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Cohomological Approach to Class Field
Theory in Arithmetic Topology

Tomoki Mihara

Abstract. We establish class ûeld theory for three-dimensional manifolds and knots. For this pur-
pose, we formulate analogues of the multiplicative group, the idèle class group, and ray class groups
in a cocycle-theoretic way. Following the arguments in abstract class ûeld theory, we construct reci-
procity maps and verify the existence theorems.

Introduction

We establish class ûeld theory for three-dimensional manifolds and knots in the
framework of arithmetic topology. Arithmetic topology is a branch ofmodernmathe-
matics based on amysterious analogy between topology andnumber theory. B.Mazur
introduced this area in the study of the Alexander polynomial of a knot in S3 in an
unpublished note “Remarks on the Alexander polynomial”. Morishita also investi-
gated the topic [Mor01,Mor12]. In arithmetic topology, a connected orientable closed
three-dimensional manifold is regarded as an analogue of the ring of algebraic inte-
gers in a number ûeld, and a knot is regarded as an analogue of a maximal ideal. A
branched covering of such manifolds is an analogue of an extension of number ûelds,
and hence class ûeld theory in arithmetic topologymeans a theory controllingAbelian
branched coverings of such manifolds. We note that there are several variants of such
correspondences, and hope that readers are not confused about the diòerences. For
example, the ring of algebraic integers in a number ûeld gives two geometric objects
that correspond to distinct objects in topology. One is the set of all ûnite places re-
garded as an analogue of a non compact 3-manifold, and the other is the set of all
places regarded as an analogue of a compact 3-manifold [Den02, §1, §2, Appendix].

Our formulation of class ûeld theory in arithmetic topology is a variant of the
one originally introduced by H. Niibo and J. Ueki [NU]. _ey used a homological
and cycle-theoretic approach in the formulation of analogues of the multiplicative
group and the idèle class group, while we use a cohomological and cocycle-theoretic
approach. Although the Poincaré–Lefschetz duality yields several elementary rela-
tions between their and our formulations, some results, e.g., descent properties (_e-
orem 3.8, _eorem 3.10, and_eorem 3.12), the class ûeld axiom (_eorem 3.16), and
ideal-theoretic class ûeld theory (_eorem 3.27), essentially rely on the contravari-
ant functoriality of the cocycle-theoretic formulation. Furthermore, we verify several
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theorems analogous to those in number theory such as Hilbert’s _eorem 90 (_eo-
rem 3.7) and the Kronecker–Weber _eorem (_eorem 3.29).

We brie�y explain our formulation and results. To begin with, unlike the set of
maximal ideals of the ring of algebraic integers in a number ûeld, the set of knots
in a connected orientable closed three-dimensional manifold does not make sense
in a way compatible with the analogy between an extension of number ûelds and a
branched covering of such manifolds, and one needs to ûx a set of knots suitable in a
certain aspect. One way to choose such a set was advocated by Niibo and Ueki [NU].
_ey introduced the notion of a very admissible link as an analogue of the set of max-
imal ideals and regarded a pair of a connected orientable closed three-dimensional
manifold and a very admissible link in it as an analogue of a number ûeld. On the
other hand, we introduce the notion of a stably generic link as another analogue of
the set of maximal ideals, and regard a pair K of such a manifold OK and a stably
generic link SK as an analogue of a number ûeld. A countable stably generic link
forms a very admissible link, but the converse does not necessarily hold. Roughly
speaking, the deûnition of a stably generic link is given in a way imitating the asser-
tion of the Chebotarev density theorem. We deûne a group K× using 1-cocycles of the
complements of ûnite subsets of SK , and regard it as an analogue of the multiplicative
group of a number ûeld.
For each ℘ ∈ SK , we construct a formal limit K℘, i.e., a pro-object, of three-

dimensional manifolds, and regard it as an analogue of a local ûeld. Since we deûne
an analogue of the multiplicative group in a contravariantly functorial way, the deû-
nition naturally extends to a formal limit. We regard the extension K×

℘ as an analogue
of the multiplicative group of a local ûeld. We construct a local reciprocity map and
verify the local existence theorem in _eorem 3.15 through a homomorphism from
K×
℘ to the singular homology of a torus. Using (K×

℘)℘∈SK , we formulate analogues IK
and CK of the idèle group and the idèle class group. We construct a global reciprocity
map and verify the global existence theorem in _eorem 3.23 through a homomor-
phism from CK to the projective limit of the singular homologies of open subspaces
of OK .

We explain the contents of this paper. Section 1 consists of two subsections. In Sec-
tion 1.1, we introduce several categories of manifolds such as the category of topolog-
ical manifolds and the category of diòerentiable manifolds. We also deûne a category
in which Riemannianmanifolds naturally lie. In Section 1.2, we introduce formal lim-
its of three-dimensional manifolds, and give examples analogous to local ûelds and
several notions in number theory. Section 2 consists of eleven short subsections. In
each subsection, we introduce an analogue of a notion in number theory such as the
multiplicative group, the idèle class group, and ray class groups. In particular, we in-
troduce the notion of a stably generic link in Section 2.4. We deûne K× and K×

℘ in
Section 2.6, and IK and CK in Section 2.9. We make up the analogues in a table in
Section 2.11. Section 3 consists of ûve subsections. In Section 3.1, we establish Ga-
lois theory for branched coverings of three-dimensional manifolds. In Section 3.2,
we verify descent property for K×, K×

℘ , and IK . In Section 3.3, we verify local class
ûeld theory in arithmetic topology. In Section 3.4, we verify global class ûeld the-
ory in arithmetic topology. In Section 3.5, we verify ideal-theoretic class ûeld theory
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in arithmetic topology. In addition, we explain an explicit construction of a stably
generic link in Section A.

1 Preliminaries

We prepare convention and terminology. We putN>0 ∶= N∖{0}. Let C be a category.
We denote by C op the opposite category of C , by ob(C ) the class of objects in C , by
HomC (X ,Y)with (X ,Y) ∈ ob(C )2 the set of morphisms X → Y in C , by AutC (X)
with X ∈ ob(C ) the automorphism group of X in C , and by Ind(C ) the category of
ind-objects in C and compatible morphisms. Namely, for

(X j) j∈J0 ∈ ob(Ind(C )) and (Yj) j∈J1 ∈ ob(Ind(C )),
HomInd(C )((X j) j∈J0 , (Yj) j∈J1) is given as lim←Ð j0∈J0

limÐ→ j1∈J1
HomC (X j0 ,Yj1). We have

a fully faithful functor C ↪ Ind(C ) sending an object of C as the ind-object indexed
by the singleton {∅}, through which we identify an object of C with the image in
Ind(C ). We put Pro(C ) ∶= Ind(C op)op.

1.1 Categories of Manifolds

We introduce several categories related to manifolds on which we work in this paper.
_roughout this paper, a topological spacemeans a Hausdorò space, while a topo-

logical group means one which is not necessarily Hausdorò. We denote by Top the
category of topological spaces and continuous maps, and by Top0 ⊂ Top the subcate-
gory of local homeomorphisms. For topological spaces X and Y , we put C(X ,Y) ∶=
HomTop(X ,Y). For a topological space X, we denote by (Hn(X))n∈N the singular
homology of X with coeõcients in Z, and by (Hn(X))n∈N the singular cohomology
of X with coeõcients in Z.

_roughout this paper, a manifold means one with boundary, and a Riemannian
manifold means a connected C∞-manifold with empty boundary equipped with a
ûxed Riemannian metric. For a κ ∈ N ⊔ {∞}, we denote by Cκ the category of
Cκ-manifolds and maps of class Cκ , and by Cκ

0 ⊂ Cκ the subcategory of local iso-
morphisms.

We denote byMet the category of metric spaces and locally Lipschitz maps, and by
Met∞ the category of Riemannianmanifolds andmaps of class C∞. We have a natural
functor FMet∶Met∞ → Met, because every map of class C∞ between Riemannian
manifolds is locally Lipschitz with respect to the Riemannian metrics. We also deûne
another category containing branched coverings of Riemannian manifolds.
For a topological space X and a (γ0 , γ1) ∈ C([0, 1], X)2 with γ0(1) = γ1(0), we

deûne γ0 ∗ γ1 ∈ C([0, 1], X) by setting (γ0 ∗ γ1)(t) ∶= γ0(2t) for any t ∈ [0, 2−1] and
(γ0 ∗ γ1)(t) ∶= γ1(2t − 1) for any t ∈ (2−1 , 1]. A path-length space is a pair (X , ℓ) of a
topological space X and a map ℓ∶C([0, 1], X) → [0,∞] satisfying the following.

● For any γ ∈ C([0, 1], X), if γ is a constant map, then ℓ(γ) = 0.
● If (γ, g) ∈ C([0, 1], X) ×AutTop([0, 1]), then ℓ(γ ○ g) = ℓ(γ).
● If (γ0 , γ1) ∈ C([0, 1], X)2 with γ0(1) = γ1(0), then ℓ(γ0 ∗ γ1) = ℓ(γ0) + ℓ(γ1).

We give two examples of path-length spaces.
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Example 1.1 Let (X , d) be a metric space. We denote by X the underlying topo-
logical space of (X , d). For an n ∈ N, we denote by ∆n ⊂ [0, 1]n the subset of in-
creasing sequences. For a γ ∈ C([0, 1], X), we denote by ℓγ ∈ [0,∞] the path-length
supn∈N sup(t i)ni=0∈∆n+1 ∑

n−1
i=0 d(γ(t i), γ(t i+1)) of γ. _en the pair (X , ℓd) of X and the

map ℓd ∶C([0, 1], X) → [0,∞], γ ↦ ℓγ forms a path-length space. We always regard
a metric space as a path-length space in this way.

Example 1.2 Let (S , ℓ) be a path-length space, and X a topological space equipped
with a φ ∈ C(X , S). _en the pair (X , φ∗(ℓ)) of X and the map

φ∗(ℓ)∶C([0, 1], X) Ð→ [0,∞], γ z→ ℓ(φ ○ γ)

form a path-length space.

Every Riemannian manifold forms a metric space, and hence forms a path-length
space by Example 1.1. _erefore, every branched covering of a Riemannian manifold
naturally forms a path-length space by Example 1.2. _e notion of a path-length space
is interesting in class ûeld theory in arithmetic topology, because one can formulate
the length of a knot as an analogue of the cardinality of the residue ûeld at a maximal
ideal (Remark 2.7).

We introduce several speciûc types of morphisms between path-length spaces. Let
(X , ℓX) and (Y , ℓY) be path-length spaces. A strict morphism (X , ℓX) → (Y , ℓY) is a
continuousmap φ∶X → Y with φ∗(ℓY) = ℓX . A local isomorphism (X , ℓX) → (Y , ℓY)
is a strict morphism (X , ℓX) → (Y , ℓY) that is also a local homeomorphism X → Y .
A Lipschitz morphism (X , ℓX) → (Y , ℓY) is a continuous map φ∶X → Y such that
there exists a C ∈ (0,∞) with ℓY(φ ○ γ) ≤ CℓX(γ) for any γ ∈ C([0, 1], X). A locally
Lipschitz morphism (X , ℓX) → (Y , ℓY) is a continuous map φ∶X → Y such that there
exists an open covering U of X such that for any U ∈ U , φ∣U forms a Lipschitz
morphism (U , i∗U(ℓX)) → (Y , ℓY), where iU denotes the inclusion U ↪ X. Every
strict morphism is a Lipschitz morphism, and every Lipschitz morphism is a locally
Lipschitz morphism. _e composite of strict morphisms (resp. local isomorphisms,
Lipschitz morphisms, locally Lipschitz morphisms) is again a strict morphism (resp.
local isomorphism, Lipschitz morphism, locally Lipschitz morphism).

We denote by PLSp the category of path-length spaces and locally Lipschitz mor-
phisms, and by PLSp0 ⊂ PLSp the full subcategory of local isomorphisms. We have
a natural functor Met → PLSp because every locally Lipschitz map between met-
ric spaces forms a locally Lipschitz morphism between the associated path-length
spaces.

1.2 Categories of Pro-manifolds

Henceforth, we denote by C one of the categories Topop, (Cκ)op with κ ∈ N ⊔ {∞},
and PLSpop. We put C0 ∶= Topop

0 when C = Topop, C0 ∶= (Cκ
0)op when C = (Cκ)op,

and C0 ∶= PLSpop
0 when C = PLSpop. We denote by F the forgetful contravariant

functor C → Top, and by F0 the forgetful contravariant functor C0 → Top0.
Let O ∈ ob(C0). For a topological spaceU equipped with a local homeomorphism

φ∶U → F0(O), we denote by O∣U the object of C0 with F0(O∣U) = U such that φ

894

https://doi.org/10.4153/CJM-2018-020-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-020-0


Cohomological Approach to Class Field _eory in Arithmetic Topology

gives a morphism O∣U → O in C0. _e unique existence of such an object is obvious
when C = Topop or C = (Cκ)op, and follows from the construction in Example 1.2
when C = PLSpop. For a ûnite set s of closed subsets of F0(O), we put O[s−1] ∶=
O∣F0(O)∖⋃℘∈s ℘ ∈ ob(C0).

We abbreviate Ind(C ) to Ĉ and Ind(C0) to Ĉ 0. We give several examples of ob-
jects of Ĉ 0, all of which play important roles in this paper.

Example 1.3 (localisation) Let S be a set of pairwise disjoint closed subsets of
F0(O). We denote by Fin(S) the set of ûnite subsets of S directed by the order ≤
given by setting s0 ≤ s1 if and only if s0 ⊂ s1. _en (O[s−1])s∈Fin(S) forms an object
S−1O of Ĉ 0 with respect to the compatible system of morphisms contravariantly cor-
responding to the inclusions, and plays a role analogous to the localisation Σ−1O of a
ring O by amultiplicative subset Σ. When S is a ûnite set, then S−1O ∈ Ĉ 0 is naturally
isomorphic to the image of O[S−1] ∈ ob(C0) in Ĉ 0, because S is the greatest element
of Fin(S).

Example 1.4 (completion) Let ℘ be a subset of F0(O). We denote by Nbh(O ,℘)
the set of open neighbourhoods of ℘ in F0(O), which is directed by the order ≤
given by setting U0 ≤ U1 if and only if U1 ⊂ U0. _en (O∣U)U∈Nbh(O ,℘) forms an
object O℘ of Ĉ 0 with respect to the compatible system of morphisms contravariantly
corresponding to the inclusions, and plays roles analogous to the Henselisation of a
ring O at a prime ideal P and to the completion OP ofO at P. When ℘ is closed, then
(O∣U∖℘)U∈Nbh(O ,℘) forms an object Frac(O℘) of Ĉ 0 in a similar way, and plays a role
analogous to the total ring Frac(OP) of fractions of OP .

Example 1.5 (unramiûed extension) Let ι∞ ∈ F0(O). Suppose that F0(O) is
a path-connected locally path-connected semi-locally simply connected topological
space. We denote by (O , ι∞)∼ the universal covering of F0(O) given as the set of
homotopy classes of continuous maps γ∶ [0, 1] → F0(O) with γ(0) = ι∞, and by
Cov(O , ι∞), the set of ûnite unbranched coverings of F0(O) given as quotients of
(O , ι∞)∼, which is directed by the order ≤ given by setting N0 ≤ N1 if and only if the
canonical projection N1 ↠ F0(O) factors through the canonical projection N0 ↠
F0(O). _en (O∣N)N∈Cov(O , ι∞) forms an object (O , ι∞)ur of Ĉ 0 with respect to the
canonical projections, and plays a role analogous to the integral closure (O , i∞)ur of a
ring O of algebraic numbers in the maximal unramiûed extension (Frac(O), i∞)ur ⊂
C of the fractional ûeld Frac(O)with respect to a ûxed embedding i∞∶Frac(O) ↪ C.

A C -manifold means a topological manifold when C = Topop, a Cκ-manifold
when C = (Cκ)op, and a path-length space whose underlying topological space is
a topological manifold when C = PLSpop. A strict C -manifold means a connected
C∞-manifold when C = Topop or C = (Cκ)op, and a Riemannian manifold when
C = PLSpop. Every Riemannianmanifold is a strict C -manifold, every strict C -man-
ifold is a C -manifold, and every C -manifold X naturally forms an object AX of C0.
A C -morphism between C -manifolds means a continuous map when C = Topop,

a map of class Cκ when C = (Cκ)op, and a locally Lipschitz map when C = PLSpop.
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_e composite of C -morphisms again forms a C -morphism. Every map of class C∞

between strict C -manifolds is a C -morphism. Every C -morphism φ∶X → Y gives a
morphism Aφ ∶AY → AX in C . We denote by Mfd the category of C -manifolds and
C -morphisms. _e correspondence X ↝ AX gives a contravariant functorMfd→ C .

Let r ∈ (0, 1] and n ∈ N. All of S1 = {z ∈ C ∣ ∣z∣ = 1}, D2[r) ∶= {w ∈ C ∣ ∣w∣ < r},
D2(r) ∶= {w ∈ C ∣ 0 < ∣w∣ < r}, V[r) ∶= S1 ×D2[r), V(r) ∶= S1 ×D2(r), and
∆n = {(t i)n

i=0 ∈ [0, 1]n+1 ∣ ∑n
i=0 t i = 1} are both C∞-manifolds and metric spaces,

and hence naturally form C -manifolds. We put S1 ∶= (AV[1))S1 ×{0} ∈ ob(Ĉ 0) and
T2 ∶= Frac((AV[1))S1 ×{0}) ∈ ob(Ĉ 0) (Example 1.4). _en S1 (resp. T2) is naturally
isomorphic to (AV[r))r∈(0,1] (resp. (AV(r))r∈(0,1)]) in Ĉ 0 because {V[r) ∣ r ∈ (0, 1)}
is coûnal in Nbh(V[1), S1 ×{0}). _e basic objects AS1 , S1, and T2 play roles analo-
gous to Fq , Zq , andQq , respectively, where q is a power of a prime number.

2 M2KR Dictionary

We introduce analogues of several notions appearing in class ûeld theory in number
theory, and give a variant of M2KR dictionary admissible to our cohomological ap-
proach to class ûeld theory in arithmetic topology. We recall that anM2KR dictionary
means a table on the analogy between low-dimensional topology and number theory,
and is named a�er the originators of arithmetic topology: B. Mazur, M.Morishita, M.
M. Kaplanov, and A. Reznikov. In order to help readers working on number theory
to grasp the analogy well, we use symbols imitating the notation in number theory.
_e reason why the ones introduced can be seen as analogues will become clear in
Section 3 through the formulation of class ûeld theory in arithmetic topology.

2.1 Analogue of a Maximal Ideal

Amorphism in C is said to be a local isomorphism in C if it is given as the composite
of a morphism in C0 followed by an isomorphism in C . Since a pullback in C of any
morphism inC by anymorphism inC0 exists, the composite of an isomorphism inC
followed by a local isomorphism inC is again a local isomorphism inC . In particular,
the composite of local isomorphisms in C is again a local isomorphism in C .

Let O ∈ ob(C0). For an r ∈ (0, 1] and a j ∈ HomC (O ,AV[r)), we denote by
jS1 ∈ HomC (O ,AS1) the composite of j and the morphism AV[r) → AS 1 in C0 given
as the zero embedding S1 ↪ V[r), z ↦ (z, 0).

Let χ ∈ HomC (O ,AS1). We put im(χ) ∶= im(F (χ)) ⊂ F0(O). A
j ∈ HomC (O ,AV[r))

with r ∈ (0, 1] is said to be a tame extension of χ if j is a local isomorphismwith jS1 = χ.
We say that χ is a cycle in O if F (χ)∶ S1 → F0(O) is injective. A cycle in O is said
to be tame if it admits a tame extension. _e notion of a tame cycle is an analogue
of a homomorphism from a ring O of algebraic integers onto Fq with a power q of a
prime number.

We denote by Aut+C (AS1) ⊂ AutC (AS1) the subgroup consisting of automor-
phisms σ such that F (σ) acts trivially on H1(S1). _e set of cycles in O and the
set of tame cycles in O are stable under the action of AutC (AS1) on HomC (O ,AS1)
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given by the composition from the right. A knot in O is an equivalence class of cycles
in O with respect to the right action of Aut+C (AS1). A knot in O is said to be tame if
it consists of tame cycles in O. _e notion of a tame knot is an analogue of a maximal
ideal P of O , which is a generalisation of the ideal generated by a prime number.

Let ℘ be a knot in O. A j ∈ HomC (O ,AV[r)) with r ∈ (0, 1] is said to be a tubular
neighbourhood of ℘ if jS1 is a cycle in O representing ℘. By deûnition, ℘ is tame if and
only if ℘ admits a tubular neighbourhood. Moreover, if there is an orientable strict
C -manifold X with AX = O, then ℘ is tame if and only if there is a map S1 → X of
class C∞ representing ℘ by tubular neighbourhood theorem [Hir76, _eorem 4.5.2].

We take a representative χ ∈ HomC (O ,AS1) of ℘, and put im(℘) ∶= im(χ). We
denote by E the surjective continuous map R ↠ S1, t ↦ exp(2π

√
−1t), by θ the

surjective continuous map ∆1 ↠ S1 , (t0 , t1) ↦ E(t1), and by Frob℘ ∈ H1(F0(O))
the homology class of the singular 1-cycle represented by the continuous map

F (χ) ○ θ∶∆1 →F0(O).
We also denote by Frob℘ the images of Frob℘ by natural group homomorphisms as
long as there is no ambiguity. _en im(℘) and Frob℘ are independent of the choice of
χ by the deûnition of the action of Aut+C (AS1). _ey play roles analogous to the ûnite
ûeld O/P and the Frobenius automorphism at P of a maximal unramiûed Abelian
extension of Frac(O), respectively. We call Frob℘ the Frobenius of O at ℘.

Suppose C = PLSpop. We put O = (M , ℓM). By the deûnition of a path-length,
ℓO(℘) ∶= ℓM(χ) is independent of the choice of χ ∈ ℘. We put #O/℘ ∶= exp(ℓO(℘)),
and call it the exponential length of O/℘. _en #O/℘ is analogous to the cardinality of
O/P.

Since χ is a continuousmap from a compact topological space to aHausdorò topo-
logical space, im(℘) is closed. _erefore we obtain the objects

Oim(℘) and Frac(Oim(℘))

of Ĉ 0 (Example 1.4). We abbreviate Oim(℘) to O℘ and Frac(Oim(℘)) to Frac(O℘).
We have canonical morphisms O → O℘ and O℘ → Frac(O℘) in Ĉ 0 given by the
compatible systems of restrictions of idF0(O).

2.2 Partial Analogue of a Number Field

Let O ∈ ob(C0). We say that O is pre-arithmetic (resp. arithmetic) if there is a con-
nected three-dimensionalC -manifold (resp. a connected three-dimensional strictC -
manifold) X with ∂X = ∅ andAX = O. We note that the diòerence between the no-
tions of a pre-arithmetic object and an arithmetic object of C0 occurs only when C =
PLSpop, because every three-dimensional topological manifold (resp. three-dimen-
sional Cκ-manifold) admits a compatible structure of a C∞-manifold.

Suppose that O is pre-arithmetic. We say that O is closed (resp. orientable) if such
an X can be taken as a closed (resp. orientable strict) C -manifold. _e notion of an
orientable closed arithmetic object ofC0 is analogous to a ringO of algebraic integers.
While a number ûeld is equipped with the set of maximal ideals, an orientable closed
arithmetic object of C0 is not naturally equipped with a set of knots. _erefore we
need to consider a counterpart of the set of maximal ideals.
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Let S be a set of knots in O. We put im(S) ∶= ⋃℘∈S im(℘) ⊂ F0(O). We say that S
is a link in O if im(S) ≠ F0(O) and im(℘0) ∩ im(℘1) = ∅ for any (℘0 ,℘1) ∈ S2 with
℘0 ≠ ℘1. _e condition im(S) ≠ F0(O) automatically holds when S is countable by
the Baire category theorem. Suppose that S is a link inO. _en {im(℘) ∣ ℘ ∈ S} is a set
of pairwise disjoint closed subsets ofO. We abbreviate {im(℘) ∣ ℘ ∈ S}−1O ∈ ob(Ĉ 0)
(Example 1.3) to S−1O. When S is ûnite, we abbreviate

O[{im(℘) ∣ ℘ ∈ S} −1] ∈ ob(C0)

to O[S−1].
We say that S is tame if S consists of tame knots, is admissible if S is tame and

{Frob℘ ∣ ℘ ∈ S} generates H1(F0(O)), and is generic if S∖ s forms an admissible link
in O[s−1] for any s ∈ Fin(S). If S is generic, then S is admissible. _e deûnitions of an
admissible link and a generic link are analogous to the Chebotarev density theorem.
_e notion of a generic link is analogous to the set Max(O) of maximal ideals of O ,
which is a generalisation of the set of prime numbers.
An arithmetic manifold is a pair K = (Ok , SK) of a pre-arithmetic object OK of C0

and a tame link SK in OK admitting an s ∈ Fin(SK) such that OK[s−1] is arithmetic.
Let K be an arithmetic manifold. We say that K is closed ifOK is closed, is orientable if
there is an s ∈ Fin(SK) such thatOK[s−1] is orientable, and is admissible (resp. generic)
if SK is admissible (resp. generic).

_e notion of an orientable closed generic arithmetic manifold is partially anal-
ogous to a number ûeld. We will deûne the notion of a covering of an arithmetic
manifold in Section 2.3, and it would be natural to regard the notion of a covering of
an orientable closed generic arithmetic manifold as an analogue of a ûnite extension
of a number ûeld, which is again a number ûeld. However, a covering of an orientable
closed generic arithmetic manifold forms an orientable closed arithmetic manifold
that is not necessarily generic. For this reason, we will introduce a condition stably
generic which is stronger than generic in Section 2.4.
For a ℘ ∈ K, we abbreviate Frac((OK)℘) (Example 1.4) to K℘, and call it the formal

completion of K at ℘. As a special case of Example 1.4, K℘ is partially analogous to the
Henselisation and the completion kp of a number ûeld k at a maximal ideal p of the
ring of algebraic integers in k.

2.3 Partial Analogue of an Extension of Number Fields

Continuing fromSection 2.2, letK = (OK , SK)denote an arithmeticmanifold. Weput
M ∶= F0(OK). We give a partial analogue of an extension of number ûelds. _rough-
out this paper, we follow the terminology on branched coverings [Fox57, p. 250]. We
note that sinceK is an arithmeticmanifold,M is a connected locally compact topolog-
ical space that is always assumed to be Hausdorò, and hence satisûes the assumption
of the covering space and the base space of a branched covering [Fox57].
A topological covering of K is a pair (N , h) of a connected locally compact topolog-

ical space N and a continuous map h∶N → M such that h is a branched covering that
is unbranched of ûnite degree outside im(s) for some s ∈ Fin(SK). For topological
coverings (N0 , h0) and (N1 , h1) of K, a covering morphism (N1 , h1) → (N0 , h0) over
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K is a continuousmap φ∶N1 → N0 with h0○φ = h1. We denote by Top /K the category
of topological coverings of K and covering morphisms over K.

We give a construction of an arithmetic manifold from a topological covering of
K. For this purpose, we introduce a convention on a branched covering of tori. Let
r ∈ (0, 1]. For a (d , e , f ) ∈ Z ×N>0 ×N>0, we denote by hd ,e , f [r) the branched cov-
ering V[re−1) ↠ V[r), (z,w) ↦ (z f , zdwe) unbranched outside S1 ×{0} of degree
e f , and call it a standard branched covering. For any branched covering h∶V → V[r)
unbranched outside S1 ×{0} of ûnite degree, the subgroup of H1(V(r)) ≅ Z2 corre-
sponding to the unbranched covering associated with h through the Hurewicz iso-
morphism H1(V(r)) ≅ π1(V(r), (1, 2−1r))ab ≅ π1(V(r), (1, 2−1r)) is generated by
the homology classes of the singular 1-cycles represented by the continuous maps
(θ f , 2−1r) and (θd , 2−1rθ e) for a unique (d , e , f ) ∈ Z × N>0 × N>0, and there is a
homeomorphism φ∶V → V[re−1) with hd ,e , f [r) ○ φ = h.

Let (N , h) be a topological covering of K. When C = Topop, we put

h∗(OK) ∶= N ∈ ob(Top).
When C = PLSpop, OK is presented as a pair (M , ℓ), and we put

h∗(OK) ∶= (N , h∗ℓ) ∈ ob(PLSp) (Example 1.2).

Suppose C = (Cκ)op. We denote by U ⊂ N the open subset given as the antecedent
of the unbranched covering associated with h, which forms a Cκ-manifold with re-
spect to the pullback of the Cκ-manifold structure of OK . For each ℘ ∈ SK , we take
a tubular neighbourhood j℘ ∈ HomC (OK ,AV[r℘)) with r℘ ∈ (0, 1] of ℘. Replacing
(r℘)℘∈SK by a family of smaller ones, we may assume that for any ℘ ∈ SK , h is un-
branched over F ( j℘)(V(r℘)) and hence the pullback of h by j℘ in Top is given as
hd ,e , f [r℘) for a (d , e , f ) ∈ Z × N>0 × N>0. It implies that there is a surjective local
homeomorphism φ∶U ⊔⊔m

i=1 V[r i) ↠ N with m ∈ N and (r i)m
i=1 ∈ (0, 1]m for which

h ○ φ∶U ⊔ ⊔m
i=1 V[r i) ↠ OK is of class Cκ . We equip N with a unique structure of a

Cκ-manifold for which φ is of class Cκ , and denote by h∗(OK) the resulting Cκ-mani-
fold. It is obvious that h∗(OK) depends only on (N , h) and is a connected three-
dimensional C -manifold with F0(h∗(OK)) = N and h ∈ HomC0(h∗(OK),OK). If
OK is a closed (resp. an orientable strict) C -manifold, then so is h∗(OK) by the con-
struction.

Remark 2.1 When h is an unbranched covering, the structure of h∗(OK) is just
given as the pullback of the structure of OK , and hence h regarded as a morphism
h∗(OK) → OK in C0 satisûes the covering homotopy property with respect to any
C -morphism whose target is of the form AM for some compact C -manifold M ad-
mitting a C -morphism M × [0, 1] → M that is a homotopy connecting idM and a
constant map M → M.

We denote by h∗(SK) the set of knots P in h∗(OK) for which there is an

( f ,℘) ∈ N>0 × SK

such that for any χ̃ ∈ P , h ○ χ̃ is presented as the map S1 → OK , z ↦ χ(z f ) for some
χ ∈ ℘. Such a ℘ is obviously unique, and hence we denote it by h∗P . _en h∗(SK)
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forms a tame link in h∗(OK) with im(h∗(SK)) = h−1(im(SK)) by the construction
of h∗(OK). We denote by h∗K the arithmetic manifold (h∗(OK), h∗(SK)).
A covering of K is an arithmetic manifold L = (OL , SL) equipped with an

ιL/K ∈ HomC0(OK ,OL)
such that (F0(OL),F0(ιL/K)) is a topological covering of K with L = F0(ιL/K)∗K.
In particular, K itself is a covering of K with respect to ιK/K ∶= idOK . _e notion of a
covering of K is partially analogous to a ûnite extension of a number ûeld k.

Let L be a covering of K. We put hL/K ∶= F0(ιL/K) ∈ C(F0(OL),M). For a
P ∈ SL , we put ι∗L/KP ∶= (hL/K)∗P . _e compatible system of restrictions of
ιL/K gives a morphism S−1

K OK → S−1
L OL in Ĉ 0. A morphism φ in C0 is said to be

unbranched ifF0(φ) is an unbranched covering of connected locally compact topo-
logical spaces of ûnite degree. We say that L/K is unbranched if ιL/K is unbranched.
A covering L′ of K is said to be unbranched if L′/K is unbranched. _e notion of
an unbranched covering of K is partially analogous to an unramiûed ûnite extension
of k.
For coverings L0 and L1 of K, a covering morphism L0 → L1 over K is a

σ ∈ HomC0(OL1 ,OL0)
with ιL0/K ○ σ = ιL1/K for which L1 is a covering of L0. In particular, for any covering
L of K, ιL/K forms a covering morphism over K.

_e set-theoretic composite of covering morphisms between coverings of K again
forms a covering morphism between coverings of K in a contravariant way by the
construction of the pullback. We denote by C0/K the category of coverings of K and
covering morphisms over K. _e correspondence (N , φ) ↝ φ∗K gives a contravari-
ant functor Top /K → C0/K, which is fully faithful and essentially surjective by def-
inition. _e correspondence L ↝ S−1

L OL gives a functor C0/K → Ĉ 0 that is faithful
because the image of a ûnite link is nowhere dense.
For a continuous map h∶X → Y between topological spaces, we put Aut(h) ∶=

{g ∈ AutTop(X) ∣ h ○ g = h}. For any unbranched morphism φ∶O0 → O1 in C0, every
element of Aut(F0(φ)) ⊂ AutTop(F0(O1)) gives an automorphism of O1 in C0 by
the deûnition of themorphism class ofC0. We extend this fact to a branched covering
of arithmeticmanifolds. For a groupG, we denote byGop the opposite group ofG. We
put Aut(L/K) ∶= Aut(hL/K)op. Every element of Aut(L/K) gives an automorphism
L → L inC0/K by the explicit presentation of L = h∗L/KK as the quotient of the disjoint
union of an unbranched covering and ûnitely many standard branched coverings.
_erefore Aut(L/K) acts on L in C0/K. SinceF0 is faithful, the map AutC0/K(L) →
Aut(L/K), g ↦ F0(g) is a group isomorphism. In particular, Aut(L/K) admits a
natural action on SL .
For a branched covering h of connected locally compact topological spaces, we say

that h isGalois if Aut(h) acts transitively on the ûbre of every point of the unbranched
covering associated with h, and is Abelian if h is Galois and Aut(h) is Abelian. A
morphism φ in C0 is said to be Galois (resp. Abelian) if F0(φ) is a Galois (resp. an
Abelian) branched covering of connected locally compact topological spaces. We say
that L/K isGalois (resp.Abelian) or L isGalois (resp.Abelian) as a covering ofK if ιL/K
is Galois (resp. Abelian). When L/K is Galois, then we put Gal(L/K) ∶= Aut(L/K),
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and call it the Galois group of L/K. _e notion of a Galois (resp. an Abelian) covering
of K is partially analogous to a Galois (resp. an Abelian) extension of k. Combining
the facts that we will show in Proposition 3.2 (iii) and _eorem 3.4, it is easy to see
that the proûnite completion of H1(M) controls unbranched Abelian coverings of K,
and hence is partially analogous to the ideal class group C ℓk of k.

2.4 Analogue of a Number Field

We say that SK is stably admissible (resp. stably generic) if h∗SK is admissible (resp.
generic) for any topological covering (N , h) ofK, and that K is stably admissible (resp.
stably generic) if SK is stably admissible (resp. stably generic). If K is stably admissi-
ble (resp. stably generic), then every covering of K is stably admissible (resp. stably
generic) by deûnition. _e notion of an orientable closed stably generic arithmetic
manifold is completely analogous to a number ûeld.

Remark 2.2 We will verify the existence of a stably generic link in _eorem A.1.
We note that the deûnition and the terminology of a stably admissible link are im-
itations of the notion of a very admissibility link, which was introduced and whose
existence was veriûed by Niibo and Ueki in [NU]. _e notion of a very admissible
link in [NU] is equivalent to that of a countable stably admissible link for the case
C = Top, therefore _eorem A.1 for the case C = Top follows from the correspond-
ing result in [NU]. However, the notion of a very admissible link in the ûrst version
(arxiv:1501.03890v1 ) of [NU] was not formulated with the assumption of the tame-
ness. _e existence of a very admissible link without the tameness was veriûed in the
ûrst version of [NU] in January 2015, the existence of a countable stably admissible
linkwas veriûed in our unpublishedwork in February 2016, and the existence of a very
admissible link with the tameness was veriûed in their unpublished work in March
2016. _erefore our result is independent of their result. Furthermore, the existence
of a stably generic link is much stronger than the existence of a stably admissible link,
and hence than the existence of a very admissible link with the tameness.

2.5 Analogue of an Algebraic Closure

Weûx an ι∞ ∈ M∖im(SK). Let Y be an element of Cov(M∖im(s), ι∞) (Example 1.5)
for some s ∈ Fin(SK). We denote by φY the canonical projection Y ↠ M ∖ im(s).
Since Y is a quotient of (M ∖ im(s), ι∞)∼, it is naturally equipped with a base point
∗Y with φY(∗Y) = ι∞.

We denote by NY the Fox completion of Y with respect to the composite of φY
and the inclusion M ∖ im(s) ↪ M [Fox57, p. 245] and by the canonical projection
φY ∶NY → M. _en (NY , φY) forms a topological covering ofK. We obtain a covering
φ∗YK of K.

We denote by Cov(K) ⊂ ⊔s∈Fin(SK)Cov(M ∖ im(s), ι∞) the subset of Y ’s such
that φY is not unbranched at any point of im(s). _en Cov(K) forms a directed set
with respect to the partial order ≤ given by setting Y0 ≤ Y1 if and only if φY1 factors
through φY0 .
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Let (Y0 ,Y1) ∈ Cov(K)2 with Y0 ≤ Y1. We denote by φY1 ,Y0 ∶Y1 → Y0 a unique local
homeomorphism with φY1 ,Y0(∗Y1) = ∗Y0 and φY0 ○ φY1 ,Y0 = φY1 , and by φY1 ,Y0 ∶NY1 →
NY0 a unique continuous extension of φY1 ,Y0 . We have

φY1 ,Y0 ∈ HomTop /K((NY1 , φY1), (NY0 , φY0)).
So (φ∗YK)Y∈Cov(K) forms an object of Ind(C0/K) with respect to (φY0 ,Y1)Y0≤Y1 .

We denote by M(K) ⊂ ob(C0/K) the subset {φ∗YK ∣ Y ∈ Cov(K)}. _e map
Cov(K) → M(K),Y ↦ φ∗Y is bijective by deûnition. _erefore, (L)L ∈ M(K) forms
an object K of Ind(C0/K) naturally isomorphic to (φ∗YK)Y∈Cov(K) in Ind(C0/K),
which is analogous to the algebraic closure k in C of a number ûeld k equipped with
an embedding i∞∶ k ↪ C, and call it the algebraic closure of K with respect to ι∞.

We denote by MGal(K) ⊂ M(K) the subset of Galois coverings of K, and by Grp
the category of groups and group homomorphisms. We will prove in Corollary 3.3
that MGal(K) is coûnal in M(K), and the system (Gal(L/K))L∈MGal(K) naturally
forms an object of Pro(Grp) with surjective transition maps. We denote by GK the
proûnite group given as the projective limit of (Gal(L/K))L∈MGal(K), whereGal(L/K)
is equipped with the discrete topology for each L ∈ MGal(K). _en the underlying
group of GK naturally acts on K in Ind(C0/K).

Let ℘ ∈ SK . A place of K over ℘ is a system (℘L)L∈M(K) ∈ ∏L∈M(K) SL with
ι∗L1/L0

℘L1 = ℘L0 for any (L0 , L1) ∈ M(K) with L0 ≤ L1. _e notion of a place of K
over ℘ is analogous to a place p̂ of k over a maximal ideal of the ring of algebraic
integers in k.

Let ℘̂ = (℘L)L∈M(K) be a place of K over ℘. _en the system (L℘L)L∈M(K) forms
an object of Ind(Ĉ 0) = Ind(Ind(C0)) with respect to (ι℘L1 /℘L0

)L0≤L1 , and naturally
gives an object K℘̂ of Ind(C0) = Ĉ 0 that is analogous to the algebraic closure of kp

given as the completion kP of k at P.

2.6 Analogues of the Multiplicative Groups

We introduce two analogues of the multiplicative groups of number ûelds. We denote
by ∆ the simplex category, and by Ab ⊂ Grp the full subcategory of Abelian groups.
_e correspondence [n] ↝ A∆n gives a contravariant functor A∆● ∶∆ → C0, because
coface maps and codegeneracy maps are C -morphisms.
For an X ∈ ob(C0), we denote by C∗m(X) = (Cn

m(X), dn)n∈N the cochain complex
(ZHomC (X ,A∆n ))n∈N that is naturally identiûed with

(HomAb(Z⊕HomC (X ,A∆n ) ,Z))n∈N ,

associated with the composite ofA∆● and the inclusion C0 ↪ C , by (Zn
m(X))n∈N the

system (ker(dn))n∈N of cocycles of C∗m(X), by (Bn
m(X))n∈N the system (im(dn))n∈N

of coboundaries of C∗m(X), and by (Hn
m(X))n∈N the cohomology of C∗m(X). For

any n ∈ N, the correspondences X ↝ Cn
m(X), Zn

m(X), Bn
m(X), Hn

m(X) give func-
tors Cn

m , Z
n
m , B

n
m , H

n
m∶C → Ab. We note that they are covariant because the source

and the target of a morphism in C are deûned in a contravariant way relative to Top.
For a covariant functor F∶C → Ab, we denote by F̂ theKan extension of F along the

embedding C ↪ Ĉ , i.e., the natural extension Ĉ → Ab of F sending (X j) j∈J ∈ ob(Ĉ )
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to limÐ→ j∈J
F(X j). _e functors Ẑ1

m and C1
m are analogous to the multiplicative group

functors O× andM × of regular sections and meromorphic sections on algebraic va-
rieties, respectively. Indeed, we will verify local class ûeld theory for Ẑ1

m in _eo-
rem 3.15 and Hilbert’s _eorem 90 for C1

m in _eorem 3.7. We note that we have a
natural equivalence Ẑn

m/B̂n
m → Ĥn

m for each n ∈ N by the exactness of the inductive
limit.

We put K× ∶= Ẑ1
m(S−1

K OK) (Section 2.2) and K× ∶= Ẑm(K) (Section 2.5), and call
them the multiplicative groups of K and K respectively. We denote by O×

K ⊂ K× the
image of the canonical homomorphism Z1

m(OK) → K×, which, unfortunately, is not
injective unless SK = ∅, and call it the unit group of K. _enK× (resp.O×

K) is analogous
to the multiplicative group k× (resp. the unit group O×

k ) of a number ûeld k. _e
correspondence L ↝ L× (resp. L ↝ O×

L ) gives a functor C0/K → Ab.

Remark 2.3 In the preceding formulation in [NU], a counterpart of the multi-
plicative group is given as the inductive limit of the second singular homology groups
H2 with respect to a system of group homomorphisms deûned in a geometric way.
_rough the Poincaré duality, it can be interpreted as Ĥ1

m, which is deûned in an
algebraic way from H1

m. _erefore our formulation of K× is a reûnement of the alge-
braic interpretation Ĥ1

m of the counterpart of the multiplicative group in [NU]. We
will show in _eorem 3.8 that K× satisûes the descent property, which justiûes our
formulation compared to the original one in [NU].

Let ℘ ∈ SK . We put K×
℘ ∶= Ẑ1

m(K℘) (Example 2.2). We denote by ι×℘∶K× → K×
℘ the

group homomorphism associated with the morphism S−1
K OK → K℘ in Ĉ 0 given by

the compatible system of restrictions of idM .
For a covering L of K and a P ∈ SL with ι∗L/KP = ℘, the compatible system of

restrictions of hL/K gives morphisms (OK)℘ → (OL)P and ιP/℘∶K℘ → LP in Ĉ 0.
Let ℘̂ = (℘L)L∈M(K) be a place of K over ℘. Since (L℘L)L∈M(K) forms an inductive

system in Ĉ 0, (L×℘L)L∈M(K) forms an inductive system in Grp, by the functoriality of
Ẑ1

m. We put K×
℘̂ ∶= Ẑ1

m(K℘̂). By the deûnition of K℘̂, K×
℘̂ is naturally isomorphic to

the inductive limit of (L×℘L)L∈M(K) in Ab.

2.7 Analogue of the p-adic Valuation

In order to introduce several homomorphisms, we compare H1
m and H1. We denote

by ΘO the group homomorphism H1(F0(O)) → H1
m(O) induced by the restriction

map ZC(∆
1 ,F0(O)) ↠ C1

m(O), (cγ)γ∈C(∆1 ,F0(O)) ↦ (cF(χ))χ∈HomC (O ,A∆1 ).

Proposition 2.4 For any strict C -manifold X, the homomorphism ΘAX ∶H1(X) Ð→
H1

m(AX) is a group isomorphism.

Proof We denote by C∗ = (Cn , δn)n∈N the singular cochain complex of X, and by
ρ = (ρn)n∈N the cochain map C∗ → C∗m(AX) given by restriction maps. _en ΘAX

in given as H1(ρ). By deûnition, ρ0 is a group isomorphism.

903

https://doi.org/10.4153/CJM-2018-020-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-020-0


T. Mihara

We show the injectivity of H1(ρ). For any γ ∈ C(∆1 , X), there is a homotopy
∆1 × [0, 1] → X relative to ∂∆1 connecting γ and a map ∆1 → X of class C∞ by
Whitney’s approximation

theorem [Lee03, _eorem 10.21] applied to the continuous extension γ̃∶ {(t0 , t1) ∈
R2 ∣ t0 + t1 = 1} → X of γ given by setting γ̃(t0 , t1) = γ̃(1, 0) for any (t0 , t1) ∈ R2 with
t0 + t1 = 1 ≤ t0 and γ̃(t0 , t1) = γ̃(0, 1) for any (t0 , t1) ∈ R2 with t0 + t1 = 1 ≤ t1. It
implies that H1(ρ) is injective because ρ0 is surjective.

We show the surjectivity of H1(ρ). Let c̃ ∈ H1
m(AX). We take a representative

c ∈ Z1
m(AX) of c. We construct a c′ ∈ ker(δ1) with ρ1(c′) = c. Let γ ∈ C(∆1 , X). By

Whitney’s approximation theorem again, there is a homotopy map Φ∶∆1 ×[0, 1] → X
relative to ∂∆1 connecting γ and a C∞-map γ̃∶∆1 → X. By Whitney’s approximation
theorem for smooth homotopy [Lee03, Proposition 10.22], two smooth paths in X
sharing endpoints and admitting a homotopy map relative to ∂∆1 connecting them,
admit a smooth homotopy map relative to ∂∆1 connecting them, and hence cγ ∶=
c(γ̃) ∈ Z depends only on γ. We put c′ ∶= (cγ)γ∈C(∆1 ,X) ∈ C1. _en we have ρ1(c′) = c
by the construction.

Let σ ∈ C(∆2 , X). We put ∂[σ] = ∑2
i=0(−1)i[∂ iσ] ∈ Z⊕C(∆

1 ,X) with

(∂ iσ)2
i=0 ∈ C(∆1 , X)3 .

For each i ∈ {0, 1, 2}, there is a homotopy ∆1 × [0, 1] → X relative to ∂∆1 connecting
∂ iγ and a γ i ∈ HomC∞(∆1 , X) ⊂ C(∆1 , X) by Whitney’s approximation theorem
applied to a continuous extension of ∂ iσ . _en ∑2

i=0(−1)i[γ i] ∈ Z⊕C(∆
1 ,X) lies in

∑2
i=0((−1)i[∂ iσ] + ∂Z⊕C(∆

2 ,X)) = ∂[σ] + ∂Z⊕C(∆
2 ,X) = ∂Z⊕C(∆

2 ,X), and hence in
∂Z⊕HomC∞(∆2 ,X) by the comparison theorembetween the smooth singular homology
and the singular homology [Lee03, _eorem 16.6] . _erefore, we obtain δ1(c′)(σ) =
∑2

i=0(−1)i c′(∂ iσ) = ∑2
i=0(−1)i c(γ i) = 0. It implies δ1(c′) = 0. We conclude that

H1(ρ) is bijective.

For an (r, r′) ∈ (0, 1]2 with r′ < r, we denote by µr ,r′ (resp. λr ,r′) the morphism
AV(r) → A∆1 in C given by the C -morphism ∆1 → V(r), (t0 , t1) ↦ (1, r′θ(t1))
(resp. (t0 , t1) ↦ (θ(t1), r′)), and by µ∨r ,r′ (resp. λ∨r ,r′), the group homomorphism
Z1

m(AV(r)) → Z given by the evaluation at µr ,r′ (resp. λr ,r′). We verify that the system
(µ∨r ,2−1 r)r∈(0,1] (resp. (λ∨r ,2−1 r)r∈(0,1]) yields a group homomorphism Ẑ1

m(T2) → Z.

Proposition 2.5 Let (r, r′ , r′′) ∈ (0, 1]3 with r′′ < r′ < r. For any c ∈ Z1
m(AV(r)),

the equality c(µr ,r′) = c(µr ,r′′) = (c∣V(r′))(µr′ ,r′′), respectively, c(λr ,r′) = c(λr ,r′′) =
(c∣V(r′))(λr′ ,r′′), holds, where c∣V(r′) denotes the image of c in Z1

m(V(r′)).

Proof _e assertion follows from Proposition 2.4 applied to V(r) and V(r′), be-
cause [F (µr ,r′)] − [F (µr ,r′′)] ∈ Z⊕C(∆

1 ,V(r)) (resp. [F (λr ,r′)] − [F (λr ,r′′)] ∈
Z⊕C(∆

1 ,V(r))) is a singular 1-boundary.

By Proposition 2.5, the system (µ∨r ,2−1 r)r∈(0,1] (resp. (λ∨r ,2−1 r)r∈(0,1]) yields a group
homomorphism Ẑ1

m(T2) → Z that we denote by µ∨ (resp. λ∨) and that is obviously
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surjective by an argument similar to the singular cohomology using the perfect pair-
ing with the singular homology. We show that µ∨ (resp. λ∨) is stable under the action
of the group of automorphisms of S1 over AS1 .

Proposition 2.6 Let (r, r′) ∈ (0, 1]2. For any local isomorphism σ ∶AV[r′) → AV[r)
in C with F (σ)(z, 0) = (z, 0) for any z ∈ S1, we have µ∨ ○ Ẑm(σ○) = µ∨, (resp.,
λ∨ ○ Ẑm(σ○) = λ∨), where σ○ is the automorphism of T2 in Ĉ given by the compatible
system of restrictions ofF (σ).

Proof By Proposition 2.5, wemay replace r by a suõciently smaller one, and assume
that F (σ) is injective. _en σ induces a local isomorphism σ ∣V(r′)∶AV(r′) → AV(r)
in C . _e assertion follows from Proposition 2.4 applied to V(r) and V(r′), be-
cause [F (µr′ ,2−1 r′)] − [F (µr ,2−1 r ○ σ ∣V(r′))] ∈ Z⊕C(∆

1 ,V(r′)) (resp. [F (λr′ ,2−1 r′)] −
[F (λr ,2−1 r ○ σ ∣V(r′))] ∈ Z⊕C(∆

1 ,V(r′))) is a singular 1-boundary.

Let ℘ ∈ SK . _e tameness of ℘ ensures that K×
℘ admits a group isomorphism to

Ẑ1
m(T2) depending on a choice of a tubular neighbourhood of ℘. By Proposition 2.6,

the composite ν℘ (resp. νlog
℘ ) of the isomorphism K×

℘ → Ẑ1
m(T2) and µ∨ (resp. λ∨)

is independent of the choice of a tubular neighbourhood of ℘ and is analogous to
the p-adic valuation (resp. the composition of the p-adic valuation and the Iwasawa
logarithm k×p → kp) of the completion kp of a number ûeld k at a maximal ideal p of
the ring of algebraic integers in k. We call ν℘ the valuation of K×

℘ .
We put (OK)×℘ ∶= ker(ν℘) ⊂ K×

℘ . We note that F induces a group isomorphism
Z ≅ H1(S1) → Ĥ1

m(S1) ≅ Ĥ1
m((OK)℘) by Proposition 2.4 applied to V[1). Although

we do not use this fact, it is easy to see, through the isomorphism, that the group ho-
momorphism Ẑ1

m((OK)℘) → Ẑ1
m(K℘) = K×

℘ associated with the canonical morphism
S1 → T2 in Ĉ 0 induces a surjective group homomorphism Ẑ1

m((OK)℘) ↠ (OK)×℘
that is, unfortunately, not injective.

2.8 Analogue of the Reduction

Let L be a Galois covering of K. We ûx a ℘ ∈ SK . For a P ∈ SL with ι∗L/KP = ℘,
we denote by Gal(L/K)P ⊂ Gal(L/K) the stabiliser subgroup of P with respect
to the action of Gal(L/K) on SL , and call it the decomposition group of L/K at P .
Since Gal(L/K) acts transitively on the ûbre of each point of F0(OL[h∗L/K(s)−1])
for a suõciently large s ∈ Fin(SK), Gal(L/K) acts transitively on ι−1

L/K({℘}) ⊂ SL .
_erefore, for any (P0 ,P1) ∈ S2

L with ι∗L/KP0 = ι∗L/KP1 = ℘, Gal(L/K)P0 and
Gal(L/K)P1 are conjugate to each other.

We ûx a P ∈ SL with ι∗L/KP = ℘. By the deûnition of a covering, hL/K is locally
presented as the standard branched covering hd ,e , f [r) with r ∈ (0, 1] and

(d , e , f ) ∈ Z ×N>0 ×N>0
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around im(P), and the restriction im(P) → im(℘) of hL/K is an unbranched cov-
ering corresponding to the map S1 → S1 , z ↦ z f through the presentation. It im-
plies that the automorphism group of im(P) over im(℘) in Top is canonically iso-
morphic to Z/ fZ by the deûnition of a knot, using Aut+C (AS1) ⊂ AutC (AS1). In
particular, fP/℘ ∶= f depends only on ιL/K and P . We obtain a group homomor-
phism redP/℘∶Gal(L/K)P → Z/ fP/℘Z, which is surjective because the action of
Gal(L/K)P on each ûbre of the restriction of hL/K to suõciently small neighbour-
hoods of im(℘) and im(P) is transitive. Since e fP/℘ coincides with the degree of
the unbranched covering associated with the restriction of hL/K to neighbourhoods
ofP and ℘, eP/℘ ∶= e also depends only on ιL/K andP . _e indices fP/℘ and eP/℘
are analogous to the inertia degree and the ramiûcation index of an extension of local
ûelds.

Remark 2.7 IfC = PLSpop, then the equality #OL/P = (#OK/℘) fP/℘ (Section 2.1)
holds.

Weûx a place ℘̂ = (℘L)L∈M(K) ofK over℘. _en the system (Gal(L/K)℘L)L∈MGal(K)
forms an object of Pro(Grp) with respect to the transition maps of

(Gal(L/K))L∈MGal(K) .

We denote by GK ,℘̂ the proûnite group given as its projective limit of

(Gal(L/K)℘L)L∈MGal(K) ,

whose underlying group of GK ,℘̂ naturally acts on K℘̂ in Ĉ 0 by deûnition. For any
(L, L′) ∈ MGal(K)2 with L′ ≤ L, we have f℘L′ /℘ ∣ f℘L/℘, and the composite of the
canonical projection Gal(L/K)℘L ↠ Gal(L′/K)℘L′ with red℘L′ /℘ coincides with the
composite of red℘L/℘ with the canonical projection Z/ f℘L/℘Z↠ Z/ f℘L′ /℘Z, by deû-
nition. _erefore, we obtain a continuous group homomorphism

GK ,℘̂ Ð→ lim←Ð
L∈MGal(K)

Z/ f℘L/℘Z,

which is surjective by the compactness of GK ,℘̂.
In particular, we obtain a surjective continuous group homomorphism

d℘̂∶GK ,℘̂ Ð→→ Ẑ,

under the assumption that for any n ∈ N>0, there is an L ∈ M(K) with n ∣ f℘L/℘.
We note that this condition obviously holds when K is presented as (AV[r) , {℘}) for
some r ∈ (0, 1] and ℘ is represented by the morphism AV[r) → A∆1 in C given by the
C -morphism µr ∶∆1 → V[r), (t0 , t1) ↦ (θ(t1), 0), but does not necessarily hold in
general. _e homomorphism d℘̂ is analogous to the reductionmap from the absolute
Galois group of a p-adic ûeld to the absolute Galois group of the residue ûeld.

2.9 Analogue of the Idèle Class Group

We denote by IK the restricted product of (K×
℘)℘∈SK with respect to ((OK)×℘)℘∈SK , i.e.,

the subgroup of∏℘∈SK K×
℘ consisting of (c℘)℘∈SK ’s with #{℘ ∈ SK ∣ c℘ ∉ (OK)×℘} < ∞,

and call it the idèle group of K. _en IK is analogous to the idèle groupIk of a number
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ûeld k. Unlike Ik , we use the additive notation for IK . For a covering L of K, we
consider the group homomorphism

ιIL/K ∶ IK Ð→ IL , (c℘)℘∈SK z→ (ι×P/ι∗L/KP(cι∗L/KP))P∈SL .

Since SL is stable under the action of Aut(hL/K), we have a natural action of Gal(L/K)
on IL over IK when L/K is Galois. For any (L0 , L1) ∈ M(K)2 with L0 ≤ L1, regarding
L1 as an object of C0/L0 through the canonical morphism ιL1/L0 ∶ L0 → L1 in C0/K
corresponding to the base points ofF0(OL0) andF0(OL1), we obtain ιIL1/L0

○ ιIL0/K =
ιL1/K . _erefore the correspondence L ↝ IL gives a functor C0/K → Ab.

Remark 2.8 In the preceding formulation in [NU], a counterpart of the idèle group
is given as the restricted product of the ûrst singular homology groups H1. _rough
the Poincaré duality, it can be interpreted as the restricted product of Ĥ1

m. _erefore,
our formulation of IK is a reûnement of the counterpart of the idèle group in [NU].
_e diòerence is very important because IK satisûes the descent property as will be
shown in _eorem 3.12.

It is obvious that IK is the preimage of Z⊕SK ⊂ ZSK by the group homomorphism
∏℘∈SK ν℘∶∏℘∈SK K×

℘ → ZSK , (c℘)℘∈SK ↦ (ν℘(c℘)). _erefore we obtain a natural
group homomorphism νK ∶ IK → Z⊕SK . We put UK ∶= ker(νK) = ∏℘∈SK (OK)×℘ ⊂ IK .
By the deûnition of νK , we have∏℘∈SK B̂

1
m(K℘) ⊂ UK .

By the deûnition of K× = Ẑ1
m(S−1

K OK), the image of the composite of the group
homomorphisms∏℘∈SK ι×℘∶K× → ∏℘∈SK K×

℘ , c ↦ (ι×℘(c))℘∈SK and∏℘∈SK ν℘ is con-
tained in Z⊕SK , and hence the image of ∏℘∈SK ι×℘ is contained in IK . We obtain a
natural group homomorphism ιIK ∶K× → IK , and denote by PK ⊂ IK its image. We put
CK ∶= IK/PK . _en PK and CK are analogous to the principal idèle group Pk and the
idèle class group Ck of k. _e correspondences L ↝ PL ,CL give functors C0/K → Ab,
by deûnition.

Remark 2.9 Unlike the diagonal embedding, k× → Ik , ιIK is not injective.

We introduce several topologies. For each℘ ∈ SK , we equipK×
℘ the topology gener-

ated by the set of subsets of the form c+U for some c ∈ K×
℘ and some subgroupU ⊂ K×

℘
such that (OK)×℘ ∩U is a subgroup of (OK)×℘ of ûnite index containing B̂1

m(K℘), and
(OK)×℘ with the relative topology of K×

℘ . We equip UK with the direct product topol-
ogy of ((OK)×℘)℘∈SK , and IK with the topology generated by the set of subsets of the
form c + U for some c ∈ IK and some open subgroup U of UK . _en IK forms a
topological group. We note that IK is not Hausdorò unless SK = ∅, because every
neighbourhood of 0 in IK contains ∏℘∈SK B̂

1
m(K℘). We equip CK with the quotient

topology of IK .

2.10 Analogue of Ray Class Groups

For a (℘, n) ∈ SK × N>0, we put U(n)
℘ ∶= {c ∈ (OK)×℘ ∣ νlog

℘ (c) ∈ nZ}. We denote
by N⊕SK

>0 ⊂ NSK
>0 the subset of (m℘)℘∈SK ’s with #{℘ ∈ SK ∣ m℘ > 1} < ∞. Let m =
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(m℘)℘∈SK ∈ N⊕SK
>0 . We put ImK ∶= ∏℘∈SK U(m℘)

℘ ⊂ UK and Cm
K ∶= ImK /(ImK ∩ PK), and

call them the congruence subgroup of IK mod m and the ray class group of K mod m,
respectively. _en they are analogous to the congruence subgroup I M

k ⊂ Ik and
the ray class group C M

k mod non zero ideal M ⊂ Ok , respectively. _rough the
inclusion ImK ↪ IK , we regard Cm

K as a subgroup of CK . We note that ImK contains
∏℘∈SK B̂

1
m(K℘), and is an open subgroup of IK by deûnition.

We put sm ∶= {℘ ∈ SK ∣ m℘ > 1} ∈ Fin(SK) and

JmK ∶= {(n℘)℘∈SK ∈ Z⊕SK ∣ ∀℘ ∈ sm , n℘ = 0} .

We denote by Pm
K ⊂ JmK the subgroup of (n℘)℘∈SK ’s such that there is a c ∈ K× with

ι×℘(c) ∈ U(m℘)
℘ for any ℘ ∈ sm and ν℘(ι℘(c)) = n℘ for any ℘ ∈ SK . We put ClmK ∶=

JmK /Pm
K . _en ClmK is analogous to the generalisation C ℓM

k of the ideal class group of
k [Neu99, §VI 1 p. 365].

Remark 2.10 Put m0 = (1)℘∈SK ∈ N⊕SK
>0 . _en we have sm0 = ∅, Im0

K = UK , and
Jm0
K = Z⊕SK . If K is admissible, then the group homomorphism

Jm0
K Ð→ H1(M), (n℘)℘∈SK z→ ∑

℘∈SK

n℘ Frob℘

is surjective, by deûnition. If K is orientable, then its kernel coincides with Pm0
K by a

standard argument using theMayer–Vietoris exact sequence and the Poincaré duality
(3.1) . In particular, ifK is orientable and admissible, thenwe have a natural group iso-
morphism Clm0

K ≅ H1(M). _erefore ClmK for a general m ∈ N⊕SK
>0 is a generalisation

of H1(M).

2.11 Resulting Dictionary

In Tables 1–4, we collect the analogues into a dictionary that is our variant of the
M2KR dictionary.

3 Main Results

Continuing from Section 2, let K = (OK , SK) denote an arithmetic manifold with a
ûxed base point ι∞ ∈ F0(OK) ∖ im(SK). We put M ∶= F0(OK). We establish a class
ûeld theory for an arithmetic topology.

3.1 Galois Theory

We establish the Galois theory for coverings of arithmetic manifolds. To begin with,
we give a criterion for a Galois covering.

Proposition 3.1 A covering L of K is Galois if and only if there is an s ∈ Fin(SK) such
that the restriction F0(OL) ∖ im(h∗L/K(s)) → M ∖ im(s) of hL/K is an unbranched
Galois covering.
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Table 1

Integral Object
a ring O of an orientable closed

algebraic integers arithmetic object O of C0
a surjective homomorphism a tame cycle

O ↠ Fq O → AS1

the absolute Galois group the fundamental group
GFq ≅ Ẑ π1(S1 , 1)op ≅ Z

a maximal ideal a tame knot
p of O ℘ in O

the cardinality the exponential length
#O/p #O/℘

the maximal spectrum a stably generic link
Max(O) S in O

the ideal class group the proûnite completion of
C ℓFrac(O) the ûrst homology group

H1(F0(O))

Table 2

Rational Object
a number ûeld an orientable closed stably generic

k arithmetic manifold K
an inûnite place a base point

i∞∶ k ↪ C ι∞ ∈ F0(OK) ∖ im(SK)
the multiplicative group the multiplicative group

k× K×

the unit group the unit group
O×

k O×
K

the idèle group the idèle group
Ik IK

the principal idèle group the principal idèle group
Pk PK

the idèle class group the idèle class group
Ck CK

the congruence subgroup the congruence subgroup
I M

k ImK
the ray class group the ray class group

C M
k Cm

K
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Table 3

Relative Object
an extension l/k a covering L/K

unramiûed unbranched
Galois Galois
Abelian Abelian

the Galois group the Galois group
Gal(l/k) Gal(L/K)

the algebraic closure the algebraic closure
k ⊂ C of k with respect to K of K with respect to

the inûnite place i∞ the base point ι∞
the absolute Galois group the absolute Galois group

Gal(k/k) GK
an extension a covering

l/k in k L in M(K)

Table 4

Local Object
the completion kp the formal completion K℘
at a p ∈ Max(Ok) at a ℘ ∈ SK

the multiplicative group the multiplicative group
k×p K×

℘
the valuation the valuation
vp ∶ k×p → Z ν℘∶K×

℘ → Z
the unit group the unit group
(Ok)×p → Z (OK)×℘

the decomposition group the decomposition group
Gal(l/k)P Gal(L/K)P

the Frobenius the Frobenius
FrobP FrobP

a place p̂ a place ℘̂
of k over P of K over ℘

the algebraic closure the algebraic closure
k p̂ of kp with respect to K℘̂ of K with respect to

the place p̂ the place ℘̂
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Proof By the deûnition of a Galois covering of K, the assertion immediately fol-
lows from the fact that the cardinality of every ûbre of an unbranched covering of
connected locally compact topological spaces is constant.

We give a presentation of the Galois group of a covering of arithmetic manifolds.

Proposition 3.2 Let s ∈ Fin(SK). For any covering L of K unbranched outside im(s)
with ι′∞ ∈ h−1

L/K(ι∞), the following assertions hold.

(i) _e action of π1(M ∖ im(s), ι∞) on F0(OL) ∖ im(h∗L/K(s)) over M ∖ im(s)
induces an exact sequence of pointed sets.

π1(F0(OL)∖im(h∗L/K(s)), ι′∞) Ð→ π1(M∖im(s), ι∞) Ð→ (h−1
L/K(ι∞), ι′∞) Ð→ {1}

(ii) If L/K is Galois, then the exact sequence in (i) yields an exact sequence of groups.

π1(F0(OL) ∖ im(h∗L/K(s)), ι′∞)op Ð→ π1(M ∖ im(s), ι∞)op Ð→ Gal(L/K) Ð→ {1}

(iii) If L/K isAbelian, then the exact sequence in (ii) yields an exact sequence of Abelian
groups

H1(F0(OL) ∖ im(h∗L/K(s))) Ð→ H1(M ∖ im(s)) Ð→ Gal(L/K) Ð→ {1} ,

independent of ι∞ and ι′∞ through the Hurewicz isomorphisms.

Proof _e ûrst assertion is purely topological and elementary. _e restriction of the
action of Gal(L/K) onF0(OL) toF0(OL)∖im(h∗L/K(s)) is transitive, and hence in-
duces a group isomorphism Gal(L/K) → Aut(hL/K ∣F0(OL)∖im(h∗L/K(s)))

op. _erefore
the other assertions immediately follow from the ûrst assertion.

We call the image of π1(F0(OL) ∖ im(h∗L/K(s)), ι′∞) in π1(M ∖ im(s)) (resp. the
image of H1(F0(OL) ∖ im(h∗L/K(s))) in H1(M ∖ im(s))) by the homomorphism
in Proposition 3.2 the subgroup corresponding to ιL/K . As a consequence of Proposi-
tion 3.1, we obtain the following.

Corollary 3.3 A covering L of K is Galois if and only if there is an s0 ∈ Fin(SK)
such that hL/K is unbranched outside im(s0) and for any s1 ∈ Fin(SK) with s0 ≤ s1, the
subgroup of π1(F0(OK[s−1

1 ]), ι∞) corresponding to ιL/K is normal.

Now we construct the Galois correspondence for arithmetic manifolds.

_eorem 3.4 (Galois _eory) _e following assertions hold.
(i) For any L ∈ M(K), there is a unique open subgroup HL/K ⊂ GK such that for

any L̃ ∈ MGal(K) with L ≤ L̃, the image of HL/K by the canonical projection

GK Ð→→ Gal(L̃/K)
coincides with Gal(L̃/L).

(ii) For any open subgroup H ⊂ GK , there is a unique LH ∈ M(K) such that for any
L̃ ∈ MGal(K)with LH ≤ L̃, the image of H by the canonical projection GK ↠ Gal(L̃/K)
coincides with Gal(L̃/LH).
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Proof First, let L ∈ M(K). _e uniqueness of HL/K in the assertion immediately
follows from the deûnition of the topology of GK . By the coûnality of MGal(K) in
M(K), there is an L̃0 ∈ MGal(K)with L ≤ L̃0. We denote byHL/K ⊂ GK the preimage
of Gal(L̃0/L) by the canonical projection GK ↠ Gal(L̃0/K). By the deûnition of the
topology of GK , HL/K is an open subgroup of GK .

Let L̃ ∈ MGal(K) with L ≤ L̃. Since M(K) is directed and MGal(K) is coûnal in
M(K), there is an L̃1 ∈ MGal(K) with L̃0 ≤ L̃1 and L̃ ≤ L̃1. For any L̃2 ∈ {L̃0 , L̃},
the preimage of Gal(L̃2/L) by the canonical projection Gal(L̃1/K) ↠ Gal(L̃2/K)
coincides with Gal(L̃1/L) by deûnition. _erefore the preimage of Gal(L̃/L) by the
canonical projection GK ↠ Gal(L̃/K) coincides with HL/K .

Secondly, let H ⊂ GK be an open subgroup. _e uniqueness of LH in the assertion
immediately follows from the coûnality ofMGal(K) in M(K) and the classical Galois
theory for unbranched coverings, because for any L̃ ∈ M(K), every automorphism
in Top of the antecedent of the unbranched covering associated with hL̃/K over M
uniquely extends to an automorphism in Top ofF0(OL̃) over M. By the deûnition of
the topology of GK , there is an L̃0 ∈ MGal(K) such that H contains the kernel of the
canonical projection GK ↠ Gal(L̃0/K). We denote by LH ∈ M(K) a unique element
with LH ≤ L̃0 such that the image of H by the canonical projection

GK Ð→→ Gal(L̃0/K)

coincides with Gal(L̃/LH), which exists because the quotient of the unbranched cov-
ering associated with hL̃/K by the action of the image ofH is an unbranched covering.

Let L̃ ∈ MGal(K) with LH ≤ L̃. By the argument above, there is an L̃1 ∈ MGal(K)
with L̃0 ≤ L̃1 and L̃ ≤ L̃1. For any L̃2 ∈ {L̃0 , L̃}, the preimage of Gal(L̃2/LH) by
the canonical projection Gal(L̃1/K) ↠ Gal(L̃2/K) coincides with Gal(L̃1/LH) by
deûnition. _erefore the preimage of Gal(L̃/LH) by the canonical projection

GK Ð→→ Gal(L̃/K)

coincides with H.

We ûx a ℘ ∈ SK and a place ℘̂ = (℘L)L∈M(K) of K over ℘. As an application of
_eorem 3.4 (ii), we obtain the existence of a covering of K whose behaviour around
℘̂ is completely controlled, in the following sense.

Corollary 3.5 For any open (resp. open normal) subgroup H ⊂ GK ,℘̂, there is an
L ∈ M(K) (resp. L ∈ MGal(K)) such that for any L̃ ∈ MGal(K) with L ≤ L̃, the image
of H by the canonical projection GK ,℘̂ → Gal(L̃/K)℘L̃

coincides with Gal(L̃/L)℘L̃
.

We note that we will show in Corollary 3.20 that GK ,℘̂ is in fact Abelian, and hence
the assumption of the normality automatically holds.

Proof By an elementary argument on a proûnite group, there is an open subgroup
H̃ ⊂ GK with H̃ ∩GK ,℘̂ = H. _en LH̃ ∈ M(K) satisûes the desired property.
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3.2 Descent Theory

We verify several descent properties that allow us to establish class ûeld theory in
arithmetic topology in a cocycle-theoretic way. To begin with, we study the descent
property of C∗m with respect to a Galois unbranchedmorphism φ∶O0 → O1 in C0. We
put G ∶= Aut(F0(φ)). For a le� Z[G]-module A, we denote by (Ĥn(G ,A))n∈Z the
Tate cohomology of A, and put AG ∶= {c ∈ A ∣ for all g ∈ G , g ⋅ c = c}.

Proposition 3.6 For any n ∈ N, the group homomorphisms

Cn
m(φ)∶Cn

m(O0) Ð→ Cn
m(O1),

Zn
m(φ)∶Zn

m(O0) Ð→ Zn
m(O1)

are isomorphisms onto Cn
m(O1)G and Zn

m(O1)G , respectively, with respect to the action
of G on O1 in C0 introduced in Section 2.3.

Proof Since the action ofG on O1 induces an action ofG on C∗m(O1) over C∗m(O0),
it suõces to verify that Cn

m(φ) is a group isomorphism onto Cn
m(O1)G . _e inclu-

sion relation im(Cn
m(φ)) ⊂ Cn

m(O1)G immediately follows from the deûnition of the
action of G. _e map

HomC (O1 ,A∆n) Ð→ HomC (O0 ,A∆n), γ̃ z→ γ̃ ○ φ

coincides with the pull-back of the map

C(∆n ,F0(O1)) Ð→ C(∆n ,F0(O0)), γ z→F0(φ) ○ γ,

which is surjective by the covering homotopy property, by the map

HomC (O0 ,A∆n) Ð→ C(∆n ,F0(O0)), γ z→F (γ)
by Remark 2.1, and hence is surjective. _erefore Cn

m(φ) is injective.
Let c̃ ∈ Cn

m(O1)G and γ ∈ HomC (O0 ,A∆n). We put

HomC (O1 ,A∆n)/γ ∶= { γ̃ ∈ HomC (O1 ,A∆n) ∣ γ̃ ○ φ = γ} .

_en the map

HomC (O1 ,A∆n)/γ Ð→ {γ ∈ C(∆n ,F0(O1)) ∣F0(φ) ○ γ = F0(γ)} ,
γ̃ z→F0(γ̃)

is bijective again by Remark 2.1, and hence the action of G on HomC (O1 ,A∆n)/γ
is transitive. _is implies that the image of HomC (O1 ,A∆n)/γ by c̃ consists of a
single element cγ ∈ Z. We put c ∶= (cγ)γ∈HomC (O0 ,A∆n ) ∈ Cn

m(O1). _en we have
Cn

m(φ)(c) = c̃ by the construction. _us Cn
m(φ) is an isomorphism onto Cn

m(O1)G .

We give an analogue of Hilbert’s theorem 90 for the counterpart C1
m of the multi-

plicative group of invertible meromorphic sections.

_eorem 3.7 (Hilbert’s theorem 90) _e equality Ĥn(G , Cm
m(O1)) = {0} holds for

any (m, n) ∈ N ×Z.
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Proof Since φ is Galois and unbranched, G acts freely on each ûbre of φ and hence
on HomC (O1 ,A∆n). _erefore, Cm

m(O1) admits a Z[G]-linear isomorphism to the
direct product of copies of the le� regularZ[G]-module. _us the assertion holds.

Let L be a Galois covering of K. Since SL is stable under the action of Gal(L/K),
we have a natural action of Gal(L/K) on L×. We obtain the descent property of Ẑ1

m
with respect to a Galois covering of arithmetic manifolds.

_eorem 3.8 For any n ∈ N, the group homomorphism Ẑn
m(S−1

K OK) → Ẑn
m(S−1

L OL)
associated with the natural morphism S−1

K OK → S−1
L OL in Ĉ 0 is an isomorphism onto

Ẑn
m(S−1

L OL)Gal(L/K).

Proof _e assertion is reduced to the case where L/K is unbranched, because the
set of ûnite subsets of SK containing the branched locus of hL/K is coûnal in Fin(SK).
_erefore, the assertion immediately follows from Proposition 3.6 for ιL/K ∶OK → OL .

In particular, the group homomorphism ι×L/K ∶K× → L× in _eorem 3.8 for the
case n = 1 is an isomorphism onto (L×)Gal(L/K). As a consequence, we obtain the
following.

Corollary 3.9 _e canonical group homomorphism K× → K× is an isomorphism
onto (K×)GK ,

Let ℘ ∈ SK and P ∈ SL with ι∗L/KP = ℘. _e action of Gal(L/K) on the set
of open subsets of F0(OL) induces an action of Gal(L/K)P on Nbh(OL , im(P)),
and hence actions of Gal(L/K)P on (OL)P and LP in Ĉ 0. We note that this action
induces a group isomorphism between Gal(L/K)P and the group of automorphisms
of LP over K℘ in Ĉ 0. We obtain the descent property of Ẑ1

m with respect to the formal
completion of a Galois covering of arithmetic manifolds.

_eorem 3.10 _e group homomorphism ι×P/℘ ∶= Ẑ1
m(ιP/℘)∶K×

℘ → L×P is an iso-
morphism onto (L×P)Gal(L/K)P .

Proof _e assertion is reduced to the case

(OK ,OL , ιL/K) = (AV[r) ,AV[re−1 ) , hd ,e , f [r))

for an (r, d , e , f ) ∈ (0, 1] × Z × N>0 × N>0 by the deûnition of a covering of arith-
metic manifolds. _en we have Gal(L/K)P = Gal(L/K) and the group homomor-
phism Gal(L/K)P → Gal((OL ∣V(re−1 ) ,∅)/(OK ∣V(r) ,∅)) given as the restriction is
an isomorphism. _erefore, the assertion immediately follows from Proposition 3.6,
because (OL ∣V(re−1 ) ,∅)/(OK ∣V(r) ,∅) is unbranched.

Let ℘̂ = (℘L)L∈M(K) be a place of K over ℘. By_eorem 3.10, we obtain the follow-
ing.
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Corollary 3.11 _e canonical group homomorphism K×
℘ → K×

℘̂ is an isomorphism
onto (K×

℘̂)GK ,℘̂ ,

Finally, we obtain the descent property of ιIL/K .

_eorem 3.12 _e group homomorphism ιIL/K is an isomorphism onto IGal(L/K)
L .

Proof By Proposition 3.10, ιIL/K is injective. By the deûnition of the action of

Gal(L/K),

the image of ιIL/K is contained in IGal(L/K)
L . Let c̃ = (c̃P)P∈SL ∈ IGal(L/K)

L . We con-
struct a c = (c℘)℘∈SK with ιIL/K(c) = c̃. Let ℘ ∈ SK . By Proposition 3.10, for any
P ∈ SL with ι∗L/KP = ℘, there is a unique cP ∈ K×

℘ with ι×P/℘(cP) = c̃P .
Let (P0 ,P1) ∈ S2

L with ι∗L/KP0 = ι∗L/KP1 = ℘. By the transitivity of the action of
Gal(L/K) onU∖im(h∗L/K({℘})) for a suõciently small Gal(L/K)-stable neighbour-
hood U of im(h∗L/K({℘})) given as the disjoint union of tubular neighbourhoods,
Gal(L/K) transitively acts on h∗L/K({℘}). _erefore, there is a g ∈ Gal(L/K) with
g ⋅P0 = P1. We have ιP1/℘(cP0) = ιg⋅P0/℘(cP0) = g ⋅ ιP0/℘(cP0) = g ⋅ c̃P0 = c̃P1 ,
and hence cP0 = cP1 by the uniqueness of cP1 . We denote by c℘ the unique element
of the singleton {cP ∣ P ∈ h∗L/K({℘})}. _en c ∶= (c℘)℘∈SK satisûes ιIL/K(c) = c̃ by
the construction.

Remark 3.13 By Remark 2.9, the descent property for CK does not follow from
Proposition 3.6, _eorem 3.8, and _eorem 3.12. As a result, we do not expect that
global class ûeld theory in arithmetic topology can be formulated in terms of abstract
class ûeld theory in the sense of [Neu99]. However, we will verify in _eorem 3.16
that at least local class ûeld theory in arithmetic topology can be formulated in terms
of abstract class ûeld theory.

3.3 Local Class Field Theory

We establish local class ûeld theory in arithmetic topology. Before that, we compare
Ĥ1

m and H1.

_eorem 3.14
(i) _e group homomorphism limÐ→s∈Fin(SK)

H1(M∖ im(s)) → Ĥ1
m(S−1

K OK) given as
the inductive limit of (ΘOK[s−1])s∈Fin(SK) is an isomorphism.

(ii) For any ℘ ∈ SK , the group homomorphism K×
℘ → Z2 , c ↦ (ν℘(c), νlog

℘ (c))
induces a group isomorphism Ĥ1

m(K℘) → Z2.

Proof _eûrst assertion follows from Proposition 2.4 applied to OK[s−1] for all suf-
ûciently large s ∈ Fin(SK). We prove the second assertion. By the tameness of ℘,
we can assume that K is presented as (AV[r) , {pr}) for some r ∈ (0, 1], where pr is
the tame knot in AV[r) represented by the morphism AV[r) → A∆1 in C given by
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the C -morphism λr ∶∆1 → V[r), (t0 , t1) ↦ (θ(t1), 0). By Proposition 2.4 applied to
V(r), it suõces to verify that the canonical group homomorphism

H1
m(AV(r)) Ð→ Ĥ1

m(Frac((AV[r))S1 ×{0}))
is surjective. It is reduced to the surjectivity of the group homomorphism

H1
m(AV(r)) → H1

m(AV(r′))
induced by the inclusion V(r′) ↪ V(r) for any r′ ∈ (0, r] that follows from Proposi-
tion 2.4 applied to V(r) and V(r′).

Let L ∈ ob(C0/K) and ℘ ∈ SK . By the coûnality of MGal(K) in M(K), there is an
L̃ ∈ MGal(K) such that ιL̃/K factors through ιL/K . We ûx an ιL̃/L ∈ HomC0/K(L, L̃).
Let P ∈ SL with ι∗L/KP = ℘ and P̃ ∈ SL̃ with ι∗L̃/LP̃ = P . _en L̃/L is Galois and

the trace map (L̃×
P̃

)Gal(L̃/L)P̃ → (L̃×
P̃

)Gal(L̃/K)P̃ , c ↦ ∑g∈Gal(L̃/K)P̃/Gal(L̃/L)P̃
g ⋅ c

induces a group homomorphism trL/K ,P ∶ L×P → K×
℘ that is independent of the choice

of L̃ and P̃ by _eorem 3.10. We put NL/K ,P ∶= im(trL/K ,P) ⊂ K×
℘ .

Suppose that L/K is Galois. We put Gal(L/K)℘ ∶= ⋂P∈h∗L/K({℘}) Gal(L/K)P . We
note that if L/K is Abelian, then Gal(L/K)P ⊂ Gal(L/K) with P ∈ h∗L/K({℘})
depends only on ℘ by the argument in the ûrst paragraph of Section 2.8, and hence
coincides with Gal(L/K)℘.

Let U ∈ Nbh(OK , im(℘)). Suppose that U is suõciently small so that hL/K is un-
branched at any point of U ∖ im(℘). Let j ∈ HomC (OK ,AV[r)) be a tubular neigh-
bourhood of℘with r ∈ (0, 1] and im(F ( j)) ⊂ U . _en the pullback in Top of hL/K by
F ( j) is the disjoint union of branched coverings ofV[r) unbranched outside S1 ×{0}
of ûnite degree. We obtain a group homomorphism

H1(V(r)) Ð→ π1(M ∖ im(s),F ( j)(1, 2−1r))
through the Hurewicz isomorphism

H1(V(r)) ≅ π1(V(r), (1, 2−1r))ab ≅ π1(V(r), (1, 2−1r)),
and hence an action of H1(V(r)) on F0(OL) ∖ im(h∗L/K(s)) over M ∖ im(s) by
h−1
L/K(im(s)) = im(h∗L/K(s)). It induces a group homomorphism

ρ j,℘∶H1(V(r)) Ð→ Gal(L/K)℘
by the deûnition of the action of the meridian and the longitude of ℘. It is remarkable
that one does not need to Abelianise Gal(L/K)℘ here, because π1(V(r), (1, 2−1r)) is
Abelian.

We denote by ρU ,℘∶Z1
m(OK ∣U∖im(℘)) → Gal(L/K)℘ the composite of the group

homomorphism Z1
m(OK ∣U∖im(℘)) → Z1

m(AV(r)) associated with the restriction of
F ( j), the group homomorphism

Z1
m(AV(r)) Ð→ H1(V(r)), c z→ c(λr ,2−1 r)[µr ,2−1 r] − c(µr ,2−1 r)[λr ,2−1 r],

and ρ j,℘. _en ρU ,℘ is independent of the choice of j by Proposition 2.6. We denote by
nrsL/K ,℘∶K×

℘ → Gal(L/K)℘ the group homomorphism given by the compatible sys-
tem of group homomorphisms ρU ,℘. _en nrsL/K ,℘ is analogous to the norm residue
symbol in local class ûeld theory in number theory.

916

https://doi.org/10.4153/CJM-2018-020-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-020-0


Cohomological Approach to Class Field _eory in Arithmetic Topology

We ûx a place ℘̂ = (℘L)L∈M(K) of K over ℘. We give a local class ûeld theory in
arithmetic topology.

_eorem 3.15 (Local class ûeld theory)

(i) For any L ∈ MGal(K), NL/K ,℘L is an open subgroup of K×
℘ of ûnite index, and

nrsL/K ,℘ induces a group isomorphism K×
℘/NL/K ,℘L → Gal(L/K)℘L .

(ii) Suppose that for any n ∈ N>0, there is an L ∈ MGal(K) with n ∣ f℘L/℘. _en for
any open subgroup N ⊂ K×

℘ of ûnite index, there is an L ∈ MGal(K) with N = NL/K ,℘L .

As is mentioned in Section 2.8, the condition in _eorem 3.15 (ii) holds when K is
presented as (AV[r) , {pr}) for some r ∈ (0, 1], where pr is the tame knot introduced
in the proof of _eorem 3.14. _erefore, _eorem 3.15 (ii) is an extension of the local
class ûeld theory in [NU]. In order to verify _eorem 3.15, we prove the class ûeld
axiom in the sense of [Neu99, §IV 6].

_eorem 3.16 (Class ûeld axiom) Suppose that for any n ∈ N>0, there is an L ∈
MGal(K) with n ∣ f℘L/℘. _en (d℘̂ , ν℘) (Section 2.8) forms a class ûeld theory with
respect to (GK ,℘̂ ,K×

℘̂).

In order to prove _eorem 3.16, we prepare a lemma. For an n ∈ N>0, let µn ⊂ C×

denote the subgroup of n-th roots of unity, ζn ∈ µn the generator E(n−1), and An the
Z[µn]-modulewhose underlyingAbelian group is Ẑ1

m(T2) and onwhich the action of
µn is associated with the right actionsV(r)×µn → V(r), ((z,w), ζ) ↦ (z,w)⋅[ζ] ∶=
(z, ζw) with r ∈ (0, 1]. Here we use the bracket [ ⋅ ] in order to emphasise that actions
of µn on sets, topological spaces, and Abelian groups appearing in this paper are not
the scalar multiplication of µn on C-vector spaces.

Lemma 3.17 For any n ∈ N>0, there is a natural group isomorphism Ĥ0(µn ,An) ≅
Z/nZ and the equality Ĥ1(µn ,An) = {0} holds.

Proof First we show Ĥ0(µn ,An) ≅ Z/nZ. We denote by tr the trace map

An Ð→ Aµn
n , c z→ ∑

ζ∈µn

[ζ] ⋅ c.

For an r ∈ (0, 1], we denote by An ,r the Z[µn]-module whose underlying Abelian
group is Z1

m(V(r)) and on which the action of µn is associated with the right action
V(r) × µn → V(r), ((z,w), ζ) ↦ (z,w) ⋅ [ζ]. We also consider the induced actions
of µn on other objects. By _eorem 3.10 applied to Ah0,1,n[rn−1 ), h0,1,n[rn

−1) induces
a group isomorphism τ∶An → Aµn

n . _en λ∨ ○ τ−1∶Aµn
n → Z is surjective. We show

(λ∨ ○ τ−1)−1(nZ) = im(tr).
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To begin with, let c ∈ im(tr). We take a c0 ∈ An ,r with r ∈ (0, 1] such that the image
c1 of c0 in An satisûes tr(c1) = c. _en we have

(λ∨ ○ τ−1)(c) = (λ∨ ○ τ−1)( ∑
ζ∈µn

[ζ] ⋅ c1) =
n−1

∑
j=0

n−1

∑
i=0
c0([A(E(n−1(t1+ j)),2−1 rζ in)])

= nc0([λr ,2−1 r]) = nλ∨(c0) ∈ nZ

by Proposition 2.4 applied to V(r), because

(
n−1

∑
j=0

[(E(n−1(t1 + j)), 2−1rζ i
n)]) − [F (λr ,2−1 r)] ∈ Z⊕C(∆

1 ,V(r))

is a singular 1-boundary for any i ∈ N∩[0, n−1]. It implies im(tr) ⊂ (λ∨○τ−1)−1(nZ).
Conversely, let c ∈ (λ∨ ○ τ−1)−1(nZ). We take a c0 ∈ An ,r with r ∈ (0, 1] such that

the image of c0 in An is c. _en we have

µ∨(c) = c0([µr ,2−1 r]) =
n−1

∑
i=0
c0([A(1,2−1 rE(n−1(t1+i)))])

= ∑
ζ∈µn

[ζ] ⋅ c0([A(1,2−1 rE(n−1 t1))]) = nc0([A(1,2−1 rE(n−1 t1))]) ∈ nZ,

by c ∈ Aµn
n and Proposition 2.4 applied to V(r), because

(
n−1

∑
i=0

[( 1, 2−1rE(n−1(t1 + i)))]) − [F (µr ,2−1 r)] ∈ Z⊕C(∆
1 ,V(r))

is a singular 1-boundary. We also have

λ∨(c) = c0([λr ,2−1 r]) = c0([λrn−1 ,(2−1 r)n−1 ○Ah0,1,n[r)]) = (λ∨ ○ τ−1)(c) ∈ nZ,

by c ∈ (λ∨ ○ τ−1)−1(nZ) and Proposition 2.4 applied to V(r).
We follow the convention in the proof of _eorem 3.14. By _eorem 3.14 (ii) ap-

plied to (V[r), {pr}), there is a c′ ∈ Ẑ1
m(T2) with

(nµ∨(c′), nλ∨(c′)) = (µ∨(c), λ∨(c)).

_en we have (µ∨(c− tr(c′)), λ∨(c− tr(c′))) = (0, 0), and hence c− tr(c′) ∈ B̂1
m(T2)

by _eorem 3.14 (ii). We take a Φ ∈ Ĉ0
m(T2) with d0Φ = c − tr(c′). Replacing r by a

suõciently smaller one, we may assume that Φ is represented by an F0 ∈ C0
m(AV(r))

with d0F0 ∈ Aµn
n ,r by d0Φ = c − tr(c′) ∈ Aµn

n and the ûniteness of µn . _en we have
F0 ∈ C0

m(AV(r))µn by Ĥ1(µn , ker(d0 ∣An ,r)) ≅ Ĥ1(µn ,Z) ≅ HomAb(µn ,Z) = {0}.
By _eorem 3.7 applied to Ah0,1,n[r), there is an F1 ∈ C0

m(AV(r)) with∑ζ∈µn [ζ] ⋅ F1 =
F0. We denote by c′′ ∈ Ẑ1

m(T2) the image of d0F1 ∈ An ,r . We obtain c = tr(c′)+d0Φ =
tr(c′ + c′′) ∈ im(tr). It implies (λ∨ ○ τ−1)−1(nZ) ⊂ im(tr). _erefore Ĥ0(µn ,An) is
isomorphic to Z/nZ.

Next we show Ĥ1(µn ,An) = {0}. Since An is the ûltered colimit of (An ,r)r∈(0,1]
in the category of Z[µn]-modules and Z[µn]-linear homomorphisms, it suõces to
verify Ĥ1(µn ,An ,r) = {0} for any r ∈ (0, 1]. If n = 1, then the assertion is obvious.
_erefore, we assume n > 1.
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We prepare the notation. We take a cλ ∈ Z1
m(V(r))) with cλ(λr ,2−1 r) = 1 that

actually exists by Proposition 2.4 applied to V(r). We put
Σ ∶= {(z, r′E(t)) ∣ (z, r′ , t) ∈ S1 ×(0, r) × [0, n−1)} .

_en we have (1, 2r−1) ∈ Σ and (1, 2r−1ζn) ∉ Σ by n > 1, and the map

Σ × µn Ð→ V(r), ((z,w), ζ) z→ (z,w) ⋅ [ζ]
is bijective. For a (z,w) ∈ V(r), we denote by i(z ,w) ∈ N ∩ [0, n − 1] the unique
element with (z, ζ−i(z ,w)

n w) ∈ Σ. We put Σ′ ∶= (Σ∖{(1, 2−1r)})⊔{(1, 2−1rζn)}. We ûx
an (ℓ(z ,w))(z ,w)∈Σ′ ∈ HomC (AV(r) ,A∆1)Σ′ with

∂[ℓ(z ,w)] = [(z,w)] − [(1, 2−1r)] ∈ Z⊕V(r) ≅ Z⊕HomC (AV(r) ,A∆0 )

for any (z,w) ∈ Σ′ that actually exists by the proof of Proposition 2.4 usingWhitney’s
approximation theorem. For each (z,w) ∈ V(r), we put

L(z ,w) ∶= [ℓ
(z ,ζ

−i(z ,w)
n w)

] ⋅ [ζ i(z ,w)
n ] +

i(z ,w)−1

∑
i=0

[ℓ(1,2−1 rζn)] ⋅ [ζ i
n] ∈ Z⊕HomC (AV(r) ,A∆1 )

when (z,w) ∉ {(1, 2−1rζ i
n) ∣ i ∈ N ∩ [0, n − 1]} and

L(z ,w) ∶=
i(z ,w)−1

∑
i=0

[ℓ(1,2−1 rζn)] ⋅ [ζ i
n] ∈ Z⊕HomC (AV(r) ,A∆1 )

when (z,w) ∈ {(1, 2−1rζ i
n) ∣ i ∈ N ∩ [0, n − 1]}. _en we have

∂L(z ,w) = [(z,w)] − [(1, 2−1r)]
for any (z,w) ∈ V(r) by deûnition.

Let χ∶ µn → An ,r be a 1-cocycle. We put c0 ∶= χ(ζn). _en we have χ(ζ j
n) =

∑ j−1
i=0[ζ i

n] ⋅ c0 for any j ∈ N, and hence 0 = χ(ζ0n) = χ(ζn
n) = ∑n−1

i=0 [ζ i
n] ⋅ c0. We set

F = (F(z,w))(z ,w)∈V(r) ∶= (
i(z ,w)

∑
i=1

c0(L(z ,ζ−in w))) (z ,w)∈V(r)
∈ ZV(r) ≅ ZC(∆

0 ,V(r))

= ZHomC (AV(r) .A∆0 ) = C0
m(AV(r)).

_en we have F(z,w) = 0 for any (z,w) ∈ Σ and F(z,w) = F(z, ζ−1
n w)+c0(L(z ,ζ−1

n w))
for any (z,w)) ∈ V(r) ∖ Σ. By the construction, we obtain

F(z,w) =
i(z ,w)

∑
i=1

c0(L(z ,ζ−in w))

=
i(z ,w)

∑
i=1

c0([ℓ(z ,ζ−i(z ,w)n w)
] ⋅ [ζ i(z ,w)−i

n ] +
i(z ,w)−i−1

∑
j=0

[ℓ(1,2−1 rζn)] ⋅ [ζ
j
n])

=
i(z ,w)−1

∑
i=0

c0([ℓ(z ,ζ−i(z ,w)n w)
] ⋅ [ζ i

n] +
i−1

∑
j=0

[ℓ(1,2−1 rζn)] ⋅ [ζ
j
n])

=
i(z ,w)−1

∑
i=0

c0([ℓ(z ,ζ−i(z ,w)n w)
] ⋅ [ζ i

n] + (i(z ,w) − 1 − i)[ℓ(1,2−1 rζn)] ⋅ [ζ i
n])
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for any (z,w) ∈ V(r) ∖ {(1, 2−1rζ i
n) ∣ i ∈ N ∩ [0, n − 1]} and

F(z,w) =
i(z ,w)

∑
i=1

c0(L(z ,ζ−in )w) =
i(z ,w)

∑
i=1

c0(
i(z ,w)−i−1

∑
j=0

[ℓ(1,2−1 rζn)] ⋅ [ζ
j
n])

=
i(z ,w)−1

∑
i=0

c0(
i−1

∑
j=0

[ℓ(1,2−1 rζn)] ⋅ [ζ
j
n]) =

i(z ,w)−1

∑
i=0

(i(z ,w) − 1 − i)c0(ℓ(1,2−1 rζn) ⋅ [ζ i
n])

for any (z,w) ∈ {(1, 2−1rζ i
n) ∣ i ∈ N∩ [0, n − 1]}. In particular, we have F(1, 2−1r) = 0

and F(1, 2−1rζn) = 0.
We put N ∶= ∑n−2

i=0 (n− i − 1)c0([ℓ(1,2−1 rζn)] ⋅ [ζ i
n]) ∈ Z. We deûne a c1 ∈ C1

m(V(r))
by setting c1([γ]) ∶= (d0F)([γ]) + Ncλ([γ] − LF(γ)(0,1) + LF(γ)(1,0)) for any

γ ∈ HomC (AV(r) ,A∆1).

We verify c1 ∈ Z1
m(V(r)) and ([ζn] − [1]) ⋅ c1 = c0.

Let σ ∈ HomC (AV(r) ,A∆2). We denote by γ i ∈ HomC (AV(r) ,A∆1) the com-
posite of σ and the morphism A∆2 → A∆1 in C associated with the i-th coface map
∆1 ↪ ∆2 for an i ∈ {0, 1}. We have ∂[σ] = ∑2

i=0(−1)i[γ i] and

(F (γ0)(0, 1),F (γ1)(0, 1),F (γ2)(0, 1))
= (F (γ2)(1, 0),F (γ0)(1, 0),F (γ1)(1, 0)).

_erefore we obtain

c1(∂[σ]) = (d0F)(∂[σ]) + Ncλ(
2

∑
i=0

(−1)i([γ i] − LF(γ i)(1,0) + LF(γ i)(0,1)))

= 0 + Ncλ(∂[σ] + 0) = 0.

_is implies c1 ∈ An ,r . We compute ([ζn] − [1]) ⋅ c1. Let (z,w) ∈ V(r). We have

(([ζn] − [1]) ⋅ d0F)(L(z ,w)) = (d0F)(L(z ,w) ⋅ [ζn] − L(z ,w))
= F([(z, ζnw)] − [(1, 2−1rζn)] − [(z,w)] + [(1, 2−1r)])
= F([(z, ζnw)] − [(z,w)]).

If i(z ,w) ≠ n−1, thenwe obtain F([(z, ζnw)]−[(z,w)]) = c0(L(z ,w)) by the deûnition
of F. Suppose i(z ,w) = n − 1. By iz ,ζ inw = i − 1 ≠ n − 1 for any i ∈ N ∩ [1, n − 1], we have

F([(z, ζnw)] − [(z,w)]) = −F([(z, ζn
nw)] − [(z, ζnw)])

= −
n−1

∑
i=1
F([(z, ζ i+1

n w)] − [(z, ζ i
nw)]) = −

n−1

∑
i=1
c0(L(z ,ζ inw)).
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If (z,w) ≠ (1, 2−1rζ−1
n ), then we obtain

−
n−1

∑
i=1
c0(L(z ,ζ inw)) = c0(L(z ,w)) −

n−1

∑
i=0
c0(L(z ,ζ inw))

= c0(L(z ,w)) −
n−1

∑
i=0
c0([ℓ(z ,ζnw)] ⋅ [ζ i

n] +
i−1

∑
j=0

[ℓ(1,2−1 rζn)] ⋅ [ζ
j
n])

= c0(L(z ,w)) − (
n−1

∑
i=0

[ζ i
n] ⋅ c0)(ℓ(z ,ζnw))

−
n−2

∑
j=0

(n − 1 − j)c0([ℓ(1,2−1 rζn)] ⋅ [ζ
j
n])

= c0(L(z ,w)) − 0(ℓ(z ,ζnw)) − N = c0(L(z ,w)) − N .

On the other hand, if (z,w) = (1, 2−1rζ−1
n ), then we obtain

−
n−1

∑
i=1
c0(L(z ,ζ inw)) = −

n−2

∑
i=0
c0(L(1,2−1 rζ in)) = c0(L(1,2−1 rζ−1

n )) − c0(
n−1

∑
i=0

L(1,2−1 rζ in))

= c0(L(z ,w)) − c0(
n−1

∑
i=0

i−1

∑
j=0

[ℓ(1,2−1 rζn)] ⋅ [ζ
j
n])

= c0(L(z ,w)) − c0(
n−2

∑
i=0

(n − 1 − i)[ℓ(1,2−1 rζn)] ⋅ [ζ i
n])

= c0(L(z ,w)) − N .

It implies

(([ζn] − [1]) ⋅ d0F)(L(z ,w)) =
⎧⎪⎪⎨⎪⎪⎩

c0(L(z ,w)) if i(z ,w) ≠ n − 1,
c0(L(z ,w)) − N if i(z ,w) = n − 1.

Let (z,w) ∈ V(r). We compute cλ(L(z ,w) ⋅ [ζn] − L(z ,ζnw)). If i(z ,w) ≠ n − 1, then we
have L(z ,ζnw) = L(z ,w) ⋅ [ζn] + [ℓ(1,2−1 rζn)] = 0 by the construction, and hence

cλ(L(z ,w) ⋅ [ζn] − L(z ,ζnw)) = cλ(ℓ(1,2−1 rζn)).

If i(z ,w) = n − 1, then we have L(z ,w) ⋅ [ζn] − L(z ,ζnw) = ∑n−1
i=1 [ℓ(1,2−1 r)] ⋅ [ζ i

n] and
hence cλ(L(z ,w) ⋅ [ζn] − L(z ,ζnw)) = cλ([λr ,2−1 r] − [ℓ(1,2−1 r)]) = 1 − cγ(ℓ(1,2−1 r)) by
Proposition 2.4 applied to V(r) because

(
n−1

∑
i=0

[F (ℓ(1,2−1 r))] ⋅ [ζ i
n]) − [F (λr ,2−1 r)] ∈ Z⊕C(∆

1 ,V(r))

is a singular 1-boundary. We obtain

cλ(L(z ,w) ⋅ [ζn] − L(z ,ζnw)) =
⎧⎪⎪⎨⎪⎪⎩

−[ℓ(1,2−1 rζn)] if i(z ,w) ≠ n − 1,
1 − [ℓ(1,2−1 rζn)] if i(z ,w) = n − 1.
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Let γ ∈ HomC (AV(r) ,A∆1). By the argument above, we have

(([ζn]−[1]) ⋅ d0F)(γ)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

c0(LF(γ)(0,1) − LF(γ)(1,0)) if iF(γ)(1,0) ≠ n − 1 ≠ iF(γ)(0,1) ,
c0(LF(γ)(0,1) − LF(γ)(1,0)) − N if iF(γ)(0,1) = n − 1 ≠ iF(γ)(1,0) ,
c0(LF(γ)(0,1) − LF(γ)(1,0)) + N if iF(γ)(0,1) ≠ n − 1 = iF(γ)(1,0) ,
c0(LF(γ)(0,1) − LF(γ)(1,0)) if iF(γ)(1,0) = n − 1 = iF(γ)(0,1) ,

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

c0([γ]) if iF(γ)(1,0) ≠ n − 1 ≠ iF(γ)(0,1) ,
c0([γ]) − N if iF(γ)(0,1) = n − 1 ≠ iF(γ)(1,0) ,
c0([γ]) + N if iF(γ)(0,1) ≠ n − 1 = iF(γ)(1,0) ,
c0([γ]) if iF(γ)(1,0) = n − 1 = iF(γ)(0,1) ,

by ∂(L(z ,w) ⋅ [ζn] − L(z ,ζnw) + [ℓ(1,2−1 rζn)]) = 0. We obtain

(([ζn] − [1]) ⋅ c1)(γ) − (([ζn] − [1]) ⋅ d0F)(γ)
= Ncλ(([γ] ⋅ [ζn] − LF(γ)(0,1)⋅[ζn] + LF(γ)(1,0)⋅[ζn])

− ([γ] − LF(γ)(0,1) + LF(γ)(1,0)))
= Ncλ(([γ] − LF(γ)(0,1) + LF(γ)(1,0)) ⋅ [ζn])

+ Ncλ(LF(γ)(0,1) ⋅ [ζn] − LF(γ)(0,1)⋅[ζn])
− Ncλ(LF(γ)(1,0) ⋅ [ζn] − LF(γ)(1,0)⋅[ζn])
− Ncλ([γ] − LF(γ)(0,1) + LF(γ)(1,0))

= Ncλ(LF(γ)(0,1) ⋅ [ζn] − LF(γ)(0,1)⋅[ζn])
− Ncλ(LF(γ)(1,0) ⋅ [ζn] − LF(γ)(1,0)⋅[ζn])

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if iF(γ)(1,0) ≠ n − 1 ≠ iF(γ)(0,1) ,
N if iF(γ)(0,1) = n − 1 ≠ iF(γ)(1,0) ,
−N if iF(γ)(0,1) ≠ n − 1 = iF(γ)(1,0) ,
0 if iF(γ)(1,0) = n − 1 = iF(γ)(0,1) ,

by Proposition 2.4 applied to V(r), because the action of µn on V(r) induces the
trivial action on H1(V(r)). We obtain ([ζn]−[1]) ⋅ c1 = c0. We deûne a map χ′∶ µn →
An ,r by setting χ′(ζ i

n) ∶= ∑i−1
j=0[ζ

j
n] ⋅ c1 for any i ∈ N ∩ [0, n − 1]. _en χ′ lies in

Z1(µn ,An ,r), and satisûes ([ζn] − [1]) ⋅ χ′ = χ. We conclude that Ĥ1(µn ,An ,r) = {0}.

Proof of_eorem 3.16. By deûnition, d℘̂ is a surjective continuous group homo-
morphism GK ,℘̂ → Ẑ, and K×

℘ is a smooth GK ,℘̂-module. We identify K×
℘ with

(K×
℘̂)GK ,℘̂ by the group isomorphism in Corollary 3.11, and regard ν℘ as a group ho-

momorphism (K×
℘̂)GK ,℘̂ → Ẑ whose image is Z.
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First, we verify that ν℘ is a Henselian valuation with respect to d℘̂. Let H ⊂ GK ,℘̂
be an open subgroup. We put fH ∶= #(Ẑ/d℘̂(H)Ẑ) ∈ N>0, and denote by

trH ∶ (K×
℘̂)H Ð→ K×

℘

the trace map with respect to the action of cosets in GK ,℘̂/H. It suõces to show that
ν℘(im(trH)) = fHZ.

Let c ∈ (K×
℘̂)H . By Corollary 3.5, there is an L ∈ M(K) such that for any

L̃ ∈ MGal(K)
with L ≤ L̃, the image ofH by the canonical projectionGK ,℘̂ → Gal(L̃/K)℘L̃

coincides
with Gal(L̃/L)℘L̃

. By Corollary 3.11 and the natural identiûcation of

{L̃ ∈ M(K) ∣ L ≤ L̃}

with M(L), c is the image of a unique c′ ∈ L×℘L . By the coûnality ofMGal(K) in M(K),
there is an L̃ ∈ MGal(K) with L ≤ L̃. We have fH ∣ f℘L̃/℘ by the deûnition of d℘̂.

We take a tubular neighbourhood j ∈ HomC (OK ,AV(r)) with r ∈ (0, 1] of ℘.
Replacing r by a smaller one, we may assume that hL̃/K is unbranched at any point of
im(F ( j)) ∖ im(℘). We put γ ∶= µr ,2−1 r ○ j ∈ HomC (OK ,A∆1). We take a

γ̃ ∈ HomC (OL̃ ,A∆1)
with γ̃ ○ ιL̃/K = γ that actually exists by the covering homotopy property. We have

ν℘(trH(c)) = ν℘( ∑
g∈Gal(L̃/K)℘L̃ /Gal(L̃/L)℘L̃

g ⋅ c′) = c′( ∑
g∈Gal(L̃/K)℘L̃ /Gal(L̃/L)℘L̃

[γ̃] ⋅ g) .

Replacing r by a smaller one, we may assume that the pullback by F ( j) of hL̃/K
restricted to a suõciently small neighbourhood of im(℘L̃) is given as the standard
branched covering hd ,e℘L̃/℘ , f℘L̃/℘[r) with d ∈ Z. By Proposition 2.4 applied to

V[re
−1
℘L̃/℘),

we have c′(∑g∈Gal(L̃/K)℘L̃ /Gal(L̃/L)℘L̃
[γ̃] ⋅ g) = f℘L̃/℘ν℘L̃

(c′), because

(
f℘L̃/℘−1

∑
i=0

e℘L̃/℘−1

∑
j=0

[(E( f −1
℘L̃/℘ i), (2

−1r)e
−1
℘L̃/℘E(e−1

℘L̃/℘( j − f
−1
℘L̃/℘ id)t1))])

− f℘L̃/℘[F (µr′ ,2−1 r′)] ∈ Z⊕C(∆
1 ,V(r

e−1
℘L̃/℘))

is a singular 1-boundary. We obtain ν℘(trH(c)) = f℘L̃/℘ν℘L̃
(c′). It implies

ν℘(im(trH)) ⊂ fHZ.

We show fH ∈ ν℘(im(trH)). By the assumption, there is an L ∈ MGal(K) with
fH ∣ f℘L/℘. We denote by H ⊂ GK ,℘̂ the preimage of fHZ/ f℘L/℘Z ⊂ Z/ f℘L/℘Z by
the composite of the canonical projection GK ,℘̂ ↠ Gal(L/K)℘L and the surjective
group homomorphism red℘L/℘∶Gal(L/K)℘L ↠ Z/ f℘L/℘Z (Section 2.8). _en H is
an open normal subgroup of GK ,℘̂ with GK ,℘̂/H ≅ Z/ fHZ. By Corollary 3.5, there
is an L ∈ MGal(K) such that for any L̃ ∈ MGal(K) with L ≤ L̃, the image of H by
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the canonical projection GK ,℘̂ ↠ Gal(L̃/K)℘L̃
coincides with Gal(L̃/L)℘L̃

. In partic-
ular, H coincides with the kernel of the canonical projection GK ,℘̂ ↠ Gal(L/K)℘L

by L ∈ MGal(K). By the deûnition of d℘̂, we have f℘L/℘ = fH . By _eorem 3.14 (ii)
applied to L and℘L , there is a c0 ∈ L×℘L with ν℘L(c0) = 1. We denote by c1 ∈ K×

℘̂ the im-
age of c0. By the same computation above, we have ν℘(trH(c1)) = f℘L/℘ν℘L(c0) = fH .
_us ν℘ is a Henselian valuation with respect to d℘̂.

Next, we verify the class ûeld axiom [Neu99, §IV (6.1)] for (d℘̂ , ν℘). Let H ⊂ GK ,℘̂
be an open normal subgroup such that GK ,℘̂/H is isomorphic to Z/nZ with n ∈ N>0.
It suõces to verify Ĥ0(GK ,℘̂/H, (K×

℘̂)H) ≅ Z/nZ and Ĥ1(GK ,℘̂/H, (K×
℘̂)H) = {0}

[Neu99] §IV (3.7) Proposition. By Corollary 3.5, there is an L ∈ MGal(K) such that
for any L̃ ∈ MGal(K) with L ≤ L̃, the image of H by the canonical projection GK ,℘̂↠
Gal(L̃/K)℘L̃

coincides with Gal(L̃/L)℘L̃
. In particular, H coincides with the kernel

of the canonical projection GK ,℘̂ ↠ Gal(L/K)℘L by L ∈ MGal(K). By Corollary 3.11
and the natural identiûcation of {L̃ ∈ M(K) ∣ L ≤ L̃} with M(L), it suõces to verify
Ĥ0(Gal(L/K)℘L , L

×
℘L) ≅ Z/nZ and Ĥ1(Gal(L/K)℘L , L

×
℘L) = {0}.

Replacing r by a smaller one, we may assume that the pullback by F ( j) of hL/K
restricted to a suõciently small neighbourhood of im(℘L) is given as the standard
branched covering hd ,e℘L̃/℘ , f℘L/℘[r) with d ∈ Z. By the elementary divisor theory, Z2

admits a Z-linear basis {v0 , v1} ⊂ Z2 such that Z( f℘L/0 , 0) +Z(d , e℘L̃/℘) is presented
as Zc0v0 +Zc1v1 for some (c0 , c1) ∈ N2

>0 with c0 ∣ c1. In particular, we have

Z/nZ ≅ Gal(L/K)℘L ≅ Z2/(Z( f℘L/℘ , 0) +Z(d , e℘L̃/℘))
= (Zv0 ⊕Zv1)/(Zc0v0 ⊕Zc1v1) ≅ Z/c0Z⊕Z/c1Z,

and hence (c0 , c1) = (1, n).
We put (v0 , nv1) = (a0,0( f℘L/℘ , 0)+ a0,1(d , e℘L̃/℘), a1,0( f℘L/℘ , 0)+ a1,1(d , e℘L̃/℘))

with A ∶= (a i , j)1
i , j=0 ∈ GL2(Z) and (v0 , v1) = ((b0,0 , b0,1), (b1,0 , b1,1)) with B ∶=

(b i , j)1
i , j=0 ∈ GL2(Z). By A ∈ GL2(Z) and B ∈ GL2(Z), the C -morphisms

h0∶V(r) Ð→ V(r),

(z,w) z→ (zdet(A)
−1a1,1(∣w∣ −1w)− det(A)

−1a0,1 , ∣w∣ z− det(A)
−1a1,0(∣w∣ −1w)det(A)

−1a0,0)
and

h1∶V(rn
−1
) Ð→ V(re

−1
℘L̃/℘), (z,w) z→

(zdet(B)
−1b1,1(∣w∣ −1w)− det(B)

−1b0,1 , ∣w∣ e
−1
℘L̃/℘

nz− det(B)
−1b1,0(∣w∣ −1w)det(B)

−1b0,0)
are diòeomorphisms with hd ,e℘L̃/℘ , f℘L/℘[r) ○ h0 = h1 ○ h0,c0 ,c1[r). _erefore the asser-
tion follows from Lemma 3.17.

Proof of_eorem 3.15 _e second assertion is immediate from _eorem 3.16 and
[Neu99, §IV (6.7) _eorem], as is the ûrst assertion on the group isomorphism, be-
cause K℘ is isomorphic to T2 in Ĉ and the bijectivity of the given homomorphism is
reduced to the covering of AV[r) with r ∈ (0, 1] corresponding to L/K and the reci-
procity map for a B ∈ MGal(AV[r) , {pr}) associated with the class ûeld theory for
AV[r) coincides with nrsB/(AV[r) ,{pr}),{pr} by the construction. _e ûrst assertion for
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the openness follows from the fact that the nrsL/K ,℘L factors through Ĥ1
m(K℘) by the

deûnition, using H1(V(r)) with r ∈ (0, 1] and Proposition 2.4 applied to V(r).

By _eorem 3.15 (i), we obtain the following.

Corollary 3.18 For any (L, L′) ∈ MGal(K)2 with L′ ≤ L and NL/K ,℘L = NL′/K ,℘L′ ,
ιL/L′ induces an isomorphism L′℘L′ → L℘L in Ĉ 0.

Corollary 3.19 For any L ∈ MGal(K), Gal(L/K)℘L is Abelian.

By Corollary 3.19, we obtain the following.

Corollary 3.20 _e group GK ,℘̂ is Abelian.

3.4 Global Class Field Theory

We establish global class ûeld theory in arithmetic topology in a way imitating the
method in [NU]. Let L be a Galois covering of K. By the deûnition of a covering of
arithmetic manifolds, there is an s ∈ Fin(SK) such that hL/K is unbranched outside
im(s). In particular, we have nrsL/K ,℘((OK)×℘) = {1} for any ℘ ∈ SK ∖ s. By IK =
(∏℘∈SK ν℘)−1(Z⊕SK ) and ker(νK) = UK , we have

(nrsL/K ,℘(c℘))℘∈SK ∈ ⊕
℘∈SK

Gal(L/K)℘

for any (c℘)℘∈SK ∈ IK .
Suppose that L/K is Abelian so that themultiplication∏℘∈SK g℘ ∈ Gal(L/K)makes

sense for any (g℘)℘∈SK ∈ ⊕℘∈SK Gal(L/K)℘. We consider the map

ρL/K ∶ IK Ð→ Gal(L/K), (c℘)℘∈SK z→ ∏
℘∈SK

nrsL/K ,℘(c℘).

By the construction, ρL/K factors through the surjective group homomorphism

H1(M ∖ im(s)) Ð→→ Gal(L/K)

in Proposition 3.2 (iii). Indeed, for a suõciently small tubular neighbourhood

j℘ ∈ HomC (OK ,AV[r℘))

with r℘ ∈ (0, 1] of each ℘ ∈ s, the group homomorphism

ρ̃s ∶ IK Ð→ H1(M ∖ im(s)),
(c℘)℘∈SK z→∑

℘∈s
c℘ (λr℘ ,2−1 r℘ ○ j℘) [F (µr℘ ,2−1 r℘ ○ j℘)]

− ∑
℘∈SK

c℘ (µr℘ ,2−1 r℘ ○ j℘) [F (λr℘ ,2−1 r℘ ○ j℘)]

depends only on s, and the composite of ρ̃s and the surjective group homomorphism
H1(M ∖ im(s)) ↠ Gal(L/K) coincide with ρL/K by the deûnition of the local norm
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residue symbols. _e compatible system (ρ̃s)s∈Fin(SK) yields a group homomorphism

ρ̃∶ IK Ð→ lim←Ð
s∈Fin(SK)

H1(M ∖ im(s)),

(c℘)℘∈SK z→ (ρ̃s((c℘)℘∈SK ))s∈Fin(SK) .

We show that ρ̃ factors through CK .

Proposition 3.21 If K is orientable, then ker(ρ̃) contains PK +∏℘∈SK B̂
1
m(K℘).

In order to verify Proposition 3.21, it suõces to show the following.

Lemma 3.22 For any s ∈ Fin(SK), if OK[s−1] is orientable, then the equality

ker(ρ̃s) = PK + (∏
℘∈s

B̂1
m(K℘) × ∏

℘∈SK∖s
(OK)×℘)

holds.

Proof By _eorem 3.14 and the deûnition of ρ̃s , we have

∏
℘∈s

B̂1
m(K℘) × ∏

℘∈SK∖s
(OK)×℘ ⊂ ker(ρ̃s),

because the meridian of any ℘ ∈ SK ∖ s is 0 in H1(M ∖ im(s)).
First let c ∈ K×. We show ρ̃s(ιIK(c)) = 0. For this purpose, it suõces to consider

the case where there is a c0 ∈ Z1
m(OK[s−1]) whose image in K× is c, because for any

s′ ∈ Fin(SK) with s ⊂ s′, the image of ρ̃s′(ιIK(c)) in H1(M ∖ im(s)) coincides with
ρ̃s(ιIK(c)). For each℘ ∈ s, we take a tubular neighbourhood j℘ ∈ HomC (OK ,AV[r℘))
with r℘ ∈ (0, 1] of ℘. Replacing (r℘)℘∈s by a family of smaller ones, we can assume
im( j℘0) ∩ im( j℘1) = ∅ for any (℘0 ,℘1) ∈ s2 with ℘0 ≠ ℘1. Furthermore, replacing
(r℘)℘∈s by (2−1r℘)℘∈s , we can assume that ( j℘)℘∈s can be extended to a neighbour-
hood of the closures of the sources.

We put X ∶= M ∖ ⊔℘∈s im( j℘). _en X forms a three-dimensional C -manifold
such that ∂X is homeomorphic to the disjoint union of copies of S1 × S1. We consider
the diagram

(3.1) H1(X) ∼ //

��

H2(X , ∂X)

��
H1(∂X) ∼ //

��

H1(∂X)

��
H2(X , ∂X) ∼ // H1(X)

in Ab whose columns are given by the long exact sequences of relative cohomology
and the relative homology and whose rows are given by the Poincaré–Lefschetz dual-
ity for ûxed orientations. It is well known that this diagram commutes up to signature
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depending on the choice of orientations. _e composite

Z1
m(OK[s−1]) Ð→→ H1

m(OK[s−1]) ∼Ð→ H1(M ∖ im(s))
∼Ð→ H1(X) Ð→ H1(∂X) ∼Ð→ H1(∂X) Ð→ H1(X) ∼Ð→ H1(M ∖ im(s))

of the canonical projection Z1
m(OK[s−1]) ↠ H1

m(OK[s−1]), the inverse of the iso-
morphismH1(M∖ im(s)) → H1

m(OK[s−1]) in Proposition 2.4, the inverse of the iso-
morphism H1(X) → H1(M ∖ im(s)) associated with the inclusion X ↪ M ∖ im(s),
the arrows H1(X) → H1(∂X) → H1(∂X) → H1(X), and the group isomorphism
H1(X) → H1(M ∖ im(s)) associated with the inclusion X ↪ M ∖ im(s) coincides
with the composite Z1

m(OK[s−1]) → K× →∏℘∈s K×
℘ → H1(M ∖ im(s)) of the canon-

ical homomorphism Z1
m(OK[s−1]) → K×, ∏℘∈s ι×℘, and ρ̃s by deûnition. Since the

composite of the arrows H1(X) → H1(∂X) → H1(∂X) → H1(X) in the diagram
coincides with the composite

H1(X) Ð→ H1(∂X) Ð→ H2(X , ∂X) Ð→ H1(X)
of the arrows in the diagram up to signature, it is the zero homomorphism. We obtain
ρ̃s(ιIK(c)) = 0(c0) = 0. _is implies PK+(∏℘∈s B̂1

m(K℘)×∏℘∈SK∖s(OK)×℘) ⊂ ker(ρ̃s).
Next, let (c℘)℘∈SK ∈ ker(ρ̃s). We will show

(c℘)℘∈SK ∈ PK + (∏
℘∈s

B̂1
m(K℘) × ∏

℘∈SK∖s
(OK)×℘).

We take an s′ ∈ Fin(SK) with s ⊂ s′ and c℘ ∈ (OK)×℘ for any ℘ ∈ SK ∖ s′. We denote by
X′ ⊂ M the complement of suõciently small tubular neighbourhoods of s′, by X ⊂ M
the complement of the tubular neighbourhoods of s, by V ⊂ M the closure of X ∖ X′,
and by U ′ ⊂ IK the preimage of (∏℘∈s′ K×

℘) × (∏℘∈SK∖s′(OK)×℘) ⊂ ∏℘∈SK K×
℘ . We

consider the same diagram above corresponding to X′. _e composite

U ′↪Ð→ ∏
℘∈SK

K×
℘ Ð→→ ∏

℘∈SK

Ĥ1
m(K℘)

∼Ð→ ∏
℘∈SK

Z2 Ð→→ ∏
℘∈s

Z2 ∼Ð→ H1(∂X′)

Ð→ H1(X′) ∼Ð→ H1(M ∖ im(s′))

of the direct product of the canonical projections K×
℘ ↠ Ĥ1

m(K℘) with ℘ ∈ SK re-
stricted to U ′, the direct product of the group isomorphisms Ĥ1

m(K℘) → Z2 with
℘ ∈ SK in _eorem 3.14 (ii), the canonical projection ∏℘∈SK Z

2 ↠ ∏℘∈s′ Z2, the
group isomorphism∏℘∈s′ Z2 → H1(∂X′) sending the canonical Z-linear basis to the
Z-linear basis given by the meridians and the longitude multiplied by −1, the arrow
H1(∂X′) → H1(X′) in the diagram, and the group isomorphism

H1(X′) → H1(M ∖ im(s′))
associated with the inclusion X′ ↪ M ∖ im(s′) coincides with ρ̃s′ restricted to U ′ by
deûnition. By ρ̃s((c℘)℘∈SK ) = 0 and a standard argument with the Mayer–Vietoris
exact sequence, there is a µ ∈ H1(∂X′ ∖ ∂X) whose image in H1(X′) is ρ̃s′((c℘)℘∈SK )
and whose image in H1(V) is 0. By _eorem 3.14 (ii), there is a (c′℘)℘∈SK ∈ IK with
c′℘ = 0 for any ℘ ∈ SK ∖ (s′ ∖ s) whose image by ρs′ coincides with the image of
µ, i.e., ρ̃s′((c℘)℘∈SK ). Since the le� row of the diagram is exact, there is a c′′ ∈ K×
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whose image in H1(∂X′) coincides with that of (c℘)℘∈SK − (c′℘)℘∈SK ∈ ker(ρ̃s′) again
by _eorem 3.14 (ii). We obtain

(c℘)℘∈SK ∈ ιIK(c) + (c′℘)℘∈SK + ∏
℘∈SK

B̂1
m(K℘) ⊂ PK + (∏

℘∈s
B̂1

m(K℘) × ∏
℘∈SK∖s

(OK)×℘).

_is implies ker(ρ̃s) = PK + (∏℘∈s B̂1
m(K℘) ×∏℘∈SK∖s(OK)×℘).

Suppose in the following that K is orientable. _en by Proposition 3.21, ρL/K
induces a group homomorphism nrsL/K ∶CK → Gal(L/K) that is analogous to the
norm residue symbol in global class ûeld theory in number theory. By _eorem 3.12,
the trace map IL → IGal(L/K)

L , c ↦ ∑g∈Gal(L/K) g ⋅ c induces a group isomorphism
trL/K ∶ IL → IK . We denote by NL/K ⊂ CK the image of im(trL/K) ⊂ IK .

We denote by MAb(K) ⊂ M(K) the subset of Abelian coverings of K. We verify
global class ûeld theory in arithmetic topology.

_eorem 3.23 (Global class ûeld theory) If K is an orientable closed stably admissible
arithmetic manifold, then the following assertions hold.

(i) For any L ∈ MAb(K), NL/K is an open subgroup of CK of ûnite index, and nrsL/K
induces a group isomorphism CK/NL/K → Gal(L/K).

(ii) For any open subgroup N ⊂ CK of ûnite index, there is a unique L ∈ MAb(K)
with N = NL/K .

Proof First let L ∈ MAb(K). By the assumption of stable admissibility, there is an
s ∈ Fin(SK) such that {Frob℘ ∣ ℘ ∈ s} and {FrobP ∣ P ∈ h∗L/K(s)} generate H1(M)
and H1(F0(OL)), respectively, because the closedness of K ensures that H1(M) and
H1(F0(OL)) are ûnitely generated Abelian groups. Replacing s by a larger one, we
can assume that hL/K is unbranched outside im(s). We show that nrsL/K factors
through CK/NL/K . For this purpose, it suõces to verify that the diagram

IL
ρ̃h∗L/K (s)

//

trL/K

��

H1(F0(OL) ∖ im(h∗L/K(s)))

��
IK ρ̃s

// H1(M ∖ im(s))

commutes, where the right vertical arrow is the group homomorphism τ associated
with the restriction of hL/K , because the horizontal arrows are surjective by the choice
of s.

Let (c̃P)P∈SL ∈ IL . For each ℘ ∈ SK , we take a tubular neighbourhood

j℘ ∈ HomC (OK ,AV[r℘))
with r℘ ∈ (0, 1] of ℘. For each P ∈ SL , we take a tubular neighbourhood

jP ∈ HomC (OL ,AV[rP))
with rP ∈ (0, 1] ofP , and abbreviate ι∗L/KP toPK . Replacing (rP)P∈SL by a family
of smaller ones, we can assume that for eachP ∈ SL , there is a c̃P ,0 ∈ Z1

m(OL ∣im( jP))
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whose image in L×P is c̃P . Furthermore, replacing (r℘)℘∈SK and (rP)P∈SL by fam-

ilies of smaller ones, we can assume rP = r
e−1
P/℘

PK
for any P ∈ SL , im( j℘) ∩ im(s) =

im(℘) for any ℘ ∈ s, and im( j℘)∩ im(s) = ∅ for any ℘ ∈ SL ∖ s. _en for anyP ∈ SL ,
there is a dP ∈ Z with hL/K ○F ( jP) = F ( jPK ) ○ hdP ,eP/PK , fP/PK

[r℘).
In order to show ρ̃s(trL/K((c̃P)P∈SL)) = τ(ρ̃h∗L/K(s)((c̃P)P∈SL)), we prepare the

notation. Let ℘ ∈ SK . We denote by j○℘ ∈ HomC (OK ∣im( j℘)∖im(℘) ,AV(r℘)) the mor-
phism given by the restriction ofF ( j℘). We put

µ℘ ∶= µr℘ ,2−1 r℘ ○ j○℘ ∈ HomC (OK ∣im( j℘)∖im(℘) ,A∆1),
λ℘ ∶= λr℘ ,2−1 r℘ ○ j○℘ ∈ HomC (OK ∣im( j℘)∖im(℘) ,A∆1).

Let P ∈ SL . We denote by j○P ∈ HomC (OL ∣im( jP)∖im(P) ,AV(rP)) the morphism
given by the restriction ofF ( jP), and by

τP ∶H1(im( jP ∖ im(P)) Ð→ H1(im( jPK ) ∖ im(PK))

the group homomorphism associated with the restriction of hL/K . We put

µP ∶= µrP ,2−1 rP
○ j○P ∈ HomC (OL ∣im( jP)∖im(P) ,A∆1),

λP ∶= λrP ,2−1 rP
○ j○P ∈ HomC (OL ∣im( jP)∖im(P) ,A∆1)).

Let i ∈ N. We denote by mP , i ∈ HomC (AV(rP) ,A∆1) the morphism given by the
C -morphism

∆1 Ð→ V(rP), (t0 , t1) z→ ( ζ i
fP/PK

, 2−1rPE(e−1
P/PK

it1)) ,

and by ℓP , i ∈ HomC (AV(rP) ,A∆1) the morphism given by the C -morphism

∆1 Ð→ V(rP), (t0 , t1) z→ (E( f −1
P/PK

it1), 2−1rPE(−e−1
P/PK

f −1
P/PK

dP it1)) .

We put

µP , i ∶= mP , i ○ jP ∈ HomC (OL ∣im( jP)∖im(℘) ,A∆1),
λP , i ∶= ℓP , i ○ jP ∈ HomC (OL ∣im( jP)∖im(℘) ,A∆1).

_en we have

τP([F (µP)]) = eP/PK [F (µPK )],
τP([F (λP)]) = fP/PK [F (λPK )] + dP[F (µPK )],

eP/℘ fP/℘−1

∑
i=0

[F (λP , i)] = eP/℘[F (λP)] − dP[F (µP)],

eP/℘ fP/℘−1

∑
i=0

[F (µP , i)] = fP/℘[F (µP)].
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_erefore by Proposition 2.4, we obtain

ρ̃s(trL/K((c̃P)P∈SL)) = ∑
℘∈s

( ∑
P∈h∗L/K{℘}

eP/℘ fP/℘−1

∑
i=0

c̃P ,0(λP , i))[F (µ℘)]

− ∑
℘∈SK

( ∑
P∈h∗L/K{℘}

eP/℘ fP/℘−1

∑
i=0

c̃P ,0(µP , i))[F (λ℘)]

= ∑
P∈h∗L/K(s)

(νlog
P (c̃P)eP/PK − νP(c̃P)dP)[F (µPK )]

− ∑
P∈SL

νP(c̃P) fP/PK [F (λPK )]

and

τ(ρ̃h∗L/K(s)((c̃P)P∈SL)) = ∑
P∈h∗L/K(s)

νlog
P (c̃P)τP([F (µP)])

− ∑
P∈SL

νP(c̃P)τP([F (λP)])

= ∑
P∈h∗L/K(s)

νlog
P (c̃P)eP/PK [F (µPK )]

− ∑
P∈SL

νP(c̃P)( fP/PK [F (λPK )] + dP[F (µPK )]) .

_is implies

ρ̃s( trL/K((c̃P)P∈SL)) = τ( ρ̃h∗L/K(s)((c̃P)P∈SL))

− ∑
P∈SL∖h∗L/K(s)

dPνP(c̃P) [F (µPK )]

= τ( ρ̃h∗L/K(s)((c̃P)P∈SL))

because [F (µ℘)] = 0 ∈ H1(M ∖ im(s)) for any ℘ ∈ SK ∖ s. _us the diagram com-
mutes. _e openness of NL/K follows from _eorem 3.21.

Next let N ⊂ CK be an open subgroup of ûnite index. By the deûnition of the
topology of CK , there is an (s, n) ∈ Fin(SK) × N>0 such that the preimage of N in
IK contains (∏℘∈s((OK)×℘ ∩ (νlog

℘ )−1(nZ)) × (∏℘∈SK∖s(OK)×℘). In particular, the
preimage of N in IK contains ker(ρ̃s) by Lemma 3.22. By assertion (i), im(ρ̃s) is
dense in H1(M ∖ im(s)) with respect to the topology generated by the set of subsets
of the form c+U for a c ∈ H1(M∖im(s)) and a subgroupU ⊂ H1(M∖im(s)) of ûnite
index. Since H1(M ∖ im(s)) is a ûnitely generated Abelian group, every subgroup of
it is closed, and hence ρ̃s is surjective. _erefore, there is an L ∈ MAb(K) such that
F0(ιL/K) is unbranched outside im(s) and the preimage by ρ̃s of the kernel of the
surjective group homomorphism H1(M ∖ im(s)) ↠ Gal(L/K) coincides with N .
_is implies NL/K = ker(nrsL/K) = N . _e uniqueness of such an L follows from
assertion (i) because MAb(K) is directed with respect to the order ≤ on M(K).
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3.5 Ideal-Theoretic Class Field Theory

We formulate ideal-theoretic class ûeld theory for arithmetic topology in the sense
of [Neu99, §VI 7]. To begin with, since {ImK ∣ m ∈ N⊕SK

>0 } forms a fundamental system
of neighbourhoods of 0 ∈ IK , we have the following.

Proposition 3.24
(i) For any m ∈ N⊕SK

>0 , Cm
K ⊂ CK is an open subgroup.

(ii) For any open subgroup N ⊂ CK , there is an m ∈ N⊕SK
>0 with Cm

K ⊂ N.

Suppose that K is orientable and closed. Let m = (m℘)℘∈SK ∈ N⊕SK
>0 . We put

I(m)
K ∶= ( ∏

℘∈sm
U(m℘)
℘ ) × ( ∏

℘∈SK∖sm
K×
℘) ⊂ IK .

By deûnition, we have∏℘∈SK B̂
1
m(K℘) ⊂ I(m)

K .

Proposition 3.25 If {Frob℘ ∣ ℘ ∈ SK ∖ sm} generates H1(M ∖ im(sm)), then the
equality IK = I(m)

K + PK holds.

Proof We put I ∶= {(c℘)℘∈SK ∈ IK ∣ (c℘)℘∈sm ∈ ∏℘∈sm B̂
1
m(K℘)}. By I ⊂ I(m)

K , it
suõces to verify IK = I+PK . By the assumption, there is s′ ∈ Fin(SK)with s′∩ sm = ∅
such that {Frob℘ ∣ ℘ ∈ s′} generates H1(M ∖ im(sm)), because H1(M ∖ im(sm)) is a
ûnitely generated Abelian group. We put s ∶= s′ ⊔ sm . Replacing s′ by a larger one, we
can assume that OK[s−1] is strict.
For each ℘ ∈ s, we take a tubular neighbourhood j℘ ∈ HomC (OK ,AV[r℘)) with

r℘ ∈ (0, 1] of ℘. Replacing (r℘)℘∈s by a family of smaller ones, we can assume that
(im( j℘))℘∈s is pairwise disjoint. We put X ⊂ F0(Ok)∖⊔℘∈sm F ( j℘)(V[2−1r℘)) and
X0 ∶= M ∖⊔℘∈s F ( j℘)(V[2−1r℘)) ⊂ X. We denote by φ the group homomorphism

IK Ð→ H1(∂X0),
(c℘)℘∈SK z→∑

℘∈s
c℘ (λr℘ ,2−1 r℘ ○ j℘) [F (µr℘ ,2−1 r℘ ○ j℘)]

−∑
℘∈s
c℘ (µr℘ ,2−1 r℘ ○ j℘) [F (λr℘ ,2−1 r℘ ○ j℘)] .

_en by the deûnition of ρ̃sm , the restriction of ρ̃sm toU ∶= ∏℘∈s K×
℘ ×∏℘∈SK∖s U℘ co-

incides with the composite of the restriction of φ toU and the group homomorphism
H1(∂X0) → H1(M ∖ im(sm)) associated with the inclusion ∂X0 ↪ M ∖ im(sm).

Let c = (c℘)℘∈SK ∈ IK . We show c ∈ I + PK . Replacing s′ by a larger one, we can
assume c ∈ U . By the choice of s, there is an (n℘)℘∈s′ ∈ Z⊕s′ with ∑℘∈s′ n℘ Frob℘ =
ρ̃sm(c) ∈ H1(M ∖ im(sm)). We put λ ∶= ∑℘∈s′ n℘[F (λr℘ ,2−1 r℘ ○ j℘)] ∈ H1(∂X0). We
denote by c′ ∈ H1(X0) the image of φ(c) − λ by the group homomorphism

H1(∂X0) Ð→ H1(X0)
associated with the inclusion ∂X0 ↪ X0. _en c′ lies in the kernel of the group
homomorphism H1(X0) → H1(X) associated with the inclusion X0 ↪ X, because
the group homomorphism H1(X) → H1(M ∖ im(sm)) associated with the inclusion
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X ↪ M ∖ im(sm) is an isomorphism. By the standard argument using the Mayer–
Vietoris exact sequence, there is an (n′℘)℘∈s′ ∈ Z⊕s′ with∑℘∈s′ n′℘[F (µr℘ ,2−1 r℘○ j℘)] =
c′ ∈ H1(X0). We put µ ∶= ∑℘∈s′ n′℘[F (µr℘ ,2−1 r℘ ○ j℘)] ∈ H1(∂X0). _en φ(c) − λ − µ
lies in the kernel of the group homomorphism H1(∂X0) → H1(X0) associated with
the inclusion ∂X0 ↪ X0.

We consider the diagram in the proof of Lemma 3.22 corresponding to X0. By the
exactness of the right column, there is a Σ ∈ H2(X0 , ∂X0) with ∂Σ = φ(c) − λ − µ.
We denote by σ ∈ H1(X) the preimage of Σ by the group isomorphism in the top
vertical arrow. We take a c̃′ ∈ Z1

m(OK[s−1]) whose image by the canonical projection
Z1

m(Ok[s−1]) ↠ H1
m(Ok[s−1]) coincides with the image of σ by the composite of the

inverse of the group isomorphism H1(M ∖ im(s)) → H1(X) associated with the in-
clusion X ↪ M∖ im(s) and the group isomorphismH1(M∖ im(s)) → H1

m(OK[s−1])
in Proposition 2.4. We denote by c′ ∈ K× the image of c̃′.
By the commutativity of the diagramup to signature, one of c−ιIK(c′) and c+ιIK(c′)

lies in the preimage of λ+ µ ∈ H1(∂X0) by φ, and hence in I, because λ+ µ lies in the
image of the group homomorphism H1((∂X0) ∖ (∂X)) → H1(∂X0) associated with
the inclusion (∂X0) ∖ (∂X) → ∂X0. It implies c ∈ I + PK .

Remark 3.26 Proposition 3.25 is obviously an analogue of the approximation the-
orem in number theory [Neu99, §II 3 (3.4)]. Moreover, by its proof, we have a much
more accurate approximation in arithmetic topology than we ever have in number
theory. Such diòerence between arithmetic topology and number theory originates
from the fact that H1

m(K℘) with ℘ ∈ SK is algebraically generated by two elements,
while the multiplicative group of a local ûeld is just topologically generated by two
elements.

Suppose that K is generic. _en we have IK = I(m)
K + PK by Proposition 3.25. By

I(m)
K ⊂ ∏℘∈sm U℘×∏℘∈SK∖sm K×

℘ , the surjective grouphomomorphism νK ∶ IK ↠ Z⊕SK

yields a surjective group homomorphism νm
K ∶ I

(m)
K ↠ JmK .

_eorem 3.27 (Ideal-_eoretic Class Field _eory) _e group homomorphism νm
K

induces a group isomorphism CK/Cm
K → ClmK through the isomorphism

CK = (I(m)
K + PK)/PK ≅ I(m)

K /(I(m)
K ∩ PK).

Proof Let c = (c℘)℘∈SK ∈ I(m)
K ∩ PK . We take a c′ ∈ K× with ιIK(c′) = c. _en we

have ι×℘(c′) = c℘ ∈ U(m℘)
℘ for any ℘ ∈ sm . By the deûnition of ιmK and νm

K , we obtain
νm
K (c) = νK(c) = (ν℘(c℘))℘∈SK = (ν℘(ι×℘(c′)))℘∈SK ∈ Pm

K . _erefore νm
K induces a

group homomorphism φ∶CK → ClmK .
By ImK = I(m)

K ∩ UK = I(m)
K ∩ ker(νK), Cm

K is contained in ker(φ). Let c ∈ ker(φ).
We take a representative c = (c℘)℘∈SK ∈ IK of c. _en we have νm

K (c) ∈ Pm
K , and hence

there is a c′ ∈ K× with ι×℘(c′) ∈ U(m℘)
℘ for any ℘ ∈ sm and ν℘(ι℘(c′)) = ν℘(c℘) for

any ℘ ∈ SK . It implies ιIK(c′) ∈ I(m)
K and c − ιIK(c′) ∈ ker(νm

K ) + PK = ImK + PK . We
obtain c = ((c − ιIK(c′)) + ιIK(c′)) + PK ∈ Cm

K . As a consequence, φ induces a group
isomorphism CK/Cm

K → ClmK .
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We say that K is an arithmeticQHS3 ifM is a rational homology sphere as a topo-
logical manifold.

Proposition 3.28 If K is an orientable closed generic arithmetic QHS3, then the fol-
lowing assertions hold.

(i) For any m ∈ N⊕SK
>0 , Cm

K ⊂ CK is an open subgroup of ûnite index.
(ii) For any open subgroup N ⊂ CK of ûnite index, there is an m ∈ N⊕SK

>0 with Cm
K ⊂ N.

Proof By Proposition 3.24, it suõces to verify that Cm
K ⊂ CK is of ûnite index for

any m ∈ N⊕SK
>0 . By Remark 2.10 and _eorem 3.27, we have a natural group iso-

morphism CK/C
(1)℘∈SK
K ≅ H1(M), and the right-hand side is ûnite by the assump-

tion. Moreover, we have natural group isomorphisms C(1)℘∈SK
K /Cm

K ≅ I(1)℘∈SKK /ImK ≅
∏℘∈sm(OK)×℘/U

(m℘)
℘ ≅ ∏℘∈sm Z/m℘Z. _us we obtain

#(CK/Cm
K ) = #(CK/C

(1)℘∈SK
K ) × #(C

(1)℘i nSK
K /Cm

K ) = #H1(M) × ∏
℘∈sm

m℘ < ∞.

Suppose that K is an orientable closed stably generic arithmetic QHS3. For an
m ∈ N⊕SK

>0 , we denote by Km ∈ MAb(K) the element with NKm/K = Cm
K that uniquely

exists by _eorem 3.23 (ii) and Proposition 3.28 (i). As a consequence of Proposition
3.28 (ii), we obtain the following.

_eorem 3.29 (Kronecker–Weber theorem) If K is an orientable closed stably generic
arithmeticQHS3, then for any L ∈ MAb(K), there is an m ∈ N⊕SK

>0 with L ≤ Km .

A Appendix: Existence of a Stably Generic Link

We construct a stably generic link, in order to show that our class ûeld theory is not
nonsense.

_eorem A.1 Let M be an orientable closed three-dimensional strict C -manifold.
_en there is a countable stably generic link in AM .

In order to verify _eorem A.1, it suõces to prove the following.

Lemma A.2 Let O be a closed pre-arithmetic object of C0 in which there is a ûnite
tame link s such that O[s−1] is an orientable arithmetic object of C0. _en there is a
countable stably generic link in O.

Let K be an arithmetic manifold. We put M ∶= F0(OK), and choose ι∞ ∈ M ∖
im(SK). In order to verify Lemma A.2, we prepare three lemmata.

Lemma A.3 If SK is ûnite and K is an orientable closed arithmetic manifold, then
for any L ∈ ob(C0/K), there is a ûnite tame link s in OK containing SK such that
h∗L/K(s ∖ SK) forms an admissible link in OL[S−1

L ].
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Lemma A.4 If SK is countable and K is closed, then there is a countable subset
C ⊂ ob(C0/K) such that every object ofC0/K is isomorphic to an element of C inC0/K.

Lemma A.5 If SK is ûnite and K is an orientable closed arithmetic manifold, then
there is a countable stably generic link in OK containing SK .

Proof of Lemma A.3. By the assumption, L is an orientable closed arithmeticmani-
fold. By the ûniteness of SK , SL is also ûnite because its cardinality is bounded by #SK
multiplied by the degree of the unbranched covering associated with hL/K . We put
V ∶= F0(OL) im(SL), and take an orientable strict C -manifold Y with AY = OL ∣V .
_enH1(V) is a ûnitely generatedAbelian group. By a standard smoothing argument,
there is a ûnite set L of injective maps S1 ↪ Y of class C∞ with pairwise disjoint im-
ages such that the set of homology classes of 1-cycles {γ○θ ∣ γ ∈ L } generates H1(V)
and hL/K ○ χ gives a tame cycle in OK[S−1

K ] for any χ ∈ L . _en the union of SK and
the set of knots represented by hL/K ○ χ with χ ∈ L forms a desired ûnite tame link
in OK .

Proof of Lemma A.4. It suõces to show that M(K) is countable. Let s ∈ Fin(SK).
Since OK[s−1] is pre-admissible, π1(M ∖ im(s)) is a ûnitely generated group, and
hence admits at most countably many subgroups of ûnite index. It implies that

Cov(M ∖ im(s), ι∞)
is countable. _erefore, Cov(K) is countable, because so is SK . _us M(K) is count-
able.

Proof of Lemma A.5. Since OK admits a tame knot, we can assume SK ≠ ∅. We
denote by Σ the set of ûnite tame links in OK containing SK . We construct an increas-
ing sequence (s i)i∈N ∈ ΣN and an ((L i , j) j∈N)i∈N ∈ ∏i∈N ob(C0/(OK , s i))N such that
for any i ∈ N, every object of C0/(OK , s i) is isomorphic to L i , j in C0/(OK , s i) for
some j ∈ N, and for any (i , j, k) ∈ N3, h∗L i , j/(OK ,s i)(s2i(2(2 j(2k+1)−1)+1)∖ s i+k) forms an
admissible link in OL i , j[h∗L i , j/(OK ,s i)(s i+k)−1].

Let i ∈ N. Suppose that s i′ and (L i′ , j) j∈N have already been given for each i′ ∈
N ∩ [0, i − 1]. If i = 0, then we put s0 = SK . Suppose i ≠ 0. We put l ∶= max{e ∈ N ∣
2−e i ∈ Z},m ∶= max{e ∈ N ∣ 2−e(2−1(2−l i − 1)+ 1) ∈ Z}, and n ∶= 2−1(2−m(2−1(2−l i −
1) + 1) − 1). _en we have n ∈ N and l + n < 2l(2n + 1) ≤ i. By Lemma A.3 applied to
(OK , s i−1) and (OL l ,m , h

∗
L l ,m/(OK ,s l )(s i−1)), there is an s i ∈ Σ with s i−1 ⊂ s i such that

h∗L l ,m/(OK ,s l )(s i ∖ s i−1)

forms an admissible link inOL l ,m [h∗L l ,m/(OK ,s l )(s i−1)−1]. By a standard argument using
the Mayer–Vietoris exact sequence, the group homomorphism

H1(F0(OL l ,m) ∖ im(h∗L l ,m/(OK ,s l )(s i−1)))
Ð→ H1(F0(OL l ,m) ∖ im(h∗L l ,m/(OK ,s l )(s l+n)))

associated with the inclusion is surjective. _erefore,

{FrobP ∣ P ∈ h∗L l ,m/(OK ,s l )(s i ∖ s l+n)}
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generates H1(F0(OL l ,m) ∖ im(h∗L l ,m/(OK ,s l )(s l+n)−1])) .
We have constructed s i ∈ Σ. By Lemma A.4 applied to (OK , s i), there is an

(L i , j) j∈N ∈ ob(C0/(OK , s i))N

such that every object of C0/(OK , s i) is isomorphic to L i , j in C0/(OK , s i) for some
j ∈ N. By the induction on i, we obtain a desired pair of (s i)i∈N and (L i , j)(i , j)∈N2 .
_en ⋃i∈N s i is a stably generic link in OK containing SK by the construction.

Proof of Lemma A.2. _e assertion follows from Lemma A.5 applied to (O , s) for
a ûnite tame link s in O such that O[s−1] is an orientable arithmetic object of C0.
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