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Isogeny graphs on superspecial abelian
varieties: eigenvalues and connection to
Bruhat–Tits buildings
Yusuke Aikawa, Ryokichi Tanaka , and Takuya Yamauchi
Abstract. We study for each fixed integer g ≥ 2, for all primes � and p with � ≠ p, finite regular
directed graphs associated with the set of equivalence classes of �-marked principally polarized
superspecial abelian varieties of dimension g in characteristic p, and show that the adjacency
matrices have real eigenvalues with spectral gaps independent of p. This implies a rapid mixing
property of natural random walks on the family of isogeny graphs beyond the elliptic curve case and
suggests a potential construction of the Charles–Goren–Lauter-type cryptographic hash functions
for abelian varieties. We give explicit lower bounds for the gaps in terms of the Kazhdan constant
for the symplectic group when g ≥ 2. As a byproduct, we also show that the finite regular directed
graphs constructed by Jordan and Zaytman also has the same property.

1 Introduction

Isogeny graphs are finite graphs associated with elliptic curves, more generally, abelian
varieties over finite fields. They have attracted attention not only in arithmetic geom-
etry but also in cryptography since the objects can be used as a building block in a
prospective secure encryption scheme. It is believed that finding a path between an
arbitrary pair of points is highly intractable in those graphs whereas a relatively short
random walk path ends up with a fairly randomized vertex. In this paper, we study
a random walk, thus mainly concerning the latter, on the isogeny graphs based on
principally polarized superspecial abelian varieties over Fp of dimension g at least
2 formed by (�)g-isogenies with p ≠ � for primes p and �. This is one of natural
generalizations beyond the supersingular elliptic curves, the case corresponding to
dimension 1.

1.1 Main theorems

To go into further explanation, we need to fix some notation and the details are
left to the relevant sections. Let p be a prime, and let g be a positive integer. Fix an
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algebraically closed field Fp of the finite field Fp = Z/pZ. We say an abelian variety
over Fp is superspecial if it is isomorphic, as an abelian variety, to a product of a
supersingular elliptic curve overFp . Let SSg(p) be the set of isomorphism classes of all
principally polarized superspecial abelian varieties over Fp which are of dimension g.
We write [(A,L)] in SSg(p) for such a class, where A is a superspecial abelian variety
and L an endowed principal polarization (an ample line bundle with trivial Euler–
Poincaré characteristic).

Fix a representative (A0 ,L0) in a class of SSg(p) and a prime � ≠ p. For each (A,L)
in a class of SSg(p), there exists an isogeny ϕA ∶ A0 �→ A of �-power degree such that
Ker(ϕA) is a maximal totally isotropic subspace of A[�n] for some n ≥ 0 (cf. Theorem
2.6 in Section 2.5 or [JZ21, Theorem 34]). We call ϕA an�-marking of (A,L) from
(A0 ,L0). If ϕA and ψA are �-markings of (A,L), then ψA = f ○ ϕA for some element
f in

Γ(A0)† ∶= { f ∈ (End(A0) ⊗Z Z[1/�])× ∣ f ○ f † = f † ○ f ∈ Z[1/�]×idA0},

where † stands for the Rosati involution associated with L0 (see Proposition 2.3).
Consider the set of triples (A,L, ϕA) where [(A,L)] in SSg(p) and ϕA is an

�-marking of (A,L). On this set, we define an equivalence relation by saying
(A,L, ϕA) ∼ (A′ ,L′ , ϕ′A) if there exists an isomorphism f ∶ (A,L) �→ (A′ ,L′) such
that f ○ ϕA is an �-marking on (A′ ,L′). Let SSg(p, �, A0 ,L0) be the associated set of
equivalence classes.

We are now ready to define the (�-marked) (�)g-isogeny graph GSS
g (�, p) for

SSg(p, �, A0 ,L0). Let C be a maximal totally isotropic subgroup (or a Lagrangian
subspace in other words) of A[�]. Then the quotient AC = A/C yields an object, say
(AC ,LC) in a class in SSg(p) and the natural surjection fC ∶ A �→ AC is called an
(�)g-isogeny (see Proposition 2.1 and Definition 2.1). Any (�)g-isogeny between two
objects in SSg(p) arises in this way. We remark that the number of maximal totally

isotropic subgroups A[�] is Ng(�) ∶=
g

∏
k=1

(�k + 1) for each A. The (�-marked) (�)g-

isogeny graph GSS
g (�, p) is defined as a directed graph such that:

• the set of vertices V(GSS
g (�, p)) is SSg(p, �, A0 ,L0) and

• the set of directed edges between two vertices v1 and v2 is the set of equivalence
classes of (�)g-isogenies between corresponding principally polarized superspecial
abelian varieties commuting with marking isogenies representing v1 and v2. In
other words, if v1 and v2 correspond to [(A1 ,L1 , ϕA1)] and [(A2 ,L2 , ϕA2)] with
�-markings ϕA1 ∶ (A0 ,L0) �→ (A1 ,L1) and ϕA2 ∶ (A0 ,L0) �→ (A2 ,L2) respec-
tively, then an edge from v1 to v2 is an (�)g-isogeny f ∶ (A1 ,L1) �→ (A2 ,L2).

Our graph is regular since it has Ng(�)-outgoing edges from each vertex, possibly
loops and multiple edges from one to another. The associated random walk operator
for GSS

g (�, p) is self-adjoint with respect to a weighted inner product by the inverse
of the order of the reduced automorphism group (see Section 5.2). We define the
normalized Laplacian Δ on a regular directed multigraph G of degree d by Δ =
1 − (1/d)M for the adjacency matrix M of G. Note that Δ has the simple smallest
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eigenvalue 0 provided that the graph is strongly connected, i.e., there exists a directed
edge path from any vertex to any other vertex. Our first main result is the following.

Theorem 1.1 Let g ≥ 2, and let � be a prime. Then there exists cg ,� > 0 such that for all
primes p ≠ �, we have λ2(GSS

g (�, p)) ≥ cg ,�, where λ2 is the second smallest eigenvalue
of the normalized Laplacian.

As for the constant in the claim, we may take

cg ,� =
1

4(g + 2)
⎛
⎝

� − 1
2(� − 1) + 3

√
2�(� + 1)

⎞
⎠

2

,

(Corollary 5.5 in Section 5.4). In the course of the proof of Theorem 1.1, we relate
GSS

g (�, p) to a finite quotient Γ/Sg (see Section 3.3) of the special 1-complex Sg defined
in terms of the Bruhat–Tits building for PGSpg(Q�) (see Theorem 2.6 and Section
4.4). We then move on Sg to prove the desired property by using Kazhdan’s Property
(T) of PGSpg(Q�) for g ≥ 2.

In [JZ21], Jordan and Zaytman introduced a big isogeny graph Grg(�, p) based on
SSg(p). We will show in Sections 2 and 3 that there exist natural identifications

SSg(p) ∼←� SSg(p, �, A0 ,L0)
∼�→ Γ/Sg

which induce natural isomorphisms as graphs between three objects:
(1) Grg(�, p),
(2) GSS

g (�, p), and
(3) the regular directed graph defined by Γ/Sg .
As a consequence, the adjacency matrices of the above three graphs agree with each
other. Therefore, the structure of Jordan–Zaytman’s graph Grg(�, p) is revealed by our
main theorem.

Theorem 1.2 Let p be a prime. For each fixed integer g ≥ 2 and for each fixed prime
� ≠ p, the finite Ng(�)-regular directed multigraph Grg(�, p) has the same property as
in Theorem 1.1.

This result implies the rapid mixing property of a lazy version of the walk (see
[FS22, Theorem 4.9]).

In the case when g = 1, it has been shown that if p ≡ 1 mod 12, then Gr1(�, p) can
be defined as a regular undirected graph and it is Ramanujan by Eichler’s theorem via
Jacquet–Langlands theory (see [Piz98]). His graphs are regular “undirected” graphs,
while in general Gr1(�, p) is not necessarily undirected.

Jordan–Zaytman’s graphs Grg(�, p) are useful and fit into the computational
implementations (cf. [CDS20, FS21, FS22, KT20]) as explained in the next subsection.
However, it may be hard to directly obtain the uniform estimation of the eigen-
values of the normalized Laplacian. Our graphs do not, unfortunately, well behave
in the computational aspects. However, there is a natural correspondence between
SSg(p, �, A0 ,L0) and Sg as explained. A point here is that these two objects have
markings from a fixed object, while SSg(p) does not have it. However, fortunately,
there is a natural correspondence between SSg(p) and SSg(p, �, A0 ,L0). Then even-
tually, we can relate SSg(p) with Sg via the intermediate object SSg(p, �, A0 ,L0).
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It seems interesting to consider the moduli space of principal polarized superspe-
cial abelian varieties with a nontrivial-level structure so that the reduced automor-
phism group of any object is trivial. This will be discussed somewhere else.

1.2 Motivation from isogeny-based cryptography

This study is motivated by construction of cryptographic hash functions from isogeny
graphs. Charles, Lauter, and Goren constructed hash functions from random walks
on isogeny graphs Gr1(�, p) of supersingular elliptic curves [CGL09]. Due to Pizer’s
work [Piz90, Piz98], the Ramanujan property of Gr1(�, p) for p ≡ 1 mod 12 guarantees
efficient mixing processing of these functions (for most precise results, see [LP16]).

Castryck, Decru, and Smith generalized this construction to design an analogue
with genus 2 [CDS20]. To investigate the properties of this function, the study of
the big isogeny graphs Grg(�, p) has progressed. For g = 2, the classification of
possible automorphism groups arising from Jacobians and elliptic product was done
by Ibukiyama, Katsura, and Oort [IKO86]. Based on these results, the combinatorial
structure of the local neighborhood of each vertex of Gr2(2, p) is computed in [FS21,
KT20]. Moreover, in [FS22], they also investigated behavior of random walks on the
big isogeny graphs and gave numerical experiments of the mixing rate of Gr2(2, p).

However, we know little about expansion properties of these graphs so far. In this
paper, good mixing property of the big isogeny graphs Grg(�, p) is shown as a result of
proving that the isogeny graphs GSS

g (�, p) defined in this paper have good expansion
property and they are equivalent to the big isogeny graphs Grg(�, p). Therefore,
random walks on the graphs GSS

g (�, p) (and Grg(�, p)) tend to the natural stationary
distribution rapidly. This gives an evidence that the big isogeny graphs Grg(�, p)
may be suitable for construction of cryptographic hash functions from superspecial
abelian varieties. See Figure 1, the one of examples for the graph Grg(�, p) computed
in [CDS20, KT20].

1.3 Organization of this paper

In Section 2, we give two interpretations of SSg(p) according to works of Ibukiyama–
Katsura–Oort–Serre and Jordan–Zaytman. The former is helpful to compute the
cardinality of SSg(p), while the latter is helpful to make the compatibility of Hecke
operators at � transparent. As mentioned before, this is a crucial step to apply Property
(T) (hence, Theorem 5.4) with our family {GSS

g (�, p)}p≠�. In Section 3, we discuss a
comparison between the graph GSS

g (�, p) and that of Jordan–Zaytman Grg(�, p). In
Section 4, we study Bruhat–Tits buildings for symplectic groups. Then, in Section 5,
the main result is proved in terms of the terminology in the precedent sections.

1.4 Notations

Let n be a positive integer, and let In be the identity matrix of size n. Let GSpn be

the generalized symplectic group associated with Jn = (
0 In
−In 0 ) with the similitude

ν ∶ GSpn �→ GL1. Put Spn ∶= Ker(ν), which is called the symplectic group of rank n.
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Figure 1: An illustration of Gr2(2, 13). The vertices v1 , v2 , and v3 denote the Jacobians of some
curves of genus 2. The vertex v4 denotes the product of some supersingular elliptic curves. The
number on the side of a directed edge denotes the multiplicity of each edge. For a more detailed
illustration, see Section 7.1 of [KT20].

In the sections related to abelian varieties, we put n = g, while we keep n in Sections
4 and 5.

2 Superspecial abelian varieties

In this section, we refer [Mum70] for some general facts of abelian varieties. The
purpose here is to understand Theorem 2.10 of [IKO86] in terms of the adelic language
which is implicitly given there. Another formulation is also given in terms of �-adic
Tate modules (see also Theorem 46 of [JZ21] in more general setting). This explains
the compatibility of Hecke operators on principally polarized superspecial abelian
varieties and the special 1-complex of the Bruhat–Tits building in question. This result
will be plugged into the main result in Section 5 to prove Theorem 1.1.

2.1 Superspecial abelian varieties

Let p be a prime number and k = Fp . Let A be an abelian variety over k of dimension
g > 0, and we denote by Â = Pic0(A) the dual abelian variety (cf. Section 9 of [Mil86]).

The abelian variety A is said to be superspecial if A is isomorphic to E g =
g

������������������������������������������������
E × ⋅ ⋅ ⋅ × E

for some supersingular elliptic curve E over k (see Sections 1.6 and 1.7 of [LO98]
for another definition in terms of a-number). As explained in loc. cit., for any fixed
supersingular elliptic curve E0 over k, every superspecial abelian variety of dimension
g ≥ 2 is isomorphic to E g

0 . (Here, the assumption g ≥ 2 is essential, and indeed, this
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is not true for g = 1. See also Theorem 4.1 in Chapter V of [Sil09].) Throughout this
section, we fix a supersingular elliptic curve E0.

2.2 Principal polarizations

Let A be an abelian variety over k = Fp . A polarization is a class of the Néron–Severi
group NS(A) ∶= Pic(A)/Pic0(A) which is represented by an ample line bundle on A.
The definition of polarizations here is different from the usual one, but it is equivalent
by Remark 13.2 of [Mil86] since k = Fp .

For each ample line bundle L, we define an isogeny ϕL ∶ A �→ Â, x ↦ t∗x(L) ⊗
L−1 where tx stands for the translation by x and we denote by t∗x its pullback.

Proposition 2.1 Let (A,L) be a principally polarized abelian variety over k. Let � be
a prime number different from p, and let C be a maximal totally isotropic subspace of
A[�n] for n ∈ Z≥0 with respect to the Weil pairing associated with L. Then, there exists
an ample line bundle LC on the quotient abelian variety AC ∶= A/C which is unique
up to isomorphism such that (AC ,LAC ) is a principally polarized abelian variety in
characteristic p such that f ∗CLAC = L⊗�n

where fC ∶ A �→ AC is the natural surjection.

Proof Notice that L is symmetric. The claim follows from (11.25) Proposition of
[EGM]. ∎
Definition 2.1 Let (A1 ,L1) and (A2 ,L2) be two principally polarized abelian vari-
eties in characteristic p. Let � be a prime different from p.
(1) An isogeny f ∶ A1 �→ A2 is said to be an (�)g-isogeny if Ker( f ) is a maximal

totally isotropic subspace of A[�] with respect to the Weil pairing associated with
L1, and f ∗L2 ≃ L⊗�

1 .
(2) An isogeny f ∶ A1 �→ A2 is said to be an �-marking of (A2 ,L2) from (A1 ,L1) if

f ∗L2 = L⊗�m

1 for some integer m ≥ 0.

Proposition 2.2 Keep the notation in Definition 2.1. Let f ∶ A1 �→ A2 be an �-marking
of (A2 ,L2) from (A1 ,L1), then there exists an �-marking f̃ ∶ A2 �→ A1 of (A1 ,L1)
from (A2 ,L2) such that f ○ f̃ = [�m]A2 and f̃ ○ f = [�m]A1 for some integer m ≥ 0.

Proof By Theorem 34 of [JZ21], we may assume f is an (�)g-isogeny. Put C =
Ker f . Then (A2 ,L2) = (A1,C ,LA1,C ) where A1,C = A1/C. It is easy to see that D ∶=
A1[�]/C is a maximal totally isotropic subspace of A1,C[�] with respect to the Weil
pairing associated with LA1,C . Therefore, we have an (�)g-isogeny f̃ ∶ A2 �→ A1,C/D.
However, A1,C/D = A/A[�] ≃ A and the later isomorphism induces the identification
of (A1,C/D,LD) and (A1 ,L1) where LD stands for a unique descend of LA1,C on
A1,C/D (see Proposition 2.1). The proportion of f and f̃ is symmetric, and hence we
have the claim. ∎

We study the difference of two �-markings. Let us keep the notation in Definition
2.1. By using the principal polarization L1, we define the Rosati-involution † on
End(A1) by

f † = ϕ−1
L1

○ f̂ ○ ϕL1 , f ∈ End(A1).(2.2)

Notice that † is an anti-involution.
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Proposition 2.3 Let us still keep the notation in Definition 2.1. Let f , h ∶ A1 �→ A2 be
two �-markings. Then there exists ψ ∈ End(A1) ⊗Z[1/�] such that f ○ ψ = h and ψ ○
ψ† = ψ† ○ ψ = [�m]A1 for some integer m.

Proof For f, let f̃ ∶ A2 �→ A1 be an (�)g-isogeny in Proposition 2.2. Put ψ1 = f̃ ○ h ∈
End(A1). Then we have, by definition,

ψ1 ○ ψ†
1 = ( f̃ ○ h) ○ (ϕ−1

L1
○ ĥ ○ ̂̃f ○ ϕL1).

By [JZ21, Theorem 34] and Definition 2.1 that ̂̃f ○ ϕL1 ○ f̃ = ϕ
L⊗�m

2
= �m ϕL2 and ĥ ○

ϕL2 ○ h = ϕ
L⊗�m′

1
= �m′ϕL1 for some integers m′ , m ≥ 0. This yields

ψ1 ○ ψ†
1 = �m f̃ ○ ϕ−1

L2
○ ̂̃f ○ ϕL1 = �m+m′ idA1 .

Further, f ○ ψ = ( f ○ f̃ ) ○ h = �m h. Therefore, we may put ψ = �−mψ1 as desired. ∎

2.3 Class number of the principal genus for quaternion Hermitian lattices

In this subsection, we refer Section 3.2 of [Ibu20] for the facts and the notation. Let
p be a prime number, and let n be a positive integer. Let B be the definite quaternion
algebra ramified only at p and ∞. Let us fix a maximal order O of B.

For a commutative ring R, we extend the conjugation on O ⊂ B to O⊗Z R by
x ⊗ r ∶= x ⊗ r for each x ∈ O and r ∈ R. Further, for each γ = (γ i j) ∈ Mn(O⊗Z R) (the
set of n × n matrices over O⊗Z R), we define γ ∶= (γ i j). We define the algebraic group
Gn over Z which represents the following functor from the category of rings to the
category of sets:

Gn ∶ (Rings) �→ (Sets), R ↦ Gn(R) ∶= {γ ∈ Mn(O⊗Z R) ∣ γ ⋅ tγ
= ν(γ)In for some ν(γ) ∈ R×},

where In stands for the identity matrix of size n. The similitude map ν ∶ Gn ↦ GL1
is defined by γ ↦ ν(γ). Put G1

n ∶= Ker(ν) as an algebraic group. The group scheme
Gn(resp. G1

n) over Z is said to be the generalized unitary symplectic group (unitary
symplectic group), and it is symbolically denoted by Gn = GUSpn (resp. G1

n = USpn).
It is easy to see that Gn(R) is compact modulo center and G1

n(R) is, in fact, compact,
since B is definite. By definition, Gn(resp. G1

n) is an inner form of GSpn (resp. Spn).
Let AQ be the ring of adeles of Q, and let A f be the finite part of AQ. For an O-

lattice L of Bn and each rational prime p, put Kp(L) ∶= {γp ∈ Gn(Qp) ∣ (L ⊗Z Zp)γp =
L ⊗Z Zp} which is an open compact subgroup of Gn(Qp). Then K(L) ∶= ∏

p
Kp(L)

makes up an open compact subgroup of Gn(A f ).

2.4 Ibukiyama–Katsura–Oort–Serre’s result in terms of adelic language

Let us fix a prime p and put k = Fp . We denote by SSg(p) the set of all isomorphism
classes of principally polarized abelian variety over k of dimension g. Henceforth, we
assume g ≥ 2. According to [IKO86], we describe SSg(p) in terms of adelic language.
Let us first recall the main result in [IKO86].
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Theorem 2.4 (Ibukiyama–Katsura–Oort–Serre’s theorem) There is a one-to-one cor-
respondence between SSg(p) and K(Og)/Gg(A f )/Gg(Q).

We denote by ZGg ≃ GL1 the center of Gg = GUSpg . Recall the open compact
subgroup K(Og) =∏

p
Kp(Og). For each prime � ≠ p, put K(Og)(�) = ∏

p≠�
Kp(Og).

Clearly, K(Og) = K(Og)(�) × Gg(Z�). We identify B� = B ⊗Q Q� (resp. O� = O⊗Z

Z�) with M2(Q�) (resp. M2(Z�)). Under this identification, we have Gg(R) =
GSpg(R) for R = Z� or Q� (cf. Lemma 4 of [Ghi04]). Therefore, for any subring M
of Q�, Gg(M) is naturally identified with a subgroup of Gg(Q�) = GSpg(Q�) under
the inclusion M ⊂ Q�.

Proposition 2.5 For each prime � ≠ p, there is a one-to-one correspondence between
SSg(p) and Gg(Z[1/�])/GSpg(Q�)/ZGS pg(Q�)GSpg(Z�).

Proof For any algebraic closed field F, G1
g(F) = USpg(F) = Spg(F). Since Spg is

simply connected as a group scheme over Z, so is G1
g = USpg . Let A(�)f be the finite

adeles of Q outside �. By the strong approximation theorem (cf. Theorem 7.12, p.427 in
Section 7.4 of [PR94]) for G1

g with respect to S = {∞, �} and using the exact sequence
1 �→ G1

g �→ Gg
ν�→ GL1 �→ 1, we have a decomposition

Gg(A f ) = Gg(A(�)f ) × Gg(Q�) = Gg(Q)(K(Og)(�) × Gg(Q�)).(2.3)

Combining Theorem 2.4 with (2.3), we have

SSg(p) ≃ K(Og)/Gg(A f )/Gg(Q)
≃ Gg(Q)/Gg(A f )/K(Og)(2.4)

= Gg(Q)/(Gg(Q)(K(Og)(�) × Gg(Q�)))/K(Og)
= Gg(Z[1/�])/GSpg(Q�)/GSpg(Z�)
= Gg(Z[1/�])/GSpg(Q�)/ZGS pg(Q�)GSpg(Z�).

We complete the proof. ∎

2.5 Another formulation due to Jordan–Zaytman

Let � ≠ p be a prime. Both of SSg(p) and the Bruhat–Tits building
GSpg(Q�)/ZGS pg(Q�)GSpg(Z�) endowed with Hecke theory at �. However, it
is not transparent to see the compatibility of Hecke actions on both sides under the
one-to-one correspondence (2.4). To overcome this, due to Jordan and Zaytman
[JZ21], we use another formulation of SSg(p) and its connection to SSg(p, �, A0 ,L0)
by using �-adic Tate modules.

Pick (A,L) from a class in SSg(p). For a positive integer n, let A[�n] ∶= {P ∈
A(Fp) ∣ �n P = 0A} ≃ (Z/�nZ)⊕2g and put A[�∞] = ⋃

n≥1
A[�n]. We denote by T�(A) the

�-adic Tate module and by V�(A) ∶= T�(A) ⊗Z�
Q� the �-adic rational Tate module

(cf. Section 18 of Chapter IV of [Mum70]). Let us define the coefficient ring RV
to be Z/�nZ if V = A[�n], Z� if V = T�(A), and Q� if V = V�(A). The principal
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polarization ϕL ∶ A ∼�→ Â yields V ≃ V∗ = HomRV (V , RV), and it induces a non-
degenerate alternating pairing ⟨∗, ∗⟩ ∶ V × V �→ RV . Let C be a maximal isotropic
subgroup of A[�n] for some n ≥ 1. Consider the exact sequence

0 �→ T�(A) ⊂�→ V�(A) π�→ V�(A)/T�(A) ≃ A[�∞] �→ 0.

Then, TC ∶= π−1(C) is a lattice of V�(A). The quotient AC ∶= A/C is also a superspecial
abelian variety and the line bundle L is uniquely descend to a principal polarization
LC on AC by Corollary of Theorem 2 in Section 23 of Chapter IV of [Mum70] (see
also Proposition 11.25 of [EGM] for the uniqueness). Therefore, TC ≃ T�(AC) has a
symplectic Z�-basis { fC , i}2g

i=1 ⊂ Q
2g
� which means the matrix PC ∶= ( fC ,1 , . . . , fC ,2g) ∈

M2g(Q�) belongs to GSpg(Q�). Another choice of a symplectic Z�-basis of TC
yields PCγ for some γ ∈ GSpg(Z�). For each h ∈ End(A) ⊗Z Z[1/�]which is invertible
(hence h is an isogeny of degree a power of �), we see easily that Ph(C) = h∗PC where
h∗ is the endomorphism of V�(A) induced from h. In fact, by the functorial property
of the pairing (see page 228 of [Mum70]). We identify Gg(Z[1/�]) with

Γ(A)† ∶= { f ∈ (End(A) ⊗Z Z[1/�])× ∣ f ○ f † = f † ○ f ∈ Z[1/�]×idA}(2.5)

under the natural inclusion (End(A) ⊗Z Z[1/�])× ↪ Aut((V�(A), ⟨∗, ∗⟩)) =
GSpg(Q�).

Fix (A,L) in a class of SSg(p). We introduce the following sets which play an
important role in the construction of the isogeny graphs:

Iso�∞(A,L) ∶= {[(AC ,LC)] ∈ SSg(p) ∣ n ≥ 1, C ⊂ A[�n] ∶ a maximal isotropic subgroup}(2.6)

and

SSg(p, �, A,L) ∶= {[(B,M, ϕB)] ∣ [(B,M)] ∈ SSg(p)},(2.7)

where ϕB ∶ A �→ B is an �-marking and [(B,M, ϕB)] stands for the equivalent class
of (B,M, ϕB). Here, such two objects (A1 ,L1 , ϕA1) and (A2 ,L2 , ϕA2) are said to be
equivalent if there exists an isomorphism f ∶ (A1 ,L1) �→ (A2 ,L2) such that f ○ ϕA1

and ϕA2 differ by only an element in Γ(A1)†. By definition, the natural map from
SSg(p, �, A,L) to Iso�∞(A,L) is surjective, while Iso�∞(A) is included in SSg(p).
With the above observation, we have obtained a map

Iso�∞(A,L) �→ Gg(Z[1/�])/GSpg(Q�)/GSpg(Z�), [(AC ,LC)] ↦ Gg(Z[1/�])PC GSpg(Z�).
(2.8)

We then show a slightly modified version of Jordan–Zaytman’s theorem, Theorem 46
of [JZ21] in conjunction with SSg(p, �, A,L).

Theorem 2.6 Fix (A,L) in a class of SSg(p). Keep the notation being as above. It holds
that Iso�∞(A,L) = SSg(p) and the map (2.8) induces a bijection

Iso�∞(A, L) ∼
�→ Gg(Z[1/�])/GS pg(Q�)/GS pg(Z�) = Gg(Z[1/�])/GS pg(Q�)/ZGS pg (Q�)GS pg(Z�).

Further, the natural map SSg(p, �, A,L) �→ Iso�∞(A,L) is also bijective.

Proof Surjectivity of (2.8) follows in reverse from the construction by using Corol-
lary of Theorem 2 in Section 23 of Chapter IV of [Mum70] to guarantee the existence
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of a principal polarization. By Proposition 2.5 and Iso�∞(A,L) ⊂ SSg(p), we have

∣SSg(p)∣ = ∣Gg(Z[1/�])/GSpg(Q�)/ZGS pg (Q�)GSpg(Z�)∣ ≤ ∣Iso�∞(A,L)∣ ≤ ∣SSg(p)∣,

and it yields first two claims. With a natural surjection SSg(p, �, A,L) �→
Iso�∞(A,L) and (2.8), we have a surjective map

SSg(p, �, A,L) �→ Gg(Z[1/�])/GSpg(Q�)/ZGS pg(Q�)GSpg(Z�).

However, by construction and the identification (End(A) ⊗Z Z[1/�])× = Gg(Z[1/�]),
two objects of SSg(p, �, A,L) which go to one element in the target differ by
only �-markings. Therefore, the above map is bijective. Hence, SSg(p, �, A,L) ∼�→
Iso�∞(A,L) = SSg(p).

Note that the factor ZGS pg(Q�) ≃ Q×� is intentionally inserted in front of GSpg(Z�)
as explained in the proof of Proposition 2.5. ∎

As a byproduct, we have the following.

Corollary 2.7 Let � be a prime different from p. Let GSS
g (�, p) is the isogeny graph

defined in Section 1. Then, GSS
g (�, p) is a connected graph.

Proof By the proof of Theorem 2.6, we have SSg(p, �, A,L) ∼�→ Iso�∞(A,L) =
SSg(p) for any fixed (A,L) in a class of SSg(p). This means that any two classes are
connected by isogenies of degree a power of � and such an isogeny can be written
as a composition of some (�)g-isogenies by Theorem 34 of [JZ21]. This shows the
claim. ∎

2.6 The Hecke operator at �

Finally, we discuss a relation of the map (2.8) with the Hecke operator at �. We refer
Section 3 in Chapter VII of [CF90] for general facts and Sections 16–19 of [Gee08] as a
reader’s friendly reference. For each prime � different from p and a class [(A,L, ϕA)] ∈
SSg(p, �, A0 ,L0), we define the (geometric) Hecke correspondences T(�)geo

(A0 ,L0)
at �:

T(�)geo
(A0 ,L0)

([(A,L, ϕA)]) ∶= ∑
C⊂A[�]

maximal isotropic

[(AC ,LC , fC ○ ϕA)],(2.9)

where fC ∶ A �→ AC is the natural projection. Similarly, we also define the (geometric)
Hecke correspondences T(�)geo at � on SSg(p):

T(�)geo([(A,L)]) ∶= ∑
C⊂A[�]

maximal isotropic

[(AC ,LC)].(2.10)

Recall GSpg(Q�) = GSp(Q2g
� , ⟨∗, ∗⟩) where ⟨∗, ∗⟩ is the standard sym-

plectic pairing on Q
2g
� ×Q

2g
� . Put V = Q

2g
� . As seen before, each element of

GSpg(Q�)/GSpg(Z�) can be regarded as a lattice L of V such that ⟨∗, ∗⟩L×L gives
a Z�-integral symplectic structure on L. Using this interpretation, each element
of GSpg(Q�)/ZGS pg(Q�)GSpg(Z�) can be regard as a homothety class [L] for
such an L. For each L being as above, we define the Hecke correspondence on
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GSpg(Q�)/GSpg(Z�) at �

T(�)([L]) ∶= ∑
L⊂L1⊂�−1 L

L1/L:maximal isotropic

[L1],(2.11)

where L1 runs over all lattice enjoying L ⊂ L1 ⊂ �−1L as denoted and that L1/L is
a maximal isotropic subgroup of �−1L/L with respect to the symplectic pairing
⟨∗, ∗⟩�−1 L/L×�−1 L/L . Clearly, the action of Gg(Z[1/�]) (given by multiplication from the
left) on lattices are equivariant under T(�). Therefore, it also induces a correspondence
on Gg(Z[1/�])/GSpg(Q�)/ZGS pg(Q�)GSpg(Z�) and by abusing notation, we denote
it by T(�). For a set X, we write Div(X)Z ∶= ⊕P∈X ZP. The identification (2.8) with the
bijection

SSg(p, �, A0 ,L0)
∼�→ SSg(p), [(A,L, ϕA)] ↦ [(A,L)](2.12)

yields a bijection

SSg(p, �, A0 ,L0) �→ Gg(Z[1/�])/GSpg(Q�)/GSpg(Z�).(2.13)

Then we have obtained the following.

Theorem 2.8 The following diagram is commutative:

Div(SSg(p))Z
(2.12)
∼←���� Div(SSg(p, �, A0 ,L0))Z

T(�)geo
.../

T(�)geo
(A0 ,L0)

.../

Div(SSg(p))Z
(2.12)
∼←���� Div(SSg(p, �, A0 ,L0))Z

(2.13)
∼����→ Div(Gg(Z[1/�])/GSpg(Q�)/ZGS pg(Q�)GSpg(Z�))Z

T(�)
.../

(2.13)
∼����→ Div(Gg(Z[1/�])/GSpg(Q�)/ZGS pg(Q�)GSpg(Z�))Z .

2.7 The Hecke action and automorphisms

In this subsection we describe the behavior of the Hecke action of T(�) on the finite
set

Gg(Z[1/�])/GSpg(Q�)/GSpg(Z�) = Gg(Z[1/�])/GSpg(Q�)/ZGS pg(Q�)GSpg(Z�)

in terms of automorphism groups of objects in SSg(p, �, A0 ,L0).
Put Γ = Gg(Z[1/�]), G = GSpg(Q�), Z = ZGS pg(Q�), and K = GSpg(Z�) for sim-

plicity. We write

Γ/G/K = {Γx1ZK , . . . , Γxh ZK}, x1 , . . . xh ∈ G ,
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where h = hg(p, 1) = ∣Γ/G/ZK∣. For each i ∈ {1, . . . , h}, the coset Γx i ZK is naturally
identified with

Γ/Γ ∩ x i ZKx−1
i = (ΓZ/Z)/((Γ ∩ x i ZKx−1

i )Z/Z).

Lemma 2.9 Keep the notation being as above. Let (A i ,Li , ϕA i ) be an element in
the class corresponding to Γx i K. There is a natural group isomorphism between Γ̃i ∶=
(Γ ∩ x i ZKx−1

i )Z/Z and Aut((A i ,Li))/{±1} where Aut((A i ,Li)) is the group of
automorphisms of (A i ,Li).

Proof By construction, we have T�(A i) = x iZ
2g
� under the inclusion T�(A i) ↪

V�(A0)=Q2g
� induced by the el l -marking of (A i ,Li). Then the group (Γ∩x i ZKx−1

i )
obviously acts on T�(A i). Thus, we have an injection (Γ ∩ x i ZKx−1

i ) ⊂ End(T�(A i)).
On the other hand, by Tate’ theorem (cf. Theorem 1 of [Tate66]), End(T�(A i)) ≃
End(A i) ⊗Z Z�. Hence, we may have (Γ ∩ x i ZKx−1

i ) ⊂ End(A i) ⊗Z Z� which is
compatible with the identification Γ ⊂ Γ†(A i). Since each element of Γ†(A i) is an
�-isogeny, it preserves the polarization of A i up to the multiplication by Z. Therefore,
Γ̃i ⊂ Aut((A i ,Li))/{±1}. The opposite inclusion follows by Tate’ theorem again. ∎

Next, we study the image of each element of Γ/G/K = Γ/G/ZK under the Hecke
action of T(�). Since T(�) is defined in terms of lattices (see (2.11)), we define

another formulation in terms of elements in G. Let t� ∶= diag(
g

���������������
1, . . . , 1,

g
������������������
�, . . . , �) ∈ G.

We decompose

Kt�K =∐
t∈T

gt K ,(2.14)

where T is the index set so that ∣T ∣ = Ng(�). For each i , j ∈ {1, . . . , h}, we define

m i j ∶= {t ∈ T ∣ Γx i gt ZK = Γx j ZK},(2.15)

which is independent of the choice of the representatives {gt}t∈T . Let W(�) ∶=
{gt ZK ∣ t ∈ T}. Then, for each i ∈ {1, . . . , h}, recall Γ̃i = (Γ ∩ x i ZKx−1

i )Z/Z, and the
finite group x−1

i Γ̃i x i ⊂ KZ/Z acts on W(�) from the left by multiplication. The action
induces the orbit decomposition

W(�) = ∐
t∈T′

Ox−1
i Γ̃i x i

(gt KZ)(2.16)

for some subset T ′ ⊂ T .

Lemma 2.10 Keep the notation being as above. For each i ∈ {1, . . . , h} and t ∈ T ′, if
Γx i gt ZK = Γx j ZK for some j ∈ {1, . . . , h}, the stabilizer Stabx−1

i Γ̃i x i
(gt KZ) is isomor-

phic to a subgroup S i of Γ̃j .

Proof By assumption, x j = γx i gtzk for some γ ∈ Γ, z ∈ Z, and k ∈ K. For each αZ ∈
x−1

i Γ̃i x i = (x−1
i Γx i ∩ K)Z/Z, let us consider the element kg−1

t αgt k−1Z in G/Z. By
using x j = γx i gtzk, we see that the element belongs to x−1

j Γx j Z/Z. Further, if αZ is
an element of Stabx−1

i Γ̃i x i
(gt KZ), kg−1

t αgt k−1Z also belongs to K. Therefore, we have

https://doi.org/10.4153/S0008414X23000676 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000676


Isogeny graphs on superspecial abelian varieties 1903

a group homomorphism

Stabx−1
i Γ̃i x i

(gt KZ)
the conjugation by k g−1

t�→ (x−1
j Γx j ∩ K)Z/Z ≃ Γ̃j .

Clearly, this map is injective and we have the claim. ∎

We also study the converse of the correspondence from Γx i gt ZK to Γx i ZK for
each i ∈ {1, . . . , h}. Clearly, g−1

t ZK ∈ W(�).

Lemma 2.11 For each i ∈ {1, . . . , h} and t ∈ T ′, if Γx i gt ZK = Γx j ZK for some
j ∈ {1, . . . , h}, then ∣Stabx−1

i Γ̃i x i
(gt KZ)∣ = ∣Stabx−1

j Γ̃j x j
(g−1

t KZ)∣. In particular, it holds

∣Γ̃j ∣ ⋅ ∣Ox−1
i Γ̃i x i

(gt KZ)∣ = ∣Γ̃i ∣ ⋅ ∣Ox−1
j Γ̃j x j

(g−1
t KZ)∣.

Proof As in the proof of the previous lemma, if we write x j = γx i gtzk, then
the conjugation by gt k−1 yields the isomorphism from Stabx−1

j Γ̃j x j
(g−1

t KZ) to
Stabx−1

i Γ̃i x i
(gt KZ). The claim follows from this. ∎

Finally, we study the corresponding results in SSg(p, �, A0 ,L0) under the identifi-
cation

SSg(p, �, A0 ,L0) �→ Gg(Z[1/�])/GSpg(Q�)/GSpg(Z�)(2.17)

given by Theorem 2.6. We write

SSg(p, �, A0 ,L0) = {w i = [(A i ,Li , ϕA i )] ∣ i = 1, . . . , h}.

Let us fix i ∈ {1, . . . , h}, and we denote by LGi(�) = {Ct}t∈T the set of all totally
maximal isotropic subspace of A i[�] with respect to the Weil pairing associated
with Li . Here, we use the same index T as W(�) defined before. Then the group
RAi ∶= Aut((A i ,Li))/{±1} acts on LG(�) since each element there preserves the
polarization. As in (2.16), we also have the decomposition

LG(�) = ∐
t∈T′

ORA i (Ct).

Suppose Γx i ZK corresponds to w i = [(A i ,Li , ϕA i )] under (2.17).

Proposition 2.12 Keep the notation being as above. The followings holds.
(1) The pullback of ϕA i induces an identification between LGi(�) and W(�).
(2) Suppose Ct ∈ LGi(�) corresponds to gt ZK ∈ W(�) for t ∈ T under the above iden-

tification. Let fC t ∶ (A i ,LA i ) �→ (A i ,C t ,LA i ,Ct
) be the (�)g-isogeny defined by Ct

and suppose [(A i ,C t ,L(A i ,Ct
, fC t ○ ϕA i )] = w j for some j ∈ {1, . . . , h} and thus fC t

is regarded as an (�)g-isogeny from (A i ,LA i ) to (A i ,LA j). Let f̃C t ∶ (A i ,LA j) �→
(A i ,LA i ) the (�)g-isogeny obtained in Proposition 2.2 for fC t . Then it holds:
• the kernel of f̃ corresponds to g−1

t ZK under the above identification,
• ∣RAi ∣ = ∣Γ̃i ∣,
• ∣ORAi (Ct)∣ = ∣Ox−1

i Γ̃i x i
(gt KZ)∣, ∣ORA j(Ker f̃C t)∣ = ∣Ox−1

j Γ̃j x j
(g−1

t KZ)∣, and

• ∣RA j ∣ ⋅ ∣ORAi (Ct)∣ = ∣RAi ∣ ⋅ ∣ORA j(Ker f̃C t)∣.
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Proof The claim follows from the construction of (2.17) with Lemma 2.9 through
Lemma 2.11. ∎

We remark that the fourth claim of (2) in the above proposition was proved in
Lemma 3.2 of [FS22].

3 A comparison between two graphs

In this section we check, by passing to SSg(p, �, A0 ,L0), that the graph defined
by the special 1-complex Gg(Z[1/�])/GSpg(Q�)/ZGS pg(Q�)GSpg(Z�) is naturally
identified with Jordan–Zaytman’s big isogeny graph in [JZ21].

3.1 Jordan–Zaytman’s big isogeny graph

We basically follow the notation in Sections 7.1 and 5.3 of [JZ21]. The (�)g-isogeny (big)
graph Grg(�, p) due to Jordan–Zaytman for SSg(p) is defined as a directed (regular)
graph where:

• the set of vertices V(Grg(�, p)) is SSg(p) and
• the set of directed edges between two vertices v1 = [(A1 ,L1)] and v2 = [(A2 ,L2)]

is the set of equivalence classes of (�)g-isogenies between (A1 ,L1) and (A2 ,L2).
Here, two isogenies f , h ∶ (A1 ,L1) �→ (A2 ,L2) are said to be equivalent if there
exist automorphisms ϕ ∈ Aut(A1 ,L1) and ψ ∈ Aut(A2 ,L2) such that ψ ○ h = f ○ ϕ.

The case when g = 1 is nothing but Pizer’s graph G(1, p; �) handled in [Piz90].

3.2 The (�-marked) (�)g-isogeny graph

Similarly, the (�-marked) (�)g-isogeny graph GSS
g (�, p) for SSg(p, �, A0 ,L0) is

defined as a directed (regular) graph where:

• the set of vertices V(GSS
g (�, p)) is SSg(p, �, A0 ,L0) and

• the set of edges between two vertices v1 and v2 is the set of equivalence
classes of (�)g-isogenies between corresponding principally polarized super-
special abelian varieties commuting with marking isogenies representing v1
and v2 under the identification. In other words, if v1 and v2 correspond to
[(A1 ,L1 , ϕA1)] and [(A2 ,L2 , ϕA2)] with �-markings ϕA1 ∶ (A0 ,L0) �→ (A1 ,L1)
and ϕA2 ∶ (A0 ,L0) �→ (A2 ,L2) respectively, then an edge from v1 to v2 is an (�)g-
isogeny f ∶ (A1 ,L1) �→ (A2 ,L2).

3.3 The graph defined by the special 1-complex

Put Γ = Gg(Z[1/�]), G = GSpg(Q�), Z = ZGS pg(Q�), and K = GSpg(Z�) for sim-
plicity. We consider the graph associated with the quotient Γ/Sg where Γ = Gg(Z[1/�])
and Sg = GSpg(Q�)/ZGS pg(Q�)GSpg(Z�).

Two elements v1 = Γg1ZK and v2 = Γg2ZK in Γ/G/ZK said to be adjacent if
v2 = Γg1 gt ZK for some t ∈ T where {gt}t∈T is defined in (2.14).
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The graph in question, say BTQ1
g(�, p), is a directed (regular) graph where:

• the set of vertices V(BTQ1
g(�, p)) is Γ/G/ZK and

• the set of directed edges between two vertices v1 = Γg1ZK and v2 = Γg2ZK is
defined by the adjacency condition in the above sense. Namely, an edge from v1
from v2 is gt with t ∈ T such that v2 = Γg1 gt ZK.

3.4 Comparison theorem

Let us keep the notation in this section. We define

RA(v) ∶= {RA(A,L), if v = [(A,L)] ∈ SSg(p) or v = [(A,L, ϕA)] ∈ SSg(p, �, A0 ,L0),
(Γ ∩ xZKx−1)Z/Z , if v = ΓxZK in the case of BTQ1

g(�, p).

Further, we also define

Ker(e) ∶= {Ker( f ), if e is a class of (�)g-isogeny f in the case of SSg(p) or SSg(p, �, A0 ,L0),
gt , if e is an edge defined by gt , t ∈ T in the case of BTQ1

g(�, p).

We will prove the following comparison theorem which plays an important role in our
study.

Theorem 3.1 The identifications (2.12) and (2.13) induce the following graph isomor-
phisms:

Grg(�, p)
(2.12)
∼←� GSS

g (�, p)
(2.13)
∼�→ BTQ1

g(�, p).

Further, the following properties are preserved under the isomorphisms:

• The Hecke action of T(�)geo , T(�)geo
(A0 ,L0)

, or T(�) on each set of the vertices defines
Ng(�)-neighbors of a given vertex.

• Each edge e from v1 to v2 has an opposite ê such that

∣RA(v2)∣ ⋅ ∣ORA(v1)(Ker(e))∣ = ∣RA(v1)∣ ⋅ ∣ORA(v2)(Ker(ê))∣.

Proof As in the claim already, the identifications between the sets of vertices are
given by (2.12) and (2.13). The compatibility of the Hecke operators follows from
Theorem 2.8, and this yields the first property in the latter claim. The remaining
formula follows from Proposition 2.12. ∎

Corollary 3.2 Keep the notation being as above. The random walk matrices for
Grg(�, p), GSS

g (�, p), and BTQ1
g(�, p) coincide each other.

We remark that Theorem 2.8 is insufficient to prove the above corollary, while The-
orem 3.1 tells us more finer information for the relation of the reduced automorphisms
and the multiplicity of each edge.

Remark 3.3 As shown in Theorem 3.1 or Section 3 of [FS22], the group of reduced
automorphisms gives a finer structure of its orbit of a given Lagrangian subspace
defining an (�)g-isogeny. The edges in Figure 1 can be more precise as in the figure
in 7A, page 297 of [KT20].

https://doi.org/10.4153/S0008414X23000676 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000676


1906 Y. Aikawa, R. Tanaka, and T. Yamauchi

4 Bruhat–Tits buildings for symplectic groups

In this and the following chapter, we introduce a more general framework than the
case to which we apply. The purpose is to simplify the notations and to indicate that
the methods we use are applicable in a wider context. The reader may assume that
F = Q� and ϖ = � in the following discussion.

4.1 Symplectic groups revisited for the buildings

Let F be a non-archimedean local field of characteristic different from 2, and let O
be the ring of integers. We fix a uniformizer ϖ and identify the residue field O/ϖO
with a finite field Fq of order q. Further, we denote by F× and O× the multiplicative
groups in F and O, respectively. Let ordϖ be a discrete valuation in F, normalized so
that ordϖ(F×) = Z. For example, we consider the �-adic field Q� for a prime � with
the ring of integers Z�, where � is a uniformizer and the residue field is F� = Z/�Z.

For a positive integer n, let V ∶= F2n be the symplectic space over F equipped with
the standard symplectic pairing ⟨∗, ∗⟩ defined by ⟨v , w⟩ = tvJnw for v , w ∈ F2n . For
V, there exists a basis {v1 , . . . , vn , w1 , . . . , wn} such that ⟨v i , w j⟩ = δ i j and ⟨v i , v j⟩ =
⟨w i , w j⟩ = 0 for all i , j = 1, . . . , n, where δ i j equals 1 if i = j and 0 if i ≠ j, and we
call it a symplectic basis of (V , ⟨∗, ∗⟩). Each choice of a symplectic basis yields an
isomorphism between the isometry group and Spn(F).

Note that the following elements are in GSpn(F):

tλ ∶= diag(1, . . . , 1, λ, . . . , λ) = ( In 0
0 λIn

) for λ ∈ F× .

In the subsequent sections, we consider the projectivized groups: let PSpn(F) and
PGSpn(F) be the groups Spn(F) and GSpn(F)modulo the centers, respectively. If we
naturally identify PSpn(F) with a normal subgroup of PGSpn(F), then the quotient
group PGSpn(F)/PSpn(F) is isomorphic to (Z/2Z) × O×, which is generated by
the images of tλ = diag(1, . . . , 1, λ, . . . , λ) for λ ∈ ϖO×. Similarly, letting PSpn(O) and
PGSpn(O) be the groups Spn(O) and GSpn(O) modulo the centers, respectively, we
consider PSpn(O) as a subgroup in PGSpn(O).

4.2 Bruhat–Tits building: the construction

Let (V , ⟨∗, ∗⟩) be a symplectic space over F of dimension 2n. We define a lattice Λ
in V as a free O-module of rank 2n. Note that if Λ is a lattice, then Λ/ϖΛ is a vector
space over Fq of dimension 2n. We say that a lattice Λ is primitive if ⟨Λ, Λ⟩ ⊆ O where
⟨Λ, Λ⟩ ∶= {⟨v , w⟩ ∣ v , w ∈ Λ}, and ⟨∗, ∗⟩ induces a non-degenerate alternating form on
Λ/ϖΛ over Fq .

Let Λ i for i = 1, 2 be lattices in V, and we say that they are homothetic if Λ1 = αΛ2
for some α ∈ F×. This defines an equivalence relation in the set of lattices in V.
We denote the homothety class of a lattice Λ by [Λ]. Let us define the set Ln of
homothety classes [Λ] of lattices such that there exist a representative Λ of [Λ]
and a primitive lattice Λ0 satisfying that ϖΛ0 ⊆ Λ ⊆ Λ0 and ⟨Λ, Λ⟩ ⊆ ϖO. By the
definition, if [Λ] ∈ Ln , then a representative Λ yields a subspace Λ/ϖΛ0 of Λ0/ϖΛ0
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with some primitive lattice Λ0 such that it is totally isotropic, i.e., the induced non-
degenerate alternating form ⟨∗, ∗⟩ vanishes on Λ/ϖΛ0 in Λ0/ϖΛ0. Further, we define
the incidence relation in Ln and denote by [Λ1] ∼ [Λ2] for two distinct homothety
classes if there exist representatives Λ i of [Λ i] for i = 1, 2 and a primitive lattice Λ0
such that ϖΛ0 ⊆ Λ i ⊆ Λ0 for i = 1, 2, and either Λ1 ⊆ Λ2 or Λ2 ⊆ Λ1 holds.

The Bruhat–Tits building Bn (in short, building) for the group PGSpn(F) (or
Spn(F)) is the clique complex whose set of vertices Ver(Bn) is Ln , i.e., σ ⊂ Ver(Bn)
defines a simplex if any distinct vertices in σ are incident. The building Bn is a
simplicial complex of dimension n; note that each chamber (i.e., a simplex of maximal
dimension) [Λ0], [Λ1], . . . , [Λn] corresponds to a sequence of lattices Λ0 ⊆ Λ1 ⊆
⋅ ⋅ ⋅ ⊆ Λn ⊆ ϖ−1Λ0, where ϖ−1Λ0 is primitive, such that

{0} ⊆ Λ1/Λ0 ⊆ Λ2/Λ0 ⊆ ⋅ ⋅ ⋅ ⊆ Λn/Λ0 ⊆ ϖ−1Λ0/Λ0

forms a complete flag of a maximal totally isotropic subspace Λn/Λ0 in ϖ−1Λ0/Λ0
over Fq .

The group Spn(F) acts on Bn as simplicial automorphisms: let us fix a symplectic
basis {v1 , . . . , vn , w1 , . . . , wn} of (V , ⟨∗, ∗⟩), which we identify with the standard
symplectic space over F. Then the action is defined by [Λ] ↦ [MΛ] for [Λ] ∈ Ver(Bn)
and M ∈ Spn(F), and this action is simplicial since it preserves the incidence relation.
Moreover, this yields the action of the projectivized group PSpn(F) on Bn .

We define the label (or, color) on the set of vertices Ver(Bn). For any lattice Λ,
there exists some γ ∈ GL2n(F) such that γu1 , . . . , γwn form an O-basis of Λ. Let

labn[Λ] ∶= ordϖ(det γ) mod 2n.

Note that this depends only on the homothety class of Λ since det(αγ) = α2n det(γ)
for α ∈ F× and for γ ∈ GL2n(F), and det γ ∈ O× for γ ∈ GL2n(O). Hence, the function
labn ∶ Ver(Bn) → Z/2nZ is well defined and we call labn[Λ] the label of a vertex [Λ] ∈
Ver(Bn). For example, let us consider a sequence of lattices Λ0 , . . . , Λn , where

Λk ∶= Ou1 ⊕ ⋅ ⋅ ⋅ ⊕ Ouk ⊕ Oϖuk+1 ⊕ ⋅ ⋅ ⋅ ⊕ Oϖw1 ⊕ ⋅ ⋅ ⋅ ⊕ Oϖwn for 0 ≤ k < n,
(4.1)

and Λn ∶= Ou1 ⊕ ⋅ ⋅ ⋅ ⊕ Oun ⊕ Oϖw1 ⊕ ⋅ ⋅ ⋅ ⊕ Oϖwn . Then Λ0 ⊆ ⋅ ⋅ ⋅ ⊆ Λn ⊆ ϖ−1Λ0
and ϖ−1Λ0 is primitive, and since the chain Λ1/Λ0 ⊆ ⋅ ⋅ ⋅ ⊆ Λn/Λ0 forms a maximal
totally isotropic flag in ϖ−1Λ0/Λ0 over Fq , the corresponding homothety classes
[Λ0], . . . , [Λn] define a chamber in Bn . In this case, we have that labn[Λk] = 2n − k
mod 2n for 0 ≤ k ≤ n. We call the chamber determined by [Λ0], . . . , [Λn] the funda-
mental chamber C0. Here, we note that labn misses the values 1, . . . , n − 1 in Z/2nZ. It
is known that Spn(F) acts transitively on the set of chambers [Gar97, Section 20.5], i.e.,
every chamber is of the form γC0 for γ ∈ Spn(F). By definition, the action of Spn(F)
preserves the labels on Ver(Bn). It thus implies that the action is not vertex-transitive
for any n ≥ 1.

4.3 Apartments

Let us introduce a system of apartments in the building Bn . See [Gar97, Chapter 20]
and [She07] for basics and more details. A frame is an unordered n-tuple: {λ1

1 , λ2
1 },
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. . . , {λ1
n , λ2

n}, such that each {λ1
i , λ2

i } is an unordered pair of lines which span a two-
dimensional symplectic subspace with the induced alternating form for i = 1, . . . , n,
and

V = V1 ⊕ ⋅ ⋅ ⋅ ⊕ Vn where Vi ∶= λ1
i ⊕ λ2

i and Vi5Vj if i ≠ j,

i.e., ⟨v , v′⟩ = 0 for all v ∈ Vi and all v′ ∈ Vj if i ≠ j. An apartment defined by a frame
{λ1

i , λ2
i } for i = 1, . . . , n is a maximal subcomplex of Bn on the set of vertices [Λ] such

that

Λ =
n
⊕
i=1

(M1
i ⊕ M2

i ) where M j
i is a rank one free O-module in λ j

i for j = 1, 2,

for some (equivalently, every) representative Λ in the homothety class. We define a
system of apartments as a maximal set of apartments.

Following [She07], we fix a symplectic basis {u1 , . . . , un , w1 , . . . , wn} of V and a
uniformizer ϖ in F and lighten the notation: we denote a lattice

Λ = Oϖa1 u1 ⊕ ⋅ ⋅ ⋅ ⊕ Oϖan un ⊕ Oϖb1 w1 ⊕ ⋅ ⋅ ⋅ ⊕ Oϖbn wn for a i , b i ∈ Z, i = 1, . . . , n,

by Λ = (a1 , . . . , an ; b1 , . . . , bn), and the homothety class by [Λ] =
[a1 , . . . , an ; b1 , . . . , bn]. For Λ, we have ⟨Λ, Λ⟩ ⊂ O if and only if ⟨ϖa i u i , ϖb i w i⟩ =
ϖa i+b i ∈ O for all i = 1, . . . , n. This is equivalent to that a i + b i ≥ 0 for all i = 1, . . . , n,
in which case, Λ/ϖΛ is a non-degenerate alternating space with the induced form
over the residue field O/ϖO if and only if a i + b i = 0 for all i = 1, . . . , n.

For the fixed basis, let λ1
i ∶= Fu i and λ2

i ∶= Fw i for i = 1, . . . , n. The frame
{λ1

i , λ2
i }i=1, . . . ,n determines an apartment Σ0 in the building Bn for Spn(F). We call

Σ0 the fundamental apartment. The chain of lattice Λ0 ⊆ ⋅ ⋅ ⋅ ⊆ Λn in (4.1) defines a
chamber C0 in Σ0 containing [Λ0]. The rest of chambers in the apartment Σ0 are
obtained by the action of the affine Weyl group (of type C̃n) attached to the building.

Example 4.1 If n = 2, then we have eight chambers containing vertex [Λ0] = [1, 1; 1, 1]
in a fixed apartment, where the fundamental chamber C0 is defined by the chain

Λ0 = (1, 1; 1, 1) ⊂ (0, 1; 1, 1) ⊂ (0, 0; 1, 1) ⊂ (0, 0; 0, 0) = ϖ−1Λ0 .

4.4 Special vertices and the special 1-complex

For any lattice Λ in a symplectic space (V , ⟨∗, ∗⟩), let us define the dual by Λ∗ ∶= {v ∈
V ∣ ⟨v , w⟩ ∈ O for all w ∈ Λ}. Note that Λ∗ is also a lattice in V. For every α ∈ F×, we
have that (αΛ)∗ = α−1Λ∗, whence the homothety class [Λ∗] depends only on [Λ]. Let
us call a vertex [Λ] in the building Bn self-dual if [Λ∗] = [Λ]. Below we characterize
self-dual vertices in terms of labels – it is essentially proved in [She07, Proposition 3.1];
so we omit the proof.

Lemma 4.2 Fix an integer n ≥ 1. For [Λ] ∈ Ver(Bn), we have that [Λ∗] = [Λ] if and
only if labn[Λ] = 0 or n mod 2n.

For [Λ] ∈ Ver(Bn), let us call [Λ] a special vertex if [Λ∗] = [Λ]. We define the
special 1-complex Sn as a one-dimensional subcomplex ofBn based on the set of special
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vertices

Ver(Sn) ∶= {[Λ] ∈ Ver(Bn) ∣ [Λ∗] = [Λ]},

and 1-simplices (edges) are defined between two incident vertices in Bn (cf. Section
4.1): for [Λ1], [Λ2] in Ver(Sn), we have [Λ1] ∼ [Λ2] if and only if there exist rep-
resentatives Λ1 and Λ2 from [Λ1] and [Λ2], respectively, such that either ϖ−1Λ1 is
primitive and Λ1 ⊆ Λ2 ⊆ ϖ−1Λ1, or the analogous relation where the roles of Λ1 and
Λ2 are interchanged holds. Note that since special vertices are those that are self-dual,
if ϖ−1Λ1 is primitive, then Λ2/Λ1 is a maximal totally isotropic subspace of ϖ−1Λ1/Λ1
overFq . Lemma 4.2 shows that [Λ] ∈ Ver(Sn) if and only if labn[Λ] = 0 or n mod 2n.
The following proposition has been shown in [She07, Proposition 3.6].

Proposition 4.3 For every integer n ≥ 1, the special 1-complex Sn is connected.

We note that GSpn(F) does not act on Bn through the linear transformation of
lattices. Indeed, a vertex of label 2n − 1 mod 2n in the fundamental chamber C0 is
sent by tϖ ∈ GSpn(F) to a vertex of label n − 1 mod 2n, which does not belong to
Ver(Bn). However, restricted on Sn , the group GSpn(F) acts on Sn . Moreover, the
action of GSpn(F) on Sn is vertex-transitive since for tϖ = diag(1, . . . , 1, ϖ, . . . , ϖ) in
GSpn(F), we have that

tϖ[Λ0] = [Λn] where tϖ = ( In 0
0 ϖIn

) and [Λ0], [Λn] ∈ C0 .

Note that tϖ permutes the labels on Ver(Sn). This defines the action of PGSpn(F)
on Sn .

5 Property (T) and spectral gaps

5.1 Property (T)

Let G be a topological group, and let (π,H) be a unitary representation of G, where
we assume that any Hilbert space H is complex. For any compact subset Q in G, let

κ(G , Q , π) ∶= inf {max
s∈Q

∥π(s)φ − φ∥ ∣ φ ∈H, ∥φ∥ = 1},

and further let κ(G , Q) ∶= inf κ(G , Q , π), where the above infimum is taken over
all equivalence classes of unitary representations (π,H) without nonzero invariant
vectors. We call κ(G , Q) the optimal Kazhdan constant for the pair (G , Q). We say
that G has Property (T) if there exists a compact set Q in G such that κ(G , Q) > 0. It
is known that for a local field F, if n ≥ 2, then Spn(F) has Property (T), while if n = 1,
then Sp1(F) = SL2(F) and it fails to have Property (T) [BHV08, Theorem 1.5.3 and
Example 1.7.4].

For any n ≥ 2, PSpn(F) has Property (T) since Spn(F) does [BHV08, Theo-
rem 1.3.4]. Similarly, for any n ≥ 2, the group PGSpn(F) has Property (T) since
PGSpn(F)/PSpn(F) admits a finite invariant Borel regular measure (see Section 4.1
and [BHV08, Theorem 1.7.1]). (We note that for any n ≥ 1, the group GSpn(F) does
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not have Property (T) because it admits a surjective homomorphism onto Z [BHV08,
Corollary 1.3.5].)

We say that a subset Q of G is generating if the sub-semigroup generated by Q
coincides with G. If G has Property (T) and Q is an arbitrary compact generating set
of G (provided that it exists), then κ(G , Q) > 0 [BHV08, Proposition 1.3.2]. We will
construct an appropriate compact generating set in the following.

5.2 A random walk operator

In this section, fix an integer n ≥ 1. Recall that K = PGSpn(O), and letting o ∶= [Λ0],
we identify K with the stabilizer of o in PGSpn(F). Let a ∶= [tϖ] ∈ PGSpn(F), and let
us choose ξ i ∈ PSpn(F)(⊂ PGSpn(F)) for i = 0, 1, . . . , n + 1 such that ξ0 ∶= id and for
i = 1. . . . , n + 1 each ξ i projects onto the reflection s i in the affine Weyl group acting
on the fundamental apartment Σ0.

Let us define a subset Ω ∶= {kξ i ak′ , k(ξ i a)−1k′ ∣ k, k′ ∈ K , i = 0, . . . , n + 1} in
PGSpn(F), where we simply write

Ω = KΩ0K , where Ω0 ∶= {ξ0a, . . . , ξn+1a, (ξ0a)−1 , . . . , (ξn+1a)−1}.

Note that Ω is compact and symmetric, i.e., x ∈ Ω if and only if x−1 ∈ Ω. Let ν be a Haar
measure on K normalized so that ν(K) = 1. Let us define the probability measure μ
on PGSpn(F) as the distribution of kζk′ where k, k′, and ζ are independent and k, k′
are distributed according to ν and ζ is uniformly distributed on {ξ i a, (ξ i a)−1 ∣ i =
0, . . . , n + 1}. In other words,

μ = ν ∗ Unif Ω0 ∗ ν, where Unif Ω0 ∶=
1

2(n + 2)
n+1
∑
i=0

(δξ i a + δ(ξ i a)−1) ,

and δx denotes the Dirac distribution at x. We write the convolution μ1 ∗ μ2 for two
probability measures μ1 , μ2 on a group G. Note that the support of μ is Ω. If we define
the probability measure μ̌ on PGSpn(F) as the distribution of x−1 where x has the law
μ, then the definition of μ implies that μ̌ = μ.

Lemma 5.1 We have the following:
(1) The set Ω generates PGSpn(F) as a semigroup.
(2) Fix an integer n ≥ 1. The double coset K/Ω/K is represented by a finite set

Ω0 = {ξ i a, (ξ i a)−1 , i = 0, . . . , n + 1} and

min
KγK∈K/Ω/K

μ(KγK) = 1
2(n + 2) .

Moreover, if γ is distributed according to μ on PGSpn(F), then γo is uniformly
distributed on the set of incident vertices to o = [Λ0] in Sn .

Proof Let us show (1). If we let K0 ∶= PSpn(O) and define Δ in K(= PGSpn(O))
as the image of {tλ ∣ λ ∈ O×}, then since K contains K0 and Δ, and Ω contains
K{a, a−1}K, the set Ω ⋅ Ω contains ⋃n+1

i=1 K0 ξ i K0 as well as K (and thus K0 and Δ).
The group K0 acts on the set of apartments containing o = [Λ0] transitively, and
this implies that ⋃n+1

i=1 K0 ξ i K0 generates PSpn(F) as a semigroup, which follows by
looking at the induced action of reflections on apartments (cf. Section 4.3). Since the
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quotient PGSpn(F) modulo PSpn(F) is generated by the images of {a, a−1} and Δ
(cf. Section 4.1), we conclude that Ω generates PGSpn(F) as a semigroup.

Let us show (2). The first claim follows since Ω = KΩ0K and the definition of μ
shows that μ yields the uniform distribution on K/Ω/K. Concerning the second claim,
in the fundamental apartment Σ0, we note that ξ i ao = tϖ o if i ≠ 1 and ξ1ao = s1 tϖ o,
and (ξ i a)−1o = t−1

ϖ o if i ≠ n + 1 and (ξn+1a)−1o = s∗tϖ o where s∗ is a product of
s1 , s2 , . . . , sn with some repetitions; we note that such an element s∗ fixes o since it
belongs to the spherical Weyl group. Furthermore, K0(= PSpn(O)) acts on the set
of apartments containing o and if we apply k whose distribution is the normalized
Haar measure on K(= PGSpn(O)) to an incidence vertex v of o, then kv is uniformly
distributed on the incident vertices of o. This implies the claim. ∎

For simplicity of notation, let G ∶= PGSpn(F) in the following discussion. Recall
that Ver(Sn) = Go (cf. Section 4.3). Let us denote by �2(Sn) the Hilbert space of
square-summable complex-valued functions on Ver(Sn) equipped with the inner
product ⟨φ, ψ⟩ ∶= ∑v∈Ver(Sn) φ(v)ψ(v) for φ, ψ ∈ �2(Sn). Let us define an operator
Aμ ∶ �2(Sn) → �2(Sn) by

Aμ φ(ξo) = ∫
G

φ(ξγo)dμ(γ) for ξ ∈ G .

Note that Aμ is well defined by the definition of μ since Ver(Sn) = Go and K is the
stabilizer of o. Lemma 5.1(2) shows that Aμ is the normalized adjacency operator on
Sn . Since μ̌ = μ, the operatorAμ is self-adjoint on �2(Sn). Similarly, if we define Aμ∗t ∶
�2(Sn) → �2(Sn) in the same way with respect to the tth convolution power μ∗t of μ,
then we have that by induction At

μ = Aμ∗t for all positive integer t ≥ 1.
Let us consider any closed subgroup Γ of G such that Γ acts on Sn from left with

a compact quotient space Γ/Sn , where the action is given by (γ, v) ↦ γv for γ ∈ Γ
and v ∈ Sn . Since Γ acts on Sn by simplicial automorphisms (as PGSpn(F) does), the
quotient Γ/Sn naturally admits a finite (unoriented) graph structure induced from Sn .
Let us denote the finite graph by the same symbol Γ/Sn . Note that sinceSn is connected
by Proposition 4.3, the graph Γ/Sn is connected for any such Γ. Here, however, we do
not assume that Γ is torsion-free; thus, the graph Γ/Sn may have loops and not regular.
Although Sn admits a bipartite graph structure, Γ/Sn is not necessarily bipartite unless
Γ factors through PSpn(F).

For each v ∈ Sn , let Γv ∶= {γ ∈ Γ ∣ γv = v}. Note that Γv is finite and ∣Γv ∣ is indepen-
dent of the choice of representatives for v ∈ Γ/Sn . Let us define �2(Γ/Sn) the space of
complex-valued functions on Γ/Sn equipped with the inner product defined by

⟨φ, ψ⟩ ∶= ∑
v∈Γ/Sn

φ(v)ψ(v) 1
∣Γv ∣

for φ, ψ ∈ �2(Γ/Sn).

The group Γ acts on �2(Sn) by φ ↦ φ ○ γ−1 for γ ∈ Γ and φ ∈ �2(Sn), and since this
Γ-action and Aμ on �2(Sn) commute, the following operator AΓ,μ∗t on �2(Γ/Sn) is
well defined for all positive integer t:

AΓ,μ∗t φ(Γξo) = ∫
G

φ(Γξγo)dμ∗t(γ) for Γξo ∈ Γ/Sn and φ ∈ �2(Γ/Sn).
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We have that At
Γ,μ = AΓ,μ∗t for all integer t ≥ 1, and AΓ,μ is self-adjoint, i.e.,

⟨AΓ,μ φ, ψ⟩ = ⟨φ,AΓ,μψ⟩ for φ, ψ ∈ �2(Γ/Sn). In other words, the operator AΓ,μ
defines a Markov chain on Γ/Sn reversible with respect to the measure 1/∣Γv ∣ for each
vertex v.

5.3 Spectral gap

We normalize the Haar measure on G in such a way that K has the unit mass. Let
L2(Γ/G) denote the complex L2-space with respect to the (right) Haar measure
for which each double coset ΓξK has the mass 1/∣ξ−1Γξ ∩ K∣. Note that the mass
coincides with 1/∣Γξo ∣ since Γξo = Γ ∩ ξKξ−1. We consider L2(Γ/G)K the subspace of
K-fixed vectors in L2(Γ/G) and naturally identify it with �2(Γ/Sn) (including the
inner product). Let us define the unitary representation π of G on L2(Γ/G) by

π(γ)φ(Γξ) = φ(Γξγ) for φ ∈ L2(Γ/G) and ξ, γ ∈ G .

Note that φ ∈ L2(Γ/G)K if and only if π(k)φ = φ for all k ∈ K.
Let

TΓ(γ)φ(Γξ) ∶= ∫
K

φ(Γξkγ) dν(k) for φ ∈ L2(Γ/G) and γ ∈ G ,

where we recall that ν is the normalized Haar measure on K.

Lemma 5.2 For every n ≥ 1, and for all φ ∈ L2(Γ/G)K , we have that

AΓ,μ φ = 1
2(n + 2) ∑

γ∈Ω0

TΓ(γ)φ.

Moreover, for all γ ∈ Γ and for all φ1 , φ2 ∈ L2(Γ/G)K , we have that ⟨TΓ(γ)φ1 , φ2⟩ =
⟨π(γ)φ1 , φ2⟩.
Proof Let us show the first claim. Recalling that μ = ν ∗ Unif Ω0 ∗ ν, for
φ ∈ L2(Γ/G)K and ξ, γ ∈ G, we have that

AΓ,μ φ(Γξ) = ∫
G

φ(Γξγ) dμ(γ) = ∫
K×Ω0×K

φ(Γξk1γk2) dν(k1)dUnif Ω0(γ)dν(k2)

= 1
2(n + 2) ∑

γ∈Ω0

∫
K

φ(Γξkγ) dν(k) = 1
2(n + 2) ∑

γ∈Ω0

TΓ(γ)φ(Γξ),

where the third equality follows since φ is a K-fixed vector and the last identity follows
from the definition of TΓ(γ). Hence, the first claim holds. The second claim follows
from a formal computation based on the right-invariance of the Haar measure on Γ/G,
so we omit the details. ∎

Let us denote by �2
0(Γ/Sn) the orthogonal complement to the space of constant

functions in �2(Γ/Sn). Note that AΓ,μ acts on �2
0(Γ/Sn) since the operator is self-

adjoint. Given the right representation (π, L2(Γ/G)), letting L2
0(Γ/G) be the orthog-

onal complement to constant functions in L2(Γ/G), we define (π0 , L2
0(Γ/G)) by

restricting π to L2
0(Γ/G). The space �2

0(Γ/Sn) is identified with the space of K-fixed
vectors in L2

0(Γ/G) under the identification between �2(Γ/Sn) and L2(Γ/G)K . It is
crucial that π0 has no nonzero invariant vector.
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Proposition 5.3 For every n ≥ 1, let Γ be a closed subgroup of G = PGSpn(F) such that
Γ/Sn is finite. For all φ ∈ �2

0(Γ/Sn) with ∥φ∥ = 1, we have that

⟨(I −AΓ,μ)φ, φ⟩ ≥ 1
4(n + 2)κ(G , Ω)2 ,

where κ(G , Ω) is the optimal Kazhdan constant for the pair (G , Ω).

Proof For φ ∈ �2
0(Γ/Sn), it follows that ⟨(I −AΓ,μ)φ, φ⟩ equals

⟨φ, φ⟩ − 1
2(n + 2) ∑

γ∈Ω0

⟨π(γ)φ, φ⟩ = 1
4(n + 2) ∑

γ∈Ω0

∥φ − π0(γ)φ∥2 ,

where identifying φ with a K-fixed vector, we have used Lemma 5.2, and the equality
follows since π0 is the restriction of π and

∥φ − π0(γ)φ∥2 = ⟨φ, φ⟩ − ⟨π0(γ)φ, φ⟩ − ⟨π0(γ−1)φ, φ⟩ + ⟨π0(γ)φ, π0(γ)φ⟩,
and π0(γ) is unitary, and furthermore γ ∈ Ω0 if and only if γ−1 ∈ Ω0. Moreover, we
have that

∑
γ∈Ω0

∥φ − π0(γ)φ∥2 ≥ max
γ∈Ω0

∥φ − π0(γ)φ∥2 = max
γ∈Ω

∥φ − π0(γ)φ∥2 ,

which follows from the first claim of Lemma 5.1(2) and since φ is a K-fixed vector and
π0 is a unitary representation. Therefore, we obtain

⟨(I −AΓ,μ)φ, φ⟩ ≥ 1
4(n + 2) max

γ∈Ω
∥φ − π0(γ)φ∥2 .

Since π0 has no nonzero invariant vector, we conclude the claim. ∎
Theorem 5.4 If we fix an integer n ≥ 2, then there exists a positive constant cn > 0
such that for any closed subgroup Γ in PGSpn(F) with finite quotient Γ/Sn , we have
λ2(ΔΓ,μ) ≥ cn , where ΔΓ,μ = I −AΓ,μ .

Proof Since we have that λ2(ΔΓ,μ) = inf φ∈�2
0(Γ/Sn), ∥φ∥=1⟨(I −AΓ,μ)φ, φ⟩, Proposi-

tion 5.3 implies that λ2(ΔΓ,μ) ≥ (4(n + 2))−1κ(G , Ω)2. Furthermore, κ(G , Ω) > 0
since G = PGSpn(F) has Property (T) if n ≥ 2 and Ω is a compact generating set of G
by Lemma 5.1(1) (cf. Section 5.1). Letting cn ∶= (4(n + 2))−1κ(G , Ω)2, we obtain the
claim. ∎

The proof of Theorem 1.1 now follows from Theorem 5.4 with Γ applied to
Gg(Z[1/�]) modulo the center and Corollary 3.2.

5.4 An explicit lower bound for the spectral gap

Appealing to the results by Oh [Oh02], we obtain explicit lower bounds for the second
smallest eigenvalues of Laplacians on the graphs GSS

g (�, p) for g ≥ 2.

Corollary 5.5 For every integer g ≥ 2, for all primes � and p with p ≠ �,

λ2 (GSS
g (�, p)) ≥ 1

4(g + 2)
⎛
⎝

� − 1
2(� − 1) + 3

√
2�(� + 1)

⎞
⎠

2

.
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Proof We keep the notations in the preceding subsections and put n = g. Let F ∶= Q�.
Note that Ω2 contains K and a2. The definition of the optimal Kazhdan constant shows
that

κ (G , Ω2) ≥ κ (PSpn(Q�), Ω2 ∩ PSpn(Q�)) .

Furthermore, the right-hand side is at least κ (Spn(Q�), Ω∗), where

Ω∗ ∶= {Spn(Z�), s} and s ∶= diag(�−1 , . . . , �−1; �, . . . , �).

Applying [Oh02, Theorem 8.4] to Spn(Q�) for n ≥ 2 with a maximal strongly orthog-
onal system L in the case of Cn(n ≥ 2) [Oh02, Appendix], we have that

κ (Spn(Q�), Ω∗) ≥ χL(s) =
√

2(1 − ξL(s))√
2(1 − ξL(s)) + 3

,

where

ξL(s) ≤ 2(� − 1) + (� + 1)
�(� + 1) = 3� − 1

�(� + 1) .

Hence, we have for all n ≥ 2 and all prime �,

κ (Spn(Q�), Ω∗) ≥
√

2(� − 1)√
2(� − 1) + 3

√
�(� + 1)

,

and since κ(G , Ω) ≥ (1/2)κ(G , Ω2), we obtain

κ(G , Ω) ≥ � − 1
2(� − 1) + 3

√
2�(� + 1)

.

Combining the above inequality with cn = (4(n + 2))−1κ(G , Ω)2 in the proof of
Theorem 5.4, we conclude that for all n ≥ 2 and all prime �,

λ2(ΔΓ,μ) ≥
1

4(n + 2)
⎛
⎝

� − 1
2(� − 1) + 3

√
2�(� + 1)

⎞
⎠

2

.

Applying to the case when Γ is Gg(Z[1/�]) modulo the center together with Corol-
lary 3.2 yields the claim. ∎
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