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Focused ion beam microscopes require stable beam current for accurate micrograph formation and 

sample milling. In practice, the beam current emitted by a gas field ion source may fluctuate away from 

the desired setting due to contamination. The neon beam microscope in particular has been less widely 

adopted due to poor temporal stability and shorter source lifetime. In a neon beam microscope, beam 

current variations may be modeled as jumping among a set of values, as shown for a set of two values in 

Figure 1(a) [1]. When a sample is raster scanned horizontally, these variations give rise to horizontal 

stripe artifacts in the micrograph, as shown in Figure 1(d).  Existing microscopes do not measure the 

beam current, however mitigation techniques have been developed to remove horizontal content from 

micrographs post-facto [2]. These methods require tuning and can remove horizontal sample features in 

addition to the targeted artifacts.  In [3,4], we showed that the time-resolved (TR) processing methods 

introduced in [5,6] greatly reduce the artifacts that arise due to imperfectly known beam current. In this 

work, we demonstrate online estimation of the unknown neon beam current from the same secondary 

electron count data used to form the micrograph [7]. Our beam current estimate further improves the 

micrograph and could also be used to prevent sample damage, improve milling accuracy, and for 

instrument diagnostics. 

 

The n m    o   n    n   on  at the  th pixel may be modeled as a Poisson random variable with mean 

      , where    is the rate of incident particles over time. The number of secondary electrons (SE) 

detected in response to each incident particle may also be modeled as a Poisson random variable with 

mean   .  Here         h  „SE y  l ‟, a ma    al p op   y w     k to recover when forming a micrograph. 

Assuming direct SE detection, a conventional microscope measures   , the total number of SEs 

observed at the  th pixel over dwell time  . The conventional estimate of the micrograph (i.e., the 

secondary electron yield   ) operates independently at each pixel:  ̂ 
          ̃       ̃ , assuming a 

beam current of   ̃ . When this assumption is violated, error propagates into  ̂ 
        , giving rise to the 

stripes seen in Figure 1(d). 

 

Time-resolved measurement divides dwell time   into   equally spaced sub-acquisitions, each with dose 

    , and measures vector       
   

   
   

     
   

   at the  th pixel. Time-resolved estimates of   

combine these   measurements to estimate   at each pixel.  For example, the time-resolved maximum 

likelihood (TRML) estimator  ̂ 
      ̃   introduced in [5] and [6] returns the estimate of   that 

maximizes the likelihood of measurement   , given assumed beam current value  ̃ . When beam 

current is perfectly known (i.e.  ̃    ), time-resolved methods have been shown to greatly mitigate 
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the effects of source shot noise [5, 6]. Additionally, when beam current is imperfectly known, time-

resolved estimation methods exhibit a natural robustness to striped artifacts [3, 4]. 

 

In this work, we model neon beam current as a two-state hidden Markov chain; our methods may be 

readily extended to more complicated discrete models, and continuous models are considered in [7]. The 

nature of the beam current variation is assumed to be well characterized so that states           and 

transition probabilities between subsequent pixels                  |      are known. We 

denote the mean beam current by  ̅. Our causal (i.e. only using data from previously scanned pixels) 

joint estimation algorithm   ̂ 
   ̂ 

   applies TRML to form an initial estimate of  , assuming the beam 

current is  ̃    ̅ at each pixel:     ̂ 
      ̃    ̅  . Given this assumed  , the Forward algorithm [8] 

is applied to compute the belief state              |       of    given data from all previous pixels 

    . Our beam current estimate  ̂ 
  is chosen to be the state that maximizes the belief state      . We 

apply TRML a second time, assuming the beam current is  ̃    ̂ 
 , to form our estimate of SE yield: 

 ̂ 
    ̂ 

      ̃    ̂ 
  . A similar non-causal estimate   ̂ 

    ̂ 
    is designed to operate on all sample 

data, after the full scan is complete. 

 

In Figure 1, we show results from a synthetic neon beam experiment and compare estimator root-mean 

square error (RMSE). The beam current time series, Figure 1(a), was generated according to a two-state 

Markov chain model with           using transition probabilities         |               

and         |              . At each pixel, the dwell time is divided into       time-

resolved sub-acquisitions. The conventional estimate in Figure 1(d) exhibits prominent stripe artifacts. 

In Figure 1(b) w  plo   h  “O a l ” TRML     ma  ,  o m   with perfect knowledge of the beam current 

(i.e.,  ̃    ), and in Figure 1(e) we plot TRML estimate formed using only the mean beam current 

(i.e.,  ̃    ̅). Note that, as seen in [3, 4], the RMSE of the TRML method with  ̃    ̅ is substantially 

smaller than the conventional method, with small additional gains with oracular knowledge of the beam 

current. Hidden Markov model-based causal  ̂ 
  (Figure 1(c)) and non-causal  ̂ 

   (Figure 1(f)) estimates 

achieve even lower RMSE with performance approaching the Oracle method. The non-causal estimate, 

which considers all scan data post-facto, performs slightly better. 

 

In Figure 2, we plot our causal  ̂  and non-causal  ̂   beam current estimates alongside the ground truth 

  time series. The causal estimate exhibits an extremely close match to the ground truth, with the 

incorrect state selected 0.77% of the time. The non-causal estimate, which has the advantage of 

considering all scan data, has an even lower error rate of 0.13%.  In addition to improving the 

underlying micrograph, we have demonstrated accurate estimate of the beam current. This knowledge of 

the beam current could improve milling outcomes, prevent sample damage, and extend the useable 

source lifetime making neon beam microscopy more accessible [9]. 
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Figure 1. Results from a synthetic experiment with        , n=300, and   modeled as a two-state 

hidden Markov chain with           as shown in (a).  Root-mean square error (RMSE) is marked for 

each case. 

 

 
Figure 2. Causal  ̂ and non-causal  ̂   beam current estimates at a subset of pixels plotted with ground 

truth  . Error rate is 0.77% for causal algorithm and 0.13% for non-causal algorithm. Small vertical 

offsets introduced to increase legibility. 
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