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Cohomological Approach to Class Field
Theory in Arithmetic Topology

Tomoki Mihara

Abstract. 'We establish class field theory for three-dimensional manifolds and knots. For this pur-
pose, we formulate analogues of the multiplicative group, the idéle class group, and ray class groups
in a cocycle-theoretic way. Following the arguments in abstract class field theory, we construct reci-
procity maps and verify the existence theorems.

Introduction

We establish class field theory for three-dimensional manifolds and knots in the
framework of arithmetic topology. Arithmetic topology is a branch of modern mathe-
matics based on a mysterious analogy between topology and number theory. B. Mazur
introduced this area in the study of the Alexander polynomial of a knot in S* in an
unpublished note “Remarks on the Alexander polynomial”. Morishita also investi-
gated the topic [Mor01, Mor12]. In arithmetic topology, a connected orientable closed
three-dimensional manifold is regarded as an analogue of the ring of algebraic inte-
gers in a number field, and a knot is regarded as an analogue of a maximal ideal. A
branched covering of such manifolds is an analogue of an extension of number fields,
and hence class field theory in arithmetic topology means a theory controlling Abelian
branched coverings of such manifolds. We note that there are several variants of such
correspondences, and hope that readers are not confused about the differences. For
example, the ring of algebraic integers in a number field gives two geometric objects
that correspond to distinct objects in topology. One is the set of all finite places re-
garded as an analogue of a non compact 3-manifold, and the other is the set of all
places regarded as an analogue of a compact 3-manifold [Den02, §1, §2, Appendix].
Our formulation of class field theory in arithmetic topology is a variant of the
one originally introduced by H. Niibo and J. Ueki [NU]. They used a homological
and cycle-theoretic approach in the formulation of analogues of the multiplicative
group and the idéle class group, while we use a cohomological and cocycle-theoretic
approach. Although the Poincaré-Lefschetz duality yields several elementary rela-
tions between their and our formulations, some results, e.g., descent properties (The-
orem 3.8, Theorem 3.10, and Theorem 3.12), the class field axiom (Theorem 3.16), and
ideal-theoretic class field theory (Theorem 3.27), essentially rely on the contravari-
ant functoriality of the cocycle-theoretic formulation. Furthermore, we verify several
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theorems analogous to those in number theory such as Hilbert’s Theorem 90 (Theo-
rem 3.7) and the Kronecker—Weber Theorem (Theorem 3.29).

We briefly explain our formulation and results. To begin with, unlike the set of
maximal ideals of the ring of algebraic integers in a number field, the set of knots
in a connected orientable closed three-dimensional manifold does not make sense
in a way compatible with the analogy between an extension of number fields and a
branched covering of such manifolds, and one needs to fix a set of knots suitable in a
certain aspect. One way to choose such a set was advocated by Niibo and Ueki [NU].
They introduced the notion of a very admissible link as an analogue of the set of max-
imal ideals and regarded a pair of a connected orientable closed three-dimensional
manifold and a very admissible link in it as an analogue of a number field. On the
other hand, we introduce the notion of a stably generic link as another analogue of
the set of maximal ideals, and regard a pair K of such a manifold Ok and a stably
generic link Sk as an analogue of a number field. A countable stably generic link
forms a very admissible link, but the converse does not necessarily hold. Roughly
speaking, the definition of a stably generic link is given in a way imitating the asser-
tion of the Chebotarev density theorem. We define a group K™ using 1-cocycles of the
complements of finite subsets of Sk, and regard it as an analogue of the multiplicative
group of a number field.

For each p € Sk, we construct a formal limit K, i.e., a pro-object, of three-
dimensional manifolds, and regard it as an analogue of a local field. Since we define
an analogue of the multiplicative group in a contravariantly functorial way, the defi-
nition naturally extends to a formal limit. We regard the extension K] as an analogue
of the multiplicative group of a local field. We construct a local reciprocity map and
verify the local existence theorem in Theorem 3.15 through a homomorphism from
K, to the singular homology of a torus. Using (K, )es,» we formulate analogues Ik
and Ck of the idele group and the idéle class group. We construct a global reciprocity
map and verify the global existence theorem in Theorem 3.23 through a homomor-
phism from Ck to the projective limit of the singular homologies of open subspaces
of O K-

We explain the contents of this paper. Section 1 consists of two subsections. In Sec-
tion 1.1, we introduce several categories of manifolds such as the category of topolog-
ical manifolds and the category of differentiable manifolds. We also define a category
in which Riemannian manifolds naturally lie. In Section 1.2, we introduce formal lim-
its of three-dimensional manifolds, and give examples analogous to local fields and
several notions in number theory. Section 2 consists of eleven short subsections. In
each subsection, we introduce an analogue of a notion in number theory such as the
multiplicative group, the idéle class group, and ray class groups. In particular, we in-
troduce the notion of a stably generic link in Section 2.4. We define K* and K in
Section 2.6, and Ix and Ck in Section 2.9. We make up the analogues in a table in
Section 2.11. Section 3 consists of five subsections. In Section 3.1, we establish Ga-
lois theory for branched coverings of three-dimensional manifolds. In Section 3.2,
we verify descent property for K*, K7, and Ix. In Section 3.3, we verify local class
field theory in arithmetic topology. In Section 3.4, we verify global class field the-
ory in arithmetic topology. In Section 3.5, we verify ideal-theoretic class field theory
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in arithmetic topology. In addition, we explain an explicit construction of a stably
generic link in Section A.

1 Preliminaries

We prepare convention and terminology. We put N := N\ {0}. Let % be a category.
We denote by €°P the opposite category of €, by ob(€) the class of objects in &, by
Home (X, Y) with (X, Y) € ob(%)? the set of morphisms X — Y in %, by Auts (X)
with X € ob(%’) the automorphism group of X in %, and by Ind(%’) the category of
ind-objects in 4" and compatible morphisms. Namely, for

(Xj)jej, €0b(Ind(%’)) and (Yj)jej, € ob(Ind(%)),

Homyya(4) ((X) jeso> (Yj) jey,) is given as l(iilj lim  Homg(Xj,, Y} ). We have

0€Jo —> j1€/

a fully faithful functor ¢’ — Ind(%’) sending an object of € as the ind-object indexed
by the singleton {@}, through which we identify an object of ¥ with the image in
Ind(%). We put Pro(%) = Ind(€°P)°P.

1.1 Categories of Manifolds

We introduce several categories related to manifolds on which we work in this paper.

Throughout this paper, a topological space means a Hausdorft space, while a topo-
logical group means one which is not necessarily Hausdorff. We denote by Top the
category of topological spaces and continuous maps, and by Top, c Top the subcate-
gory of local homeomorphisms. For topological spaces X and Y, we put C(X,Y) =
Homr,, (X, Y). For a topological space X, we denote by (H, (X)) en the singular
homology of X with coefficients in Z, and by (H" (X)) ey the singular cohomology
of X with coefficients in Z.

Throughout this paper, a manifold means one with boundary, and a Riemannian
manifold means a connected C*°-manifold with empty boundary equipped with a
fixed Riemannian metric. For a x € N u {oo}, we denote by C* the category of
C”*-manifolds and maps of class C*, and by Cj c C* the subcategory of local iso-
morphisms.

We denote by Met the category of metric spaces and locally Lipschitz maps, and by
Met* the category of Riemannian manifolds and maps of class C™. We have a natural
functor FMe': Met™ — Met, because every map of class C* between Riemannian
manifolds is locally Lipschitz with respect to the Riemannian metrics. We also define
another category containing branched coverings of Riemannian manifolds.

For a topological space X and a (yo,y1) € C([0,1], X)? with yo(1) = y1(0), we
define y * y; € C([0,1], X) by setting (yo * y1)(t) = yo(2t) for any t € [0,27!] and
(yo * y1)(t) = y1(2t = 1) for any ¢ € (27',1]. A path-length space is a pair (X, €) of a
topological space X and a map ¢: C([0,1], X) — [0, oo] satisfying the following.

« Forany y € C([0,1], X), if y is a constant map, then £(y) = 0.

« If (y,g) € C([0,1], X) x Autrop([0,1]), then €(y o g) = €(y).

* If (yo, 71) € C([0,1], X)? with yo(1) = 1(0), then £(yo * y1) = £(yo) + &(11).

We give two examples of path-length spaces.
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Example 1.1 Let (Z,d) be a metric space. We denote by X the underlying topo-
logical space of (2, d). For an n € N, we denote by A, c [0,1]" the subset of in-
creasing sequences. For a y € C([0,1], X), we denote by ¢, € [0, oo] the path-length
SUP ey SUP (1)1 e, Y1 d(y(t:), y(tis1)) of y. Then the pair (X, £4) of X and the
map £4:C([0,1], X) — [0, 00],y + £, forms a path-length space. We always regard
a metric space as a path-length space in this way.

Example 1.2 Let (S, £) be a path-length space, and X a topological space equipped
with a ¢ € C(X, S). Then the pair (X, ¢*(¢€)) of X and the map

9" (£):C([0,1], X) — [0,00],y — &g ey)
form a path-length space.

Every Riemannian manifold forms a metric space, and hence forms a path-length
space by Example 1.1. Therefore, every branched covering of a Riemannian manifold
naturally forms a path-length space by Example 1.2. The notion of a path-length space
is interesting in class field theory in arithmetic topology, because one can formulate
the length of a knot as an analogue of the cardinality of the residue field at a maximal
ideal (Remark 2.7).

We introduce several specific types of morphisms between path-length spaces. Let
(X, €x) and (Y, €y) be path-length spaces. A strict morphism (X, €x) - (Y, €y) isa
continuous map ¢: X — Y with ¢*(¢y) = €x. Alocal isomorphism (X, €x) — (Y, €y)
is a strict morphism (X, £x) — (Y, €y) that is also a local homeomorphism X — Y.
A Lipschitz morphism (X, €x) — (Y,€y) is a continuous map ¢: X — Y such that
there exists a C € (0, 00) with &y (¢ o y) < C€x(y) for any y € C([0,1], X). A locally
Lipschitz morphism (X, €x) — (Y, €y) is a continuous map ¢: X — Y such that there
exists an open covering % of X such that for any U € %, ¢|y forms a Lipschitz
morphism (U, if;(€x)) — (Y, €y), where iy denotes the inclusion U — X. Every
strict morphism is a Lipschitz morphism, and every Lipschitz morphism is a locally
Lipschitz morphism. The composite of strict morphisms (resp. local isomorphisms,
Lipschitz morphisms, locally Lipschitz morphisms) is again a strict morphism (resp.
local isomorphism, Lipschitz morphism, locally Lipschitz morphism).

We denote by PLSp the category of path-length spaces and locally Lipschitz mor-
phisms, and by PLSp, c PLSp the full subcategory of local isomorphisms. We have
a natural functor Met — PLSp because every locally Lipschitz map between met-
ric spaces forms a locally Lipschitz morphism between the associated path-length
spaces.

1.2 Categories of Pro-manifolds

Henceforth, we denote by & one of the categories Top°?, (C*)°P with x € Nu {o0},
and PLSp°?. We put ¢, := Top,® when ¢ = Top®?, %, = (Cj;)° when € = (C*)°P,
and 6, = PLSp,” when ¢ = PLSp°?. We denote by .7 the forgetful contravariant
functor € — Top, and by .%; the forgetful contravariant functor ¢, — Top,,.

Let O € ob(%) ). For a topological space U equipped with a local homeomorphism
¢:U — Z,(0), we denote by O|y the object of €, with .%,(O|y) = U such that ¢
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gives a morphism Ol|y — O in 6p. The unique existence of such an object is obvious
when @ = Top®® or ¢ = (C*)°P, and follows from the construction in Example 1.2
when % = PLSp°P. For a finite set s of closed subsets of .%,(0), we put O[s™'] =
O|#4(0)\Uyec 0 € Ob(%0).

We abbreviate Ind(%’) to  and Ind(%,) to %. We give several examples of ob-
jects of ', all of which play important roles in this paper.

Example 1.3 (localisation) Let S be a set of pairwise disjoint closed subsets of
F0(0). We denote by Fin(S) the set of finite subsets of S directed by the order <
given by setting so < s; if and only if 5o ¢ 5. Then (O[s™'])cpin(s) forms an object
S710 of %, with respect to the compatible system of morphisms contravariantly cor-
responding to the inclusions, and plays a role analogous to the localisation ™' & of a
ring & by a multiplicative subset =. When § is a finite set, then 71O € € is naturally
isomorphic to the image of O[S™!] € ob(%}) in %0, because S is the greatest element
of Fin(S).

Example 1.4 (completion) Let p be a subset of %, (0O). We denote by Nbh(O, p)
the set of open neighbourhoods of p in .%,(0O), which is directed by the order <
given by setting Uy < U, if and only if Uy ¢ Up. Then (O|y)yenbh(o,o) forms an
object O, of %o with respect to the compatible system of morphisms contravariantly
corresponding to the inclusions, and plays roles analogous to the Henselisation of a
ring & at a prime ideal P and to the completion &p of & at P. When p is closed, then
(Olu~p ) uenbh(0.) forms an object Frac(O,, ) of %o in a similar way, and plays a role
analogous to the total ring Frac(&p) of fractions of Op.

Example 1.5 (unramified extension) Let oo € %(O). Suppose that .%,(O) is
a path-connected locally path-connected semi-locally simply connected topological
space. We denote by (O, i)~ the universal covering of .%,(O) given as the set of
homotopy classes of continuous maps y:[0,1] — %,(O) with y(0) = 1, and by
Cov(O, i), the set of finite unbranched coverings of .%,(O) given as quotients of
(0, 1)"~, which is directed by the order < given by setting Ny < Nj if and only if the
canonical projection N; - .%,(0) factors through the canonical projection Ny —
Z0(0). Then (O|N) Necov(0,1..) forms an object (O, 1o, )"" of %o with respect to the
canonical projections, and plays a role analogous to the integral closure (&, i )"" of a
ring O of algebraic numbers in the maximal unramified extension (Frac(&), ic )™
C of the fractional field Frac(¢’) with respect to a fixed embedding i.: Frac(€) — C.

A €-manifold means a topological manifold when € = Top°P, a C*-manifold
when € = (C*)°P, and a path-length space whose underlying topological space is
a topological manifold when € = PLSp°P. A strict ¢ -manifold means a connected
C* -manifold when € = Top®? or ¢ = (C*)°P, and a Riemannian manifold when
% = PLSp°P. Every Riemannian manifold is a strict ¢’-manifold, every strict %’ -man-
ifold is a € -manifold, and every %’-manifold X naturally forms an object .27x of €p.

A €-morphism between € -manifolds means a continuous map when % = Top®F,
a map of class C* when ¢ = (C*)°P, and a locally Lipschitz map when ¢ = PLSp°P.
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The composite of @ -morphisms again forms a ¥’-morphism. Every map of class C*
between strict 4’-manifolds is a €-morphism. Every ¢-morphism ¢: X — Y gives a
morphism #7,: o7y — 2/x in €. We denote by Mfd the category of ¢’-manifolds and
% -morphisms. The correspondence X ~ .ofx gives a contravariant functor Mfd - %

Letre (0,1]and n e N. Allof S' = {ze C | |z| =1}, D?[r) = {w e C| |w| < 1},
D*(r) = {w e C | 0 < |w| < r}, V[r) = $'xD?[r), V(r) = $'xD*(r), and
A" = {(t;), € [0,1]""" | ¥F, t; = 1} are both C*°-manifolds and metric spaces,
and hence naturally form %-manifolds. We put S' := (&#1))st x(o} € ob(%,) and
T? = Frac((y[1))st x{0y) € 0b(€o) (Example 1.4). Then S' (resp. T?) is naturally
isomorphic to (@ [,))re(0,1] (resp. (Fy(r))re(0,1y]) in %o because {V[r) | re (0,1)}
is cofinal in Nbh( V1), S' x{0}). The basic objects <7, S, and T? play roles analo-
gous to I, Z,, and Qy, respectively, where g is a power of a prime number.

2 MZKR Dictionary

We introduce analogues of several notions appearing in class field theory in number
theory, and give a variant of M*KR dictionary admissible to our cohomological ap-
proach to class field theory in arithmetic topology. We recall that an M*KR dictionary
means a table on the analogy between low-dimensional topology and number theory,
and is named after the originators of arithmetic topology: B. Mazur, M. Morishita, M.
M. Kaplanov, and A. Reznikov. In order to help readers working on number theory
to grasp the analogy well, we use symbols imitating the notation in number theory.
The reason why the ones introduced can be seen as analogues will become clear in
Section 3 through the formulation of class field theory in arithmetic topology.

2.1 Analogue of a Maximal Ideal

A morphism in ¥ is said to be a local isomorphism in € if it is given as the composite
of a morphism in %, followed by an isomorphism in €. Since a pullback in ¢ of any
morphism in € by any morphism in % exists, the composite of an isomorphism in ¢
followed by a local isomorphism in % is again a local isomorphism in 4. In particular,
the composite of local isomorphisms in ¢’ is again a local isomorphism in €.

Let O € ob(%p). Foranr € (0,1] and a j € Home (O, @y[,)), we denote by
js1 € Home (O, o/ ) the composite of j and the morphism .27,y — /s in € given
as the zero embedding S' < V[r), z = (z,0).

Let y € Homy (O, 27 ). We putim(y) =im(#(x)) c % (0). A

j € Hom<g(O, DQ{V[,))

with r € (0,1] is said to be a tame extension of y if j is alocal isomorphism with jgi = y.
We say that y is a cycle in O if Z (x):S' - Z,(0) is injective. A cycle in O is said
to be tame if it admits a tame extension. The notion of a tame cycle is an analogue
of a homomorphism from a ring & of algebraic integers onto I, with a power q of a
prime number.

We denote by Auty, (%) c Autyg (<) the subgroup consisting of automor-
phisms ¢ such that . (o) acts trivially on H;(S"). The set of cycles in O and the
set of tame cycles in O are stable under the action of Auty () on Hom¢ (O, %)
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given by the composition from the right. A knot in O is an equivalence class of cycles
in O with respect to the right action of Aut, (<% ). A knot in O is said to be tame if
it consists of tame cycles in O. The notion of a tame knot is an analogue of a maximal
ideal P of &', which is a generalisation of the ideal generated by a prime number.

Let p be aknot in O. A j € Hom (O, &/y,)) with r € (0,1] is said to be a tubular
neighbourhood of p if jq is a cycle in O representing p. By definition, g is tame if and
only if g admits a tubular neighbourhood. Moreover, if there is an orientable strict
%-manifold X with o/x = O, then p is tame if and only if there is a map S' - X of
class C™ representing g by tubular neighbourhood theorem [Hir76, Theorem 4.5.2].

We take a representative y € Home (O, o751 ) of g, and put im(p) = im(y). We
denote by E the surjective continuous map R — S', t = exp(2m\/~1t), by 0 the
surjective continuous map A' - S', (to,#) = E(t), and by Frob,, € H;(.%,(0))
the homology class of the singular 1-cycle represented by the continuous map

F (1) 0 0:A' > Fo(0).

We also denote by Frob,, the images of Frob,, by natural group homomorphisms as
long as there is no ambiguity. Then im(g) and Frob,, are independent of the choice of
x by the definition of the action of AutZ, (2% ). They play roles analogous to the finite
field &'/P and the Frobenius automorphism at P of a maximal unramified Abelian
extension of Frac(&'), respectively. We call Frob,, the Frobenius of O at .

Suppose ¢ = PLSp°?. We put O = (M, £)r). By the definition of a path-length,
20(p) = €p(y) is independent of the choice of y € p. We put #0/p = exp(£o(p)),
and call it the exponential length of O /p. Then #0 /g is analogous to the cardinality of
O|[P.

Since y is a continuous map from a compact topological space to a Hausdorft topo-
logical space, im(g) is closed. Therefore we obtain the objects

Oim(p) and  Frac(Oim(p))

of € (Example 1.4). We abbreviate Oim(p) to Op and Frac(Ojpe)) to Frac(O,,).

We have canonical morphisms O - O, and O, — Frac(O,) in %o given by the
compatible systems of restrictions of id #, (o).

2.2 Partial Analogue of a Number Field

Let O € ob(%,). We say that O is pre-arithmetic (resp. arithmetic) if there is a con-
nected three-dimensional 4’-manifold (resp. a connected three-dimensional strict % -
manifold) X with 0X = @ and «/x = O. We note that the difference between the no-
tions of a pre-arithmetic object and an arithmetic object of 6} occurs only when 4 =
PLSp°P, because every three-dimensional topological manifold (resp. three-dimen-
sional C*-manifold) admits a compatible structure of a C*-manifold.

Suppose that O is pre-arithmetic. We say that O is closed (resp. orientable) if such
an X can be taken as a closed (resp. orientable strict) 4’-manifold. The notion of an
orientable closed arithmetic object of ¢ is analogous to a ring & of algebraic integers.
While a number field is equipped with the set of maximal ideals, an orientable closed
arithmetic object of 4 is not naturally equipped with a set of knots. Therefore we
need to consider a counterpart of the set of maximal ideals.
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Let S be a set of knots in O. We putim(S) = Upes im(p) ¢ .%o(0). We say that S
is a link in O if im(S) # .%,(0) and im (o) Nim(gp;) = @ for any (pg,@1) € S* with
©o # 1. The condition im(S) # .%¢(0) automatically holds when S is countable by
the Baire category theorem. Suppose that S isalink in O. Then {im(gp) | p € S} isa set
of pairwise disjoint closed subsets of O. We abbreviate {im(p) | p € S} 10 € 0b(%)
(Example 1.3) to S~'O. When § is finite, we abbreviate

O[{im(p) | p € S} '] € 0b(%)

to O[S™'].

We say that S is tame if S consists of tame knots, is admissible if S is tame and
{Frob,, | p € S} generates H, (:%,(0)), and is generic if S \ s forms an admissible link
in O[s™!] for any s € Fin(S). If S is generic, then S is admissible. The definitions of an
admissible link and a generic link are analogous to the Chebotarev density theorem.
The notion of a generic link is analogous to the set Max(¢’) of maximal ideals of &,
which is a generalisation of the set of prime numbers.

An arithmetic manifold is a pair K = (Oy, Sk ) of a pre-arithmetic object Ok of %
and a tame link Sk in Ok admitting an s € Fin(Sk) such that Og[s™"] is arithmetic.
Let K be an arithmetic manifold. We say that K is closed if O is closed, is orientable if
thereisan s € Fin(Sk) such that Ox[s™] is orientable, and is admissible (resp. generic)
if Sk is admissible (resp. generic).

The notion of an orientable closed generic arithmetic manifold is partially anal-
ogous to a number field. We will define the notion of a covering of an arithmetic
manifold in Section 2.3, and it would be natural to regard the notion of a covering of
an orientable closed generic arithmetic manifold as an analogue of a finite extension
of a number field, which is again a number field. However, a covering of an orientable
closed generic arithmetic manifold forms an orientable closed arithmetic manifold
that is not necessarily generic. For this reason, we will introduce a condition stably
generic which is stronger than generic in Section 2.4.

For ap € K, we abbreviate Frac((Ox), ) (Example 1.4) to K,,, and call it the formal
completion of K at p. As a special case of Example 1.4, K, is partially analogous to the
Henselisation and the completion k, of a number field k at a maximal ideal p of the
ring of algebraic integers in k.

2.3 Partial Analogue of an Extension of Number Fields

Continuing from Section 2.2, let K = (Ok, Sk ) denote an arithmetic manifold. We put
M = %y(Ox). We give a partial analogue of an extension of number fields. Through-
out this paper, we follow the terminology on branched coverings [Fox57, p. 250]. We
note that since K is an arithmetic manifold, M is a connected locally compact topolog-
ical space that is always assumed to be Hausdorff, and hence satisfies the assumption
of the covering space and the base space of a branched covering [Fox57].

A topological covering of K is a pair (N, h) of a connected locally compact topolog-
ical space N and a continuous map h: N — M such that h is a branched covering that
is unbranched of finite degree outside im(s) for some s € Fin(Sk). For topological
coverings (No, ho) and (Ny, hy) of K, a covering morphism (Ny, hy) — (Ny, ho) over
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K is a continuous map ¢: N; - Ny with hgo¢ = h;. We denote by Top /K the category
of topological coverings of K and covering morphisms over K.

We give a construction of an arithmetic manifold from a topological covering of
K. For this purpose, we introduce a convention on a branched covering of tori. Let
r € (0,1]. Fora (d,e, f) € Z x N,o x N5, we denote by h4 . [r) the branched cov-
ering V[re) = V[r), (z,w) ~ (z/,z%w®) unbranched outside S' x{0} of degree
ef, and call it a standard branched covering. For any branched covering h: V — V|r)
unbranched outside S' x{0} of finite degree, the subgroup of H;(V (r)) = Z? corre-
sponding to the unbranched covering associated with /1 through the Hurewicz iso-
morphism H;(V(r)) = m(V(r), (1,27'7))*® = m(V(r), (1,27r)) is generated by
the homology classes of the singular 1-cycles represented by the continuous maps
(6/,27'r) and (6%,271r0°) for a unique (d, e, f) € Z x N,y x Ny, and there is a
homeomorphism ¢: V — V[re_l) with hg e f[r) o ¢ = h.

Let (N, h) be a topological covering of K. When € = Top°?, we put

h*(Ok) = N € ob(Top).
When ¢ = PLSp®?, Ok is presented as a pair (M, €), and we put
h*(Ok) = (N, h*¢) € ob(PLSp) (Example 1.2).

Suppose € = (C*)°P. We denote by U c N the open subset given as the antecedent
of the unbranched covering associated with %, which forms a C*-manifold with re-
spect to the pullback of the C*-manifold structure of Ok. For each p € Sk, we take
a tubular neighbourhood j,, € Homy (Ok, &y, ) with r, € (0,1] of p. Replacing
(7o )pesc by a family of smaller ones, we may assume that for any p € Sk, h is un-
branched over % (j,)(V(r,)) and hence the pullback of & by j, in Top is given as
ha,e f[re) fora (d,e, f) € Z x Nyg x Nyo. It implies that there is a surjective local
homeomorphism ¢: UL ||, V[r;) - N with m € Nand (r;), € (0,1]™ for which
ho@:Uu, V[r;) - Ok is of class C*. We equip N with a unique structure of a
C”-manifold for which ¢ is of class C*, and denote by h* (O ) the resulting C*-mani-
fold. It is obvious that h*(Og) depends only on (N, &) and is a connected three-
dimensional ¥-manifold with .%,(h*(Ox)) = N and h € Homg, (h*(Ok), Ok). If
Ok is a closed (resp. an orientable strict) % -manifold, then so is h* (Og) by the con-
struction.

Remark 2.1 When h is an unbranched covering, the structure of h*(Ok) is just
given as the pullback of the structure of Ok, and hence h regarded as a morphism
h*(Ok) — Ok in %, satisfies the covering homotopy property with respect to any
% -morphism whose target is of the form .27); for some compact ¢’-manifold M ad-
mitting a ¢’-morphism M x [0,1] — M that is a homotopy connecting idys and a
constant map M — M.

We denote by h*(Sk) the set of knots & in h* (Og) for which there is an

(f-p) € Nsg x Sk

such that for any ¥ € 2, h o ¥ is presented as the map S' — Ok, z + y(2/) for some
X € - Such a p is obviously unique, and hence we denote it by h,.Z. Then h*(Sk)
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forms a tame link in h* (Og) with im(h*(Sk)) = h™!(im(Sk)) by the construction
of h*(Ok). We denote by h*K the arithmetic manifold (h*(Ox), h*(Sk)).
A covering of K is an arithmetic manifold L = (Oy, S1) equipped with an

11k € Home;, (O, Or)

such that (.%y(Or),-%(11/x)) is a topological covering of K with L = % (11/x)* K.
In particular, K itself is a covering of K with respect to ix/k = ido,. The notion of a
covering of K is partially analogous to a finite extension of a number field k.

Let L be a covering of K. We put hyjx = Fo(i1r/x) € C(Fo(O0r), M). For a
P € S, weput iy, P = (h1jk)+2. The compatible system of restrictions of

I1/k gives a morphism Sg!Ox — S7'0; in €. A morphism ¢ in 4 is said to be
unbranched if %,(¢) is an unbranched covering of connected locally compact topo-
logical spaces of finite degree. We say that L/K is unbranched if 1/ is unbranched.
A covering L’ of K is said to be unbranched if L' /K is unbranched. The notion of
an unbranched covering of K is partially analogous to an unramified finite extension
of k.

For coverings Ly and L, of K, a covering morphism Ly — L; over K is a

0 € Homy, (Oy,,Oy,)

with 1, /x © 0 = 1,k for which L; is a covering of Lo. In particular, for any covering
L of K, 11k forms a covering morphism over K.

The set-theoretic composite of covering morphisms between coverings of K again
forms a covering morphism between coverings of K in a contravariant way by the
construction of the pullback. We denote by %,/K the category of coverings of K and
covering morphisms over K. The correspondence (N, ¢) ~ ¢*K gives a contravari-
ant functor Top /K — %, /K, which is fully faithful and essentially surjective by def-
inition. The correspondence L ~ S;'Oy gives a functor /K — % that is faithful
because the image of a finite link is nowhere dense.

For a continuous map h: X — Y between topological spaces, we put Aut(h) :=
{g € Autrop(X) | hog = h}. For any unbranched morphism ¢: Oy — Oy in 6y, every
element of Aut(.%o(¢)) c Autre,(-%0(01)) gives an automorphism of O; in €, by
the definition of the morphism class of 5. We extend this fact to a branched covering
of arithmetic manifolds. For a group G, we denote by G°P the opposite group of G. We
put Aut(L/K) = Aut(hyx)°P. Every element of Aut(L/K) gives an automorphism
L — Lin %,/K by the explicit presentation of L = h} ;K as the quotient of the disjoint
union of an unbranched covering and finitely many standard branched coverings.
Therefore Aut(L/K) acts on L in 6 /K. Since .7 is faithful, the map Aute, /x (L) -
Aut(L/K),g — Fo(g) is a group isomorphism. In particular, Aut(L/K) admits a
natural action on S;.

For a branched covering h of connected locally compact topological spaces, we say
that h is Galois if Aut(h) acts transitively on the fibre of every point of the unbranched
covering associated with h, and is Abelian if h is Galois and Aut(h) is Abelian. A
morphism ¢ in % is said to be Galois (resp. Abelian) if .%(¢) is a Galois (resp. an
Abelian) branched covering of connected locally compact topological spaces. We say
that L/K is Galois (resp. Abelian) or L is Galois (resp. Abelian) asa covering of K if 1/
is Galois (resp. Abelian). When L/K is Galois, then we put Gal(L/K) = Aut(L/K),
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and call it the Galois group of L/K. The notion of a Galois (resp. an Abelian) covering
of K is partially analogous to a Galois (resp. an Abelian) extension of k. Combining
the facts that we will show in Proposition 3.2 (iii) and Theorem 3.4, it is easy to see
that the profinite completion of H; (M) controls unbranched Abelian coverings of K,
and hence is partially analogous to the ideal class group € ¢y of k.

2.4 Analogue of a Number Field

We say that Sk is stably admissible (resp. stably generic) if h* Sk is admissible (resp.
generic) for any topological covering (N, h) of K, and that K is stably admissible (resp.
stably generic) if Sk is stably admissible (resp. stably generic). If K is stably admissi-
ble (resp. stably generic), then every covering of K is stably admissible (resp. stably
generic) by definition. The notion of an orientable closed stably generic arithmetic
manifold is completely analogous to a number field.

Remark 2.2 We will verify the existence of a stably generic link in Theorem A.l
We note that the definition and the terminology of a stably admissible link are im-
itations of the notion of a very admissibility link, which was introduced and whose
existence was verified by Niibo and Ueki in [NU]. The notion of a very admissible
link in [NU] is equivalent to that of a countable stably admissible link for the case
€ = Top, therefore Theorem A.1 for the case ¥ = Top follows from the correspond-
ing result in [NU]. However, the notion of a very admissible link in the first version
(arxiv:1501.03890v1 ) of [NU] was not formulated with the assumption of the tame-
ness. The existence of a very admissible link without the tameness was verified in the
first version of [NU] in January 2015, the existence of a countable stably admissible
link was verified in our unpublished work in February 2016, and the existence of a very
admissible link with the tameness was verified in their unpublished work in March
2016. Therefore our result is independent of their result. Furthermore, the existence
of a stably generic link is much stronger than the existence of a stably admissible link,
and hence than the existence of a very admissible link with the tameness.

2.5 Analogue of an Algebraic Closure

We fix an 1o, € MNim(Sk). Let Y be an element of Cov(M \im(s), Lo, ) (Example 1.5)
for some s € Fin(Sk). We denote by ¢y the canonical projection Y - M \ im(s).
Since Y is a quotient of (M \ im(s), 1o )”, it is naturally equipped with a base point
sy with @y (*y) = leo.

We denote by Ny the Fox completion of Y with respect to the composite of gy
and the inclusion M \ im(s) — M [Fox57, p. 245] and by the canonical projection
@y:Ny - M. Then (Ny, ¢y ) forms a topological covering of K. We obtain a covering
PyK of K.

We denote by Cov(K) © Lisepin(s,) Cov(M \ im(s), too) the subset of Y’s such
that @y is not unbranched at any point of im(s). Then Cov(K) forms a directed set
with respect to the partial order < given by setting Y, < Y; if and only if ¢y, factors
through ¢y,.
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Let (Yo, Y1) € Cov(K)? with Y, < Y;. We denote by ¢y, y,: Y1 = Y, a unique local
homeomorphism with ¢y, vy, (*y,) = *y, and @y, © ¢y, v, = ¢v,> and by ¢y, v,: Ny, —
Ny, a unique continuous extension of ¢y, y,. We have

91y, € Homrep /k ((Ny,, 9v1) (N> 9,))-
So (93 K) yecov(k) forms an object of Ind(%,/K) with respect to (@y,,v,) vo<v;-

We denote by M(K) c ob(%p/K) the subset {93 K | Y € Cov(K)}. The map
Cov(K) - M(K),Y ~ @3 is bijective by definition. Therefore, (L), € M(K) forms
an object K of Ind(%,/K) naturally isomorphic to (¢} K)yecov(x) in Ind(%y/K),
which is analogous to the algebraic closure k in C of a number field k equipped with
an embedding i..: k = C, and call it the algebraic closure of K with respect t0 io.

We denote by M2 (K) c M(K) the subset of Galois coverings of K, and by Grp
the category of groups and group homomorphisms. We will prove in Corollary 3.3
that MS?(K) is cofinal in M(K), and the system (Gal(L/K)) emeai (k) naturally
forms an object of Pro(Grp) with surjective transition maps. We denote by Gk the
profinite group given as the projective limit of (Gal(L/K) ) e pex (k)> Where Gal(L/K)
is equipped with the discrete topology for each L € M(K). Then the underlying
group of Gk naturally acts on K in Ind(%;/K).

Let o € Sk. A place of K over g is a system (pr)rem(x) € Irem(x) St with
lzl/Lole = p1, for any (Lo, L;) € M(K) with Ly < L,. The notion of a place of K
over g is analogous to a place p of k over a maximal ideal of the ring of algebraic
integers in k.

Let© = (L) rem(k) be a place of K over . Then the system (L, )Lem(x) forms
an object of Ind(%,) = Ind(Ind(%,)) with respect to (to1, Jo1, )1o<L,> and naturally
gives an object Kg of Ind(%) = %, that is analogous to the algebraic closure of k,
given as the completion kp of k at P.

2.6 Analogues of the Multiplicative Groups

We introduce two analogues of the multiplicative groups of number fields. We denote
by A the simplex category, and by Ab c Grp the full subcategory of Abelian groups.
The correspondence [n] ~» @y« gives a contravariant functor 2/p«: A - %, because
coface maps and codegeneracy maps are ¢’ -morphisms.

For an X € ob(‘6) ), we denote by C;, (X) = (CJ,(X),d") yen the cochain complex
(zHome(X.un)y | that is naturally identified with

(HomAb(ZGB Homg(X,dAn)) Z))neN>

associated with the composite of @7« and the inclusion 6y — €, by (Z, (X)) nen the
system (ker(d™)) ,en of cocycles of C, (X), by (BJ (X)) nen the system (im(d")) yen
of coboundaries of C},(X), and by (HJ (X)),en the cohomology of C) (X). For
any n € N, the correspondences X ~ CJ (X),Z5 (X),B2 (X),Hp (X) give func-
tors Cpp,Z , B ,H!' : 4 — Ab. We note that they are covariant because the source
and the target of a morphism in €’ are defined in a contravariant way relative to Top.

For a covariant functor F: 4 — Ab, we denote by F the Kan extension of F along the
embedding ¢ — %, i.e., the natural extension 4 — Ab of F sending (X i)jes € ob(%)
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to lim o F(X;). The functors 7! and C. are analogous to the multiplicative group
j

functors 0 and .#™ of regular sections and meromorphic sections on algebraic va-
rieties, respectively. Indeed, we will verify local class field theory for Z. in Theo-
rem 3.15 and Hilberts Theorem 90 for C., in Theorem 3.7. We note that we have a
natural equivalence Z”. /B, — H”. for each n ¢ N by the exactness of the inductive
limit.

We put K* := ’Z\}H(S;(l Ok) (Section 2.2) and K* := Z,(K) (Section 2.5), and call
them the multiplicative groups of K and K respectively. We denote by O} c K* the
image of the canonical homomorphism Z} (Ox) — K*, which, unfortunately, is not
injective unless Sx = &, and call it the unit group of K. Then K™ (resp. Of) is analogous
to the multiplicative group k™ (resp. the unit group &)’) of a number field k. The
correspondence L ~ L* (resp. L ~ O5) gives a functor 6,/K — Ab.

Remark 2.3 In the preceding formulation in [NU], a counterpart of the multi-
plicative group is given as the inductive limit of the second singular homology groups
H, with respect to a system of group homomorphisms defined in a geometric way.
Through the Poincaré duality, it can be interpreted as H. , which is defined in an
algebraic way from H, . Therefore our formulation of K* is a refinement of the alge-
braic interpretation H! of the counterpart of the multiplicative group in [NU]. We
will show in Theorem 3.8 that K™ satisfies the descent property, which justifies our
formulation compared to the original one in [NU].

Let o € Sk. We put K} := Z}, (K,,) (Example 2.2). We denote by 15: K* — K the
group homomorphism associated with the morphism Sx'Ox — K, in %, given by
the compatible system of restrictions of id .

For a covering L of K and a & € S with 1}, % = o, the compatible system of
restrictions of hy/k gives morphisms (Ok ), — (O1) 2 and 1 5,: K, - L in %o.

Let§ = (p1)rem(k) be a place of K over . Since (L, ) rem(k) forms an inductive
system in €, (Lg, )em(k) forms an inductive system in Grp, by the functoriality of
Z1,. We put K% = Z}, (Kg). By the definition of K, K is naturally isomorphic to
the inductive limit of (L, ) epm(x) in Ab.

2.7 Analogue of the p-adic Valuation

In order to introduce several homomorphisms, we compare H}, and H'. We denote
by @0 the group homomorphism H'(.%,(0)) — HL (O) induced by the restriction

map Z(*>70(9) > G} (0), (cy)yec(ar,#0(0)) = (€7 (1)) yeHome (0.7)-

Proposition 2.4  For any strict € -manifold X, the homomorphism © o7, : H' (X) —
H., (x) is a group isomorphism.

Proof We denote by C* = (C",8")pen the singular cochain complex of X, and by
p = (pu)nen the cochain map C* — C7, (<) given by restriction maps. Then @ .,
in given as H'(p). By definition, py is a group isomorphism.
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We show the injectivity of H'(p). For any y € C(Al, X), there is a homotopy
A' x [0,1] - X relative to dA! connecting y and a map A! — X of class C* by
Whitney’s approximation

theorem [Lee03, Theorem 10.21] applied to the continuous extension y: {(fo, f;) €
R? | to+ t; =1} — X of y given by setting y(to, t;) = y(1, 0) for any (fo, ;) € R* with
to+t = 1< tgand y(to, t;) = y(0,1) for any (to, ;) € R* with tg + f; = 1< t. It
implies that H'(p) is injective because py is surjective.

We show the surjectivity of H'(p). Let ¢ € H. (x). We take a representative
c e Z! (efx) of ¢. We construct a ¢’ € ker(8') with p,(c’) = c. Let y € C(A!, X). By
Whitney’s approximation theorem again, there is a homotopy map ®: A' x [0,1] — X
relative to dA! connecting y and a C*°-map y: A! - X. By Whitney’s approximation
theorem for smooth homotopy [Lee03, Proposition 10.22], two smooth paths in X
sharing endpoints and admitting a homotopy map relative to dA' connecting them,
admit a smooth homotopy map relative to dA' connecting them, and hence ¢, =
c(¥) € Z depends only on y. We put ¢’ := (¢, )yec(a1,x) € C'. Then we have p;(c’) = ¢
by the construction.

Let o € C(A2, X). Weput 3[0] = ¥4 (~1)i[9;0] € Z& (4"X) with

(9;0)7, € C(A', X)?.

For each i € {0,1,2}, there is a homotopy A! x [0,1] — X relative to dA! connecting
d;y and a y; € Homc=(A!, X) c C(Al, X) by Whitney’s approximation theorem
applied to a continuous extension of d;0. Then ¥'2(~1)[y;] € Z® "% Jies in
Y2 o((-D)[0;0] + 978 (4% X))y < da] + 978 C(8%X) = 97,8C(2%X) ‘and hence in
97,® Home= (47.X) by the comparison theorem between the smooth singular homology
and the singular homology [Lee03, Theorem 16.6] . Therefore, we obtain 8'(c’)(0) =
Y2 o(-1)ic'(0;0) = Yio(~1)ic(y;) = 0. Tt implies 8'(¢’) = 0. We conclude that
H'(p) is bijective. [ |

For an (r,r") € (0,1]* with ¥ < r, we denote by y, , (resp. A,,,/) the morphism
Ay (yy =~ @y in € given by the €-morphism A' — V(r), (to,t) = (L,7'8(t))
(resp. (to,t1) = (0(t1),r")), and by u . (resp. A} ), the group homomorphism

Z3, (S () — Z given by the evaluation at i, (resp. A,,,+). We verify that the system
(1) 31, )re(o.] (resp. (51, ) re(o,1]) vields a group homomorphism 7 (T?) - Z.

Proposition 2.5  Let (r,r',r") € (0,1]> with " < r' < r. For any c € Zy,(y(y)),
the equality c(prr) = c(ptr,r) = (cly(ry) (frr, ), respectively, c(Ay ) = c(Ay ) =
(clv(y) (Ar o), holds, where c|y () denotes the image of ¢ in Zy, (V(r')).

Proof The assertion follows from Proposition 2.4 applied to V(r) and V(+'), be-

cause [F (pr,)] = [F (4r)] € Z8CALV() (resp. [F (Arr)] = [F (Arp)] €

7@ C(ALV(1)) js a singular 1-boundary. ]

By Proposition 2.5, the system (4., 1,) re(0,1] (resp. (A, 51, ) re(0,17) yields a group
homomorphism Z!, (T?) — Z that we denote by " (resp. 1¥) and that is obviously
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surjective by an argument similar to the singular cohomology using the perfect pair-
ing with the singular homology. We show that u" (resp. 1") is stable under the action
of the group of automorphisms of S' over <.

Proposition 2.6  Let (r,r") € (0,1]>. For any local isomorphism o: @y [,y = y[p)
in € with Z(0)(2,0) = (2,0) for any z € S', we have u" o Zin(0°) = u", (resp.,
LY 0 Zm(0°) = AV), where 6° is the automorphism of T? in € given by the compatible
system of restrictions of % (7).

Proof By Proposition 2.5, we may replace r by a sufficiently smaller one, and assume
that .7 (o) is injective. Then o induces a local isomorphism 0|y (,y: &y (1) = Dy (y)
in €. The assertion follows from Proposition 2.4 applied to V(r) and V(r'), be-
cause [.F (1)) = [F (Ur,21r 0 0|y ()] € 7@ ALV () (resp. [F (A 1)) -
[Z (Ao 0 0ly(ny)] € Z® CALV(M)y js a singular 1-boundary. [ |

Let p € Sk. The tameness of p ensures that K; admits a group isomorphism to
7! (T?) depending on a choice of a tubular neighbourhood of p. By Proposition 2.6,
the composite v, (resp. v;)g) of the isomorphism K — ZL (T?) and u" (resp. 1Y)
is independent of the choice of a tubular neighbourhood of g and is analogous to
the p-adic valuation (resp. the composition of the p-adic valuation and the Iwasawa
logarithm kj; — k) of the completion k), of a number field k at a maximal ideal p of
the ring of algebraic integers in k. We call v, the valuation of K.

We put (Ok),; = ker(v,,) c K. We note that 7 induces a group isomorphism
Z = H'(S") - HL,(S") = HL, ((Ox),) by Proposition 2.4 applied to V[1). Although
we do not use this fact, it is easy to see, through the isomorphism, that the group ho-
momorphism Z}, ((Ox)e) = Z4(Ky) = K, associated with the canonical morphism
S!' —» T2 in €, induces a surjective group homomorphism Z}, ((Ok),) > (Ok)2
that is, unfortunately, not injective.

2.8 Analogue of the Reduction

Let L be a Galois covering of K. We fix a p € Sg. Fora &2 € Sp with IZ/K@ =,
we denote by Gal(L/K) s c Gal(L/K) the stabiliser subgroup of &2 with respect
to the action of Gal(L/K) on Sy, and call it the decomposition group of L/K at 2.
Since Gal(L/K) acts transitively on the fibre of each point of .%,(Or[h] /K(s)‘l])
for a sufficiently large s € Fin(Sk), Gal(L/K) acts transitively on IZ}K({@}) c S;.
Therefore, for any (%, 9,) € S} with ‘z/K@O = lz/Kﬂl = g, Gal(L/K) », and
Gal(L/K) %, are conjugate to each other.

We fixa & € Sy with i, & = p. By the definition of a covering, hyk is locally
presented as the standard branched covering hg,. ¢[r) with r € (0,1] and

(d,e, f) €Z xNyo x Ny
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around im(2?), and the restriction im(%?) — im(gp) of hy/x is an unbranched cov-
ering corresponding to the map S' — S', z  z/ through the presentation. It im-
plies that the automorphism group of im(.?) over im(p) in Top is canonically iso-
morphic to Z/fZ by the definition of a knot, using Aut, (<) c Auty (). In
particular, fz, = f depends only on i /x and . We obtain a group homomor-
phism red 5 ,: Gal(L/K) 5 — Z[f 2,7, which is surjective because the action of
Gal(L/K) 2 on each fibre of the restriction of &k to sufficiently small neighbour-
hoods of im(p) and im(2?) is transitive. Since efz/,, coincides with the degree of
the unbranched covering associated with the restriction of h;x to neighbourhoods
of # and p, e 5/, = e also depends only on i1 /x and . The indices f, and e/,
are analogous to the inertia degree and the ramification index of an extension of local
fields.

Remark 2.7 If% = PLSp°P, then the equality #0; / # = (#Ox /) #/ (Section 2.1)
holds.

Wefixaplace® = (pr)rem(x) of K over p. Then the system (Gal(L/K), ) emcn k)
forms an object of Pro(Grp) with respect to the transition maps of

(Gal(L/K))LEMGal(K).

We denote by G the profinite group given as its projective limit of
(Gal(L/K)p, ) emss (k)

whose underlying group of Gk g naturally acts on Kg in % by definition. For any
(L, L") € MS(K)? with L’ < L, we have Jou o | forje> and the composite of the
canonical projection Gal(L/K),, — Gal(L'/K),,, with red,, ,;, coincides with the
composite of red,,, /, with the canonical projection Z/ f,, /o7 — Z/ f;, , 1o Z, by defi-
nition. Therefore, we obtain a continuous group homomorphism

Grp — Lﬂl 2 for 1oL
LeMSaI(K)
which is surjective by the compactness of Gk 3.
In particular, we obtain a surjective continuous group homomorphism

dg;l GK@ —> Z,
under the assumption that for any # € N, there is an L € M(K) with n|f,, /..
We note that this condition obviously holds when K is presented as (</y 1), {g}) for
some € (0,1] and g is represented by the morphism .27,y — /y1 in € given by the
% -morphism u,: A' - V[r), (to, ) = (6(#1),0), but does not necessarily hold in
general. The homomorphism d; is analogous to the reduction map from the absolute
Galois group of a p-adic field to the absolute Galois group of the residue field.

2.9 Analogue of the Idele Class Group
We denote by I the restricted product of (K} )pes, with respect to ((Ox ),y )pesy i-€-»

the subgroup of [T, K, consisting of (¢, )ges, s with #{p € Sk | ¢, ¢ (Ox)g} < o0,
and call it the idéle group of K. Then Ik is analogous to the idele group %, of a number
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field k. Unlike %, we use the additive notation for Ix. For a covering L of K, we
consider the group homomorphism

l},/K:IK — I, (cp)pesc — (l;/lz/Kg(C,Z/Kg))ygsL.

Since Sy is stable under the action of Aut(hy k), we have a natural action of Gal(L/K)
on Iy over Ix when L/K is Galois. For any (Lo, L;) € M(K)? with Ly < L;, regarding
Ly as an object of 6y/Ly through the canonical morphism i, /1y Lo = Ly in %o/K
corresponding to the base points of .%(Oy, ) and .%,( Oy, ), we obtain ’L/Lo o liO/K =
i1,/x- Therefore the correspondence L ~ I, gives a functor %/K — Ab.

Remark 2.8 Inthe preceding formulation in [NU], a counterpart of the idéle group
is given as the restricted product of the first singular homology groups H;. Through
the Poincaré duality, it can be interpreted as the restricted product of HY, . Therefore,
our formulation of Ik is a refinement of the counterpart of the idéle group in [NU].
The difference is very important because Ik satisfies the descent property as will be
shown in Theorem 3.12.

It is obvious that I is the preimage of Z®5¢ c Z5% by the group homomorphism
Mpese Vo Mpese K = Z°%, (cp)pese = (Vp(cp)). Therefore we obtain a natural
group homomorphism vi: Ix — Z®5¢, We put Uy := ker(vg) = [pes (Ok),y © Ik
T ©eSK B:n(KK-’) c UK’

By the definition of K* = Z} (Sg'Ok), the image of the composite of the group
homomorphisms [Ty, 15: K™ = Tlges K> € = (15(¢) )pesy and [Tges, Vo is con-

By the definition of vk, we have []

peSk IKXJ
natural group homomorphism t: K* — Ig, and denote by Pk c I its image. We put
Ck = Ix/Px. Then Pk and Ck are analogous to the principal idéle group & and the
idéle class group 6 of k. The correspondences L ~ Py, Cy, give functors %,/K — Ab,
by definition.

tained in Z®5%, and hence the image of [] is contained in Ix. We obtain a

Remark 2.9  Unlike the diagonal embedding, k* — ., (% is not injective.

We introduce several topologies. For each p € Sk, we equip K] the topology gener-
ated by the set of subsets of the form ¢+ U for some ¢ € K and some subgroup U c K7
such that (Ox);; N U is a subgroup of (O ), of finite index containing BL(K,),and
(Ok),, with the relative topology of K;;. We equip Uk with the direct product topol-
ogy of ((Ox); )pesx> and Ix with the topology generated by the set of subsets of the
form ¢ + U for some ¢ € Ix and some open subgroup U of Ug. Then Ix forms a
topological group. We note that Ix is not Hausdorff unless Sx = &, because every
neighbourhood of 0 in Ik contains [T, BL.(K,). We equip Cx with the quotient
topology of Ix.

2.10 Analogue of Ray Class Groups

For a (p,n) € Sk x Ny, we put Ué") = {c € (Ox)y | vg)g(c) € nZ}. We denote
by N&5% ¢ N¥X the subset of (1m,,)pes,’s With #{p € Sk | m, > 1} < co. Let m =
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(Mg )pesi € NEK. We put I := Mpese Uém@) c Uk and C¥ = I /(I¢ n Px), and
call them the congruence subgroup of Ix mod m and the ray class group of K mod m,
respectively. Then they are analogous to the congruence subgroup %% c .7 and
the ray class group ¢ mod non zero ideal . c O, respectively. Through the
inclusion I — Ik, we regard C¥ as a subgroup of Cx. We note that I} contains
[Tpesk BL,(K,,), and is an open subgroup of I by definition.

We put s, = {g € S | m, >1} € Fin(Sk) and

];? = {(np)pe\gx € Z®SK | Vp € Sm>Np = 0}

We denote by Pg' c J§ the subgroup of (1, )ees,’s such that there is a ¢ € K* with
1n(c) € Ué,m“) for any p € s,, and v, (1, (c)) = n,, for any p € Sk. We put Cly =
Jm /P, Then Cl is analogous to the generalisation €€, of the ideal class group of
k [Neu99, §VI1p. 365].

Remark 2.10 Put mg = (1)ges, € NEX. Then we have s, = @, I#* = Uk, and
J@° = Z®5< If K is admissible, then the group homomorphism

Ji® — Hi(M), (ng)pesc — Z n,, Frob,,
PEeSK

is surjective, by definition. If K is orientable, then its kernel coincides with P"° by a
standard argument using the Mayer—Vietoris exact sequence and the Poincaré duality

(3.1) . In particular, if K is orientable and admissible, then we have a natural group iso-

morphism CI}° = H,(M). Therefore Cl}; for a general m € N®3¥ is a generalisation

of H](M)
2.11 Resulting Dictionary

In Tables 1-4, we collect the analogues into a dictionary that is our variant of the
M?KR dictionary.

3 Main Results

Continuing from Section 2, let K = (Ok, Sk) denote an arithmetic manifold with a
fixed base point i, € Fo(Ox) \ im(Sk). We put M = %#,(Ok). We establish a class
field theory for an arithmetic topology.

3.1 Galois Theory

We establish the Galois theory for coverings of arithmetic manifolds. To begin with,
we give a criterion for a Galois covering.

Proposition 3.1 A covering L of K is Galois if and only if there is an s € Fin(Sk) such

that the restriction Fo(O0r) im(h}:/K(s)) - M ~\im(s) of hyk is an unbranched
Galois covering.
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Table 1
I Integral Object |
aring O of an orientable closed
algebraic integers arithmetic object O of )
a surjective homomorphism a tame cycle
O Fq O - stl
the absolute Galois group the fundamental group
Gr,2Z m(sh,1)P =7
a maximal ideal a tame knot
pof 0 pin O
the cardinality the exponential length
#0/p #0/p
the maximal spectrum a stably generic link
Max(0) Sin O
the ideal class group the profinite completion of
C Crrac(0) the first homology group
Hi(%0(0))

Table 2
’ \ Rational Object \ ‘
a number field an orientable closed stably generic
k arithmetic manifold K
an infinite place a base point
iooik‘—>C loo EﬁO(OK)\im(SK)
the multiplicative group the multiplicative group
k> K>
the unit group the unit group
[z Ox
the idele group the idele group
I Ik
the principal idele group the principal idéle group
P Py
the idéle class group the idéle class group
Gk Cx
the congruence subgroup the congruence subgroup
i Iy
the ray class group the ray class group
C; C¢
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Table 3
I Relative Object |
an extension I/k a covering L/K
unramified unbranched
Galois Galois
Abelian Abelian
the Galois group the Galois group
Gal(l/k) Gal(L/K)
the algebraic closure the algebraic closure
k c C of k with respect to | K of K with respect to

the infinite place io,

the base point ‘e,

the absolute Galois group

the absolute Galois group

Gal(k/k) Gk
an extension a covering
I/k in k Lin M(K)

Table 4

Local Object

the completion k,

the formal completion K,

ata p € Max(0y) atagp € Sk
the multiplicative group | the multiplicative group
kp Ke
the valuation the valuation
Vp:k;—>Z Vvp: K = Z
the unit group the unit group
(Ok)p ~ Z (Ox)g
the decomposition group | the decomposition group
Gal(l/k)p Gal(L/K) &
the Frobenius the Frobenius
Frobp Frob &
aplace p aplacep
of k over P of K over p

_the algebraic closure
ks of k, with respect to
the place p

the algebraic closure
K5 of K with respect to
the place g
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Proof By the definition of a Galois covering of K, the assertion immediately fol-
lows from the fact that the cardinality of every fibre of an unbranched covering of
connected locally compact topological spaces is constant. ]

We give a presentation of the Galois group of a covering of arithmetic manifolds.

Proposition 3.2 Let s € Fin(Sk). For any covering L of K unbranched outside im(s)
with 1 € hZ}K(too), the following assertions hold.
(i) The action of m(M ~\ im(s), tes) on Fo(Or) N im(hz/K(s)) over M ~ im(s)
induces an exact sequence of pointed sets.
m1(Fo(Or) Nim(h g (s))s 100) — m(MNIm(s), too) —> (hpjg(too)s 100) — {1}
(i) If L/K is Galois, then the exact sequence in (i) yields an exact sequence of groups.
71(Fo(01) N Im (B (), £e)™ —> 1 (M N im(s), 100) P —> Gal(L/K) —> {1}
(iil) IfL/K is Abelian, then the exact sequence in (ii) yields an exact sequence of Abelian
groups
Hi(Fo(01) ~ im(hp i (s))) — Hi(M N im(s)) — Gal(L/K) — {1},

independent of 1o, and 1, through the Hurewicz isomorphisms.

Proof The first assertion is purely topological and elementary. The restriction of the
action of Gal(L/K) on %#,(0p) to %, (Op) ~ im(hz/K(s)) is transitive, and hence in-
duces a group isomorphism Gal(L/K) — Aut(hL/KL%,(oL)\im(h;/x(s)) )°P. Therefore
the other assertions immediately follow from the first assertion. ]

We call the image of 71;(-%y(Or) ~ im(hz/K(s)), i) in (M ~ im(s)) (resp. the
image of H;(%,(01) im(hz/K(s))) in Hy(M ~ im(s))) by the homomorphism
in Proposition 3.2 the subgroup corresponding to i1 /. As a consequence of Proposi-
tion 3.1, we obtain the following.

Corollary 3.3 A covering L of K is Galois if and only if there is an sy € Fin(Sk)
such that hy jk is unbranched outside im(sg) and for any s; € Fin(Sk) with sq < s1, the
subgroup of m1(Fo(Ok[s1']), Leo ) corresponding to iy jx is normal.

Now we construct the Galois correspondence for arithmetic manifolds.

Theorem 3.4 (Galois Theory) The following assertions hold.
(i) Forany L € M(K), there is a unique open subgroup Hy x c Gy such that for
any L e MG (K) with L < L, the image of Hyjk by the canonical projection
Gx — Gal(L/K)

coincides with Gal(L/L).

(ii) For any open subgroup H c Gy, there is a unique Ly € M(K) such that for any
L e MS?(K) with Ly < L, the image of H by the canonical projection Gx — Gal(L/K)
coincides with Gal(L/Ly).
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Proof First, let L € M(K). The uniqueness of Hy /k in the assertion immediately
follows from the definition of the topology of Gk. By the cofinality of M%*(K) in
M(K), there is an Ly € MG (K) with L < L,. We denote by Hp/k © Gg the preimage
of Gal(Lo/L) by the canonical projection Gx - Gal(Lo/K). By the definition of the
topology of Gk, Hy /k is an open subgroup of G.

Let L ¢ MS¥(K) with L < L. Since M(K) is directed and MG (K) is cofinal in
M(K), there is an L, € M%!(K) with Ly < I, and L < L;. For any L, € {L,, L},
the preimage of Gal(L,/L) by the canonical projection Gal(L;/K) - Gal(I,/K)
coincides with Gal(L;/L) by definition. Therefore the preimage of Gal(L/L) by the
canonical projection Gx - Gal(L/K) coincides with H; /K-

Secondly, let H c Gk be an open subgroup. The uniqueness of Ly in the assertion
immediately follows from the cofinality of M (K) in M(K) and the classical Galois
theory for unbranched coverings, because for any I € M(K), every automorphism
in Top of the antecedent of the unbranched covering associated with hy ;. over M
uniquely extends to an automorphism in Top of .%,( Oz ) over M. By the definition of
the topology of G, there is an Ly € MS?'(K) such that H contains the kernel of the
canonical projection Gg - Gal(Lo/K). We denote by Ly € M(K) a unique element
with Ly < Lo such that the image of H by the canonical projection

Gx — Gal(L,/K)

coincides with Gal(L/Ly ), which exists because the quotient of the unbranched cov-
ering associated with g by the action of the image of H is an unbranched covering.

Let L € M\ (K) with Ly < L. By the argument above, there is an L; ¢ M%?!(K)
with Ly < Ly and L < L;. Forany L, € {Lo,L}, the preimage of Gal(L,/Ly) by

the canonical projection Gal(L;/K) — Gal(L,/K) coincides with Gal(L;/Ly) by
definition. Therefore the preimage of Gal(L/Ly) by the canonical projection

Gx — Gal(L/K)
coincides with H. [ ]
We fixap € Sk and a place § = (p1)rem(x) of K over p. As an application of

Theorem 3.4 (ii), we obtain the existence of a covering of K whose behaviour around
@ is completely controlled, in the following sense.

Corollary 3.5  For any open (resp. open normal) subgroup H c Gk, there is an
L € M(K) (resp. L € MS*(K)) such that for any L € M®*(K) with L < L, the image
of H by the canonical projection Gx g — Gal(L/K),,. coincides with Gal(L/L)..

We note that we will show in Corollary 3.20 that Gk is in fact Abelian, and hence
the assumption of the normality automatically holds.

Proof By an elementary argument on a profinite group, there is an open subgroup
H c Gg with Hn Gg g = H. Then Lz € M(K) satisfies the desired property. ]
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3.2 Descent Theory

We verify several descent properties that allow us to establish class field theory in
arithmetic topology in a cocycle-theoretic way. To begin with, we study the descent
property of C;, with respect to a Galois unbranched morphism ¢: Oy — Oy in €,. We
put G = Aut(.Zy(¢)). For aleft Z[G]-module A, we denote by (H"(G, A)) ez the
Tate cohomology of A, and put A® := {c e A|forallge G,g-c=c}.

Proposition 3.6  For any n € N, the group homomorphisms
Ch(9):Cr(00) — CL(O1),
Zin(9): Zn(00) — Z;,(01)
are isomorphisms onto C! (0,)€ and Z: (0,)€, respectively, with respect to the action

of G on Oy in 6, introduced in Section 2.3.

Proof Since the action of G on O; induces an action of G on C, (O;) over C, (Oy),
it suffices to verify that C” (¢) is a group isomorphism onto C” (0,)¢. The inclu-
sion relation im(C (¢)) c C% (0,)¢ immediately follows from the definition of the
action of G. The map

Home (Oy, @pn) — Homg (Og, Zan), Jr+—Yo @
coincides with the pull-back of the map
C(A", F9(01)) — C(A", F4(00)), 7 — Fo(@) Y,
which is surjective by the covering homotopy property, by the map
Home (0o, @pn) —> C(A", F9(00)), yr— F(y)

by Remark 2.1, and hence is surjective. Therefore C}, (¢) is injective.
Let e C (0;)¢ and y € Home (O, #pn ). We put

Home (Oy, #pn) [y = {7 € Home Oy, #pn) |70 ¢ = y}.
Then the map
Home (O, #pn) [y — {7 € C(A", Zo(01)) | Fo(9) 07 = Fo(1)

y— Fo(¥)

is bijective again by Remark 2.1, and hence the action of G on Hom (Oy, @n)/y
is transitive. This implies that the image of Home (O;, @/pn)/y by € consists of a
single element ¢, € Z. We put ¢ = (¢y)yeHome (00,7,n) € Cm(O1). Then we have
C" (9)(c) = by the construction. Thus C (¢) is an isomorphism onto CJ; (0;)C.

|

We give an analogue of Hilbert’s theorem 90 for the counterpart C. of the multi-
plicative group of invertible meromorphic sections.

Theorem 3.7 (Hilbert’s theorem 90)  The equality H"(G,C"(0,)) = {0} holds for
any (m,n) e Nx Z.
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Proof Since ¢ is Galois and unbranched, G acts freely on each fibre of ¢ and hence
on Home (01, &5 ). Therefore, CI' (O;) admits a Z[ G]-linear isomorphism to the
direct product of copies of the left regular Z[ G]-module. Thus the assertion holds. W

Let L be a Galois covering of K. Since Sy, is stable under the action of Gal(L/K),
we have a natural action of Gal(L/K) on L*. We obtain the descent property of Z!,
with respect to a Galois covering of arithmetic manifolds.

Theorem 3.8  For any n € N, the group homomorphism Z" (Sg!Ox) — Z! (S7'0y)
associated with the natural morphism Si!Ox — S;'Oy in €y is an isomorphism onto
/Z\I’;(SEIOL)GM(L/K).

Proof The assertion is reduced to the case where L/K is unbranched, because the
set of finite subsets of Sk containing the branched locus of /1 is cofinal in Fin(Sx).
Therefore, the assertion immediately follows from Proposition 3.6 for i1 /k: Ok =~ Or.

|

In particular, the group homomorphism i} : K* — L* in Theorem 3.8 for the

case n = 1is an isomorphism onto (L*)S*(2/K) " As a consequence, we obtain the
following.

Corollary 3.9  The canonical group homomorphism K* — K* is an isomorphism
onto (K*)°k,

Letp € Sx and & € S with 1 & = . The action of Gal(L/K) on the set
of open subsets of %,( Oy ) induces an action of Gal(L/K) s on Nbh(Op,im(Z?)),

and hence actions of Gal(L/K) & on (O1) % and L » in € 5. We note that this action
induces a group isomorphism between Gal(L/K) o and the group of automorphisms
of Lz over K, in % 0. We obtain the descent property of Z. with respect to the formal
completion of a Galois covering of arithmetic manifolds.

Theorem 3.10  The group homomorphism 17, = ’Z\}n(l.@/p)IKg — L%, is an iso-

morphism onto (L,) (/2.

Proof The assertion is reduced to the case
(Ox, Orst1/x) = (v [r)s Dyp,e1y hase,f[1))

for an (r,d,e, f) € (0,1] x Z x Ny x N, by the definition of a covering of arith-
metic manifolds. Then we have Gal(L/K) » = Gal(L/K) and the group homomor-
phism Gal(L/K) % — Gal((OLly(,),?)/(Oklv(r),@)) given as the restriction is
an isomorphism. Therefore, the assertion immediately follows from Proposition 3.6,
because (OL‘V(re_l)’ @)/(Ok|v(r)> @) is unbranched. [ |

Let® = (L) rem(x) beaplace of K over p. By Theorem 3.10, we obtain the follow-
ing.
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Corollﬁry 3.11  The canonical group homomorphism K; — fé is an isomorphism
onto (K%)°x#,

Finally, we obtain the descent property of 1] /K-

Theorem 3.12  The group homomorphism ti/K is an isomorphism onto ILGal(L/K).

Proof By Proposition 3.10, 1} /k is injective. By the definition of the action of
Gal(L/K),

the image of ti/K is contained in Ifal(L/K). Let T = (Cop) pes, € Ifal(L/K). We con-
struct a ¢ = (¢p)pes, With li/K(C) = ¢. Let p € Sk. By Proposition 3.10, for any
P e Spwithij P = p, there is a unique ¢ » € K with t;/@(cﬁz) =Cop.

Let (P, 1) € S; with 1} kP = 17 P1 = p. By the transitivity of the action of
Gal(L/K) on U ~im( hz/K({p})) for a sufficiently small Gal(L/K)-stable neighbour-
hood U of im(hy,({})) given as the disjoint union of tubular neighbourhoods,
Gal(L/K) transitively acts on hy  ({g}). Therefore, there is a g € Gal(L/K) with
g Py =P Wehave 1, ), (c,) = g, (C2,) = & 1y o () = & Cpy = Copys
and hence c g, = c4, by the uniqueness of c,. We denote by c,, the unique element
of the singleton {cx | & € hz/K({p})} Then ¢ = (¢ )gpes, satisfies li/K(C) =¢by
the construction. ]

Remark 3.13 By Remark 2.9, the descent property for Cx does not follow from
Proposition 3.6, Theorem 3.8, and Theorem 3.12. As a result, we do not expect that
global class field theory in arithmetic topology can be formulated in terms of abstract
class field theory in the sense of [Neu99]. However, we will verify in Theorem 3.16
that at least local class field theory in arithmetic topology can be formulated in terms
of abstract class field theory.

3.3 Local Class Field Theory

We establish local class field theory in arithmetic topology. Before that, we compare
H! and H'.

Theorem 3.14
. . . 1 . 31 1 .
(i) The group homomorphism h_r)nSEFin(sK) H' (M ~im(s)) - H}, (Sg' Ok) given as
the inductive limit of (@ o, [s1]) seFin(s¢) IS an isomorphism.
(ii) For any g € Sk, the group homomorphism K — 7%, ¢ = (vy(c), VI8 (¢))
induces a group isomorphism HY, (K,,) — Z2.

Proof The first assertion follows from Proposition 2.4 applied to Og[s™!] for all suf-
ficiently large s € Fin(Sk). We prove the second assertion. By the tameness of p,
we can assume that K is presented as (.2/y[,), {p,}) for some r € (0,1], where p, is
the tame knot in @7y, represented by the morphism @/y[,) - @ in € given by
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the 4-morphism A,: A' = V[r), (to,t;) = (6(t),0). By Proposition 2.4 applied to
V(r), it suffices to verify that the canonical group homomorphism

Hon (v () — Hin (Frac((#y(n))s1 x(0}))
is surjective. It is reduced to the surjectivity of the group homomorphism
Hin(dv(r)) - H%n(%V(r’))

induced by the inclusion V(") = V(r) for any r’ € (0, r] that follows from Proposi-
tion 2.4 applied to V(r) and V(7). [ |

Let L € ob(%,/K) and p € Sk. By the cofinality of MG (K) in M(K), there is an
L € MS¥(K) such that 17/ factors through 17 /x. We fix an 17/, € Homg,/k(L, L).

Let & € Sy with 17 7 = p and P e St with l%/L‘@?/: 2. Then L/L is Galois and

the trace map (zxﬁ)cal(L/L)gx N (f?i)cal(L/K)z c deGal(f/K)gi/Gal(f/L)@;g .c
induces a group homomorphism try /x, 5: L — K thatis independent of the choice
of L and éjby Theorem 3.10. We put Nk, » = im(try/x, ) © K.

Suppose that L/K is Galois. We put Gal(L/K),, = ﬂgeh:m({@}) Gal(L/K) . We
note that if L/K is Abelian, then Gal(L/K)» c Gal(L/K) with & € hj ({p})
depends only on p by the argument in the first paragraph of Section 2.8, and hence
coincides with Gal(L/K),.

Let U € Nbh(Ok,im(g)). Suppose that U is sufficiently small so that hy /x is un-
branched at any point of U \ im(p). Let j € Home (Ok, %/y[,)) be a tubular neigh-
bourhood of p with r € (0,1] and im(.% (j)) c U. Then the pullback in Top of k1 /x by
Z (j) is the disjoint union of branched coverings of V[r) unbranched outside S' x{0}
of finite degree. We obtain a group homomorphism

Hl(V(T’)) — ﬂ](M AN im(s), ﬁ'(])(l, 2_17’))
through the Hurewicz isomorphism
Hy(V(r)) 2 m(V(r), (1,277)*® 2 1 (V(r), (1,27'7)),
and hence an action of H;(V(r)) on .%(Or) ~ im(hz/K(s)) over M ~ im(s) by

h—l

L/K(im(s)) = im(hz/K(s)). It induces a group homomorphism

pie Ha(V(r)) — Gal(L/K),

by the definition of the action of the meridian and the longitude of . It is remarkable
that one does not need to Abelianise Gal(L/K),, here, because m;(V (r), (1,27'r)) is
Abelian.

We denote by py: Zy, (Ok|unim(e)) — Gal(L/K), the composite of the group
homomorphism Z;, (Ox|u<im(p)) = Zm(#y(r)) associated with the restriction of
Z (j), the group homomorphism

Z:n(fQ{V(r)) — Hy(V(r)),c— C(Ar,l‘lr) [.“r,Z“r] - C(!‘r,l‘lr) [Ar,Z‘lrL
and p;j . Then py , is independent of the choice of j by Proposition 2.6. We denote by
nrsp kot K = Gal(L/K),, the group homomorphism given by the compatible sys-
tem of group homomorphisms py . Then nrs; /i, is analogous to the norm residue
symbol in local class field theory in number theory.
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We fix a place § = (p1)rem(x) of K over p. We give a local class field theory in
arithmetic topology.

Theorem 3.15 (Local class field theory)

(i) For any L € MS¥(K), N1k e, is an open subgroup of K of finite index, and
nrsy/k  induces a group isomorphism K [Ny ko, = Gal(L/K)g, .

(ii) Suppose that for any n € N, there is an L € MG (K) with n | for /- Then for
any open subgroup N ¢ K of finite index, there is an L € MS(K) with N = Ny, -

As is mentioned in Section 2.8, the condition in Theorem 3.15 (ii) holds when K is
presented as (2, {p,}) for some r € (0,1], where p, is the tame knot introduced
in the proof of Theorem 3.14. Therefore, Theorem 3.15 (ii) is an extension of the local
class field theory in [NU]. In order to verify Theorem 3.15, we prove the class field
axiom in the sense of [Neu99, §IV 6].

Theorem 3.16 (Class field axiom) Suppose that for any n € Ny, there is an L €
MS(K) with n| f,, . Then (dg,v,) (Section 2.8) forms a class field theory with
respect to (GK@,Fg).

In order to prove Theorem 3.16, we prepare a lemma. For an #n € N, let y,, ¢ C*
denote the subgroup of n-th roots of unity, {,, € 4, the generator E(n™"), and A, the
Z[ un]-module whose underlying Abelian group is Z. (T?) and on which the action of
Uy is associated with the right actions V(r) x g, = V(r), ((z,w),{) = (z,w)-[{] =
(z, {w) with r € (0,1]. Here we use the bracket [ - | in order to emphasise that actions
of u, on sets, topological spaces, and Abelian groups appearing in this paper are not
the scalar multiplication of y,, on C-vector spaces.

Lemma 3.17  For any n € Ny, there is a natural group isomorphism H° (u,, A,) =
7./nZ and the equality ' (u,, A,) = {0} holds.

Proof First we show H®(u,,, A,,) = Z/nZ. We denote by tr the trace map

Ay — A, c— Y [{]-c
Cepin

For an r € (0,1], we denote by A, , the Z[u,]-module whose underlying Abelian
group is Z} (V(r)) and on which the action of y,, is associated with the right action
V(r) x uy = V(r), ((z,w),{) » (z,w) - [{]. We also consider the induced actions

of yn on other objects. By Theorem 3.10 applied to 7, .1, ho,l,n[r"il) induces

1n
a group isomorphism 7: A, — A%". Then 1Y o 771 A" — Z is surjective. We show
(A o ™) N (nZ) = im(tr).

https://doi.org/10.4153/CJM-2018-020-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2018-020-0

918 T. Mihara

To begin with, let ¢ € im(tr). We takea ¢ € A, with r € (0,1] such that the image
c1 of ¢ in A, satisfies tr(c;) = c. Then we have

W or (@) = (W or ) T1-a) = 2 3 col [ st rtepyaney))
j=0i=0

(eﬂn
=nco([Ar2-1,]) =11V (co) € nZ

by Proposition 2.4 applied to V(r), because

n-1

(ZLEG 0+ )27 1)) = [F (hppny)] € 22 €AV
=0
is a singular 1-boundary for any i € Nn[0, n—1]. It implies im(tr) ¢ (A o7z ™')™} (nZ).
Conversely, let c € (AY o 771)7(nZ). We take a ¢y € A, , with r € (0,1] such that
the image of ¢o in A, is c¢. Then we have

n-1
u'(c) = co([tra1r]) = Y. o [(Fa2trE(n1(t+i))])
i=0

= Z [(] : CO( [«Qf(l,zflrE(n*Itl))]) = ”CO( [Jy(l,Z*lrE(n’ltl))]) € nZ,
(Eﬂn

by ¢ € A" and Proposition 2.4 applied to V (r), because

n-1

(S22 0+ ))]) -7 a0 20510

i=0

is a singular 1-boundary. We also have

1) = col[ratr]) = €o( DA purt gapyert © Fhgaain]) = (A 0 77)(e) € nZ,

by c € (A o 771)"(nZ) and Proposition 2.4 applied to V(r).

We follow the convention in the proof of Theorem 3.14. By Theorem 3.14 (ii) ap-

plied to (V[r), {p,}), thereisa ¢’ € Z. (T?) with

(np? ("), nA"(")) = (4" (), A" (c))-

Then we have (¥ (c—tr(c")), AV (c~tr(c"))) = (0,0), and hence c —tr(c") € BL (T?)
by Theorem 3.14 (ii). We take a @ € CO (T?) with d°® = ¢ — tr(c’). Replacing r by a
sufficiently smaller one, we may assume that @ is represented by an F, ¢ C?n(%v(,))
with d°Fy € A", by d°® = ¢ —tr(c’) € A}" and the finiteness of y,. Then we have
Fy ¢ C?n(,dv(r))'“" by ﬁl(yn,ker(do |An,)) 2 ﬁl(yn,Z) ~ Hompy (pn,Z) = {0}.
By Theorem 3.7 applied to 4%, ,[)» there is an F; € C3, (#y(,) with Ve, [C]-F1 =
Fy. We denote by ¢’ € ZL (T?) the image of d°F, € A, ,. We obtain ¢ = tr(c") +d°® =
tr(c’ + ¢”") e im(tr). It implies (A" o 771)"}(nZ) c im(tr). Therefore H®(u,, A,) is
isomorphic to Z/nZ.

Next we show H'(y, A,) = {0}. Since A, is the filtered colimit of (Ay,;)e(0,1]
in the category of Z[u, ]-modules and Z[ y, |-linear homomorphisms, it suffices to
verify H'(n, Ay,,) = {0} for any r € (0,1]. If n = 1, then the assertion is obvious.
Therefore, we assume #n > 1.
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We prepare the notation. We take a ¢; € ZL (V(r))) with ¢y (A, ,1,) = 1 that
actually exists by Proposition 2.4 applied to V(r). We put

3= {(z, rE(t)) | (z7,t) € S' x(0,r) x [0, n_l)}.
Then we have (1,2r™') € £ and (1,2r7'(,) ¢ = by n > 1, and the map
Zxpy — V(r), ((z,w), () — (2,w) - []
is bijective. For a (z,w) € V(r), we denote by i(,,,) € Nn [0,n — 1] the unique
element with (z, §, ™ w) € 2. We put =’ = (2~ {(1,27')}) u{(1,271r{,) }. We fix
an (€(z.)) (zw)ex € Homeg (i (), a1)* with
[ e(e] = [(29)] = [(1.2717)] € 20V & 70 Home (v 00)

for any (z, w) € X' that actually exists by the proof of Proposition 2.4 using Whitney’s
approximation theorem. For each (z,w) € V(r), we put

1(zw) 1 )
Ly = € gm0 052 [y ] [43] € 22 Momehion )
’ (. )] 2
when (z,w) ¢ {(1,27'r{}) | i e Nn[0,n - 1]} and
l'(z)w)—l )
Lew = ), [Caaing)]-[6] e Z8Home (o)
i=0

when (z,w) € {(1,27r{}) | i e Nn [0, n — 1]}. Then we have

Lz = [(zw)] = [(1,27'7)]
for any (z,w) € V(r) by definition.
Let y:ptn — An, be al-cocycle. We put ¢y = x({,). Then we have x({}) =
Zf;é[(;] - ¢o for any j € N, and hence 0 = y(¢%) = x(¢") = £ [¢2] - co. We set

izw)

= = i V(r) » 7CA%V(r))
F = (F(z,%)) (zw)ev(r) ( ; co(Lzs W)))(z,w)EV(r) VALY

= gHome (y(r)-Hpo) _ C?n(MV(’))'

Then we have F(z, w) = 0 forany (z,w) € and F(z, w) = F(z, (;'w) + co (L t1)
for any (z,w)) € V(r) \ Z. By the construction, we obtain

i(zw)

F(Z,W) = Z CO(L(Z,(;iW))

i(z,w) i(zwy—i—1

= 2 ([l w6577 o) [6])

i1 j=0

i(zw)~1 i-1

0( [e(z,(;i(z’w)w)] . [(:,] + Z[e(l,Z‘Ir(,,)] . [({1])

i=0 j=0

Il
S

LG+ Gy = 1= D21 [G])
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forany (z,w) € V(r) N {(1,27'r{?) | i e Nn[0,n-1]} and

i(z,w) i(z,w) i(z,w)’i’1 )
F(zw)= ) co(Lipeiy) = D, Co( > [3(1,2—1r(,,)]'[(51])

i=1 i=1 j=0

l(zw) 1 l(zw) 1

=5 o et 1) = 3 (e 1= Deatlae 12D

forany (z,w) € {(1,27'r(%) | i e Nn [0, 7 —1]}. In particular, we have F(1,27'r) = 0
and F(1,27'r(,) = 0.

We put N = Y120 (n—i=1)co([£a,2-1r¢,)] - [(]) € Z. We definea c; € CL(V (7))
by setting ¢;([y]) = (d°F)([y]) + Nea([y] - Lz ()0 + Lz (y)(1,0)) for any

Yy € Hom%(dv(,), Q{Al).

We verify ¢; € ZL (V(r)) and ([, ] - [1]) - &1 = co.

Let 0 € Home (<y(,), @a2). We denote by y; € Home (2 (,y, #p1) the com-
posite of ¢ and the morphism @7y - @/j1 in € associated with the i-th coface map
A' < A% foran i€ {0,1}. We have d[c] = ¥.7_,(~1)"[y;] and

(Z(y0)(0,1), Z (71)(0,1), F(y2)(0, 1))
= (Z(72)(1,0), Z(y0) (1, 0), F (y1)(1, 0)).

Therefore we obtain

Cl(a[O']):(doF)(a +NC/\(Z Lg-(y )(10)+Ly(y )(01)))

i=0

=0+ Nc¢y(d[a] +0) =0.
This implies ¢; € A,,,,. We compute ([{,] —[1]) - c1. Let (z, w) € V(r). We have

(([(n] - [1]) ’ dOF) (L(z,w)) = (doF)(L(z,w) : [(n] - L(z,w))
= F([(z. Gaw)] - [(L277¢)] = [(zow)] + [(1,27'7)])
= F([(z, ¢aw)] - [(z,w)]).

Ifi(,) # n—1,then we obtain F([(z, {,w)]~[(2z,w)]) = co(L(;,w)) by the definition
of F. Suppose i(;,,y =n~1.Byi, i, =i-1#n-1foranyie Nn[l,n-1], we have

F([(z, ¢aw)] = [(z,w)]) = =F([(z. Gw)] = [(z, Caw)])

- Z_; F([(z. 6w = [z Gw)]) = = 3 colLizsgim))-

i=1
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If (z,w) # (1,27'r(,"), then we obtain

n-1 n—1

=Y co(Lizgiwy) = co(Lizw)) = Z co(L(zgiw))
i=1 i=

= co(Lizw)) = ZCO( AR (I Z(:) Laarey] - [6])
n-1
= co(Lgzm) — G- ¢0) (B2 o))
-5 (1-1- Dea({Eaz ) (6]

= C()(L(z,w)) - O(Z(z,(,‘w)) -N-= CO(L(Z,W)) - N.

On the other hand, if (z, w) = (1,27'r(,"), then we obtain

n-1 n-2 n-1
= co(Lizgiwy) == 2 co(Laargiy) = co(Larey) = CO( > L(l,zflr(;))
i=1 i=0 i=0

n-2

= co(Lizmy) - (z n-1-i)[eaare)] - [6])

= CO(L(Z,W)) -
It implies

C()(L(z,w)) if i(zw) #0n -1,

(([Cn] - [1]) . dOF) (L(z,W)) = {CQ(L(Z,W)) - N if i(z,w) =n-1

Let (z,w) € V(r). We compute 3 (L(zw) - [{n] = L(z,cow))- I i(zw) # 7 — 1, then we
have L, ¢.w) = L(zw) - [Cn] + [€(1,2-1r¢,)] = 0 by the construction, and hence

AA(Lizwy  [Cn] = Lizguw)) = 1 (€a210g,))-

If i(;w) = n — 1, then we have L(, ) - [{u] = Liztow) = 2iet [€a2-n] - [¢3] and
hence ci(L(zw) - [Cn] = Lizgow)) = a([Ar2] = [€a2n]) = 1- ¢y (€ 2mp) by
Proposition 2.4 applied to V(r) because

n-1

(Z[J‘ (La2n) 1[G ]) - [F(Ar21,)] € 7,®C@Lv(n)

i=0

is a singular 1-boundary. We obtain

if i(z,w) +n-1,

~[ea21rg)]
Loz [Ga] = Lz tony) = 27
A(Lizwy - [l = Lizgmw)) {1_[5(1)2%)] iy = -1
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Let y € Home (% (r), #p1). By the argument above, we have

(([¢a]-01]) - d°F) ()

co(Lzyyon ~ Lz (o) if iz (y)(10) # 1 =1# iz (y) 00
co(Lzyyon ~Lzgan) =N ifizy) oy =n-1%izg) o
co(Lzpon ~Lazpyo) + N ifizy)yon #n-1=izy) o)
co(Lz o ~ Lz o) ifizo)ao =n=1=iz@p) 01>
co([y]) if iz (yy(,0) # 1= 1% iz (y)(0.1)>
c(lyD) =N ifizgyon =n-1#%izu)w0)
Co([y]) +N if i:’f(y)(o,l) tn—-1= i?(y)(l,o)a
co([y]) ifizymo) =n-1=izy)0)

by a(L(Z)W) . [(n] - L(z,(,,w) + [6(1,2*%(")]) = 0. We obtain

(8] =11 - e) () = ([Ga] = [1]) - d"F)(y)

=Na(([y]-[6a] - Legyon e + Leoyao a))
- (1= Lamon * Lepmao))

=Na((Y]-Lzgyon + Lem ) [6])
+ Nea(Lz o - [n] = Lz gy o10.)
- Na(Lz (o) - [6] = Lz gy wo)1.1)
-Na([y]-Legyon + Lrpan)

=Nax(Lz o) - [n] = Lz () 0)1¢.1)

-Na(Lzoyao  [6a] - Legyaoria)

0 ifizgyae #n-1#izg)0n),

N ifiggyn =n-1%izy)a0)»

=N ifizgyon #n-1=iz4)00)

0 ifizpae =n-1=izy) 01>

by Proposition 2.4 applied to V (), because the action of y, on V(r) induces the
trivial action on H; (V (r)). We obtain ([{,] —[1]) - ¢1 = co. We define a map y': y,, —
Anp,, by setting y'({}) = Z;;é[(ﬁ] ¢y forany i € Nn [0,n —1]. Then y lies in
Z'(pn> Ap,r ), and satisfies ([, ] - [1]) - ¥’ = x- We conclude that H'(p,,, A,,.,) = {0}.

|

Proof of Theorem 3.16. By definition, d is a surjective continuous group homo-
morphism Gkg — Z, and K is a smooth Ggg-module. We identify K with
(f%)GW by the group isomorphism in Corollary 3.11, and regard v, as a group ho-
momorphism (fg)Gm - 7 whose image is Z.
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First, we verify that v, is a Henselian valuation with respect to dg. Let H ¢ Gk
be an open subgroup. We put fy = #(Z/dﬁ(H)Z) € N,, and denote by
try: (Eg)H — K
the trace map with respect to the action of cosets in Gz /H. It suffices to show that
vo (im(tryr)) = fuZ.
Letce (K%)H. By Corollary 3.5, there is an L € M (K) such that for any
Le M%(K)
with L < T, the image of H by the canonical projection G g — Gal(L/K )e- coincides
with Gal(T/ L) By Corollary 3.1 and the natural identification of
{TeM(K)| L<I}

with M(L), c is the image of a unique ¢’ € L, . By the cofinality of M9 (K) in M(K),
there is an L € MS?!(K) with L < L. We have fy | for/e bY the definition of dg.

We take a tubular neighbourhood j € Home (Ox, @y (ry) with r € (0,1] of p.
Replacing r by a smaller one, we may assume that hy is unbranched at any point of

im(%(j)) N im(p). We put y := p, -1, 0 j € Home (Ok, 1 ). We take a
y € Home (O7, &p1)
with y o 17, = y that actually exists by the covering homotopy property. We have
welru(@)=v( X gd)=¢( X [lg)
8€Gal(L/K)gy/ Gal(L/L)gy 8€Gal(L/K)py/ Gal(L/L) oy
Replacing r by a smaller one, we may assume that the pullback by .7 (j) of g,

restricted to a sufficiently small neighbourhood of im(p7) is given as the standard
branched covering hg..__, 7., [r) with d € ZZ. By Proposition 2.4 applied to

V[rere),
we have CI(deGal(f/K)pf/ Gal(T/L)p (7] &) = for/eVer (¢'), because

f@f/m -1 E@L/m

Z Z [(E(f~/go (277) pL/(‘OE(@KJL/@(] fm/pld)tl))])

_ f@z/@ [3;(//%',2*1,')] € Z@ c(AI,V(r @i/@))
is a singular 1-boundary. We obtain v, (trp(c)) = f,. /o Ve; (). It implies

Ve (im(try)) c fuZ.

We show fy € v, (im(trg)). By the assumption, there is an L € M%!(K) with
ful fojo- We denote by H ¢ Gk the preimage of fuZ/f,, joZ c Z[fy, o7 by
the composite of the canonical projection Gxz - Gal(L/K),, and the surjective
group homomorphism red,,, /,: Gal(L/K),, - 7Z/f,, joZ (Section 2.8). Then H is
an open normal subgroup of Gx gz with Gxz/H = Z/fuZ. By Corollary 3.5, there
is an L € MS(K) such that for any I € M%!(K) with L < I, the image of H by

https://doi.org/10.4153/CJM-2018-020-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2018-020-0

924 T. Mihara

the canonical projection Gx g - Gal(L/K )e- coincides with Gal(L/ L) e, In partic-
ular, H coincides with the kernel of the canonical projection Gz - Gal(L/K),,
by L € MS?(K). By the definition of dg, we have f,,, , = fu. By Theorem 3.14 (i)
applied to L and gy, thereisaco € L, with vy, (o) = 1. We denote by ¢; € Eg; the im-
age of co. By the same computation above, we have v, (tri(c1)) = fo, /o Ve, (c0) = fa-
Thus v,, is a Henselian valuation with respect to dg.

Next, we verify the class field axiom [Neu99, §IV (6.1)] for (dg, v, ). Let H c Gk
be an open normal subgroup such that Gk z/H is isomorphic to Z/nZ with n € N,.
It suffices to verify A°(Gk g/H, (Kx)™) = Z/nZ and A (Gkp/H, (Kx)™) = {0}
[Neu99] IV (3.7) Proposition. By Corollary 3.5, there is an L € M(K) such that
for any T € M®!(K) with L < T, the image of H by the canonical projection Gx g —
Gal(L/K ) coincides with Gal(L/ L)e;- In particular, H coincides with the kernel
of the canonical projection Gx g - Gal(L/K),, by L € MS¥(K). By Corollary 3.1
and the natural identification of {L € M(K) | L < L} with M(L), it suffices to verify
H(Gal(L/K),,,L%,) = Z/nZ and H(Gal(L/K),,,, LY, ) = {0}.

Replacing r by a smaller one, we may assume that the pullback by .7 () of hy/x
restricted to a sufficiently small neighbourhood of im(gy ) is given as the standard
branched covering hd’e@z forforlo [r) with d € Z. By the elementary divisor theory, Z*
admits a Z-linear basis {vo, 1} ¢ Z* such that Z(f,,, /0, 0) + Z(d, e,,_,, ) is presented
as Zcovo + Zeyvy for some (¢, ¢1) € N2, with ¢ | ¢;. In particular, we have

ZInZ = Gal(L/K) o, = Z*[(Z(fp,/6,0) + Z(d, €_sr))
=(Zvo @ Zw) ] (Zcovo ® Zeyv) 2 Z[coZ ® 2] 1 Z,
and hence (¢g, ¢1) = (1, n).
We put (vo, nv1) = (a0,0(fo, /0> 0) + @0,1(d, €p /) 81,0 (fo, /0> 0) + a1,1(d, €/ )

with A = (“i,j)},j:o € GLy(Z) and (vo,v1) = ((bo,0>b01)> (b1,0,b1,1)) with B =
(bi,j)},]eo € GL,(Z). By A € GL,(Z) and B € GL,(Z), the € -morphisms
ho:V(r) — V(r),
(2w) > (22700 (] ) T 01 [y 2 AT (| Ly ydet(4) e
and
V() — V), (2w) —
(zdet(B)’lbl,l (Iw| —1W)—det(B)’lbo,1) Il e;‘i/pnzf det(B)"bro (Iw| —lw)det(B)’lbo,o)

are diffeomorphisms with hae__, .r  [r) 0 ho = hi o ho ¢ [1). Therefore the asser-
L
tion follows from Lemma 3.17. [ ]

Proof of Theorem 3.15 The second assertion is immediate from Theorem 3.16 and
[Neu99, SIV (6.7) Theorem], as is the first assertion on the group isomorphism, be-
cause Ky, is isomorphic to T? in % and the bijectivity of the given homomorphism is
reduced to the covering of @7, with r € (0,1] corresponding to L/K and the reci-
procity map for a B € M%!(.a(,),{p,}) associated with the class field theory for
Ay coincides with nrsp( Syiry o {pr 1) pr} by the construction. The first assertion for
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the openness follows from the fact that the nrs; /x ,,, factors through AL (K,) by the
definition, using H'(V (r)) with r € (0,1] and Proposition 2.4 applied to V((r). ®

By Theorem 3.15 (i), we obtain the following.

Corollary 3.18 For any (L,L") € MS(K)? with L' < L and Ny, = Nk,
i1/ induces an isomorphism Lfm, = Ly, in Cgo.

Corollary 3.19  Forany L € MS*(K), Gal(L/K),,, is Abelian.
By Corollary 3.19, we obtain the following.
Corollary 3.20  The group Gg g is Abelian.

3.4 Global Class Field Theory

We establish global class field theory in arithmetic topology in a way imitating the
method in [NU]. Let L be a Galois covering of K. By the definition of a covering of
arithmetic manifolds, there is an s € Fin(Sx) such that h; x is unbranched outside
im(s). In particular, we have nrs;/k ,((Ok),;) = {1} for any p € Sk \ 5. By Ix =
(Mpes, Vo) (Z25%) and ker(vk) = Uk, we have

(ms1 6 (60)Jpesi € @ Gal(L/K)y,
PESK

for any (¢, )pesy € Ik-
Suppose that L/K is Abelian so that the multiplication []s, g € Gal(L/K) makes
sense for any (g, )pesy € Ppes, Gal(L/K),. We consider the map

pr/iIx — Gal(L/K), (Cp)pesK — Ig nrsL/K,p(Cp)'
PeSk

By the construction, p; /x factors through the surjective group homomorphism
H;(M \ im(s)) —> Gal(L/K)
in Proposition 3.2 (iii). Indeed, for a sufficiently small tubular neighbourhood
jo € Home (Ok, y[r))
with r,, € (0,1] of each p € s, the group homomorphism
ps:Ix — Hi(M ~\ im(s)),
(codpesk = 2. G (Arp,amin, © ) [F (pryair, © )]

QEs

- Z Cp (fur@,Z*er ° ]p) [g(l,@)z—l% ij)]

pésk

depends only on s, and the composite of p; and the surjective group homomorphism
H;(M ~ im(s)) - Gal(L/K) coincide with p; /x by the definition of the local norm
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residue symbols. The compatible system (P ) sepin(s) yields a group homomorphism

pilx — lim  Hi(M \im(s)),
seFin(Sk)

(Cp)pesx — (ﬁS((C@ )@esx))seFin(sK)-

We show that p factors through Ck.
Proposition 3.21 IfK is orientable, then ker(p) contains Px + [ es, BL(K,).
In order to verify Proposition 3.21, it suffices to show the following.

Lemma 3.22 Foranys € Fin(Sk), if Ox[s™"] is orientable, then the equality

ker(p,) = Pg + (g}s’ﬁ}n(K@) x II (Ox)g)

©EESK\S

holds.

Proof By Theorem 3.14 and the definition of p;, we have

[ BL(K,) x T1 (00 < ker(),
Qes QESKN\S
because the meridian of any p € Sk \ sis 0 in H; (M \ im(s)).

First let ¢ € K*. We show p,(tk(c)) = 0. For this purpose, it suffices to consider
the case where there is a ¢y € Z. (Ox[s™!]) whose image in K* is c, because for any
s’ € Fin(Sk) with s c s/, the image of py (1% (c)) in H;(M ~ im(s)) coincides with
ps(1k(c)). For each g € s, we take a tubular neighbourhood j,, € Hom (Ok, Dy[r))
with r, € (0,1] of p. Replacing (7, )pes by a family of smaller ones, we can assume
im(ji, ) Nim(je,) = @ for any (po,p1) € s> with g # ;. Furthermore, replacing
(7 )pes by (2711 )pes> We can assume that (ji, )ees can be extended to a neighbour-
hood of the closures of the sources.

We put X = M \ |,e; im(j,). Then X forms a three-dimensional ¢ -manifold
such that 9X is homeomorphic to the disjoint union of copies of S' x S'. We consider
the diagram

(3.0) H'(X) —= H,(X, 9X)

| |

H'(0X) —— H;(9X)

| |

H*(X,0X) —— H;(X)

in Ab whose columns are given by the long exact sequences of relative cohomology
and the relative homology and whose rows are given by the Poincaré-Lefschetz dual-
ity for fixed orientations. It is well known that this diagram commutes up to signature
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depending on the choice of orientations. The composite

Zen (Ox[s7']) —> Hy (Ok[s7']) — H'(M ~ im(s))
— H'(X) — H'(0X) — H,(9X) — H;(X) — H;(M ~ im(s))

of the canonical projection Z! (Ox[s7!]) - HL (Ok[s™!]), the inverse of the iso-
morphism H' (M \im(s)) — H. (Ok[s™']) in Proposition 2.4, the inverse of the iso-
morphism H'(X) — H'(M \ im(s)) associated with the inclusion X < M \ im(s),
the arrows H'(X) - H'(9X) — H;(0X) — H;(X), and the group isomorphism
H;(X) — H;(M ~ im(s)) associated with the inclusion X — M ~ im(s) coincides
with the composite Zy, (Ok[s™']) = K* — [ ¢, KX — Hi(M \ im(s)) of the canon-
ical homomorphism Z}, (Ok[s™']) - K*, [T 15> and p by definition. Since the
composite of the arrows H'(X) — H'(0X) — H;(9X) — H;(X) in the diagram
coincides with the composite

H'(X) — H'(0X) — H,(X,0X) — H;(X)

of the arrows in the diagram up to signature, it is the zero homomorphism. We obtain
5.(1L(<)) = 0(co) = 0. This implies P+ (TTes By (K ) X [peses (Ox)2) € ket (7).
Next, let (¢ )pes, € ker(ps). We will show
(cp)pesk € Px + (T1 E}n(Kp) X IS_I (OK);)-
QEs ©ESK\S
We take an s € Fin(Sx) with s c s and ¢, € (Ok),; for any p € Sk \ s". We denote by
X' ¢ M the complement of sufficiently small tubular neighbourhoods of s, by X ¢ M
the complement of the tubular neighbourhoods of s, by V ¢ M the closure of X \ X,
and by U’ c Ik the preimage of ([Toe Kpy) % (Ipesins (Ox)g) © Tpes, K- We
consider the same diagram above corresponding to X’. The composite

U'«— I K —> rg H,(K,) — II Z* — [1Z* — H,(0X’)

peSk peSK PEeSK PEs

— Hy(X') = Hy (M ~ im(s"))

of the direct product of the canonical projections K — HL (K,) with p € Sk re-
stricted to U’, the direct product of the group isomorphisms HY (K,,) — Z* with
p € Sk in Theorem 3.14 (ii), the canonical projection [Tgcs, Z* — [l,eq Z%, the
group isomorphism [], . Z* - H;(9X") sending the canonical Z-linear basis to the
Z-linear basis given by the meridians and the longitude multiplied by -1, the arrow
H;(0X’) - H;(X’) in the diagram, and the group isomorphism

Hy(X") » Hy(M ~im(s"))

associated with the inclusion X’ — M \ im(s") coincides with p restricted to U’ by
definition. By ps((cp)pesi) = 0 and a standard argument with the Mayer—Vietoris
exact sequence, thereis a y € H; (90X’ \ 9X) whose image in Hy (X") is py ((¢p )pesi )
and whose image in H; (V) is 0. By Theorem 3.14 (ii), there is a (c],)pes, € Ix with
¢, = 0 forany p € Sk~ (s \ s) whose image by py coincides with the image of
ths i.e., por((Cp)pesy)- Since the left row of the diagram is exact, there is a ¢’ € K*
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whose image in H'(9X") coincides with that of (¢, )pes, — (¢, )pes, € ker(py) again
by Theorem 3.14 (ii). We obtain
(o )pesk € ’%((C) + (Cé)ﬁesx + I ﬁin(K@) c P+ (I1 /Ein(K@) x I (OK);)~
©es

©eSK ©ESKN\S
This implies ker(p;) = Px + (]'[pes ’E}n(Kp) x H@ESK\S(OK);)' [ |

Suppose in the following that K is orientable. Then by Proposition 3.21, p;/x
induces a group homomorphism nrs;/x: Cx — Gal(L/K) that is analogous to the
norm residue symbol in global class field theory in number theory. By Theorem 3.12,
the trace map I — ISal(L/K), ¢ = Y geGal(1/k) § - € induces a group isomorphism
try ki IL — Ix. We denote by Nk c Ck the image of im(trx) c Ik.

We denote by M2 (K) ¢ M(K) the subset of Abelian coverings of K. We verify
global class field theory in arithmetic topology.

Theorem 3.23 (Global class field theory)  IfK is an orientable closed stably admissible
arithmetic manifold, then the following assertions hold.

(i) ForanyL e MA*(K), Ny /k is an open subgroup of Ck of finite index, and nrsy jx
induces a group isomorphism Cx /Ny /x — Gal(L/K).

(ii) For any open subgroup N c Cy of finite index, there is a unique L € M*®(K)
with N = Ny /.

Proof First let L € MA"(K). By the assumption of stable admissibility, there is an
s € Fin(Sk) such that {Frob, | p € s} and {Frobg | & € h} (s)} generate Hi(M)
and H; (%, (0L)), respectively, because the closedness of K ensures that H; (M) and
H,(.%,(0y)) are finitely generated Abelian groups. Replacing s by a larger one, we
can assume that hy x is unbranched outside im(s). We show that nrs; x factors
through Cx/Ny k. For this purpose, it suffices to verify that the diagram

ﬁh* (s)

L/K

I ——— Hl(yO(OL) N im(hZ/K(S)))

-

Ix H; (M ~ im(s))

s

commutes, where the right vertical arrow is the group homomorphism 7 associated
with the restriction of h /k, because the horizontal arrows are surjective by the choice
of s.

Let (Co) oes, € I1. For each p € Sk, we take a tubular neighbourhood

jo € Homg (Ok, MV[,P))
with r, € (0,1] of . For each & € 1, we take a tubular neighbourhood
jo € Home (Or, Sy, )
withrg € (0,1] of &2, and abbreviate 11k P 1o Pk. Replacing (r ) pes, by a family

of smaller ones, we can assume that for each & € Sy, thereisaCp,0 € Zy, (OLlim(j.))
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whose image in L%, is C. Furthermore, replacing (7,,)ees, and (r# ) mes, by fam-
-1

o1 _ CP/p . . . _
ilies of smaller ones, we can assume rg = r 4, for any & € S, im(j,) N im(s) =

im(gp) for any p € s, and im(j, ) Nim(s) = & for any g € Sy \ 5. Then for any & € Sy,
thereisadgp € Zwith hyjx o F(jo) = F (joi) © Mage o for) 0, [To)-

In order to show p,(try/x ((Co) zes, ) = T(ﬁhz/K(s) ((C») wes, )), we prepare the
notation. Let p € Sx. We denote by jg, € Home (Oxk|im(j, )xim(p)> @V (r,)) the mor-
phism given by the restriction of % (j, ). We put

‘up = ,ur@,Z’lr@ Oj; € Hom%(OKhm(J’p)\im(@)"Q{AI)’
Ao 3= Ary 2, © g € Hom (Oklimji )nim(e)> #a1)-

Let & € Si. We denote by jo, € Home (OLim(j,)nim(2)> @y (r.)) the morphism
given by the restriction of % (j ), and by

T Hi(im(jo \ im(2)) — Hi(im(j o, ) \ im(Pk))
the group homomorphism associated with the restriction of h; k. We put

U = lrp2ir © 2 € Home (OLlim(j o )im(2) @),
A=A yairy, ©jip € Hom‘(g”(OL|im(j9a)\im(9)"Q{AI))'

Let i € N. We denote by m 5 ; € Home (v (; ), %x1) the morphism given by the
6 -morphism

1 i -1 -1 .
A —V(rz), (toh)— (8, 2" roE(es)2,i1)).,
andby € ; € Homcg(,Q/V(ry), 2/p1) the morphism given by the @-morphism
A —V(re), (to,t) — (E(f2)5,i0): 2 r2E(~e5 552, d2it)).
We put

Hop,i=mzp;ojop € Homg (OLlim(j)im(p)> Fat)s
Ag,i=Lz,i0 jo € Homg (OLlim(jm) im(e)s Fa1)-

Then we have

to([F (u2)]) = €m0 [T (p2)]s
t12([F(A2)]) = fo1o [ F Ao )] +do[F (u2,)],

epjofzlo—1
/2)/ [‘g\(lyal)]:e.@/p[g\(/l:@)]_dﬂ[gz(‘u@)],

el /o]

[(F(v2,0)] = foF(02)].

i=0
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Therefore by Proposition 2.4, we obtain

R

Peltiyx(CE)os))=2( X X Crolen)[F ()]

pes’ pehr o} =0

ezjofo /o1

X (XY Telusd) 7))

peSk WEhz/K{p} i=0

= 3 (VE(Cr)em)pp — v (C2)dn) [ F (hay)]
Pehi (5)

- > vo(C2)foo T (Az,)]

PeS;

and

P () (E)es ) = Y VE(Er)1([F (u2)])
Pehy ()

- g)zs v (Co)to([F(A2)])

1 ~
= Z V;?(C@)EW/WK[?(‘[L@K)]
.gzehz/K(s)

- @ZS v (€o)(foy o[ F A )]+ dp[F (u)]).

This implies

Ps(trrk((€) es,)) = 1( ,3h;/K(s)((E@)9esL))

- Y dove(Ce) [F(uzy)]
(@asl_\h:/x(s)

= T(Fh;m(s)((?@).@e&))
because [.% (y,)] = 0 € Hi(M ~\ im(s)) for any p € Sk \ s. Thus the diagram com-
mutes. The openness of Ny /x follows from Theorem 3.21.

Next let N c Ck be an open subgroup of finite index. By the definition of the
topology of Ck, there is an (s,n) € Fin(Skx) x N such that the preimage of N in
Ig contains (J]ge((Ox), N (v;?g)’l(nZ)) x (ITpescs(Ox)g)- In particular, the
preimage of N in Ik contains ker(p;) by Lemma 3.22. By assertion (i), im(p;) is
dense in H; (M \ im(s)) with respect to the topology generated by the set of subsets
of the form ¢+ U fora ¢ € H; (M ~im(s)) and a subgroup U c H;(M \im(s)) of finite
index. Since H; (M ~ im(s)) is a finitely generated Abelian group, every subgroup of
it is closed, and hence py is surjective. Therefore, there is an L € MA®(K) such that
Zo(11/k) is unbranched outside im(s) and the preimage by p, of the kernel of the
surjective group homomorphism H;(M ~\ im(s)) - Gal(L/K) coincides with N.
This implies Ny /x = ker(nrs;/x) = N. The uniqueness of such an L follows from

assertion (i) because MA?(K) is directed with respect to the order < on M(K). M
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3.5 Ideal-Theoretic Class Field Theory

We formulate ideal-theoretic class field theory for arithmetic topology in the sense
of [Neu99, §VI7]. To begin with, since {I% | m € N&5¥} forms a fundamental system
of neighbourhoods of 0 € Ix, we have the following.

Proposition 3.24

(i) Forany m e N&3¥, Ci c Cx is an open subgroup.

(ii) For any open subgroup N c Cx, there is an m € N 5% with Ci c N.

Suppose that K is orientable and closed. Let m = (m, )ges, € N5¥. We put

M= (U« ( I KX) el

©ESm QESK\Sm

By definition, we have [T,s, BL (K,) © I;g").

Proposition 3.25 If {Frob, | p € Sk \ s, } generates Hy(M ~\ im(s,,)), then the
equality I = Ig") + Pk holds.

Proof We put I = {(c)pesk € Ik | (co)pesn € Tpes, Ba(Kp)}. By I c I¢™, it
suffices to verify Ix = I+ Pg. By the assumption, there is s’ € Fin(Sk) withs'ns,, = @
such that {Frob,, | p € s’} generates H; (M \ im(s,,)), because H; (M N\ im(s,,)) is a
finitely generated Abelian group. We put s := s Ui s,,. Replacing s’ by a larger one, we
can assume that Og[s™'] is strict.

For each p € s, we take a tubular neighbourhood j, € Hom¢ (Ok, Mv[r@)) with
1o € (0,1] of p. Replacing (r,)pes by a family of smaller ones, we can assume that
(im(jp ) )pes is pairwise disjoint. We put X ¢ .%o (Ox) \Uses,, -Z (o) (V[27'r,)) and
Xo =M~ Upes Z(jo)(V[27'r,)) c X. We denote by ¢ the group homomorphism

IK — Hl(aXO),
(C@)Pesx = Z Co (Arp,Z*‘r@ Oj@) [j(/"rp,rlrp ° ]@)]

pes
- Z Cp (l"l’"@’zil"@ °© ]@) [y(/\r@’zilr@ ° ]@)] :
Q€S
Then by the definition of p;,,, the restriction of ps,, to U := [p,es K % [Tpesns Up cO-
incides with the composite of the restriction of ¢ to U and the group homomorphism
H;(0Xo) — Hi(M \ im(s,, )) associated with the inclusion 0Xy = M \ im(s, ).

Let ¢ = (cp)pesx € Ix. We show ¢ € I + Pk. Replacing s’ by a larger one, we can
assume ¢ € U. By the choice of s, there is an (#,)pes € 7% with Y pes' M Frobg, =
Ps,(€) e HI(M N im(sy,)). Weput A == 3o o[ F (Ar, 217, © )] € Hi(0Xo). We
denote by ¢’ € H;(Xp) the image of ¢(c) — A by the group homomorphism

Hl(aXO) b H](Xo)

associated with the inclusion dXy < X,. Then ¢’ lies in the kernel of the group
homomorphism H;(X,) — H;(X) associated with the inclusion Xy < X, because
the group homomorphism H;(X) - H; (M \ im(s,, )) associated with the inclusion
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X = M ~\ im(s,,) is an isomorphism. By the standard argument using the Mayer-
Vietoris exact sequence, thereisan (1, )pes’ € 7% with Yoes' Mol F (2711, 000)] =
¢’ e Hi(Xo). Weput p = e 1, [ F (fr, 2715, © jo) ] € Hi1(0Xp). Then (c) =A - p
lies in the kernel of the group homomorphism H; (9X,) — H;(X,) associated with
the inclusion 0X, = X,.

We consider the diagram in the proof of Lemma 3.22 corresponding to X. By the
exactness of the right column, there is a £ € H,(Xo, 0Xo) with 0% = ¢(c) = A — .
We denote by o € H'(X) the preimage of X by the group isomorphism in the top
vertical arrow. We take a @ € Z} (Ox[s™!]) whose image by the canonical projection
71 (Ox[s7']) - HL (Ok[s7!]) coincides with the image of ¢ by the composite of the
inverse of the group isomorphism H'(M \ im(s)) — H'(X) associated with the in-
clusion X < M ~im(s) and the group isomorphism H'(M \im(s)) - H. (Ox[s7'])
in Proposition 2.4. We denote by ¢’ € K* the image of ¢’.

By the commutativity of the diagram up to signature, one of c—1%(c’) and ¢+ (c”)
lies in the preimage of A + y € H;(9Xy) by ¢, and hence in I, because A + g lies in the
image of the group homomorphism H; ((0Xy) \ (9X)) — H;(9Xp) associated with
the inclusion (0Xy) N (0X) — 0Xp. It implies ¢ € I + Pk. [ |

Remark 3.26  Proposition 3.25 is obviously an analogue of the approximation the-
orem in number theory [Neu99, SII 3 (3.4)]. Moreover, by its proof, we have a much
more accurate approximation in arithmetic topology than we ever have in number
theory. Such difference between arithmetic topology and number theory originates
from the fact that H}, (K,,) with o € Sk is algebraically generated by two elements,
while the multiplicative group of a local field is just topologically generated by two
elements.

Suppose that K is generic. Then we have Ix = I;m) + Pk by Proposition 3.25. By
I;;") < [pes,, Up*TTpesgns, Kg» the surjective group homomorphism vg: Ix — 785«

yields a surjective group homomorphism v 11(<m) - JZ.

Theorem 3.27 (Ideal-Theoretic Class Field Theory) The group homomorphism v
induces a group isomorphism Cg [Cg — Clg through the isomorphism

C = (1T + ) [P = 18 /(10 py).

Proof Letc = (¢p)pesg € I;m) N Px. We take a ¢’ € K* with tk(c’) = c. Then we
have 13 (c") = ¢, € Ué,m“) for any @ € s,,. By the definition of () and v, we obtain
v () = vi(c) = (Vp(cp))pesk = (Vo (15(c")))pesk € Py’ Therefore v induces a
group homomorphism ¢: Cx — CIy.

By I = Iém) N Uk = Ig") nker(vg), C¥ is contained in ker(¢). Let ¢ € ker(¢).
We take a representative ¢ = (¢, )pes, € Ix of ¢. Then we have v (¢) € P, and hence
there is a ¢’ € K* with 15(c") € Ué,m“) for any g € s,, and v, (1,(c")) = v (cp) for
any p € Sk. It implies k(') € Ig") and ¢ — 1k (c’) € ker(vi) + Px = I¥ + Px. We
obtain ¢ = ((c — 1k (c’)) + 1% (c")) + Px € C¥. As a consequence, ¢ induces a group
isomorphism Cx/C}¥ — Cl. [ |
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We say that K is an arithmetic QHS? if M is a rational homology sphere as a topo-
logical manifold.

Proposition 3.28 IfK is an orientable closed generic arithmetic QHS?, then the fol-
lowing assertions hold.

(i) For any m e N&¥, C c Cx is an open subgroup of finite index.

(ii) Forany open subgroup N c Cy of finite index, there is an m € N&¥ with CI? c N.

Proof By Proposition 3.24, it suffices to verify that Cf' c Ck is of finite index for

any m € N®%. By Remark 2.10 and Theorem 3.27, we have a natural group iso-

morphism Cg/ CS)MK = H;(M), and the right-hand side is finite by the assump-
tion. Moreover, we have natural group isomorphisms CI(:)“ES"/ Cp = Ig)““" 12 =
[ees,, (OK);J/Ué,mP) & [1pes,, Z/myZ. Thus we obtain
1) i
#(Ci/C) = #(Ci/CLOP5 ) s #(CLx yomy = # Hy (M) x TT my <00, M

©ESm

Suppose that K is an orientable closed stably generic arithmetic QHS’. For an
m € N25% we denote by K™ € M*®(K) the element with Nym /k = Cg that uniquely
exists by Theorem 3.23 (ii) and Proposition 3.28 (i). As a consequence of Proposition
3.28 (ii), we obtain the following.

Theorem 3.29 (Kronecker—Weber theorem) IfK is an orientable closed stably generic
arithmetic QHS?, then for any L € MA®(K), there is an m € N25% with L < K™.

A Appendix: Existence of a Stably Generic Link

We construct a stably generic link, in order to show that our class field theory is not
nonsense.

Theorem A.1 Let M be an orientable closed three-dimensional strict € -manifold.
Then there is a countable stably generic link in 7).

In order to verify Theorem A.l, it suffices to prove the following.

Lemma A.2 Let O be a closed pre-arithmetic object of €y in which there is a finite
tame link s such that O[s™'] is an orientable arithmetic object of 6,. Then there is a
countable stably generic link in O.

Let K be an arithmetic manifold. We put M = %,(Ok), and choose io, € M
im(Sk). In order to verify Lemma A.2, we prepare three lemmata.

Lemma A.3 If Sk is finite and K is an orientable closed arithmetic manifold, then
for any L € ob(%6,/K), there is a finite tame link s in Ok containing Sk such that
hi k(s Sk) forms an admissible link in OL[S;].
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Lemma A.4 If Sk is countable and K is closed, then there is a countable subset
C c ob(6y/K) such that every object of €,/ K is isomorphic to an element of C in 6 /K.

Lemma A.5 If Sk is finite and K is an orientable closed arithmetic manifold, then
there is a countable stably generic link in Ok containing Sk.

Proof of Lemma A.3. By the assumption, L is an orientable closed arithmetic mani-
fold. By the finiteness of Sk, Sy, is also finite because its cardinality is bounded by #Sk
multiplied by the degree of the unbranched covering associated with hy/x. We put
V = %3(0r)im(Sy), and take an orientable strict ¢-manifold Y with <7y = Oy|y.
Then H; (V) is a finitely generated Abelian group. By a standard smoothing argument,
there is a finite set .Z of injective maps S' < Y of class C* with pairwise disjoint im-
ages such that the set of homology classes of 1-cycles {yo 6 | y € £} generates H; (V)
and hyx o x gives a tame cycle in Og[S'] for any y € .Z. Then the union of Sk and
the set of knots represented by hy x o y with y € . forms a desired finite tame link
in O K- |

Proof of Lemma A.4. It suffices to show that M(K) is countable. Let s € Fin(Sx).
Since Ok[s™'] is pre-admissible, (M ~ im(s)) is a finitely generated group, and
hence admits at most countably many subgroups of finite index. It implies that

Cov(M \im(s), teo)

is countable. Therefore, Cov(K) is countable, because so is Sg. Thus M(K) is count-
able. [ |

Proof of Lemma A.5. Since Ok admits a tame knot, we can assume Sx # &. We
denote by X the set of finite tame links in Ok containing Sx. We construct an increas-
ing sequence (s;)en € 2 and an ((Ly,;) jen)ien € [Tien 0b(%0/( Ok i)™ such that
for any i € N, every object of %,/( Ok, s;) is isomorphic to L; j in ¢,/(Ok,s;) for
some j € N, and for any (i, j, k) € N?, hzi’j/(OK,si)(Szi(z(zj(2k+1)_1)+l) \sisx ) forms an
admissible link in Oy, , [h}:'_)]_/(OK’si) (siek) ']

Let i € N. Suppose that s; and (L, ;) jev have already been given for each i’ €
Nn[0,i-1].If i = 0, then we put so = Sk. Suppose i # 0. We put / := max{e € N |
27 eZ}, m=max{eeN|27¢(271(27'i-1)+1) € Z},and n = 271 (27" (27} (27" i -
1) +1) —1). Then we have n € Nand [ + n < 2/(2n +1) < i. By Lemma A.3 applied to
(Ok,si-1) and (Og,,,, hz;,m/(ox,sz)(sifl))’ there is an s; € ¥ with s;_; c s; such that

Zt,m/(Ox,s,)(si N Sic1)

forms an admissiblelinkin Og, , [hL (Oxs1) (si-1)7']. Byastandard argument using
the Mayer—Vietoris exact sequence, the group homomorphism

Hl(ﬁO(OL"’") A im(hzl,m/(ox,sl)(si‘l)))
— H]( yO(OLl,m) AN im(hzl,m/(ok,sz) (SlJrn)))

associated with the inclusion is surjective. Therefore,

{Frobos | 2 € 7, 0gsn (s~ sten)}
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generates H; (.%o (Or,,,) \ im(hi, oes) (sten)'])).-
We have constructed s; € X. By Lemma A.4 applied to (Ok,s;), there is an

(Li,j) jen € 0b(6o/ (O, i)™

such that every object of ¢, /( Ok, s;) is isomorphic to L; j in 6,/( Ok, s;) for some
j € N. By the induction on i, we obtain a desired pair of (s;);en and (L;,;) (i, jyene-
Then Uiy ;i is a stably generic link in Ok containing Sk by the construction. ]

Proof of Lemma A.2. The assertion follows from Lemma A.5 applied to (O, s) for
a finite tame link s in O such that O[s™'] is an orientable arithmetic object of ;. M

Acknowledgements I am deeply grateful to Masanori Morishita, who gave me an
opportunity to study arithmetic topology. I am extremely thankful to Atsushi Ya-
mashita for instructing me on elementary facts on low-dimensional topology. I could
not have written several proofs in this paper without his help. I appreciate daily dis-
cussions with my colleagues. Personal communication with Hirofumi Niibo and Jun
Ueki contributed most greatly to my work in this paper. I would like to thank my fam-
ily for their deep affection. I was a research fellow of JST CREST, and was a research
fellow of Japan Society for the Promotion of Science.

References

[Den02] C. Deninger, A Note on arithmetical topology and dynamical systems. In: Algebraic number
theory and algebraic geometry. Contemp. Math., 300. Amer. Math. Soc., Providence, RI,
2002, pp. 99-114.  http://dx.doi.org/10.1090/conm/300/05144

[Fox57] R.H. Fox, Covering spaces with singularities. In: A symposium in honor of S. Lefschetz.
Princeton University Press, Princeton, NJ, 1957, pp. 243-257.

[Hir76] M. W. Hirsch, Differential topology. Graduate Texts in Mathematics, 33. Springer-Verlag,
New York, 1976.

[Lee03] J. M. Lee, Introduction to smooth manifolds. Graduate Texts in Mathematics, 218.
Springer-Verlag, new York, 2003. http:/dx.doi.org/10.1007/978-0-387-21752-9

[Mor01] M. Morishita Knots and prime numbers, 3-dimensional manifolds and algebraic number fields.
In: Algebraic number theory and related topics. Sturikaisekikenkytsho Kékytiroku (2001), no.
1200, 103-115.

[Morl2] ______, Knots and primes. An introduction to arithmetic topology. Universitext, Springer,
London, 2012.  http://dx.doi.org/10.1007/978-1-4471-2158-9

[Neu99] J. Neukirch, Algebraic number theory. Grundlehren der Mathematischen Wissenschaften,
322. Springer-Verlag, Berlin, 1999. http:/dx.doi.org/10.1007/978-3-662-03983-0

[NU]  H. Niibo and J. Ueki, Idelic class field theory for 3-manifolds and very admissible links. Trans.
Amer. Math. Soc., to appear.

Tsukuba University, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
Email: mihara@math.tsukuba.ac.jp

https://doi.org/10.4153/CJM-2018-020-0 Published online by Cambridge University Press


http://dx.doi.org/10.1090/conm/300/05144
http://dx.doi.org/10.1007/978-0-387-21752-9
http://dx.doi.org/10.1007/978-1-4471-2158-9
http://dx.doi.org/10.1007/978-3-662-03983-0
mailto:mihara@math.tsukuba.ac.jp
https://doi.org/10.4153/CJM-2018-020-0

