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Abstract

In 2015, Guglielmi and Badia discussed optimal strategies in a particular type of service
system with two strategic servers. In their setup, each server can be either active or
inactive and an active server can be requested to transmit a sequence of packets. The
servers have varying probabilities of successfully transmitting when they are active, and
both servers receive a unit reward if the sequence of packets is transmitted successfully.
Guglielmi and Badia provided an analysis of optimal strategies in four scenarios: where
each server does not know the other’s successful transmission probability; one of the
two servers is always inactive; each server knows the other’s successful transmission
probability and they are willing to cooperate.

Unfortunately, the analysis by Guglielmi and Badia contained some errors. In
this paper we correct these errors. We discuss three cases where both servers (I)
communicate and cooperate; (II) neither communicate nor cooperate; (III) communicate
but do not cooperate. In particular, we obtain the unique Nash equilibrium strategy in
Case II through a Bayesian game formulation, and demonstrate that there is a region
in the parameter space where there are multiple Nash equilibria in Case III. We also
quantify the value of communication or cooperation by comparing the social welfare in
the three cases, and propose possible regulations to make the Nash equilibrium strategy
the socially optimal strategy for both Cases II and III.

2010 Mathematics subject classification: primary 90B50; secondary 91A05.

Keywords and phrases: communication, cooperation, two-player game, Nash
equilibrium, threshold policy, social welfare, regulation.

1. Introduction

Numerous workplaces require servers to complete crucial and highly technical tasks.
These tasks may be subject to service failure and incur operational fees, so a server
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may not be willing to complete them. For example, controlling the spread of highly
infectious diseases or managing the disposal of radioactive waste always demands
highly skilled staff and there is the possibility of service failure. The system manager
aims to accomplish as much work as possible, while minimizing the overall operating
cost, in a situation where servers have a tendency to avoid a job being allocated to them
and to let their co-workers undertake the task. The situation is common in a network
layer with distributed routing selections [9], a data link layer with multiple access
techniques [1] and devices powered by distributed energy sources [6]. Game theory,
which has already been applied to study telecommunication problems [3], provides
a mathematical framework with which to model and analyse this situation, since it
considers the behaviour of individuals given that everyone’s best strategy is affected
by the strategies adopted by other participants in the system. In this paper we will take
another look at the system that was studied by Guglielmi and Badia [2] and derive
somewhat different results.

The paper is organized as follows. In Section 2 we describe the strategic server
system proposed by Guglielmi and Badia [2]and compare our analysis with theirs. In
Section 3 we introduce some preliminaries on game theory and describe how we use
them to obtain the main results. In Section 4 we derive the optimal strategy if each
server has complete knowledge of the other’s probability of successful transmission pi

and they are willing to cooperate. In Section 5 we obtain the unique threshold-type
Nash equilibrium strategy [4, Section 1.1.6] under the scenario in which each server is
informed only that the other server is using a threshold strategy and what the threshold
is. In Section 6 we describe the Nash equilibrium strategy in the case when both
servers know each other’s probability of successful transmission pi, but individuals
maximize their own payoffs without considering the effect on the other server. The
paper concludes with Section 7, where we summarize our results and propose some
directions for future research.

2. The strategic server system of Guglielmi and Badia

Guglielmi and Badia [2] proposed and analysed a transmission system of two
servers. Each server has to make a decision whether to be “active”, that is, available
for the service, or “inactive”, that is, not available for the service. A server who is
available for the service will be chosen to undertake the service via a rule that we will
discuss below.

For i = 1, 2, server i’s probability of successfully transmitting a packet when it
is active is pi. The pis are assumed to be independent and identically distributed
according to a continuous uniform distribution on [0, 1] and each server knows its own
pi. We call (p1, p2) the “state” of the system and so [0, 1] × [0, 1] is the “state space”
of the system. The model assumes that a successful transmission gains a reward of 1
for each server, whether or not they were the one to undertake the service. The one-off

cost of being active is c ∈ [0, 1]. If both servers are active, the service is allocated to
the one with the higher probability of successful transmission.
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Table 1. Expected payoff matrix of the game.

server 2
active inactive

server 1
active (max{p1, p2} − c, (p1 − c, p1)

max{p1, p2} − c)
inactive (p2, p2 − c) (0, 0)

For i = 1, 2, we will use −i to denote server j , i. Then the servers’ expected
payoffs, which depend on their decisions and (p1, p2), have four different cases. If both
servers are inactive, both payoffs are 0, because the service is not completed. If server i
is active and server −i is inactive, the expected payoff to server i is pi − c and to server
−i is pi. This is because the probability of successful transmission is pi in this case, so
both servers gain a reward of 1, while server i needs to pay a cost c for being active;
if both servers are active, both expected payoffs are max{p1, p2} − c, because now the
probability of successful transmission is max{p1, p2} and both servers need to pay c
for being active. The expected payoff matrix is shown in Table 1, where the expected
payoffs to servers 1 and 2 are given by the first and second coordinates, respectively.

Guglielmi and Badia [2] applied game theory to analyse four scenarios.

• In Scenario 1, each server does not know the other’s probability of successful
transmission. They claimed that the Nash equilibrium strategy is of threshold
type. That is, server i chooses to be active when pi ≥ p∗i , i = 1, 2, and the
threshold values p∗1 and p∗2 must satisfy p∗1 p∗2 = c.
• In Scenario 2, they examined two special cases of Scenario 1 where one of the

two servers is always inactive. They claimed that the two cases are the worst-
case allocation with respect to social welfare.
• In Scenario 3, both servers have full information about each other’s pi. They

obtained results similar to those in Scenario 1. Each server chooses to be active
only if pi ≥ p∗i , i = 1, 2, but server 1 chooses to be inactive when

p∗1 ≤ p1 ≤
p∗1 − 1
p∗2 − 1

p2 −
p∗1 − p∗2
p∗2 − 1

and server 2 chooses to be inactive when

p∗2 ≤ p2 ≤
p∗2 − 1
p∗1 − 1

p1 −
p∗2 − p∗1
p∗1 − 1

.

• In Scenario 4, coordinated servers have complete knowledge about each other’s
pi. They derived the unique Nash equilibrium strategy which is of threshold type
with threshold value c. That is, each server chooses to be active if and only if
pi ≥ c, i = 1, 2.

Unfortunately, the analysis of Guglielmi and Badia [2] contained some errors. In
this paper we correct these errors and change the order so that we look at the most
straightforward case first.
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• In Case I, which corresponds to Scenario 4, both servers have full knowledge
of the other’s probability of successful transmission pi and both try to optimize
social welfare. The best strategy is of threshold type, but the threshold value is
c/2 instead of c. That is, each server chooses to be active if and only if pi ≥ c/2
with i = 1, 2.
• In Case II, which corresponds to Scenario 1, each server does not know

the other’s probability of successful transmission. The threshold strategy with
threshold value

√
c is a Nash equilibrium strategy. That is, if both servers choose

to be active when pi ≥
√

c, i = 1, 2, neither server has an incentive to deviate. In
addition, we prove that this is the only threshold Nash equilibrium strategy. This
is different from the conclusion stated by Guglielmi and Badia [2] that all pairs
satisfying p∗1 p∗2 = c are Nash equilibria. Also, we calculate the expression for
social welfare for the threshold strategies and obtain the best-case allocation. It
is clear from the expression that the worst case is not necessarily the scenario in
which one of the two servers is always inactive as stated in Scenario 2.
• In Case III, which corresponds to Scenario 3, each server knows the other’s

probability of successful transmission. We show that server i chooses to be
active only if pi ≥ c, i = 1, 2, and there is a region in the parameter space where
there are multiple Nash equilibria. The region where each server is active in our
analysis is different from that in [2] and we also obtain a mixed Nash equilibrium
strategy in a specific region.
• For both Case II and Case III, we propose regulations and prove that, by

imposing these regulations, we can eliminate the social inefficiency caused by
noncooperation.

3. Preliminaries

In game theory, an action profile (a1, a2) represents the actions adopted by both
servers and it could be pure or mixed. If, for i = 1, 2, we let Ai = {active, inactive},
then, for server i, a pure strategy is ai ∈ Ai and a mixed strategy is ai = σi, where
σi is the probability that server i is active. A Nash equilibrium is an action profile
where no server has an incentive to deviate unilaterally. We use s = (s1, s2) to denote
the strategy on the whole state space and BRi(s−i) to denote server i’s best response
given server −i adopts strategy s−i. In many queueing models, si can be represented
by a single numerical value [4, Section 1.1.6]. In this paper we let (p∗1, p∗2) denote a
threshold strategy where server 1 is active if and only if p1 ≥ p∗1 and server 2 is active
if and only if p2 ≥ p∗2, where 0 ≤ p∗1, p∗2 ≤ 1. In Section 4 we use (a1, p∗2) to represent
the situation where server 1 takes action a1 and server 2 adopts the threshold strategy
with threshold value p∗2. For a given strategy s, we define the “social welfare” SO(s)
to be the expected value of the sum of the two servers’ payoffs. We define the social
optimum as the maximum social welfare under certain assumptions.

A system that is in a Nash equilibrium is not necessarily at a social optimum, but
we can sometimes regulate the game to adjust a Nash equilibrium to match the strategy
of the optimal social welfare. For example, a queue could be regulated by announcing
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an admission fee [7] or imposing a toll on waiting [4, p. 24]. Li [5] generalized the
setup of Guglielmi and Badia [2] by introducing an incentive parameter b to make the
payment system fairer. When a service is completed, the server which performs the
service is awarded 1 and the server which does not perform the service is awarded
b (≤ 1). So, the setup of Guglielmi and Badia [2] had b = 1. Li [5] showed that by
introducing b, the servers are encouraged to stay in the system.

We apply game theory to analyse this model. More specifically, we employ
“Bayesian game theory” [8, Section 2.6] to examine Case II where both servers are
not informed of the other’s probability of successful transmission, but each is aware
that the other is adopting a threshold strategy and what the threshold value is. That
is, for i = 1, 2, server i does not know p−i, but knows that server −i is active if and
only if p−i > p∗

−i and what p∗
−i is. A Bayesian game is designed to analyse the situation

with imperfect information and models servers’ information about the state of nature
by prior belief and its type. The type is the signal that each server observes. We let pi
denote server i’s type and Ui((ai, p∗

−i), pi) denote its payoff. That is, server i’s payoff

depends on its type pi and the strategy (ai, p∗
−i). We prove that in this situation, the

Nash equilibrium strategy is unique and also of threshold type. For the case in which
both servers have full information about each other but act selfishly, the signal for
each server is the same, that is, each server knows its own pi and the other server’s p−i.
We show that a Nash equilibrium strategy is not necessarily of threshold type in the
full information case. We also propose regulations and prove that by imposing these
regulations we can eliminate the social inefficiency caused by noncooperation.

4. Case I: cooperative servers with communication

Case I represents the situation in which both servers have full knowledge of
the other’s probability of successful transmission pi and both try to optimize social
welfare. This models the perspective of the system manager, and the social welfare in
this case is maximal under the environment described in Section 1. The best strategy
for both servers to maximize social welfare is described in Theorem 4.1.

Theorem 4.1. If p = (p1, p2) is observable to both servers when they make decisions,
the best strategy to maximize overall welfare is

s∗ =



(inactive, inactive), max{p1, p2} < c/2,
(σ1, inactive), max{p1, p2} = p1 = c/2,
(inactive, σ2), max{p1, p2} = p2 = c/2,
(active, inactive), max{p1, p2} = p1 > c/2,
(inactive, active), max{p1, p2} = p2 > c/2,

(4.1)

where σi is any mixed strategy for server i.

Proof. If max{p1, p2} < c/2 and either server is active, a negative expected payoff is
incurred. Thus, the best strategy is (inactive, inactive) and the sum of the expected
payoffs is 0.
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Figure 1. Optimal action profile for cooperative servers with communication.

If max{pi, p−i} = pi > c/2, server i could make its expected payoff positive by
choosing to be active, while server −i should remain inactive to avoid an additional
cost c. In this case, the sum of the expected payoffs is 2pi − c.

If max{pi, p−i} = pi = c/2, server i is indifferent between being inactive and being
active, and any mixed strategyσi results in the same expected payoff of 0. After simple
calculations and comparisons, we obtain the results in equation (4.1). �

The best strategy s∗ is shown in Figure 1. The social welfare under strategy s∗ is

SO(s∗) =

∫ c/2

0

∫ c/2

0
0 dp1 dp2 +

∫ 1

c/2

∫ p1

0
(2p1 − c) dp2 dp1

+

∫ 1

c/2

∫ p2

0
(2p2 − c) dp1 dp2

=
1

12
c3 − c +

4
3
.

This is the best social welfare under an operating cost c and a uniform distribution for
both servers’ probabilities of successful transmission.

5. Case II: uncooperative servers without communication

Case II studies the scenario in which server i is informed that server −i is using a
threshold strategy such that it will be active if and only if p−i ≥ p∗

−i. In this section we
first calculate the Nash equilibrium strategy and the social welfare for the values p∗i
and p∗

−i of the thresholds. We then propose a regulation and conclude that the social
welfare under the threshold strategy is maximized by this regulation.

5.1. Nash equilibrium strategy in Case II Guglielmi and Badia [2] stated that
for a given p∗

−i, if server i is active when its probability of successful transmission
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is pi, then it should also be active for any other p̃i > pi. In this section we prove
that the best response for server i is a threshold strategy. In addition, we calculate a
Nash equilibrium strategy and prove that this is the only one. This is expressed in
Theorem 5.1.

Theorem 5.1. For i = 1, 2, server i’s best response is of threshold type regardless of
server −i’s strategy and p−i’s distribution. Assume that server i knows that server −i
is active if and only if p−i ≥ p∗

−i. If server i knows p∗
−i and that p−i follows a uniform

distribution on [0, 1], then server i’s best response is also a threshold strategy with

BR(p∗−i) =


√

2c − p∗2
−i if p∗

−i ≤
√

c,
c

p∗
−i

if p∗
−i >

√
c.

(5.1)

Also, the unique Nash equilibrium strategy is (
√

c,
√

c), which means that both servers
adopt a threshold strategy with p∗1 = p∗2 =

√
c.

Proof. Assume that server 2 is adopting any strategy s2. For server 1, when it is
active, its payoff is either p1 − c or max{p1, p2} − c when server 2 is inactive or active,
respectively. Both p1 and max{p1, p2} are increasing with p1; thus, the expected payoff

of server 1 when it is active is increasing with p1. When server 1 is inactive, its
expected payoff is not a function of p1; thus, if server 1’s best response is to be active
at p1, then this is also its best response at any p̃1 ≥ p1. So, the best response of server
1 is of threshold type no matter what strategy the other server adopts. An identical
analysis holds for server 2. In the Nash equilibrium, each server plays a best response
against the other server simultaneously, so the Nash equilibrium strategy is of threshold
type.

Next, we assume that server i knows its own pi and that server 2 adopts a strategy
with threshold p∗2, which is known to server 1. We discuss the expected payoff to
server 1 in two cases: p1 < p∗2 and p1 ≥ p∗2.

When p1 < p∗2,

E[U1((active, p∗2), p1)] =

∫ p∗2

0
(p1 − c) dp2 +

∫ 1

p∗2

(p2 − c) dp2

=
1 − p∗22

2
+ p1 p∗2 − c,

E[U1((inactive, p∗2), p1)] =

∫ 1

p∗2

p2 dp2 =
1 − p∗22

2
.

Then

E[U1((active, p∗2), p1)] ≥ E[U1((inactive, p∗2), p1)]⇐⇒ p1 ∈

[ c
p∗2
, p∗2

)
.
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When p1 ≥ p∗2,

E[U1((active, p∗2), p1)] =

∫ p∗2

0
(p1 − c) dp2 +

∫ p1

p∗2

(p1 − c) dp2 +

∫ 1

p1

(p2 − c) dp2

=
p2

1 + 1
2
− c,

E[U1((inactive, p∗2), p1)] =

∫ 1

p∗2

p2 dp2 =
1 − p∗22

2
.

Then

E[U1((active, p∗2), p1)] ≥ E[U1((inactive, p∗2), p1)]⇐⇒ p1 ∈ [max{p∗2,
√

2c − p∗22 }, 1].

In summary, if 0 ≤ p∗2 ≤
√

c, then [c/p∗2, p∗2) is empty and server 1 never becomes
active when p1 < p∗2. Furthermore,

max{p∗2,
√

2c − p∗22 } =
√

2c − p∗22 ,

so server 1 becomes active when p1 ∈ [
√

2c − p∗22 , 1]. On the other hand, if
√

c < p∗2
≤ 1, then

c
p∗2

< p∗2 and max{p∗2,
√

2c − p∗22 } = p∗2

with the result that p1 ∈ [c/p∗2, 1]. Thus, the best response for server 1 is of threshold
type with threshold value

BR1(p∗2) =


√

2c − p∗22 , 0 ≤ p∗2 ≤
√

c,
c
p∗2
,

√
c < p∗2 ≤ 1,

which is the same as (5.1) when i = 1. An identical analysis holds when i = 2.
For the Nash equilibrium strategy, we notice that when p∗

−i ∈ [0,
√

c],

p∗i =
√

2c − p∗2
−i ≥

√
c;

thus, a Nash equilibrium should also satisfy

p∗−i =
c
p∗i
.

By solving the two equations simultaneously, we obtain the threshold-type Nash
equilibrium strategy (

√
c,
√

c). When p∗
−i ∈ [

√
c, 1], the analysis is similar and

p∗i = c/p∗
−i ∈ [0,

√
c]; thus, p∗

−i =
√

2c − p∗2i . The resulting Nash equilibrium strategy
is also (

√
c,
√

c). Thus, (
√

c,
√

c) is the unique Nash equilibrium strategy, that is,
each server chooses to be active if and only if its successful transmission probability
is greater than or equal to

√
c. �
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Figure 2. Areas for expected payoff computation when p∗1 < p∗2.

Figure 3. Areas for expected payoff computation when p∗1 ≥ p∗2.

5.2. Social welfare of uncooperative servers without communication We
assume that both servers adopt threshold strategies of p∗1 and p∗2 and discuss the social
welfare for the two cases p∗1 < p∗2 and p∗1 ≥ p∗2. We denote the social welfare gained
from server 1 and server 2 by T1(p∗1, p∗2) and T2(p∗1, p∗2) if they adopt threshold strategy
(p∗1, p∗2), respectively. Our computation is based on the partitioned regions shown in
Figure 2 when p∗1 < p∗2 and Figure 3 when p∗1 ≥ p∗2.

When p∗1 < p∗2, in region A1, both servers are inactive and both expected payoffs are
0. In region B1, server 1 is active and server 2 is inactive, and the expected payoffs
of server 1 and server 2 are p1 − c and p1, respectively. Region C1 is similar to B1,
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server 1 is inactive and server 2 is active, and the expected payoffs to server 1 and
server 2 are p2 and p2 − c, respectively. In D1 and E1, both servers are active. In D1,
where p1 ≤ p2, both expected payoffs are p2 − c, while in E1, where p1 > p2, both
expected payoffs are p1 − c. The expected payoffs for server 1 in the five regions in
Figures 2 and 3 are

A1 =

∫ p∗1

0

∫ p∗2

0
0 dp2 dp1 = 0,

B1 =

∫ 1

p∗1

∫ p∗2

0
(p1 − c) dp2 dp1 =

(1
2
− c (1 − p∗1) −

p∗21

2

)
p∗2,

C1 =

∫ p∗1

0

∫ 1

p∗2

p2 dp2 dp1 = p∗1
(1
2
−

p∗22

2

)
,

D1 =

∫ 1

p∗2

∫ p2

p∗1

(p2 − c) dp1 dp2 =
1
3
−

c
2
− p∗1

(1
2
− c + c p∗2

)
+

( c
2

+
p∗1
2
−

p∗2
3

)
p∗22 ,

E1 =

∫ 1

p∗2

∫ 1

p2

(p1 − c) dp1 dp2 =
1
6

(p∗2 − 3c + 2)(p∗2 − 1)2.

Thus, if p∗1 < p∗2, the expected payoff for server 1 is

T1(p∗1, p∗2) = A1 + B1 + C1 + D1 + E1 = 1
6 {4 + 6c(p∗1 − 1) − 3 p∗21 p∗2 − p∗32 }.

A similar procedure follows for server 2. Server 2’s expected payoff if p∗1 < p∗2 is

T2(p∗1, p∗2) = 1
6 {4 + 6c(p∗2 − 1) − 3p∗21 p∗2 − p∗32 }.

Thus, the social welfare is

SO(p∗1, p∗2) = T1(p∗1, p∗2) + T2(p∗1, p∗2) = 4
3 + c(p∗1 + p∗2 − 2) − 1

3 (3 p∗21 + p∗22 )p∗2.

When p∗1 ≥ p∗2, by symmetry, the social welfare is

SO(p∗1, p∗2) = T1(p∗1, p∗2) + T2(p∗1, p∗2) = 4
3 + c(p∗1 + p∗2 − 2) − 1

3 p∗1(p∗21 + 3p∗22 ).

The social welfare S O(p∗1, p∗2) attains its maximum at (
√

c/2,
√

c/2), while the unique

Nash equilibrium strategy is (
√

c,
√

c) and

SO(
√

c/2,
√

c/2) =
2
√

2
3

c
√

c − 2 c +
4
3
,

SO(
√

c,
√

c) =
2
3

c
√

c − 2 c +
4
3
.

Therefore, SO(
√

c,
√

c) ≤ SO(
√

c/2,
√

c/2). Hence, (
√

c,
√

c) is not the social optimal
threshold strategy.

If we impose a regulation that whichever server chooses to be active, the other
server pays it c/2 as a subsidy, then the Nash equilibrium becomes the socially optimal
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solution. For example, if server 1 is active while server 2 is inactive, the previous
payoff (p1 − c, p1) becomes (p1 − c/2, p1 − c/2); if both servers are active, the payoffs
remain unchanged. The regulation is essentially making the original game fairer. If
we use Ẽ[Ui((active, p∗

−i), pi)] to denote the expected payoff of server i after regulation,
then, when p1 < p∗2,

Ẽ[U1((active, p∗2), p1)] =

∫ p∗2

0
(p1 − c) dp2 +

∫ 1

p∗2

(p2 − c) dp2 +

∫ p∗2

0

( c
2
− c

)
dp2

=
1 − p∗22

2
+ p1 p∗2 +

c
2

p∗2 − c,

Ẽ[U1((inactive, p∗2), p1)] =

∫ 1

p∗2

(
p2 −

c
2

)
dp2 =

1 − p∗22

2
−

c
2

(1 − p∗2).

Hence,

Ẽ[U1((active, p∗2), p1)] ≥ Ẽ[U1((inactive, p∗2), p1)]⇐⇒ p1 ∈

[ c
2 p∗2

, p∗2
)
.

When p1 ≥ p∗2,

Ẽ[U1((active, p∗2), p1)] =

∫ p∗2

0
p1 dp2 +

∫ p1

p∗2

p1 dp2 +

∫ 1

p1

p2 dp2 +

∫ p∗2

0

c
2

dp2 − c

=
1 + p2

1

2
+

c
2

p∗2 − c,

Ẽ[U1((inactive, p∗2), p1)] =

∫ 1

p∗2

(
p2 −

c
2

)
dp2 =

1 − p∗22

2
−

c
2

(1 − p∗2);

hence,

Ẽ[U1((active, p∗2), p1)] ≥ Ẽ[U1((inactive, p∗2), p1)]⇐⇒ p1 ∈ [max{p∗2,
√

c − p∗22 }, 1].

Thus,

Ẽ[U1((active, p∗2), p1)] ≥ Ẽ[U1((inactive, p∗2), p1)]

⇐⇒ p1 ∈

[ c
2 p∗2

, p∗2
]
∪ [max{p∗2,

√
c − p∗22 }, 1]

⇐⇒ BR1(p∗2) ∈


√

c − p∗22 , 0 ≤ p∗2 ≤
√

c/2,
c

2 p∗2
,

√
c/2 < p∗2 ≤ 1.

A similar analysis as in the proof of Theorem 5.1 establishes that (
√

c/2,
√

c/2) is the
unique Nash equilibrium strategy.
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We remark here that if p1 and p2 independently follow the same distribution
on [0, 1] whose cumulative distribution function is F(·), then the threshold Nash
equilibrium strategy is unique and is of type (h(c), h(c)), where h(c) satisfies
h(c)F(h(c)) = c.

6. Case III: uncooperative servers with communication

Case III analyses the situation where both servers have full information about each
other’s pi, but each server maximizes its own payoff. We first derive the Nash equilibria
for the whole state space and then calculate the best and worst social welfare within
the Nash equilibrium strategies. Finally, we apply a regulation and obtain the social
welfare based on a regulated Nash equilibrium strategy, which is exactly the same as
SO(s∗) in Case I.

6.1. Nash equilibrium strategy in Case III The Nash equilibrium in this case is
similar to that of Case I, but both servers are more conservative in their decisions to be
active. The Nash equilibrium strategy is expressed in Theorem 6.1.

Theorem 6.1. If p = (p1, p2) is observable to both servers when they make decisions
and both servers care only about their own payoffs, then the Nash equilibrium strategy
on the whole state space is given by

s∗N =



(inactive, inactive) if max{p1, p2} < c,
(σ1, inactive) if max{p1, p2} = p1 = c,
(inactive, σ2) if max{p1, p2} = p2 = c,
(inactive, active) if {p1 < c < p2} ∪ {p2 − p1 > c},
(active, inactive) if {p2 < c < p1} ∪ {p1 − p2 > c},

(inactive, active) or (active, inactive) or
( p2 − c

p2
,

p1 − c
p2

)
if {0 ≤ p1 − p2 ≤ c} ∩ {p1 > c} ∩ {p2 > c},

(inactive, active) or (active, inactive) or
( p2 − c

p1
,

p1 − c
p1

)
if {0 < p2 − p1 ≤ c} ∩ {p1 > c} ∩ {p2 > c},

where σi is any mixed strategy for server i = 1, 2.

Proof. When max{p1, p2} < c, inactive is the dominant strategy for both servers, so
(inactive, inactive) is the Nash equilibrium. On the boundary, max{pi, p−i} = pi = c, as
server i is indifferent between being active and being inactive, any mixed strategy σi

is a Nash equilibrium and achieves zero payoff.
When p2 − c > p1, server 2 has a higher expected payoff if it chooses to be active,

irrespective of what server 1 chooses to do. So, server 2 should be active. Then server 1
should choose to be inactive.
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When p1 < c < p2, if server 2 is inactive, server 1 has the choice between an
expected payoff of 0 if it is inactive and p1 − c < 0 if it is active. So, it should choose to
be inactive. Alternatively, if server 2 chooses to be active, then server 1 has the choice
between expected payoffs of p2 if it is inactive and p2 − c if it is active. So, again
it should choose to be inactive. Given that server 1 is inactive, server 2 has a choice
between expected payoffs of p2 − c > 0 if it chooses to be active and 0 if it chooses to
be inactive. So, it should choose to be active. This gives us (inactive, active) as the
optimal strategy if p1 < c < p2.

Similarly, if p2 < c < p1 or p1 − p2 > c, then the optimal strategy is (active,
inactive).

When |p1 − p2| ≤ c and min{p1, p2} > c, if server 1 is active, the expected payoff

for server 2 if it is active is max{p1, p2} − c, which is less than or equal to p1, so
the best response for server 2 is to choose to be inactive. On the other hand, if
server 1 is inactive, the best response of server 2 is to choose to be active, because
its expected payoff p2 − c is positive. So, the conclusion is that if |p1 − p2| ≤ c and
min(p1, p2) > c, it is a Nash equilibrium for server 1 to be active, precisely, when
server 2 is inactive and vice versa. This means that any partition of this region into
disjoint sets, where the strategy is (active, inactive) and (inactive, active), corresponds
to a Nash equilibrium strategy. If p1 ≥ p2, when server 1 is active with probability
(p2 − c)/p2, the expected payoffs of server 2 when it is active and inactive are both
p1(p2 − c)/p2, that is, server 2 is indifferent among any mixed strategy; when server 2
is active with probability (p1 − c)/p2, the expected payoffs of server 1 when it is active
and inactive are both p1 − c, so server 1 is indifferent among any mixed strategy. Thus,
if the strategy profile ((p2 − c)/p2, (p1 − c)/p2) is adopted by both servers, neither side
has an incentive to deviate and we conclude that ((p2 − c)/p2, (p1 − c)/p2) is a mixed
Nash equilibrium strategy when p1 ≥ p2. In this case, if server 1’s probability to be
active changes from (p2 − c)/p2 to a larger value (smaller value), then, for server 2,
it pays to stay inactive (active); if server 2’s probability to be active changes from
(p1 − c)/p2 to a larger value (smaller value), then, for server 1, it pays to stay inactive
(active). Thus, ((p2 − c)/p2, (p1 − c)/p2) is not a stable Nash equilibrium. Similarly,
((p2 − c)/p1, (p1 − c)/p1) is a mixed Nash equilibrium strategy when p1 < p2 and it is
not a stable Nash equilibrium either. �

The Nash equilibrium strategy s∗N is shown in Figure 4 when 0 < c < 0.5 and
Figure 5 when 0.5 ≤ c < 1.

6.2. Social welfare of uncooperative servers with communication It follows
from the analysis above that there are multiple Nash equilibria corresponding to the
set {|p1 − p2| ≤ c} ∩ {p1 > c} ∩ {p2 > c}. Any partition of this region into disjoint sets
where server 1 and server 2 are active results in a Nash equilibrium. The maximum
social welfare is obtained if the strategy is (active, inactive) when {p1 − p2 ≤ c} ∩ {p1 ≥

p2 > c} and (inactive, active) when {p2 − p1 ≤ c} ∩ {p2 > p1 > c}. The minimum social
welfare is attained when the strategy is just the opposite, which is (inactive, active)
when {p1 − p2 ≤ c} ∩ {p1 ≥ p2 > c} and (active, inactive) when {p2 − p1 ≤ c} ∩ {p2 >
p1 > c}.
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Figure 4. Nash equilibrium for uncooperative servers with communication where 0 < c < 0.5.

Figure 5. Nash equilibrium for uncooperative servers with communication where 0.5 ≤ c < 1.

When 0 ≤ c < 0.5, the case is shown in Figure 4. The maximum social welfare
Nash equilibrium strategy is (inactive, active) in region X1 and (active, inactive) in
region Y1. The sum of the expected payoffs is 2p2 − c in X1 and 2p1 − c in Y1. The
minimum social welfare Nash equilibrium strategy is (active, inactive) in region X1

and (inactive, active) in region Y1. The sum of the expected payoffs is 2p1 − c in X1
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and 2p2 − c in Y1. By noticing that the sum of the expected payoffs is symmetric with
respect to p1 = p2, the maximum and minimum social welfare within the set of Nash
equilibria are

max SO(s∗N) =

∫ c

0

∫ c

0
0 dp1 dp2 +

∫ 1

c

∫ p1

0
(2p1 − c) dp2 dp1

+

∫ 1

c

∫ p2

0
(2p2 − c) dp1 dp2

= −
1
3

c3 − c +
4
3

and

min SO(s∗N) =

∫ c

0

∫ c

0
0 dp1 dp2 + 2

( ∫ c

0

∫ 2c

c
(2p2 − c) dp2 dp1

+

∫ 1

2c

∫ p2−c

0
(2p2 − c) dp1 dp2 +

∫ 1−c

c

∫ p1+c

p1

(2p1 − c) dp2 dp1

+

∫ 1

1−c

∫ 1

p1

(2 p1 − c) dp2 dp1

)
= 3 c3 − 2 c2 − c +

4
3
,

respectively.

When 0.5 ≤ c < 1, the case is shown in Figure 5. The maximum social welfare Nash
equilibrium strategy is (inactive, active) in region X2 and (active, inactive) in region
Y2. The sum of the expected payoffs is 2p2 − c in X2 and 2p1 − c in Y2. The minimum
social welfare Nash equilibrium strategy is (active, inactive) in region X2 and (inactive,
active) in region Y2. The sum of the expected payoffs is 2p1 − c in X2 and 2p2 − c in
Y2. As above, by noticing that the sum of the expected payoffs is symmetric with
respect to p1 = p2, the maximum and minimum social welfare within the set of Nash
equilibria are

max SO(s∗N) =

∫ c

0

∫ c

0
0 dp1 dp2 +

∫ 1

c

∫ p1

0
(2p1 − c) dp2 dp1

+

∫ 1

c

∫ p2

0
(2p2 − c) dp1 dp2

= −
1
3

c3 − c +
4
3
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Table 2. Expected payoff matrix with regulation when max{p1, p2} ≥ c/2.

server 2

active inactive

server 1

active

max{p1, p2} − c,
p1 − p2

2
,

max{p1, p2} − c
3p1 + p2

2
− c

inactive

p1 + 3p2

2
− c,

p2 − p1

2
0, 0

and

min SO(s∗N) =

∫ c

0

∫ c

0
0 dp1 dp2 + 2

( ∫ c

0

∫ 1

c
(2 p2 − c) dp2 dp1

+

∫ 1

c

∫ p2

c
(2 p1 − c) dp1 dp2

)
=

1
3

c3 − 2 c2 + c +
2
3
,

respectively.
We compare the action profile of the maximum social welfare with the social

optimum strategy in Case I. When p1 ≤ c and p2 ≤ c, uncooperative servers choose
to be inactive, but, once max{p1, p2} > c/2, the sum of both servers’ expected payoffs
is positive; thus, from the system manager’s point of view, the server with the higher
successful transmission probability should be active. The reason why it stays inactive
until its probability of successful transmission exceeds c is because of the unfair
division of the total payoff. If the server chooses to be active, it will gain a negative
expected payoff, while the other server will get an advantage.

We suggest imposing a regulation where the inactive server gives the active server
c − (p1 + p2)/2 if min{p1, p2} > c/2. Then, when max{p1, p2} < c/2, the game remains
unchanged, so the Nash equilibrium is still (inactive, inactive); when max{p1, p2} ≥

c/2, the game has different expected payoffs as shown in Table 2.
If p1 > p2, since

p1 − p2

2
> 0 and p1 − c +

p1 + p2

2
> p1 − c,

but (p2 − p1)/2 < 0, (active, inactive) is the only Nash equilibrium. If p1 < p2, since
p2 − p1

2
> 0 and p2 − c +

p1 + p2

2
> p2 − c,
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Figure 6. Social welfare under Cases I, II, and III without regulation.

but (p1 − p2)/2 < 0, (inactive, active) is the only Nash equilibrium. If p1 = p2, both
(active, inactive) and (inactive, active) are Nash equilibria. After this regulation is
imposed, the resulting Nash equilibrium strategy is exactly the same as s∗ in Case I,
which means that the regulation eliminates the effect of noncooperation.

7. Conclusion

In this paper we have quantified the values of communication, cooperation and
the proposed regulation to increase social welfare by eliminating the loss due to
noncooperation in a service system with two strategic servers proposed by Guglielmi
and Badia [2].

We have applied game theory to analyse the behaviour of the servers where both
servers (I) know each other’s pi and they cooperate to maximize social welfare; (II) do
not know each other’s pi, but each server knows that the other adopts a threshold
strategy and what the threshold value is; (III) know each other’s pi but they only
maximize their own expected payoff. We computed the Nash equilibrium strategy
for Cases II and III and showed that the unique Nash equilibrium strategy in Case II
is (
√

c,
√

c), that is, each server will be inactive until its probability of successful
transmission is at least

√
c. Furthermore, we observed that there are multiple Nash

equilibria for Case III.
We compared the social welfare of the Nash equilibrium strategies in the three cases

plotted in Figure 6. We showed that the social welfare for Case II is the worst. This
is reasonable, since in Case II servers lack both communication and cooperation. The
best result of Case III is still less than that of Case I. This is caused by noncooperation.
After imposing regulation, the Nash equilibrium strategy of Case III can be increased
so that its expected payoff is the same as that obtained under the socially optimal
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Figure 7. Social welfare under Cases I, II, and III with regulation.

strategy. For Case II, due to the lack of communication, there is still a gap between
the social welfare and the social optimum, but the maximum is attained under the
assumption that both servers adopt threshold strategies. The social welfare of the three
cases after regulation is plotted in Figure 7.
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