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A STABLE FINITE DIFFERENCE ANSATZ FOR
HIGHER ORDER DIFFERENTIATION OF NON-EXACT DATA

BoB ANDERSSEN, FRANK DE HOOG AND MARKUS HEGLAND

If standard central difference formulas are used to compute second or third order
derivatives from measured data even quite precise data can lead to totally unusable
results due to the basic instability of the differentiation process. Here an averaging
procedure is presented and analysed which allows the stable computation of low or-
der derivatives from measured data. The new method first averages the data, then
samples the averages and finally applies standard difference formulas. The size of the
averaging set acts like a regularisation parameter and has to be chosen as a function
of the grid size A.

1. INTRODUCTION

Let the given (observational or non-exact) data be defined by
(1) d:={d;j = f(t;) + €5 tj = jh, h=1/n, j=0,1,2,...,n},

where f(t) denotes the underlying, but unknown, signal process and the ¢; denote the
(observational or non-exact) errors which are assumed to be identical and independently
distributed normal random variables with Ele;] = 0 and Elejer) = 0284, where §ji
denotes the Kronecker delta function and E[-] the expectation operator.

In the numerical differentiation of non-exact data, the goal is to recover, from the

given data d, an estimate of some (lower order) derivative
o) .= P f(2)/dt", p=1,2 or3 (say),

rather than f itself. Often, it is only the first derivative that is required. This situation
has been examined in considerable detail in the literature, under the assumption that
higher order differentiation is some natural generalisation of the results for first order
differentiation. Clearly, even the fractional differentiation of non-exact data (see (2] and
[8]) can, on occasions, be given a similar interpretation. However, though not incorrect,
this assumption glosses over important practical details which are the focus of this paper.
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NOTATION AND ASSUMPTIONS. The notation fJ[p] will be used to denote the finite dif-
ference value of the p-th derivative evaluated at the grid point jh. The function f will
be assumed to have the smoothness required by the formulas presented below in terms
of the differentiation they involve.

2. THE FINITE DIFFERENCE ANSATZ FOR FIRST ORDER DIFFERENTIATION

Often, in the past (see [1]), and even today, data are differentiated using a ruler to
obtain an estimate of the first derivative of f. It is fast and has a natural intuitive appeal.
In fact, for the practitioner, who has just measured or calculated (graphically) some
specific data the first derivative of which must be estimated before their interpretation is
possible, the ruler approach represents a realistic alternative (see [3]). It is the reason why
it is still used today, at least as a quick exploratory tool. However, its greatest drawback
is (and was) its lack of objectivity in that the form of the first derivative determined by
a particular individual will be influenced by their level of familiarity with the context
within which that data have been derived.

Mathematically, numerical differentiation was initially seen as simply a special case
of constructing finite difference approximations to derivatives. Consequently, the earliest
methods proposed for the numerical differentiation of accurate numerical, though not
necessarily exact, data were finite difference formulas. They were derived, in one way
or another, through the manipulation of either the definition of a derivative or Taylor’s
expansion (theorem). They predate the computer (see [7]), and relate closely to the
earliest ideas about the numerical approximation of derivatives in differential equations
(see [9]). However, the interconnection is not clear cut. On the one hand, forward, back-
wards and central difference approximations take centre stage in the numerical solution
of differential equations, whereas it is only the central (centred) difference formulas (or,
equivalently, centred moving-averages)

dim — dj
[l] _ j+m j—m

which are the key to the numerical differentiation of data. Normally, m is chosen to have

m=12,..., j=m,m+1, ..., n—m,

the value 1, but the possibility of choosing a greater value has been implicitly examined
by a number of authors within the context of optimising the choice of h (see [5, Section
7.1]). In part, the advantage of a central difference formula, over the alternatives such as
forward and backwards differences, is the associated higher order of convergence, which,
in turn, can be explained algebraically and graphically as a practical realisation of the
mean value theorem. In fact, the ruler differentiation simply corresponds to an analogue
realisation of the mean value theorem applied directly to the data.

Statistically, the approach adopted was quite different. Whereas the finite difference
formula approach more or less determines the derivatives at the data points directly and
explicitly from the data, the statistical approach is indirect. Here, one first estimates
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-~

statistically the parameters § in an assumed parametric estimate f(¢;3) of f(¢), and
then estimates f(1)(t) as

; 8).
This statistical approach leads naturally to the following two important generalisations:

(a) NON-PARAMETRIC DIFFERENTIATION. This is simply the non-parametric counter-
part to the parametric procedure outlined above, where one replaces the specific choice
of a parametric model for f(¢) by a non-parametric functional characterising its struc-
ture. For example, a popular choice for the non-parametric functional is the least squares
smoothing spline criterion (see [10])

(3) falt) = arg{ min [g(f(tj) ~4) +a / (& ey at] },

where H; denotes the Sobolev space of absolutely continuous first derivatives.

(b) FOURIER-WIENER DIFFERENTIATION. Ifit is assumed that the data has been gener-
ated by a stationary stochastic process, then discrete Fourier analysis and Wiener filtering
can be applied directly to the data to recover an estimate of the (first) derivative of f(t)
(see [3]).

Though the major emphasis in [3] was on the implementation of numerical differenti-
ation as a Wiener filtering process, they showed how, for given data, the Wiener filtering
theory could be used to construct a type of centred moving-average (local differentiator)
for performing the differentiation. In essence, these local differentiators are simply central
difference formulas. However, the utility of such formulas does not appear to have been
pursued in any great detail.

In an independent study, [4] analysed the stability properties of multi-point finite
difference differentiators of the form

(4) A= 00) = 32 Wediaw,
k=-r
where the Wy, k = —r, —r+1, ..., r—1, r, denote appropriately chosen weights. They

first observed that, if the weights satisfy
We=-W_,, k=0,1,2,...,r

which implies that Wy = 0, then the multipoint finite difference differentiators (4) are
exact for constant data, and can be rewritten as the following sum of the central difference
differentiators f][‘][k]

(5) =S w /K], Wi=wi/(2kh), k=1,2, ..., 7
k=1
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where .
(6) Zwk =1
k=1

In part, the goal of that paper was to show that the stabilisation of such formulas
was controlled by its length r. In fact, it was established that the choice of the length
r must be related to the size of the step-length h so that r increases appropriately as h
decreases. Consequently, under such circumstances, the differentiator (5) can be given a
regularisation interpretation in which the length r and the weights w; play, respectively,
the role of the regularisation parameter and the regularisation. A formal characterisation
of this fact was also derived.

In a spline-type context, such results can be formalised using mollification (see 8]).

Pragmatically, this result yields a natural ansatz for the construction of finite differ-
ence formulas for the stabilised numerical differentiation of one-dimensional observational

or non-exact data; namely,

THE FINITE DIFFERENCE ANSATZ FOR FIRST ORDER DIFFERENTIATION.

“Choose as the local differentiator, a weighted sum of the central difference
differentiators f}p] [m] so that, when it is applied to the data as a centred moving-
average, an appropriately smooth estimate of the derivative f(P)(t) of the signal
f(t) results.”

The purpose of this paper is an examination of the applicability of this ansatz to
higher order differentiation, when, for a fixed m, the averaging is performed with respect
to j. A natural motivation for this approach can be based on the advantages of performing
repeated measurements in a statistical analysis. In fact, if, relative to the smoothness of
f, the size of h is very small, then, for small r, the values of

fJ[:L],[m], l=—=r, —r+1,...,r=1, r,

can be viewed as repeated measurements of fJ[u[m].

3. THE FINITE DIFFERENCE OPERATORS

Let:
(a) Dr denote the differential operator of order p defined by

Df = — p=1,2, ...

(b) I correspond to the unit interval [0,1} on IR.
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(c) f be areal-valued function defined on I with sufficient regularity such that

sy = 2L,
exists.

(d) Gp denote the uniform grid of points
t; = jh, j=0,1,2,....,n, h=1/n

(e) f = fg, denote the restriction of f to the grid Gj.

() A;f ,)n denote a family, parameterised by m, of difference operators, defined
in terms of their action on f, which approximate (D? f)(ih), i € I, in the
sense that

(7) AP £(ih) = (D?£)(ih) + O((mh)?),

where Ag’:,)nf(ih) only acts on the grid values fig,; for j =0, 1, 2, ....
For the first and second derivatives, the natural examples of such second order finite
difference formulas are, respectively,

Al fGh + mh) — f(ih — mh)
o ni(ih) = 2mh ’
(9) AD gh) = LR+ mh) = 2/(h) + f(ih — mh)
" (mh)’

NoOTE. Clearly, for a given j, there will be an upper bound on the value of m which
guarantees that 0 < (j —m)h < (j+m)h < 1. However, this is a rather technical
matter which can be circumvented by assuming that, with respect to a given choice
of 7, the value of n is such as to generate a sufficiently fine grid which guarantees the
application of any particular formula considered. In other words, it is assumed that one
has sufficient data to perform the relevant operations examined and discussed below.
Such situations occur naturally in situations where the data is collected by a computer
in an on-line monitoring scenario.

3.1 THE AVERAGED FINITE DIFFERENCE FORMULAS
Let
(10) fPm] = AP £(ih).

Here, we examine the following averaging of these finite difference differentiation formulas

(11) FPm) = m Z

j=-r

The repeated measurement interpretation follows from the fact that

(12) FP[m) = 72m);
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That is, the above averaging of the finite difference formulas corresponds to the applica-
tion of the chosen finite difference formula (for a fixed m) to the averaging of the data at
the grid points (i + m)h, th and (i — m)h by the formula

Nal

(13)

2r+ 1 Z Finiy

j=-r

where th corresponds to (2 + m)h, im and (¢ — m)h, respectively.

In order to guarantee that the errors generated by the application of the numerical
differentiation formulas (10) to the observational data {d;} remain uncorrelated, one
must ensure that, with respect to a given r, the value of m is suitably large. The
simplest strategy is to replace m in (10) by kr + 1 to obtain

(14) FPlkr +1) = —— z 2k 1),

and to constrain k to satisfy & > 2. If m = 2r + 1, then every consecutive point about
the grid point ik is utilised in the evaluation of (13). This clearly represents the most
efficient use of the data.

4. CONVERGENCE AND STABILITY

The proof of convergence and stability exploits the data-averaging duality of the
formula (11). Because the proof for odd order derivatives can be constructed in a similar
manner, attention is restricted to the situation where p is an even integer 2¢. In fact,
since, for suitably smooth functions f,

h
(15) f:;l:; fi £ th(l) (-7 f(2) + Z f(’) + 0(( h)p+2)
it follows that, with p = 2g¢,

(16) _i 2 +1 Z fl+] (T + 1) f(?) + ZP hﬂf,(ﬂ)-*-O(( )2q+2)’

J"'—r
where the Py(r) denote polynomials of degree 2! in r.
Therefore, it follows that
Pler+1) = TP +1]
1)h?

. rir 4+
= A;:I)w-}-lf(Zh) + LT

7 AREAP) (20 (; (r_h)m”i_)
(17) +,§;le( A" Ajhe 11 £ (80) + O <((k7‘+ DkY* )

Agt’,’l):r+lf(2)(7'h)
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If one recalls that
ALk (k) = f7 + K((br + DR FEH3((), K = constant,

where the value of the constant K depends on the explicit form of the finite difference
formula used and ( denotes the appropriate mean value, this last result becomes

er+1) = f2 4 K((kr + 1)h) F04 ()

r(r Jlrgl)h2 (42) | Kr(r+ 11)2h2(krh)2 £ (c,)

+3° Pu(r)h? (74 4 K((kr + 1)R) F+25D(Cy,))
=2

(rh)2q+2
o (s )

+

where the (;, (4, et cetera denote the appropriate mean values.
On recalling that (see {6, Section 5.8])
1 - 1
ei ) = T //— i,
2r+1j=z_:, Yl

where the 7; denote identically distributed Gaussian random variables with zero mean and
variance o2, it follows that, because k > 2, the Nit(kr+1);, for fixediand 3 =0, 1, 2, ..,
are independent and

J(T%T)“’" + )h) 7,

where the value of K depends on the nature of the finite difference formula chosen.
It follows from (18) and (19) that ﬁp] [kr + 1] converges to f,~(p), if

(19) AP) . d(ih) = FPlkr + 1)+

(1) krh - 0,
(i1) rh - 0,
(iii) Y2 (krh)® ~ 1.

If it is assumed that krh = h°, then, from (iii), one obtains that r ~ h=27*. But, (ii)

then implies that A'1~2?* must tend to zero, and thus that convergence is guaranteed if
(20) 2ps < 1, k finite.

The size of the perturbation in the actual values obtained is clearly controlled by
the value of k. In particular, the larger k the smaller the perturbation errors. Thus, for
a very stable solution, one requires, as well as (i), (ii) and (iii), that
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(iv) E - oo
If it is again assumed that krh = A°, then it now follows that convergence is guar-
anteed if
(21) (2p+ 1)s < 1.

1
+
B
5
+
+
4
o8- &
+0
K
4»:
0.8 ‘3
A
4‘.’.
&
> 04 e
"V
&
o
) /
o]
02 L R . N N R s R
61 02 03 04 05 06 07 08 05 1

x

Figure 1: Data y = 2% + ¢,

5. IMPLEMENTATION AND EXEMPLIFICATION

Once, for a given p, the form of the local differentiator has been chosen, implemen-
tation reduces to choosing the values of £ and r. Clearly, the actual choice of £ and r
will depend of the nature of the observational data.

The efficiency of the proposed differentiator shall now be demonstrated on synthetic
data. Let f(z) = z® and the standard deviation be o = 0.001 such that the data is

(22) yi = (1h)® + €.

The data is plotted for A = 0.01 in Figure 1.

The second derivative for this example is f(?)(z) = 6z. In Figure 2 the values of the
second differences are plotted. One sees that the variance is huge such that no trend can
be detected even thogh the the synthetic data is quite precise.

Using the new differentiator with » = 4 and k = 2 (which is minimal) one obtains
the approximations for f(?) displayed in Figure 3. There is now an obvious trend and the
points are fairly close to the expected points. However, due to the sampling procedure,
there are many fewer data points in the derivative. But an interpolation of these points
still gives a good result in this case. When the original data has higher curvature one
might require more data points to reconstruct the derivative.

https://doi.org/10.1017/50004972700032196 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700032196

(9]

Figure 2:
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Figure 3: Central difference approximation of the averaged function

REFERENCES

Chr. Andersen, ‘The ruler method - an examination of a method for numerical determi-
nation of Fourier coefficients’, Acta Polytech. Scand. Math. and Comput. Mach. Ser. 8
(1963), 19-73.

R.S. Anderssen, ‘Stable procedures for the inversion of Abel’s equation’, J. Inst. Math.
Appl. 17 (1976), 329-342.

R.S. Anderssen and P. Bloomfield, ‘Numerical differentiation procedures for non-exact
data’, Numer. Math. 22 (1974), 157-182.

R.S. Anderssen and F.R. de Hoog, ‘Finite difference methods for the numerical differen-
tiation of non-exact data’, Computing 33 (1984), 259-267.

S.D. Conte and C. de Boor, Elementary numerical analysis: an algorithmic approach,
(2nd ed.) (McGraw-Hill, New York, 1972).

https://doi.org/10.1017/50004972700032196 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700032196

232

(6]

(7]
(8]

(9]

R.S. Anderssen, F. de Hoog and M. Hegland [10]

D.J. Finney, Statistics for mathematicians: an introduction (Oliver and Boyd, Edinburgh,
1968).

D.R. Hartree, Numerical analysis (Clarendon Press, Oxford, 1952).
M. Hegland and R.S. Anderssen, A mollification framework for improperly posed prob-

lems, Mathematics Research Report MRR 085-95 (CMA, Australian National University,
Canberra, Australia) {submitted).

L.F. Richardson, ‘The approximate arithmetic solution by finite difference of physical
problems involving differential equations with an application to the stresses in a masonary
dam’, Philos. Trans. Roy. Soc. London Ser. A 210 (1910), 307-357.

[10] G. Wahba, Spline models for observational data (SIAM, Philadelphia, PA, 1990).
Division of Mathematics and Statistics Division of Mathematics and Statistics
CSIRO CSIRO
GPO Box 1965 GPO Box 1965
Canberra ACT 2601 Canberra ACT 2601
Australia Australia

Computer Sciences Laboratory
RSISE

Australian National University
Canberra ACT 0200

Australia

https://doi.org/10.1017/50004972700032196 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700032196

