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Abstract

Let 5<n) be a unilateral shift operator on a Hilbert space of multiplicity n . In this paper, we
prove a generalization of the theorem that if S*1' is unitarily equivalent to an operator matrix

'11form (s'11 £) relative to a decomposition Jt ®Jf , then E is in a certain class Co which will
be denned below.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 47 B 37; secondary 46 J
15.

Suppose X and «#" are separable Hilbert spaces and SCi^t? ,3?) is the
algebra of all bounded linear operators from %f into S?. In particular, let
J5?(%') be the algebra of all bounded linear operators on %f. Throughout
this paper we write U for the open unit disc in the complex plane C and
T for the boundary of U. The space if = LP(T), 1 < p < oo, is the
usual Lebesgue function space. For 1 < p < oo, we denote by Hp = HP(T)
the subspace of V consisting of those functions whose negative Fourier
coefficients vanish. If u e H°° , then we have a Fourier series

oo

(1) u(e ) = 22ane •
n=0

Let T be a completely nonunitary contraction on a Hilbert space %?. Then
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for M G H°° , we define a functional calculus

(2)
r n=0

where the limit exists in the strong operator topology (cf. [1, p. 16]). A
completely nonunitary contraction T e $?{%?) is said to be of class CQ if
there exists a non-zero function u e H°°(T) such that the functional calculus
u(T) = 0 (cf. [1]). The class C o , introduced by Sz.-Nagy and Foias. (cf. [6]),
is a familiar class of nonnormal operators on a Hilbert space. In fact, there
are numerous theorems concerning the class Co in [1] and [6].

The notation and terminology employed herein agree with those in f 1], [2],
and [6]. For a Hilbert space %? and any operators T{ e 5?{%f) (i = 1, 2) ,
we write Tx = T2 if Tx is unitarily equivalent to T2 .

Note that even if the shift operators are described as various forms, those
of the same multiplicity are unitarily equivalent to each other (cf. [3, p. 29]
and [4, p. 98]). The main result of this paper is contained in

THEOREM 1. Let S^ be a unilateral shift operator of multiplicity n fora
positive integer n . Suppose that

(3, rf-.-ft ;
relative to a decomposition J? © JV. Then E e Co.

We expect to demonstrate the utility of Theorem 1 in the theory of dual
operator algebras in our future papers stemming from [5].

Let us consider a function &(l) e^f(^,^) (A € U) defined by

(4)
k=0

where 0^ e Sf{J?, %?) and the series is convergent in the strong (or, equiva-
lently, weak (cf. [6, p. 186])) operator topology. A function {Jf, ^ " , 6(A)}
is called a bounded analytic function if there exists M > 0 such that ||O(A)|| <
M (A 6 U). A contractive analytic function

(5) {jr,*r,e(X)} (i.e., \\ew\\ < I . A G U )

is called purely contractive if ||e(0)a|| < ||a|| for all a e S?, a # 0 . We
define the adjoint {%f, 3?, 0(A)} , by 6(A) = 0(1)* ( A G U ) .

Recall that L 2 (X) denotes the class of functions v(t) (0<t< 2n) with
values in %*, strongly (or, equivalently, weakly (cf. [6, p. 182])) measurable
and such that

(6) /
./o
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Then for any v e L2(^), there exists a sequence {afe}^'oo in <%* with

E!°oo K l l 2 < °° s u c h t h a t v(t) = E^oo e'k'ak • T h i s m e a n s t h a t

(7) f \\v(t) - £ *"XU2 <*' - 0 (w, n -> oo).

Let us denote by H2(£P) the class of functions u{t) in L 2 ( ^ ) such that
u(<) = Z)fcloe'fc'afc • F° r any contractive analytic function {3T, %?, 0(A)} ,
we define the operator

(8a) 6 :

by

(8b) (©«)(0 = ©(e")«(0 for

where 6(e") = lim6(A) (A —> e" non-tangentially a.e.)(strongly), and define
the operator

(9a) 6+://2(^)^H2(^)

by

(9b) (©+«)W = e(A)«(A) for u e H2(3P).

The contractive analytic function {3?', %?, 0(A)} is called inner if Q(e")
is an isometry from X into ^ for almost every t or, equivalently, if
0 + is an isometry from H2{3?) into H2{^); and *-inner if the function

is inner.
Let r be a contraction operator on a Hilbert space M?. Recall (cf. [6, p.

238]) that the analytic function 0 r defined on U by

(10) GT{X) = {-T + XDT.{I-XT*)-XDT}\2lT, AeU,

satisfies

(11) ||e7.||oo ^ '| | 7 | | o o i 7

and ||0r(O)x|| < ||x|| for all xe3lT, where

(12) DT = {I- T*T)l/2 and 2lT = {I

The purely contractive analytic function {2>T, 3r
T>, 0r(A)} on U is called

the characteristic function of T.
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The invariant subspaces of a unilateral shift 5(n) of multiplicity n < oo
are described as follows:

THEOREM 2. Let S{n): H2(%?) -> H2(^) be a unilateral shift of multiplic-
ity n < oo, where d i m ^ = n, and let JV be an invariant subspace for 5r(").
Then there exist a subspace 3f of %? and an inner function {3?, <%*, 0(A)}
such that Jf = Q+H2(3f). In particular, the space 3? can be identified with
the space rf e {{S{n)\JT)JT).

PROOF. The first part of Theorem 2 is a known result [6, Theorem V.3.3].
Moreover, the second part is implied in the proof of the same result [6,
Theorem V.3.3].

If T € Sfffi) and 3? is a semi-invariant subspace for T (that is, there
exist invariant subspaces *# and JV for T with / c / such that 3? —
Jf eJf), we shall write Tx = PXT\3? for the compression of T to 5?,
where Px is the orthogonal projection whose range is 3?.

Now the proof of Theorem 1 is completed by applying Theorem 3 below.

THEOREM 3. Under the hypotheses of Theorem 2, let us assume that

(13) dim(yT e ((S(B)pfVO) = n.

Then the compression S{"1-. „ of S{n) to i / 2 ( ^ ) e ^ belongs to the class

PROOF. The idea of this proof comes from Professor Carl Pearcy. Let us
put JK = H2{^) QJV and E = S{% . Then we can write

( U , * )

relative to a decomposition JIT © J?. Now we shall show that E e CQ.
It is well known that A is unitarily equivalent to 0 or S , for some k
with 1 < k < n . Let 3? — JV © A/V be the subspace found by Theorem 2
and let {3?, %?, 0(A)} be the corresponding inner function. If we suppose
that A^O, then JV = (0) (otherwise, the kernel of S{n) is nontrivial) and
3f = (0). So this contradicts the hypothesis that dim 3? = n .

Next suppose that A ^ S{k), 1 < k < n - 1. Then d i m ^ = k < n - 1,
and this also yields a contradiction. Hence we can assume that A = S( n ) .
Since the operator-valued analytic function {3?, %?, Q(X)} is inner, B(e")
is an isometry a.e.. Moreover, since dxxn.3? = d i m ^ = n < oo, S(e")
is a unitary operator on 3? for almost all t. It follows from the Decom-
position Theorem (cf. [6, p. 188]) that there exists a uniquely determined
decomposition X = 3?° © 3t' and SIT = %f° © &' such that for every
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fixed A, ©°(A) = ©(A)|JTO has its range in %f° , that {JT°, %f°, 6°(A)} is
purely contractive analytic function, and that {3?', %?', 6'(A)} is a unitary
constant. Thus, without loss of generality, we can assume

(15) J? = H2(^) e e//2(JT) = H2{^) e e+/ / 2 (JT) / (0).

Therefore, according to [6, Proposition 3.2, p. 255], 0(A) is not a unitary
constant; equivalently, ©(A) has the purely contractive part 0°(A). Since

(16) 0(e") = e V ) e e V ) a.e.

and since Q(e") is unitary a.e., Q°(e") is unitary a.e.. Therefore {3?°, £?°,
6° (A)} is inner and *-inner. On the other hand, since E is the compression
to H2(^)eQ+H2(^) of multiplication by e" , according to [6, Proposition
3.2, p. 255], the characteristic function ©£(A) of the completely nonunitary
contraction E coincides with {3F°, %?°, ©°(A)} . According to [6, Proposi-
tion 3.5, p. 257], we have E&C^ (that is, ||£"JC|| -• 0 and \\E*"y\\ -> 0 for
all x, y e Jf) if and only if ©£(A) is inner and *-inner. Hence E e Cm. As
was noted above, 9{e") is unitary a.e.. For such a t, ©(A) is invertible for A
sufficiently close to e", since Q(e") — lim0(A) as A —> e" non-tangentially
a.e. Finally, according to [6, Proposition 6.1, p. 216], ©(A) has a scalar
multiple. Thus, by [6, Theorem 5.1, p. 265], we have E e Co. Hence the
proof is complete.

For an invariant subspace JV for 5'<"), 5(n)|yf" is a unilaterial shift of
some multiplicity (cf. [3, Proposition 7.13]). Hence the hypothesis that
dim(^" 0 (S | / ) / ) ) = n, appearing in Theorem 3, means that the multi-
plicity of S{n)\J^ is n.

For T e Sf{%?), we write dT for the defect index of T, that is, dT —
dxm3iT. Recall that H°°(U), the class of all bounded analytic functions on
U, is identified with H°° (cf. [6, p. 101]). The following is an immediate
consequence of Theorem 3.

COROLLARY. Under the hypotheses of Theorem 3, let d e H°° be defined
by setting d(k) equal to the determinant of ©£(A) corresponding to some
fixed orthonormal bases of 3>E and 3SE.. Then d(E) — 0.

PROOF. Without loss of generality, we assume that E is nontrivial. Since
E e CQQ, it follows from [6, Theorem 1.2, p. 59] that 1 < dE = dE. .
Moreover, since dE. < ds(n). = n, using [6, Theorem 5.2, p. 266], we have
d(E) — 0. Hence the proof is complete.
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