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We present the results of a set of experiments designed to measure the dispersion of
non-spherical particles in a wave–current flow. We released negatively buoyant discs, rods
and unit-aspect-ratio cylinders into a flow both with and without waves and analysed their
respective landing positions to quantify how much they had dispersed while in the flow. We
found that the presence of waves significantly increased the dispersion of the particles, and
that the magnitude of this increase depends on particle shape and volume. In particular,
thinner rods and thinner discs have greater relative dispersion than thicker rods and
thicker discs, respectively, and smaller particles have greater relative dispersion than larger
particles. Although the particles travelled farther in the presence of waves, the increase
in dispersion was much greater than could be explained solely by increased transport
distance. These results indicate that models of microplastic transport must account for
waves as well as particle characteristics.

Key words: surface gravity waves

1. Introduction

Microplastics are a growing problem in the world’s oceans. Defined as pieces of plastic
less than 5 mm in size, they can have a variety of densities and shapes (Chubarenko
et al. 2016; Law 2017). To model microplastic transport and distribution, it is necessary
to understand how they are dispersed by ocean flows, and their physical characteristics
(e.g. size, density and shape) are of potential importance to their dispersion. Because
they can be large enough to be inertial and are typically not neutrally buoyant, they
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cannot be expected to behave simply as flow tracers. Particle size, for example, has been
shown to impact the dispersion of spheres in turbulence (Bouvard & Petkovic 1985).
Their various shapes may further complicate their transport, as particle shape has been
shown to influence how inertial particles rotate, sample the flow and settle in quiescent
fluid (Willmarth, Hawk & Harvey 1964; Auguste, Magnaudet & Fabre 2013; Will et al.
2021), isotropic turbulence (Voth & Soldati 2017; Pujara, Voth & Variano 2019; Oehmke
et al. 2021) and turbulent channel flow (Zhao et al. 2015; Shaik et al. 2020; Baker &
Coletti 2022). In quiescent fluid, discs display enhanced dispersion due to their ability to
glide for long periods (Esteban, Shrimpton & Ganapathisubramani 2020), and in isotropic
turbulence, dispersion of rods decreases with decreasing rod length (Shin & Koch 2005).

In the ocean, and especially at the surface or in coastal areas where microplastics are
typically found (Law 2017), flows often contain both waves and currents. Waves transport
particles horizontally via Stokes drift (Stokes 1847; Eames 2008), which can lead to
enhanced dispersion of tracers due to Taylor dispersion (Law 2000; Pearson et al. 2002).
Waves can also modify the distribution of buoyant particles, such that they congregate
under wave crests (DiBenedetto 2020), and can significantly enhance the dispersion of
floating contaminants (Farazmand & Sapsis 2019). We have previously shown numerically
that variations in initial wave phase will lead to the dispersion of spherical particles
(DiBenedetto, Clark & Pujara 2022) and that variations in initial particle orientation
will lead to the dispersion of non-spherical point particles under waves (DiBenedetto,
Ouellette & Koseff 2018). We have also shown that particle shape modulates the settling
velocity of inertial particles (Clark et al. 2020) and that inertial non-spherical particles
have a wave-preferred orientation that competes with their settling-preferred orientation
(DiBenedetto & Ouellette 2018; DiBenedetto, Koseff & Ouellette 2019), but there is
little understanding to date of the dispersion of non-spherical particles in combined
wave–current flows.

In this paper, we describe the results of laboratory experiments designed to measure
the dispersion of a range of non-spherical particles in a wave–current flow. We released
negatively buoyant particles of various shapes from a fixed location into a flow first with
a current alone and then with both a current and waves. From their landing positions, we
determined how much the particles had dispersed while they were in the flow. We found
that the presence of waves significantly increased dispersion in all cases. How much the
waves increased the dispersion of a particle type depended on the particle characteristics.
Thinner rods and thinner discs were more dispersed by the waves than thicker rods and
thicker discs, respectively, and smaller particles were more dispersed by waves than larger
particles. Although the particles travelled farther under the wave scenario, the increase in
their dispersion was much too large to be caused simply by increased transport distance
alone. These results highlight the necessity of accounting for waves as well as particle
characteristics in modelling microplastic transport in the ocean.

2. Experimental design

We released negatively buoyant particles of different shapes at the free surface of an open
channel flow, first without waves and then again with waves (figure 1). A Buckingham
Pi analysis of our experimental set-up shows that eight Π groups can be formed purely
from the input variables because there are three dimensions (length, time and mass) and
11 independent input parameters (particle length scale Lp, particle eccentricity ε, particle
density ρp, fluid density ρf , dynamic viscosity μ, gravity g, wavenumber k, wave amplitude
A, mean current velocity Ū, flow depth H and flume width b). An example possible set
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Figure 1. Sketch of the experimental set-up (not to scale).

of ‘input’ Π groups is the Archimedes number Ar, the Stokes number St, the particle
eccentricity ε, the ratio between the settling time scale and the wave transport time scale
τs/τw (DiBenedetto et al. 2018), the Keulegan–Carpenter number KC, the wave steepness
kA, the mean flow Reynolds number Re and the wave Reynolds number Rew. (See the
Appendix for full definitions of these Π groups.) With so many independent Π groups
in this system, we of course expect that dispersion will be dictated by multiple factors.
In this study, we test how significantly the presence of waves affects particle dispersion
and focus on how particle shape (eccentricity, which is a function of the aspect ratio) and
particle size (Archimedes number Ar = gL3

pρf (ρp − ρf )/μ
2, where L3

p is particle volume)
modulate this effect. Therefore, we hold the flow-specific dimensionless groups (i.e. kA,
Re and Rew) constant and systematically vary particle shape and size.

The depth-averaged background flow was approximately 5 cm s−1 for both sets of
experiments and was not turbulent. The water depth was 33.3 cm and the flume width
was 31.2 cm, so the Reynolds number of the mean flow calculated based on the hydraulic
radius was 5400. The flume was not inclined relative to gravity. Surface gravity waves
were generated by a plunging Scotch-yoke style wavemaker. They were well described
by linear wave theory, with a frequency of 1.8 Hz, amplitude of 1.4 cm, wavenumber of
13 m−1, resulting in a wavestrength of kA = 0.18. As indicated by these parameters and
confirmed with acoustic Doppler velocimetry measurements, the waves were deep water
waves, so their orbital radii decreased to a negligible 4 % (e−π) of the surface values at
a depth of 24 cm (equivalent to half a wavelength) (Dean & Dalrymple 1991). Therefore,
the particles fell out of the wavy part of the flow and ceased to be dispersed by the waves
before they reached the bottom of the flume. Synthetic horsehair was placed at both ends
of the flume to minimize wave reflections (figure 1), resulting in a measured reflection
coefficient of 0.12 (Hughes 1993).

The particles were 3D-printed discs, rods and unit-aspect-ratio cylinders made from
Polyamide 11 and Polyamide 12. The long axis was held constant at 7 mm for the discs
and rods, while the short axis dimension had values of 1, 2 or 3 mm. One set of cylinders
had a diameter (and therefore length) of 7 mm to match the long dimension of the rods
and discs. There were also two smaller sets of cylinders with diameters of 3 and 4 mm,
respectively, which had volumes that were more similar to those of the rods and discs.
The particles had a specific gravity ranging from 1.01 to 1.04 and a measured quiescent
settling velocity between 1.7 cm s−1 (thinnest rods) and 4.7 cm s−1 (largest cylinders).
They were weakly inertial, with particle Reynolds numbers Rep = wqdp/ν between 110
and 330, where wq is the quiescent settling velocity of the particle, dp is the longest length
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Figure 2. The standard deviation ratio Rσ = σww/σnw plotted against particle eccentricity ε, where σww is the
standard deviation of the landing locations of the particles with waves and a current and σnw is the standard
deviation of the landing locations of the particle with a current but no waves. Blue asterisks represent discs,
black circles represent cylinders with aspect ratio 1 and red triangles represent rods. Larger symbols correspond
to larger particles. Error bars show 95 % confidence intervals computed with bootstrapping.

scale of the particle and ν is the kinematic viscosity of the fluid (we do not include this in
our list of independent ‘input’ Π groups because wq is a function of the other input particle
and fluid parameters). We released the particles one at a time from a floating funnel tip,
such that each particle entered the flow at a fixed depth of 2 cm below the local free
surface in both the non-wave and wave experiments. The particles travelled downstream
after being released, typically for 0.5 to 1.5 m, then landed in a catch grid at the bottom of
the flume that had 1.5 cm square cells.

3. Results and discussion

For each set of flow conditions, we calculated the streamwise standard deviation of the
landing positions of the particles of each type to quantify how much the particles had
dispersed while they were in the flow. To quantify the additional effect of waves, we
calculated the ratio between the standard deviations with waves (σww) and the standard
deviations with no waves (σnw). Approximately 100 particles were included in the
calculation of each standard deviation ratio. Randomly subsampling one third of the
data did not significantly change the standard deviation ratios, indicating that the results
are converged. Since we are interested in the effects of particle shape on dispersion,
we plot in figure 2 the standard deviation ratios Rσ = σww/σnw against the particle
eccentricity, defined as ε = (λ2 − 1)/(λ2 + 1), where λ is the particle aspect ratio. In this
and subsequent plots, different symbols represent different particle shapes (discs, rods and
cylinders), and marker sizes correspond to particle sizes (e.g. the largest asterisks represent
the thickest discs, and the smallest circles represent the smallest cylinders). Error bars were
computed with bootstrapping (Efron & Tibshirani 1986).

From figure 2, we see that the presence of waves increases the dispersion of the particles
for all particle types except the largest cylinders. The effects can be quite dramatic: the
standard deviation of the thinnest rods is increased by a factor of four when there are
waves. Furthermore, the sensitivity of the particle dispersion to the presence of waves
clearly changes with particle eccentricity, with thinner rods and thinner discs having
a higher standard deviation ratio Rσ than thicker rods and thicker discs, respectively.
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Figure 3. Ratio of the standard deviations of the landing locations of the particles with and without waves
(Rσ = σww/σnw) plotted against Archimedes number Ar. Larger Archimedes numbers correspond to particles
with larger volumes. Symbols are the same as in figure 2.

Since the forces on particles with higher magnitudes of eccentricity vary more with
different particle orientations, it is reasonable that these particles would be more dispersed
by the waves. The rods also appear to be more dispersed by waves than discs or cylinders,
but this may be because they have smaller volumes, as discussed subsequently. Even so,
the thickest of the discs still has a standard deviation 150 % larger with waves than without
waves.

We also see in figure 2 that the smaller cylinders have a higher standard deviation ratio
Rσ than the larger cylinders, despite having the same eccentricity. This result, together with
the observation that thinner rods and thinner discs have higher Rσ values than thicker rods
and thicker discs, suggests that particle size is important. To evaluate the effect of size we
parameterize the particle volume using the Archimedes number (the ratio of gravitational
to viscous forces), which is commonly used to categorize the dynamics of particles in
flow (Tchoufag, Fabre & Magnaudet 2015; Toupoint, Ern & Roig 2019; Yao, Criddle &
Fringer 2021). Of the parameters that contribute to the Archimedes number (L3

p, g, ρp, ρf

and μ), only the particle volume L3
p varied significantly between particle types, so looking

at the effect of Ar for our data is essentially equivalent to looking at the effect of particle
volume. Figure 3 shows the same standard deviation ratios Rσ calculated for figure 2 but
plotted against Ar. The horizontal error bars reflect the small variations in density amongst
particles of a given type.

From figure 3, we can see that particles with higher Ar have smaller values of Rσ . Thus,
we find that the larger a particle is, the less its dispersion is increased by the presence of
waves. This result is consistent with what one might expect considering the definition of
Ar: larger particles experience relatively stronger gravitational forces and therefore more
persistently settle downward even when they are pulled in different directions by the wave
effects in the flow. Larger particles are also more inertial and are therefore less perturbed
by flow variations due to the presence of waves. Although there is a clear trend of larger
particles dispersing less than smaller particles in waves, there is still some spread in the
data, suggesting that the effects of particle volume do not supersede the effects of particle
shape.

To check that the apparent impact of particle shape (as shown in figure 2) is not simply a
byproduct of the effects of particle size (as shown in figure 3) or vice versa, we performed
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Model number Regression model Adjusted R2 p-value

1 y = Arx1 + x2 0.53 0.02
2 y = |ε|x1 + x2 0.08 0.25
3 y = Ar|ε|x1 + x2 0.08 0.26
4 y = Arx1 + |ε|x2 + x3 0.92 0.0008
5 y = Arx1 + Ar|ε|x2 + x3 0.85 0.004
6 y = |ε|x1 + Ar|ε|x2 + x3 0.91 0.001
7 y = Arx1 + |ε|x2 + Ar|ε|x3 + x4 0.90 0.006

Table 1. Best subsets regression analysis of standard deviation ratios. Models that incorporate both the
Archimedes number and the eccentricity magnitude perform far better than models which only incorporate
one or the other.

a best subsets regression analysis (Miller 2002). To do this, we examined all possible linear
regression models based on the Archimedes number Ar, magnitude of the eccentricity |ε|
and the cross-term Ar|ε|. We use the magnitude of the eccentricity for this analysis so that
higher-order terms are not required to account for the U-shape observed in figure 2. The
largest cylinders are excluded from the regressions because their standard deviation ratio
is unity, indicating that they are in a regime where particle volume appears to suppress all
wave effects on dispersion. The results are shown in table 1. The model utilizing both Ar
and |ε| (model 4) performed far better than the model with Ar alone (model 1) or the model
with |ε| alone (model 2). While replacing Ar or |ε| in model 4 with the cross-term (models
5 and 6) produced comparably good results, the addition of the cross-term (model 7) does
not improve the adjusted R2 value beyond that of model 4. These results thus indicate that
it is likely that both particle shape and particle volume do indeed matter to how much
particles are dispersed by waves. However, since we are able to achieve an adjusted R2

value of 92 % in model 4 without accounting for the sign of the eccentricity, it is likely
that discs have a lower Rσ value than rods simply because the discs are larger than the
rods. Therefore, the primary effect of particle shape is likely that particles with higher
magnitudes of eccentricity are more dispersed by waves.

Knowing that the dispersion of larger particles is less affected by the presence of waves
than the dispersion of smaller particles leads us to ask whether particles disperse more
when there are waves simply because the waves cause them to remain suspended in the
flow longer so that they have more time to disperse. If the dispersion rate K = 1

2 (dσ 2/dt)
were the same whether or not waves were present, then Rσ could be expressed as

Rσ = σww

σnw
=

√
2Ktww√
2Ktnw

=
(

tww

tnw

)1/2

, (3.1)

where t represents the average time the particles spend in the flow. From (3.2) we see
that enhanced dispersion could simply be caused by the particles spending more time in
the flow. To check this conjecture, we consider the mean streamwise landing positions μ

of the particles. The ratio between the mean landing positions of the particles with and
without waves Rμ = μww/μnw can then be approximated as

Rμ = μww

μnw
≈ Uwwtww

�Unwtnw
= 1.1

tww

tnw
, (3.2)

where Ū is the depth-averaged velocity of the flow. When waves were present, Ū was
approximately 10 % higher than without waves, likely due to set-up effects in the flume,
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Figure 4. Particle standard deviation ratios Rσ = σww/σnw plotted against particle mean landing location
ratios Rμ = μww/μnw, where σ denotes the standard deviation of the landing positions of the particles, μ

denotes the mean of the landing positions of the particles, and the subscripts ww and nw indicate the flow cases
with waves and a current and with a current but no waves, respectively. The dashed curve represents (3.3).
Symbols and the meaning of the error bars are the same as in figure 2.

which accounts for the factor of 1.1. By combining equations (3.1) and (3.2), we find that
if the particles had the same dispersion rate in the flow both with and without waves, the
relationship between Rσ and Rμ would be

Rσ ≈ ( 1
1.1 )1/2R1/2

μ . (3.3)

In figure 4, we plot the standard deviation ratio Rσ against the mean ratio Rμ to check
whether we see that relationship. We first note that the particles do indeed travel farther
when waves are present: values of Rμ are greater than 1. A portion of this increased travel
may be due to the small mean flow enhancement by the waves, but the rest of the increase
must be due to how the particles interact with the waves. Because the direction of wave
propagation is opposite that of the current, the increased particle travel is not due to Stokes
drift. The standard deviation ratio Rσ also clearly increases with the mean ratio Rμ. Thus,
the particles that are more dispersed by waves are indeed the same particles that travel
farther when there are waves. However, if the dispersion increased simply because of this
increase in the distance travelled, we would expect the data to fall on the curve representing
(3.3) (the dashed curve in figure 4). Instead, the slope of the data is approximately 15 times
greater. So, it is clear that although particles are transported farther by the waves, their
dispersion is amplified much more significantly by the waves than can be explained solely
by the increase in transport distance (time in suspension).

4. Conclusions

In summary, we find that particles disperse much more when waves are added to a current
than when there is a current alone. One cause of the wave-enhanced dispersion could be
variation in initial wave phase, as discussed in DiBenedetto et al. (2022). Additionally,
inertial discs and rods have competing settling-preferred and wave-preferred orientations
(DiBenedetto et al. 2019). As particles with various initial orientations pass through
different orientational trajectories to reach their settling- or wave-preferred orientations
(DiBenedetto et al. 2018), they will experience differing lift and drag forces, leading to
variation in their positional trajectories.
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The magnitude of the wave-enhanced dispersion is dependent on particle characteristics.
Thinner rods and thinner discs are more dispersed by waves than thicker rods and thicker
discs, respectively, and the dispersion of larger particles is less affected by the presence
of waves than the dispersion of smaller particles. Although particles that travel farther in
waves are dispersed more, the increase in dispersion is too substantial to be explained by
this effect alone.

These results clearly show that it is necessary to account for the presence of waves
as well as particle shape and volume when modelling the transport of microplastics in
the ocean. Current models often parameterize turbulent diffusion of microplastics and
sometimes the vertical dispersion due to flow conditions such as breaking waves (Brunner
et al. 2015; Kukulka & Brunner 2015), but they do not typically account for dispersion due
to the interaction between waves and microplastic characteristics (Van Sebille et al. 2020).
Our results also have implications for the estimation of microplastic concentrations from
measurements. For example, microplastic characteristics should be accounted for when
interpreting observations a certain distance from a source, as smaller microplastics will
likely have spread apart more. A further unfortunate implication is that wherever there are
waves, microplastics are likely to be much more difficult to remove from the ocean once
they have been released since they will spread much more.
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Appendix

Here we define the Π groups that were referenced but not discussed further in the main
text.

The Stokes number is the ratio between the particle response time and the characteristic
flow time scale. It can be defined as St = (kτ ρpd2

s /18ρf ν)/(1/ω), where ds is the diameter
of a volume-equivalent sphere and kτ is a shape-dependent correction factor. Formulae
for kτ are reported in Voth & Soldati (2017). However, these formulae do not always
correspond well to the dynamics of non-spherical particles in wavy flows, as shown in
DiBenedetto et al. (2018). It is difficult to define kτ for non-spherical particles because
their response time varies depending on particle orientation (also see discussion in Baker
& Coletti (2022)). The particle response time is also generally difficult to define for
finite-sized particles outside of the viscous regime, making the particle Stokes number
a less useful parameter for the particles in our experiment.

The ratio between the settling time scale and the wave transport time scale can be defined
as τs/τw = ωkA2/wq, where ω is the wave frequency and is defined as

√
kg for deep water

waves and wq is the quiescent settling velocity of the particles, which is purely a function
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of particle characteristics (DiBenedetto et al. 2018). This ratio remained within a small
range (between 0.2 and 0.8) for our experiments.

The Keulegan–Carpenter for a wave–current flow can be defined as (ωA + U)(1/ω)/ds.
It expresses the ratio between the maximum fluid excursion length during a wave period
and the particle length scale. It remained within a small range (between two and eight) for
our experimental runs.

The wave Reynolds number is defined as ρf (ωA)H/μ and was 8300 for our experiment.
It expresses the ratio between wave-induced inertia and viscosity.
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