (2m, 1n−2m). Furthermore R can be identified with
the quotient map by G(W ) from NCQ to Cλ.

Define the variety

C̃λ = {(g,U ) ∈ Cλ × Jm(V ) | �g ⊂ U},

and denote by p0 the (surjective) projection from C̃λ to the first factor Cλ. We can

identify C̃λ with a vector bundle over Jm(V ), whose fiber over U ∈ Jm(V ) is the
vector space

F0 = {g ∈ g(V ) | �g ⊂ U}.

We remark that for g ∈ F0 we have U ⊂ ker g and thus g2 = 0 ∈ gl(V ). Since

p0 : C̃λ → Cλ is one-to-one over the open subset p−1
0 (Cλ) consisting of the endo-

morphisms of maximal rank m, we have proved that
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Proposition 2 The map p0 : C̃λ → Cλ is a resolution of singularities.

The quotient map R by G(W ) induces a natural quotient map by G(W ) from ÑCQ

to C̃λ. We have the following commutative diagram:

ÑCQ
µ0−−−−→ NCQ� /G(W )

� /G(W )

C̃λ
p0

−−−−→ Cλ.

Remark 6 In the case n = 2m and G(V ) = On, the On-conjugacy class Cλ associ-

ated to λ = (2m) is very even, and so C̃λ splits into two SOn-conjugacy class C̃±λ (cf.
[KP2]). Then the above diagram can be refined as follows:

ÑCQ
± µ0−−−−→ NCQ±� �

C̃±λ
p0

−−−−→ C±λ

where C̃±λ is defined by

C̃λ = {(g,U ) ∈ Cλ × J±m (V ) | �g ⊂ U},

and J±m (V ) are the two connected components of Jm(V ).

2 Null Cones Associated to GLn

Let V be a vector space of complex dimension n. Define a map

ϕ : Hom(V,Cs)×Hom(Cm,V )→ Hom(Cm,Cs) = Ms,m

by ϕ(A,B) = AB = (ξi j)1≤i≤s,1≤ j≤m. Hence ξi j defines a polynomial function on
Hom(V,Cs) × Hom(Cm,V ) ∼= V m ⊕ (V ∗)s. Denote by N = ϕ−1(0). The group
GLs×GL(V )× GLm acts on N by

(g1, g2, g3).(A,B) = (g1Ag−1
2 , g2Bg−1

3 ).

Remark 7 The First Fundamental Theorem for GL(V ) says that the ξi j , 1 ≤ i ≤ s,
1 ≤ j ≤ m generate the algebra of GL(V ) invariant polynomials on V m ⊕ (V ∗)s.

From now on we restrict ourselves to the case n ≥ s + m.
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2.1 A Resolution of Singularities of N

We introduce a variety

Ñ = {(A,B,U1,U2) ∈ N× F(m, n− s,V ) | �B ⊂ U1 ⊂ U2 ⊂ ker A}

⊂ N × F(m, n− s,V ),

where ker A denotes the kernel of A, and F(m, n − s,V ) denotes the generalized flag
variety

F(m, n− s,V ) = {(U1,U2) | U1 ⊂ U2 ⊂ V, dimU1 = m, dim U2 = n− s}.

The group GLs×GL(V )× GLm acts on Ñ by letting

(g1, g2, g3).(A,B,U1,U2) = (g1Ag−1
2 , g2Bg−1

3 , g2U1, g2U2).

We have the following projection maps:

Ñ

µ π

N F(m, n− s,V ).

The diagram above is GLs×GL(V )×GLm-equivariant, where G(V ) acts naturally on
the generalized flag variety F(m, n− s,V ) while GLs and GLm act on F(m, n− s,V )
trivially. It is easy to see that π and µ are surjective thanks to the assumption n ≥
s + m, and that µ is a proper map due to the compactness of F(m, n− s,V ). The fiber
of π over a point (U1,U2) ∈ F(m, n− s,V ) can be identified with the vector space

F = Hom(V/U2,C
s)×Hom(Cm,U1).(3)

In other words, Ñ can be identified with a vector bundle K over the generalized flag
variety F(m, n− s,V ):

K := Cm ⊗ Taut⊕Cs ⊗ Q∗,

where Cs, Cm are trivial bundles of rank s and m respectively, and Taut, Q∗ are respec-
tively the tautological bundle and the dual quotient bundle:

Taut = {(u,U1,U2) | v ∈ U1} ⊂ V × F(m, n− s,V )

Q∗ = {(v,U1,U2) | v ∈ (V/U2)∗} ⊂ V ∗ × F(m, n− s,V ).

Summarizing, we have proved that

Proposition 3 We have the following isomorphism of vector bundles over the general-
ized flag variety F(m, n− s,V ):

Ñ ∼= K

π

F(m, n− s,V ).

In particular, Ñ is a smooth variety of dimension sn + mn− sm.
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Proof It remains to calculate that

dim Ñ = dim F(m, n− s,V ) + dim F

=
1

2

(
n2 −

(
s2 + (n− s−m)2 + m2

))
+ (s2 + m2)

= sn + mn− sm,

where the equality dim F(m, n− s,V ) = 1
2

(
n2−

(
s2 + (n− s−m)2 + m2

))
follows

readily from the description of the generalized flag variety F(m, n− s,V ) in terms of
the quotient of GL(V ) by an appropriate parabolic subgroup.

Theorem 3 µ : Ñ→ N is a resolution of singularities.

Proof The subset N0 of N consisting of pairs of maximal rank matrices (A,B) is a
Zariski-open set in N. A pair (A,B) ∈ N0 uniquely determines a pair (U1,U2) ∈

F(m, n − s,V ) such that (A,B,U1,U2) ∈ Ñ, namely U1 = �B, U2 = ker A. This

shows that µmaps µ−1(N0) ⊂ Ñ bijectively to N0. Together with the smoothness of

Ñ proved in Proposition 3, we have concluded the proof.

Remark 8 Indeed it is easy to see that N0 is a single GL(V )-orbit since n ≥ s + m.
An easy calculation shows that ϕ is submersive over any point in N0. So we have

dim N = dim Hom(V,Cs) + dim Hom(Cm,V )− dim Ms,m

= sn + mn− sm = dim Ñ

by Proposition 3. This fact, of course was implied by Theorem 3.

When s = m and thus n ≥ 2m, the space N appears as a special case of the variety
Z studied in [KP1]. It is shown [KP1] that the quotient of N by the diagonal action
of GLm is the variety of n × n matrices of square 0 and rank at most m, which is
the closure Oλ of the conjugacy class Oλ ⊂ gl(V ) corresponding to the partition λ =
(2m, 1n−2m). More explicitly the quotient map from N to Oλ is given by (A,B) �→ BA.

Denote by

Õλ = {(g,U1,U2) | �g ⊂ U1 ⊂ U2 ⊂ ker g} ⊂ Oλ × F(m, n−m,V ),

and by p the natural surjective projection from Õλ to Oλ. By a similar argument
which leads to Proposition 3, we have the following identification

Õλ ∼= Taut⊗Q∗

F(m, n−m,V )

which implies that Õλ is smooth. Since the natural surjective projection p from Õλ
to (the first factor) Oλ is one-to-one over the open set p−1(Oλ), it is a resolution of
singularities. Thus we have established

https://doi.org/10.4153/CMB-2001-049-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2001-049-6


500 Weiqiang Wang

Proposition 4 The map p : Õλ −→ Oλ is a resolution of singularities.

Remark 9 This resolution p : Õλ −→ Oλ differs from the classical one in terms of
cotangent bundle of a grassmannian (compare with Proposition 6).

The quotient map from N to Oλ induces a quotient map by GLm from Ñ to Õλ
which makes the following diagram

Ñ
µ

−−−−→ N� /GLm

� /GLm

Õλ
p

−−−−→ Oλ

(4)

commutative.

2.2 A Second Resolution of Singularities of N

We introduce a variety

Ñ1 = {(A,B,U ) ∈ N× Gr(m,V ) | �B ⊂ U ⊂ ker A}

⊂ N× Gr(m,V ),

where Gr(m,V ) denotes the grassmannian of m-dimensional subspaces of V . The

group GLs×GL(V )× GLm acts on Ñ1 by letting

(g1, g2, g3).(A,B,U ) = (g1Ag−1
2 , g2Bg−1

3 , g2U ).

We have the following projection maps:

Ñ1

µ1 π1

N Gr(m,V ).

The diagram above is GLs×GL(V )×GLt -equivariant, where G(V ) acts naturally on
Gr(m,V ) while GLs, GLt act trivially on Gr(m,V ). It is easy to see that π1 and µ1 are
surjective and that µ1 is a proper map. The fiber of π1 over a point U ∈ Gr(m,V )
can be identified with the vector space

F1 = Hom(V/U ,Cs)×Hom(Cm,U ).

In other words, Ñ1 can be identified with a vector bundle K1 over the Gr(m,V ):

K1 := Cm ⊗ Taut1⊕Cs ⊗ Q∗1 ,

where Cs, Cm are trivial bundles of rank s and t respectively, and Taut1, Q∗1 are respec-
tively the following tautological bundle and the dual quotient bundle:

Taut1 = {(u,U ) | v ∈ U} ⊂ V × Gr(m,V )

Q∗1 = {(v,U ) | v ∈ (V/U )∗} ⊂ V ∗ × Gr(m,V ).

Summarizing, we have proved that
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Proposition 5 We have the following isomorphism of vector bundles over the general-
ized flag variety Gr(m,V ):

Ñ1
∼= K1

π1

Gr(m,V ).

In particular, Ñ1 is a smooth variety of dimension sn + mn− sm.

Proof It remains to calculate that

dim Ñ = dim Gr(m,V ) + dim F1

= m(n−m) + m2(n−m)s

= sn + mn− sm.

Using Proposition 5, the following theorem can now be proved in the same way as
Theorem 3.

Theorem 4 The map µ1 : Ñ1 → N is a resolution of singularities.

Now we restrict ourselves to the case s = m and thus n ≥ 2m. Recall that the
Kraft-Procesi quotient map from N to Oλ is given by (A,B) �→ BA. Denote by

Õ1
λ = {(g,U ) | �g ⊂ U ⊂ ker g} ⊂ Oλ × Gr(m,V ),

and by p1 the surjective projection from Õ1
λ to the first factor Oλ. We easily have the

following identification

Õ1
λ

∼= T∗ Gr(m,V )

Gr(m,V )

where T∗ Gr(m,V ) denotes the cotangent bundle over the grassmannian.
Noting that the fiber of the projection p1 over g ∈ Oλ consists of a single point.

Since Õ1
λ is smooth, the projection p1 from Õ1

λ to Oλ is a resolution of singularities.
Thus we have established the following classical result.

Proposition 6 The map p1 : Õ1
λ −→ Oλ is a resolution of singularities.

The quotient map from N to Oλ induces a quotient map by GLm from Ñ1 to Õ1
λ

which makes the following diagram

Ñ1
µ1−−−−→ N� /GLm

� /GLm

Õ1
λ

p1
−−−−→ Oλ

commutative.
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2.3 A Third Resolution of Singularities of N

We introduce the variety

Ñ2 = {(A,B,U ) ∈ N × Gr(n− s,V ) | �B ⊂ U ⊂ ker A}

⊂ N × Gr(n− s,V ),

together with the surjective projection µ2 from Ñ2 to the first factor N. The variety

Ñ2 is a vector bundle over Gr(n− s,V ) of total dimension sn + mn− sm.

Theorem 5 The map µ2 : Ñ2 −→ N is a resolution of singularities.

Proofs of all the statements concerning Ñ2 and Õ2
λ are similar to those for Ñ1 and

Õ1
λ in the previous subsection which we omit.

Now we restrict again to the case s = m and n ≥ 2m. Denote by

Õ2
λ = {(g,U ) | �g ⊂ U ⊂ ker g} ⊂ Oλ × Gr(n−m,V ).

We again can identify Õ2
λ as the cotangent bundle T∗ Gr(n−m,V ). We can show that

the natural surjective projection p2 from Õ2
λ to Oλ is a resolution of singularities.

The quotient map from N to Oλ induces a quotient map by GLm from Ñ2 to Õ2
λ

which makes the following diagram

Ñ2
µ2−−−−→ N� /GLm

� /GLm

Õ2
λ

p2
−−−−→ Oλ

commutative.
The relation among the three resolutions of N is shown by the following diagram:

Ñ

q1 q2

Ñ1 Ñ2

µ1 µ2

N

where the morphisms q1 and q2 are defined by sending (A,B,U1,U2) to (A,B,U1)
and (A,B,U2) respectively.
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