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Understanding the mechanism of hydrodynamic cloud cavitation is crucial to reducing
noise, vibration and wear. Recent studies have clarified the physics of two distinct
formation mechanisms of cloud cavitation. Ganesh et al. (J. Fluid Mech., vol. 802,
2016, pp. 37–78) identified the propagation of bubbly shockwaves as a cloud detachment
mechanism. Pelz et al. (J. Fluid Mech., vol. 817, 2017, pp. 439–454) explained the influence
of Reynolds number and cavitation number on asymptotic growth of the cavity sheet and
its periodic shedding caused by re-entrant flow. In this paper the two mechanisms are
set in relation to each other. For this, we show firstly that the transition from re-entrant
flow to shockwave-driven cloud cavitation is given by a kinematic condition, namely the
asymptotic sheet length equates to the chord length, â = L. For â > L shockwave-driven
cloud cavitation dominates. For â < L re-entrant flow-driven cloud cavitation dominates.
As the cavitation number decreases, the closure region of the cavity sheet reaches the
trailing edge of the hydrofoil, identifying the trailing edge as a trigger for condensation
shockwaves, particularly as re-entrant flow-driven cavitation diminishes. Since the sheet
length is an implicit function of the cavitation number, the kinematic condition â/L = 1
results in a critical cavitation number σII,III that is calculated analytically and validated by
experiments. Secondly, we derive the relationship between the Strouhal number and the
asymptotic sheet length for re-entrant flow-driven cloud cavitation. The model presented
here is thoroughly validated by experiments.

Key words: multiphase flow, cavitation, bubble dynamics

1. Introduction

Cloud cavitation is among the most severe manifestations of cavitation, specifically
concerning its potential to cause damage. It refers to the periodic detachment and
advection of large-scale cavitation vortices, observed in pumps, ship propellers, nozzles,
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etc. associated with unsteadiness leading to noise and potentially to vibration, efficiency
drop and erosion.

Cloud cavitation has four phases: (i) nucleation near the leading edge of the hydrofoil,
(ii) asymptotic sheet growth to a sheet length â, (iii) detachment of cavitation clouds, i.e.
bubbly vortices, and advection due to the bulk flow, and (iv) cloud collapse.

Over many years, the re-entrant flow – a thin and viscous liquid film flow developing
at the cavity closure region, which flows beneath the cavity sheet – was believed to be
the sole mechanism driving cloud cavitation: Knapp (1955) firstly reported periodic cloud
cavitation due to the re-entrant flow, followed by many notable studies (Furness & Hutton
1975; Lush & Skipp 1986; Le, Franc & Michel 1993; De Lange & De Bruin 1998; Pham,
Larrarte & Fruman 1999; De Graaf, Brandner & Pearce 2017; Pelz, Keil & Groß 2017;
Smith et al. 2020). Kawanami et al. (1997) demonstrated in their experiments on the flow
around a hydrofoil the existence of the re-entrant flow using dye injections as well as
an obstacle to hinder the re-entrant flow reaching the leading edge, suppressing cloud
cavitation. Callenaere et al. (2001) reported that the development of the re-entrant flow
depends on the adverse pressure gradient and the thickness relation between the cavity
and the re-entrant flow. Re-entrant flow-driven cloud cavitation occurs when the re-entrant
flow reaches the cavity leading edge and breaks through the cavity sheet. The fundamental
cloud shedding frequency associated with the re-entrant flow is known to decrease with
decreasing cavitation number for otherwise constant flow conditions (Arndt et al. 2000;
Kjeldsen, Arndt & Effertz 2000; Dular & Bachert 2009; Smith et al. 2020; Hatzissawidis,
Ludwig & Pelz 2021). This happens because the asymptotic sheet length becomes larger;
as a result, the sheet takes more time to develop, and the re-entrant flow needs to travel
a longer distance. The asymptotic sheet length, as introduced by Pelz et al. (2017), refers
to the theoretical sheet length that would be reached over infinite time, i.e. as t → ∞,

a(t) → â.
Apart from the re-entrant flow, there is a second mechanism for cloud cavitation at low

cavitation number, namely the propagation of shockwaves. Shockwaves in bubbly flows
are associated with a severe drop in the speed of sound of a liquid–gas bubbly mixture.
Reisman, Wang & Brennen (1998) laid the groundwork for recognising the critical role
of shockwaves in cloud cavitation, although they had been posited decades earlier by
Jakobsen (1964).

Ganesh, Makiharju & Ceccio (2016) firstly described in detail shockwave-driven cloud
cavitation in a nozzle with a wedge geometry using X-ray densitometry and high-speed
visualisation. They associated the transition from re-entrant flow-driven cavitation to
shockwave-driven cavitation with a critical Mach number. This investigation initiated
experimental (Wu, Maheux & Chahine 2017; Jahangir, Hogendoorn & Poelma 2018; Wu,
Ganesh & Ceccio 2019) as well as numerical studies (Budich, Schmidt & Adams 2018;
Trummler, Schmidt & Adams 2020) regarding shockwaves in cloud cavitation.

The transition between the two regimes, which manifests as an abrupt change in the
dynamics between a high-frequency and low-frequency shedding, was identified by Arndt
et al. (2000) and Kjeldsen et al. (2000) for the flow around a NACA 0015 hydrofoil, and has
also been reported by Leroux, Coutier-Delgosha & Astolfi (2005) and recently by Jahangir
et al. (2018), Smith et al. (2020) and Bhatt, Ganesh & Ceccio (2023). The high-frequency
shedding was associated with the re-entrant flow, the low-frequency with shockwaves, as
first reported by Arndt et al. (2000).

Recent and insightful experimental studies about a NACA 0015 hydrofoil conducted
by Bhatt et al. (2023) are consistent with the findings in this study. They have revealed
a smooth transition, wherein re-entrant flow and shockwaves manifest with a specific
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Figure 1. Schematic overview of the three cloud shedding mechanisms: I sheet cavitation, II re-entrant flow
driven and III shockwave driven.

probability expressed as a likelihood function over the cavitation number. At lower
cavitation numbers, there is an increased probability of the occurrence of shockwaves.

Despite recent experimental and numerical activities, there is still a lack of knowledge
regarding the transition from re-entrant flow-driven cavitation to shockwave-driven
cavitation. The primary question addressed in the current study is: What is the condition
that causes the transition from shockwave-driven to re-entrant flow-driven cloud cavitation
for lifting surfaces? Our hypothesis is that the transition occurs if â = L, i.e. when the
closure region of the cavity sheet hits the hydrofoil’s trailing edge of chord length L.

To address this question and to validate the hypothesis, we first draw a rough picture
in § 2 for the transition mechanisms and dynamics about a hydrofoil. By using the
condition â/L = 1, we identify a critical cavitation number, where the transition from
re-entrant flow-driven cloud cavitation to shockwave-driven cloud cavitation occurs, § 2.1.
We further predict the Strouhal number for the re-entrant flow-driven cloud cavitation from
the sheet velocity and re-entrant flow dynamics described by a second-order nonlinear
ordinary differential equation in § 2.2. After deriving the physical models, we introduce the
experimental set-up in § 3 and conduct an experimental validation in § 4. The conclusions
are summarised in § 5.

2. Cloud cavitation dynamics and physical modelling

A schematic representation delineating the mechanisms of shedding and transition is
illustrated in figure 1. The transition from sheet cavitation, regime I, to re-entrant
flow-driven cloud cavitation, regime II, is examined by Pelz et al. (2017). The present study
deals with the transition from regime II to shockwave-driven cloud cavitation, regime III.

In this study, we consider the flow about a hydrofoil. The velocity and static pressure
at infinity are denoted by U∞ and p∞, respectively. The operation point is given by the
cavitation number, σ := 2 (p∞ − pv)/�U2∞, where pv is the vapour pressure and � is the
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density of water, and the Reynolds number, Re := U∞L0/ν, where ν is the kinematic
viscosity of water. The shape of the hydrofoil, i.e. NACA 0015 and the incidence α,
give the pressure distribution along the suction side for the non-cavitating hydrofoil
cp(x/L0) := 2( p(x/L0) − p∞)/�U2∞ with p(x/L0) being the static pressure along the
hydrofoil’s surface. We distinguish between the nominal L0 and the real chord length
L, L < L0, due to manufacturing reasons regarding the trailing edge as usual, cf. figure 1.
We experience the different cavitation regimes as the static pressure p∞ and hence the
cavitation number σ at constant Reynolds number is reduced. At high cavitation numbers,
a cavitation sheet is formed. This sheet is attached to a line near the leading edge, and is
quasi-steady in the time average. It initiates as microscopic patches close to the leading
edge and evolves into a macroscopic sheet, where small-scale horseshoe vortices are shed
due to interfacial instabilities, cf. Brandner et al. (2010). This regime I is known as sheet
cavitation. A further reduction of the cavitation number, leading to the surpassing of the
critical value σI,II, results in a well-defined periodic cloud shedding. This regime II is
known as re-entrant flow-driven cloud cavitation with â < L0. Pelz et al. (2017) showed
that σI,II is a function of Reynolds number and surface roughness.

From the point of view of dimensional analysis, the asymptotic sheet length â is
a function of the cavitation number σ , the dimensionless nucleation rate f0R0/U0
( f0, R0 and U0 are the nucleation rate, the initial bubble size at the cavity leading
edge and the fluid velocity at the cavity interface, U0 = U∞

√
1 + σ , respectively),

and the shape that encompasses all dimensionless length scales of the body, i.e.
shape = {α, NACA0015}, fully considered by cp(x/L0). Hence, the dimensional analysis
yields â/L0 = fn(σ, f0R0/U0, shape) or implicitly 0 = Fn(σ, f0R0/U0, cp(â/L0)). The
abbreviations fn and Fn are arbitrary explicit and implicit functions, respectively. Aligning
with this, Pelz et al. (2017) derived the implicit expression of the asymptotic sheet length
as

cp(â/L) ≈ 1.67
(

f0R0

U0

)2

− σ. (2.1)

This simple model is not only valid for a nozzle but also for flow about lifting surfaces
such as the NACA 0015 hydrofoil, as the comparison with the experimental data in this
work shows, cf. figure 2(b). As this paper further shows, the model also provides access
to the critical cavitation number, which characterises the transition from regime II to III,
cf. § 2.1.

The large kinematic scales in regime II are the cloud shedding frequency f , and the sheet
length â. Assuming that the frequency f is an explicit function of the dependent variable â
and only implicitly dependent on the independent variables σ, f0R0/U0 and U∞, as well as
the shape of the hydrofoil, we obtain St := f L0/U∞ = fn(L0/â, shape). The first term of
a Taylor expansion of this relation yields St ≈ L0/âC(shape), where C is only a function
of the body’s shape. In fact this relation has been well validated by our experiments, see
figure 2(a,c), and those of others, cf. § 1.

Regime III or shockwave-driven cloud cavitation occurs when the cavitation number
σ is lowered further: the sheet reaches the trailing edge, â/L = 1, and a shockwave is
initiated, figure 1. It should be mentioned that in regime III a re-entrant flow may also
contribute to a premature cloud shedding, although the main shedding cycle is driven by
a shockwave (Budich et al. 2018; Venning, Pearce & Brandner 2022; Zhang et al. 2022).
Furthermore, an advecting cloud from the previous cycle may influence the sheet growth
or initiate a shockwave leading to an extinction of the growing cavity sheet, cf. Bhatt
et al. (2023). However, the primary mechanism for the transition from regime II to III is
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Figure 2. (a) Welch spectrogram of the hydrophone signal; (b) experimentally determined sheet length
compared with the analytical model from (2.1); (c) Strouhal number vs cavitation number for the
shockwave-driven and re-entrant flow-driven cloud cavitation. The dashed vertical lines represent the critical
cavitation numbers σII,III and σI,II. The solid line is given by (2.3) with C = 0.42 experimentally determined.
(d) Sheet growth velocity. The Jupyter notebook for producing the figure can be found at https://www.
cambridge.org/S0022112024012242/JFM-Notebooks/files/figure_2/figure_2.ipynb.

attributed to the kinematic condition mentioned above, supported by the physical model
and the experimental validation below.

Until now, shockwave-driven cloud cavitation, regime III, was described to be triggered
by an abrupt stagnation in cavity growth. Ganesh (2015) came to this conclusion by the
analysis of a nozzle flow which is not characterised by such a distinct typical length as
is the case for the NACA 0015 hydrofoil with chord length L used in this study. Budich
et al. (2018) carried out a numerical study for the same set-up and associate the initiation
of the shock with the adverse pressure gradient. However, in the present study, there is
a clear kinematic condition â = L for the named transition. This hypothesis, in fact, is
confirmed by the experimental model validation presented in this paper. The model is
derived by predicting the sheet length â from which the critical cavitation number, σII,III,
is determined.

2.1. Critical cavitation number σII,III

The critical cavitation number σII,III defines the transition from re-entrant flow-driven
cavitation (II) to shockwave-driven cavitation (III) for a lifting surface. When the condition
â = L is met, there is an abrupt stagnation of sheet growth, triggering a shockwave, and
leading to a full extinction of the cavity sheet. From the asymptotic sheet length from (2.1),
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and the condition â = L, the critical cavitation number σII,III yields

cp

(
â
L0

= L
L0

)
= 1.67

(
f0R0

U0

)2

− σII,III or σII,III = cp

(
L
L0

)
− 1.67

(
f0R0

U0

)2

.

(2.2a,b)

Due to the Kutta condition, there is a stagnation point in irrotational flow at the trailing
edge, i.e. cp(1) = 1. However, from L/L0 < 1, the discontinuous trailing edge and viscous
calculation (Drela 1989) follows cp(L/L0) /= 1.

The order of magnitude of the non-dimensionalised nucleation rate is ( f0R0/U0)
2 ∼ 1,

taking into account values for the nucleation rate, f0 ∼ 105 Hz, the initial bubble radius,
R0 ∼ 100 µm, and a typical velocity of U0 ∼ 10 m s−1. These values align with the
numerical study conducted by Hsiao, Ma & Chahine (2017) and the experimental study
by Pelz et al. (2017) and Groß & Pelz (2017).

Groß & Pelz (2017) conducted a study on diffusion-driven nucleation in a generic test
rig, operating at high cavitation numbers. They deduced and validated that the nucleation
frequency is proportional to the supersaturation of the liquid, gas solubility and the Weber
and Péclet numbers to the powers of 3/4 and 1/3, respectively.

In the present study, alongside diffusion, evaporation also plays a role. A nucleation
rate and an initial bubble size cannot be derived from experiments, since the physics
of the nucleation mechanism at the cavity leading edge are considerably more
complex, particularly for hydraulically smooth surfaces where instabilities, such as
spanwise-moving cells, develop in the separated boundary layer, cf. Brandner et al. (2010)
and Venning et al. (2022).

van Rijsbergen (2016) offers a thorough overview of potential nucleation mechanisms
near the leading edge. In our study, we focus on the inception of surface-bound nuclei
at high incidence angles. We conceptualise the nucleation mechanism as parallel streaks,
initiating near the leading edge, although we recognise that the underlying physics are
more complex, involving boundary layer effects and hydrodynamic instabilities, as detailed
by Brandner et al. (2010). The dimensionless nucleation rate used here can be interpreted
as a rate of vapour and air production. Despite being a coarse and simple model, the
predicted sheet length shows good agreement with the results, as discussed in the context
of external flows in this study and internal flows in the study by Pelz et al. (2017).

2.2. Strouhal number
In the following we derive an analytical model for the constant C being only dependent on
the shape of the body; C is also known as the Strouhal number based on the asymptotic
sheet length and has been experimentally found to be within 1/4 to 2/5 (Kawanami et al.
1997; Pham et al. 1999; Callenaere et al. 2001; Arndt 2012) and for three-dimensional
hydrofoils approximately 1/5 (Foeth 2008).

The period of a shedding cycle τ̃ = 1/f in re-entrant flow-driven cloud cavitation
is determined by the cumulative time needed for sheet growth τ̃s and the subsequent
development of the re-entrant flow τ̃r: τ̃ = τ̃s + τ̃r. Non-dimensionalising the times by
the advection time, i.e. τ := τ̃U∞/â, and comparing with the dimensional analysis in § 2
yields

St := f L0

U∞
= 1

τ̃

L0

U∞
= 1

τ̃s + τ̃r

L0

U∞
= 1

τs + τr

L0

â
= C(shape)

L0

â
. (2.3)

Thus, the shape constant reads C(shape) = 1/(τs + τr). We now derive the
non-dimensionalised times τs and τr. The time required for the cavity sheet to reach its
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asymptotic value â is τ̃s = â/ȧ and thus τs = U∞/ȧ, with ȧ being the average sheet growth
velocity derived experimentally. The time needed for the re-entrant flow can be computed
from the second-order nonlinear ordinary differential equation governing the re-entrant
flow dynamics, see Pelz et al. (2017).

We solve the differential equation for the re-entrant flow coordinate ξ(t) which
originates from the cavity closure against the flow direction, cf. figure 1. The initial
conditions are ξ(0) = 0 and ξ̇(0) = U0 = U∞

√
1 + σ . Here, U0 is the initial re-entrant

flow velocity from irrotational flow theory. Further, the height h0 of the re-entrant
flow is required, usually being between 15 % and 35 % of the cavity sheet thickness
(Callenaere et al. 2001). We determine h0 from the high-speed images as 15 % of the
cavity sheet thickness, cf. Pelz et al. (2017). Upon fulfilling the critical condition ξ/â = 1,
the re-entrant flow reaches the leading edge, which results in cloud shedding. This time
instant is τ̃r and thus non-dimensionalised τr = τ̃rU∞/â. We should mention that we did
not observe premature break-off, which occurs when the re-entrant flow penetrates the
sheet before reaching the cavity leading edge, as described by Knapp (1955). Instead, the
re-entrant flow reached the cavity leading edge, leading to cloud formation and shedding.

Even though the model is coarse, it predicts C well to be 0.34 for the given shape of the
NACA 0015 hydrofoil, which is in the above-mentioned range known from experiments.
The experimentally determined value reported in this paper, 0.42, is also of the same order
of magnitude, cf. figure 2(c).

3. Experimental set-up

To validate the derived models, experiments were conducted in the high-speed water
cavitation tunnel at the Chair of Fluid Systems, Technische Universität Darmstadt. The
tunnel is a closed-loop circuit where the pressure can be varied from nearly vacuum up
to 1600 kPa, cf. Hatzissawidis et al. (2021). Flow velocities up to U∞ = 30 m s−1 can be
reached. The test section has a rectangular cross-sectional area with a height of 70 mm,
a depth of 25 mm and a length of 462 mm. To ensure optical accessibility, the walls are
made of acrylic glass. The NACA 0015 hydrofoil is made of stainless steel with a nominal
chord length L0 and real chord length L of 46 mm and 44 mm, respectively. The blockage
ratio in the test section at an incidence of 12◦ is 16.04 %.

The fluid temperature is maintained at T = 23.5 ◦C. The free-stream velocity U∞ in
the test section is determined by measuring the volumetric flow rate using an ABB
ProcessMaster500 FEP511-125D magnetic flow meter. It is kept constant at 16.2 m s−1

throughout the experiments with an uncertainty of 0.3 % of the measured value. The
oxygen content is determined by a VisiFerm DO Arc 120 H0 oxygen sensor and ranges
from 4 to 8 ppm during the experiments.

The pressure p∞ is measured using a Keller PAA-33X absolute pressure transducer
with an uncertainty of 0.1 % of full scale. Tunnel data were received using a National
Instruments (NI) PCIe-6363 card at a sampling rate of 3000 Hz for 20 s. Measurement
uncertainties were estimated according to ISO-GUM (ISO/TMBG Technical Management
Board 2010).

During all the experiments, the Reynolds number was kept constant at 8 × 105 and the
hydrofoil was set at a fixed incidence α of 12◦. The cavitation number σ is varied from
supercavitation, σ = 1, to no cavitation, σ = 5, covering the regimes I, II and III.

Simultaneous acoustic measurements and high-speed recordings with a dual-camera
system were carried out to determine cavity sheet length â and thickness h0, and shedding
frequencies as well as the power spectral density (PSD). A Brüel & Kjær (B&K)
hydrophone type 8103 with a B&K conditioning amplifier type 2650 is flush mounted
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Figure 3. Re-entrant flow dynamics for cavitation numbers in the range between σ = 2 and 4. (a) Solution
of the differential equation in Pelz et al. (2017), (b) the time t+ when the re-entrant flow reaches the
leading edge. The Jupyter notebook for producing the figure can be found at https://www.cambridge.org/
S0022112024012242/JFM-Notebooks/files/figure_3/figure_3.ipynb.

on the sidewall in a chamber. These data were recorded using a NI cDAQ-9189 chassis
with a 16-bit NI 9223 voltage input module at a sampling rate of 200 kHz for a sampling
time of 20 s to obtain clear spectra. The hydrophone signal is used similar to Smith et al.
(2020) to calculate the PSD and generate a Welch spectrogram, figure 2(a), choosing a
Hanning window with a window size of 20 000 or 0.1 s and an overlap of 50 %. The top
and side views were recorded simultaneously to the acoustics by a Photron Fastcam Nova
S12 operated at a frame rate of 18 000 fps with a spatial resolution of 0.078 mm px−1

and an IDT MotionPro Y7 S3 operated at the same synchronised frame rate and a
spatial resolution of 0.035 mm px−1, respectively. A total of 8001 frames were stored,
resulting in a recording time of 0.45 s. Illumination was provided by two triggered Veritas
Constellation 120 LED lights and one IDT 19-LED.

4. Experimental validation and discussion

The Welch spectrogram, cf. figure 2(a), provides an overview of the cavitation regimes
manifested throughout the variation of the cavitation number σ . Three regimes can
be distinguished: I sheet cavitation, II re-entrant flow-driven cloud cavitation and
III shockwave-driven cloud cavitation. The high-frequency shedding is correlated with II,
wherein the frequency exhibits an increase with an increase in σ or a decrease in â. Here,
the low-frequency shedding is associated with III. The shedding frequency is independent
of σ . An overlapping region of both frequency bands is evident from σ = 1.8 up to 2.5.

We first compare the experimentally determined sheet length with the model from § 2.1.
Based on the experimental data, the square of the non-dimensionalised nucleation rate
( f0 R0/U∞)2 is determined to be 1.12 and supported by its 95 % confidence interval
of ±0.05. This is of the same order of magnitude as derived in § 2.1. We achieve
a good agreement for the asymptotic sheet length between the experiments and the
analytical model, figure 2(b). The 95 % confidence interval of the asymptotic sheet length,
represented by the grey-filled area in figure 3(b), is quantified through a Monte Carlo
simulation that assumes a Gaussian distribution for the nucleation rate. The experimentally
determined asymptotic sheet length is deduced from the top view of the high-speed
imaging and the error bar represents the standard deviation across each cycle.
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The transition to shockwave-driven cloud cavitation

We can now anticipate the transition from re-entrant flow to shockwave-driven cloud
cavitation. The critical cavitation number σII,III associated with the transition can be
calculated from (2.2) as σII,III = 1.77, denoted by the dashed vertical line in figure 2(a–d).
The 95 % confidence interval of the critical cavitation number σII,III, represented by
the grey-filled area, is determined by a Monte Carlo simulation where the upper and
lower bounds are 1.69 and 1.85, respectively. The prediction seems valid, since the
high-frequency shedding associated with the re-entrant flow diminishes close to the
predicted value, figure 2(a). A supplementary movie, available at https://doi.org/10.1017/
jfm.2024.1224, shows the initiation of the shockwave for σ = 1.6. The shockwave speed
in this movie is US/U∞ ≈ 0.83, which matches the values calculated by Bhatt et al. (2023)
for the shockwave-driven cloud cavitation regime.

It should be clarified that, in the overlapping region, σ = 1.8 to 2.5, both the high-
and low-frequency bands, associated with re-entrant flow and condensation shockwaves,
respectively, are evident. As the cavitation number decreases further, the low-frequency
band intensifies, indicating that the shedding becomes more dominated by shockwaves
rather than re-entrant flow. This observation aligns with the recent findings of Bhatt
et al. (2023), which provide valuable insights into these complex and multimodal cloud
cavitation mechanisms by introducing a probabilistic approach.

A new insight reported here is that, when the sheet reaches the trailing edge, there is a
transition from re-entrant flow to shockwave. This transition is clearly visible in figure 2(a).
Hence, the new findings are consistent with previous ones, but give a clearer picture of
transient cloud cavitation.

Next, we determine the constant C, see § 2.2. From the experiment, the average time for
the sheet to reach its maximum is τ̄s = U∞/ȧ ≈ 2.38, cf. figure 2(d).

The re-entrant flow position ξ(t)/â over the non-dimensionalised time t+ := tU∞/â
is shown in figure 3(a), illustrating a growth pattern with a discernible peak before
converging towards the asymptotic solution. An arrest of the re-entrant flow is
experimentally reported by Venning et al. (2022), providing empirical support for the
analytically derived kinematics.

It should be noted that, while the re-entrant flow momentum would theoretically be
sufficient to extend upstream beyond the cavity leading edge, as indicated by ξ/â > 1,
this is not feasible in practice. Instead, when the re-entrant flow reaches the cavity leading
edge, it triggers the formation of a cavitation cloud, which is then advected downstream.

The average time for the re-entrant flow to reach the cavity leading edge, i.e. ξ/â =
1, is τ̄r = 0.57, cf. figure 3(b). The mean velocity of the re-entrant flow is 1.75U∞.
Experimental findings by Pham et al. (1999) indicate re-entrant flow velocities ranging
from 1.1 to 0.5 times the free-stream velocity, decreasing with distance from the cavity
closure. Callenaere et al. (2001) and Gawandalkar & Poelma (2022) observed velocities
around 0.5 of the velocity at the narrowest cross-section, corresponding to U0 in this study.
We obtain for the average re-entrant flow velocity 0.88U0, being consistent with the values
reported in the literature. However, the initial velocity is likely overestimated.

Substituting the average times τ̄s = 2.38 and τ̄r = 0.57 in (2.3) leads to St ≈ 0.34L0/â.
The value C = 0.34 falls within the range of 1/4 and 2/5 reported in the literature.
To compare this result with the experiments, we identify the Strouhal numbers of the
fundamental modes from the high-speed imaging by applying spectral proper orthogonal
decomposition, cf. Sieber, Paschereit & Oberleithner (2016), which provides us with
the corresponding standard deviation, shown as error bars in figure 2(c). The identified
Strouhal numbers match with the Welch spectrogram in figure 2(a). The constant C is
determined from the experiments to be 0.42 through linear regression, which yields a high
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coefficient of determination r2 = 99.92 %, being larger than 0.34 as calculated from the
model. This difference arises from the assumption that the whole cycle duration τ is the
sum of the time required for the sheet growth and the re-entrant flow development. In the
experiments, the re-entrant flow already develops during sheet growth, leading to a higher
Strouhal number, as predicted. Despite the simplicity of our model, the obtained value is
reasonable.

5. Conclusions

The transition from re-entrant flow-driven to shockwave-driven cloud cavitation, as well
as the determination of the Strouhal number for re-entrant flow-driven cavitation, were
investigated for a NACA 0015 hydrofoil at a fixed Reynolds number and incidence,
and varying cavitation number covering the regimes from shockwave-driven cloud
cavitation (III), re-entrant flow-driven cloud cavitation (II) and sheet cavitation (I).
High-speed imaging as well as high-frequency acoustic measurements using a hydrophone
were conducted.

Regime II is associated with a high-frequency shedding which depends on the
cavitation number, whereas regime III is associated with the low-frequency shedding
independent of it. An overlapping region has been identified where both re-entrant
flow and shockwave-driven cloud cavitation coexist, which aligns with the probabilistic
approach presented in the recent study by Bhatt et al. (2023). As the cavitation number is
reduced further, re-entrant flow-driven cavitation diminishes, and shockwave-driven cloud
cavitation becomes the dominant mechanism. This transition occurs when â/L = 1.

We derived the critical cavitation number σII,III, where the transition from regime III
to II occurs, expanding our previous work on the transition from sheet to cloud cavitation
(Pelz et al. 2017). Our experimental findings support the hypothesis, i.e. â/L = 1; the
high-frequency shedding diminishes at approximately the predicted value σII,III. This
offers a new understanding of the transition from re-entrant flow to shockwave-driven
cloud cavitation for lifting surfaces, enabling more accurate predictions of this transition.

Despite the hypothesis suggesting that the abrupt stagnation of the sheet, cf. Ganesh
(2015), or the adverse pressure gradient, cf. Budich et al. (2018), might trigger the
shockwave, the discontinuous pressure distribution at the leading edge for a hydrofoil
presents another mechanism to initiate the shockwave.

Next, the parameter C is derived to predict the Strouhal number St = CL0/â; C is found
to be 0.34, whereas 0.42 is estimated from a linear regression. Despite the simplicity of
our model, the obtained value is reasonable and lies within the reported range: 1/4 and
2/5. This simple approach offers valuable new insights into the dynamics of the re-entrant
flow, a key mechanism among the two principal drivers of cloud cavitation, facilitating a
comprehensive understanding of its dynamic behaviour.

Supplementary movie and Computational Notebook. Supplementary movie and Computational
Notebook files are available at https://doi.org/10.1017/jfm.2024.1224. Computational Notebooks can also be
found online at https://www.cambridge.org/S0022112024012242/JFM-Notebooks.
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