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The unresolved scalar variance in large-eddy simulations of turbulent flows is a
fundamental physical and modelling parameter. Despite its importance, relatively few
algebraic models have been developed for this important variable with the most prominent
models to date being the classic scale-similarity and gradient models. In this work
a new generalized modelling framework based on reconstruction has been developed,
which in contrast to classic modelling approaches allows the construction of base static
variance models of arbitrary accuracy. It is demonstrated that higher-order reconstructions
naturally lead to base static variance models of increased accuracy, and that the classic
scale-similarity and gradient models are subsets of more general and higher-order
models. The classic scale-similarity assumption for developing dynamic models is also
revisited, and it is demonstrated that this can essentially be reinterpreted as a two-level
reconstruction approach. Based on this result, a new general methodology is proposed
that allows the construction of dynamic models for any given base static model, and
a corresponding general reconstruction operator, algebraic or iterative. Consequently,
improved static and dynamic models for the scalar variance are developed. The newly
developed models are then thoroughly tested a priori using two high-fidelity direct
numerical simulation databases corresponding to two substantially different flame and
flow configurations, and are shown to outperform classic algebraic models for the variance.

Key words: computational methods, turbulent reacting flows, combustion

1. Introduction

The unresolved variance of a scalar φ is defined as

σ 2(φ;Δ) = φ̃2 − φ̃φ̃, (1.1)

† Email address for correspondence: zacharias.nikolaou@insa-rouen.fr

© The Author(s), 2024. Published by Cambridge University Press 983 A47-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

17
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:zacharias.nikolaou@insa-rouen.fr
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.178&domain=pdf
https://doi.org/10.1017/jfm.2024.178


Z. Nikolaou, P. Domingo and L. Vervisch

where φ̃ = ρφ/ρ̄ denotes standard Favre filtering using a filter G with a characteristic
length scale Δ > 0. In numerical simulations the scalar variance returns information on
the level of resolution of the scalar field by the mesh, and provides a direct measure
of the energy contained in the unresolved scalar fluctuations. The mechanisms of
production/decay of the variance both for reactive and non-reactive scalars due to turbulent
micro-mixing have been at the core of model development since the early days (Moss &
Bray 1977; Dopazo 1979). The companion of the scalar variance is the scalar dissipation
rate (Borghi 1988; Bilger, Saetran & Krishnamoorthy 1991; Bray 1996; Peters 2000;
Veynante & Vervisch 2002; Pantano, Sarkar & Williams 2003) that calibrates the decay
rate of the scalar fluctuations much like turbulent dissipation is the companion of the
turbulent kinetic energy in the popular two-equation approach to turbulence modelling
(Jones & Launder 1972). Therefore, the scalar variance and the scalar dissipation rate
are among the fundamental ingredients of turbulent reactive flow modelling providing
valuable information that can be used to infer the shape of the subgrid-scale (SGS)
probability density function (p.d.f.) of the scalar (progress variable/mixture fraction).
The concept of using a presumed p.d.f. for the SGS scalar p.d.f. was then introduced to
average the response versus equivalence ratio (or mixture fraction) of reactive–diffusive
layers under thermochemical equilibrium (Lockwood & Naguib 1975). This opened up
many perspectives for combustion modelling using structural flame approaches in which
the conditional response of the flame structure versus a given set of control parameters
(mixture fraction, progress of reaction, scalar dissipation rate etc.) is averaged from the
presumed p.d.f. Considering the asymptotic bimodal limit for the progress-variable p.d.f.,
the Bray–Moss–Libby theory was developed in which the scalar variance was key for
investigating turbulent flame dynamics (Bray & Moss 1977; Bray, Libby & Moss 1985).
These concepts were later extended to large-eddy simulation (LES) for predicting the
distribution of chemical species including finite rate chemistry effects (Jimenez et al. 1997;
Pierce & Moin 2004; Domingo, Vervisch & Veynante 2008; Lecocq et al. 2011; Nambully
et al. 2014; Mesquita, Mastorakos & Zedda 2023). Therefore, accurate estimates of the
scalar variance are required at various levels in the simulation of turbulent combustion,
but also more generally in reactive flow modelling (Fox 2003).

Classic models for the scalar variance in LES can roughly be divided into two distinct
categories: transport-equation-based models (Jimenez et al. 2001; Pera et al. 2006; Kolla
et al. 2009; Keil, Klein & Chakraborty 2021) and algebraic models (Cook & Riley
1994; Girimaji & Zhou 1995; Pierce & Moin 1998, 2004; Balarac, Pitsch & Raman
2008). The consensus in the literature is that models based on a transport equation
explicitly include the effects of reaction and transport. Such models however require a
secondary modelling layer in order to close a number of unresolved terms that appear
in the transport equation for the scalar variance. These include models for the scalar
fluxes, unresolved source terms and a model for the scalar dissipation rate (Bilger et al.
1991; Kolla et al. 2009; Keil et al. 2021). Modelling all of these terms introduces further
physical assumptions, additional levels of complexity, but also uncertainty with regards to
the exact effects of each submodel’s parameters on the evolution of the variance transport
equation. In fact, quantifying the effects of numerical dissipation and model uncertainty
on the evolution of the transport equation is a daunting task. Algebraic models on the
other hand are computationally less expensive and straightforward to implement in LES.
Notable examples include the scale-similarity model by Cook and Riley (Cook & Riley
1994) first proposed more than two decades ago, but also gradient-based models (Girimaji
& Zhou 1995; Pierce & Moin 1998). Even though algebraic models do not explicitly
account for reaction/transport, such effects may still in principle be modelled implicitly.
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For instance, the classic dynamic model by Pierce & Moin (1998) originally developed for
a passive scalar (by employing equilibrium assumptions) may still in principle incorporate
the effects of reaction since reaction itself is a source of scalar gradients in the flow.
Therefore, it is not surprising that gradient-based models have been used to successfully
model the progress-variable variance in LES of turbulent premixed flames with overall
good results (Vreman et al. 2008; Vreman, Bastiaans & Geurts 2009a; Vreman et al.
2009b; Mukhopadhyay, van Oijen & de Goey 2015). Nevertheless, even the development of
algebraic models requires the introduction of a number of limiting assumptions/hypotheses
that may not always be valid or well justified. Consequently, both of the above modelling
approaches do not lead to a general and consistent modelling framework whereby models
of arbitrary accuracy can readily be developed.

An alternative modelling framework with the potential to address the above issues is
based on the concept of reconstruction/deconvolution. Reconstruction methods aim to
recover quantitatively accurate estimates of the unfiltered fields φ∗ from their filtered
counterparts φ̃ on the LES mesh. These reconstructions may then be used to estimate
unresolved variables (scalar fluxes, Reynolds stresses, etc.) by explicit filtering. Probably
the first successful implementation of reconstruction-modelling methods in LES dates
to the works of Stolz and Adams who successfully simulated decaying homogeneous
turbulence (Stolz & Adams 1999), boundary-layer flows (Stolz & Adams 2001) and flows
with shocks (Adams & Stolz 2002). This LES modelling approach called approximate
deconvolution modelling (ADM) consisted of a filtering step, followed by reconstruction
and regularisation steps. In later works by Mathew et al. (2003) and Mathew, Foysi
& Friedrich (2006), ADM was shown to be equivalent to using a single filtering step
using a composite filter. Since then, many non-reacting LES studies have also employed
reconstruction-modelling approaches (Schlatter, Stolz & Kleiser 2004; Loginov, Adams
& Zheltovodov 2006; Boguslawski et al. 2021). In reacting flows, reconstruction-based
models have been successfully applied probably first by Mathew (2002), and in a number
of later studies (Domingo & Vervisch 2015; Wang & Ihme 2019; Domingo et al. 2020;
Datta, Mathew & Hemchandra 2022). In the majority of these studies, approximate
reconstruction methods were employed while in more recent a priori studies iterative
and constrained reconstruction algorithms were developed. Such iterative algorithms
were used to successfully model a variety of different unresolved terms in the LES
transport equations including the scalar fluxes, and the Reynolds stresses (Domingo &
Vervisch 2017; Wang & Ihme 2017; Nikolaou & Vervisch 2018; Nikolaou, Vervisch &
Cant 2018; Nikolaou, Minamoto & Vervisch 2019). Reconstruction-modelling methods
use information from the resolved scales in LES without invoking explicit assumptions
on the underlying flow field and reaction mode. Even though in principle reconstruction
cannot recover scales below the LES mesh, SGS effects can still be incorporated in a
variety of approaches. For instance, Stolz & Adams (2001) added an additional relaxation
term to the velocity transport equation proportional to the difference between the filtered
and filtered-reconstructed velocity components (ūi − u∗

i ). Wang & Ihme (2019) combined
reconstruction with interpolation on a finer grid in an effort to enrich the information
provided by the resolved scales on the LES mesh while Gullbrand & Chow (2003)
employed mixed models. In yet another approach, Bull & Jameson (2016) assumed SGS
dissipation to be sufficiently provided by the numerical scheme while reconstruction
modelling was employed only for the unresolved LES scales. This modelling approach was
applied to LES of turbulent channel flow, and improved the predictions over LES using
the classic Smagorinsky model. In more recent works, data-based methods employing
super-resolution reconstruction have also been considered (Fukami, Fukagata & Taira
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2020; Kim et al. 2021). Therefore, the evidence in the literature seems to suggest that
reconstruction modelling is a natural framework for modelling SGS effects as well.

With regards to modelling the scalar variance, a successful modelling framework based
on iterative and constrained reconstruction was proposed and tested a priori by Nikolaou
& Vervisch (2018). This framework provided quantitatively accurate predictions of the
variance at a modest computational cost. Nevertheless, iterative reconstruction can be
computationally expensive to apply in realistic-geometry LES. Data-based methods on
the other hand (Maulik & San 2017; Nikolaou & Vervisch 2018) require high-quality
and relatively large amounts of data. In addition, their computational efficiency depends
strongly on the structure (number of layers, number of neurons) of the network, and
there exist in fact bounds above which a neural network will always underperform
(more floating-point operations) in comparison to using a simple tabulation approach
(Nikolaou, Vervisch & Domingo 2022). One solution to this problem is to use approximate
reconstruction operators derived from truncated Taylor-series expansions of the inverse
filter operator. Such operators are computationally efficient, and lead to relatively
simple analytic expressions that can be used to derive simple algebraic models with
the deconvolution truncation order determining the model accuracy. Such approximate
reconstruction methods have been considered before for modelling the scalar variance, for
instance, by Balarac et al. (2008) and Knudsen, Kim & Pitsch (2010). Another approach
that was recently proposed by Nikolaou, Vervisch & Domingo (2023) is to use inverse
explicit discrete filters derived by solving an optimisation problem. This approach avoids
the need to iterate as in most reconstruction algorithms and, as a result, reduces the
reconstruction time by orders of magnitude (Nikolaou et al. 2023). Irrespective however
of the reconstruction operator used (approximate, inverse filter, iterative), there does not
appear to exist a structured and general reconstruction-based methodology for model
development. For instance, it is unclear how the reconstructed fields should be employed,
what conditions must be satisfied for the model to be physically realisable and how SGS
effects can be incorporated in a general reconstruction-based model. The aim of this
work is to address these issues by developing a general modelling framework based on
reconstruction.

We begin in § 2 by discussing the most important properties of the scalar variance.
In § 3, approximate reconstruction operators based on truncated Taylor-series expansions
are derived. These operators are used to derive static models all the while maintaining
compatibility with lower reconstruction-order models, but also with classic models in
the literature. In § 4 a brief overview of the procedure for developing discrete inverse
filters is presented, and in § 5 the classic dynamic models are revisited, and the dynamic
procedure is reinterpreted in the context of reconstruction-based modelling. Finally, in § 6
the developed models are tested a priori using direct numerical simulation (DNS) data.

2. Variance properties

It is straightforward to show that the variance has the following properties:

(i) lim
Δ→0

σ 2(φ;Δ) = 0. (2.1)

For a, b constant,
(ii) σ 2(aφ + b;Δ) = a2σ 2(φ;Δ). (2.2)

Provided the filter G ≥ 0 and φ ∈ [0, 1],

(iii) 0 ≤ σ 2(φ;Δ) ≤ φ̃(1 − φ̃) ≤ 1
4
, (2.3)
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which we now prove formally. We begin from the definition of the filtering operation in a
single dimension,

φ̄(x, t) =
∫ ∞

−∞
G(x − s)φ(s, t) ds, (2.4)

where G(s) ≥ 0, G(−s) = G(s) (symmetric) and
∫∞
−∞ G(x) dx = 1, which ensures that

constant scalars are unaffected by the filtering (consistency condition). It is important
to note at this point that we assume Δ to be constant, and that the computational mesh
is homogeneous. In addition, a Cartesian coordinate system will be used throughout
the analysis that follows. Since three-dimensional (3-D) filters are typically constructed
using products of one-dimensional (1-D) filters, i.e. G(x) = G(x)G( y)G(z), and filtering
is conducted using dimensional splitting, it is sufficient to derive the variance bounds in
the 1-D case. Favre-filtered variables are defined as usual, φ̃(x, t) = ρ(x, t)φ(x, t)/ρ̄(x, t),
and the equivalent Favre-filtering operation is

φ̃(x, t) =
∫ ∞

−∞
G̃(s; x, t)φ(x − s, t) ds, (2.5)

where G̃(s; x, t) = G(s)ρ(x − s, t)/ρ̄(x, t) is the corresponding Favre filter. Clearly, G̃ ≥ 0
for any realisable (positive) value of the density,

∫∞
−∞ G̃(s; x, t) ds = 1 for all x, t ∈ R, and

for constant-density flows, G̃ = G. The lower bound for the variance can be derived by
making use of the Cauchy–Schwarz inequality that bounds from above the product φ̃φ̃,

φ̃(x, t)φ̃(x, t) =
(∫ ∞

−∞
G̃(s; x, t)φ(x − s, t) ds

)2

=
(∫ ∞

−∞

√
G̃(s; x, t)

√
G̃(s; x, t)φ(x − s, t) ds

)2

≤
∫ ∞

−∞
G̃(s; x, t) ds︸ ︷︷ ︸

1

·
∫ ∞

−∞
G̃(s; x, t)φ2(x − s, t) ds

= φ̃2(x, t). (2.6)

Now suppose φ(x, t) is a bounded scalar specifically φ ∈ [0, 1]. Such scalars of interest
may, for instance, be the progress variable in premixed flames, the mixture fraction in
non-premixed flames, the mass fraction, etc. Since φ ∈ [0, 1], φ2 ≤ φ, hence, φ̃2 ≤ φ̃

provided G̃(s; x, t) ≥ 0. Therefore, we have overall φ̃φ̃ ≤ φ̃2 ≤ φ̃ and 0 ≤ σ 2 = φ̃2 −
φ̃φ̃ ≤ φ̃(1 − φ̃) ≤ 1

4 .
It is important to note that, for positive filters, if φ ∈ [0, 1] then φ̃ ∈ [0, 1] as well

irrespective of the distribution of φ, but this is not necessarily the case for non-positive
filters. A short proof of this is given in Appendix A, and as we will see later on this has
some important modelling consequences. In principle, properties (i)–(iii) must be satisfied
by any variance model.
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Filter G(x) Ĝ(k) M2r a2 = M2/2 a′
2 = M′

2/2

Gaussian

√
6

Δ
√

π
exp
(

−6x2

Δ2

)
exp
(−Δ2k2

24

)
(2r)!

r!

(
Δ

2
√

6

)2r

Δ2/24 Δ̂2/24

Helmholtz
1

2Δ
e−|x|/Δ 1

1 + Δ2k2 (2r)!Δ2r Δ2 Δ̂2

Table 1. Common explicit positive filters with their transfer functions and even moments M2r .

3. Approximate reconstruction using truncated Taylor series

Starting from the 3-D filtering operation that, for convenience, we now write as (using the
filter symmetry condition)

φ̄(x) =
∫ ∞

−∞
G(r)φ(x + r) dr (3.1)

and expanding φ(x + r) in Taylor series around r = x, it is straightforward to show after
some algebraic manipulation that (Nikolaou et al. 2023)

φ̄(x) = φ(x) + a2∇ · ∇φ + O(Δ4) = φ(x) + a2
∂

∂xi

(
∂φ

∂xi

)
+ O(Δ4), (3.2)

where a2 = M2/2 is half the filter’s second moment. For a Gaussian filter, a2 = Δ2/24
while for a Helmholtz filter, a2 = Δ2; table 1 lists two of the most popular filters
(Gaussian/Helmholtz) along with their transfer functions, moments and other important
parameters. Taking the Fourier transform (here ∧ denotes Fourier transform) of the above
expansion we obtain

ˆ̄φ(k) = φ̂(k) + a2( jk)( jk)φ̂(k) + O(k4), (3.3)

which we can invert approximately to obtain

φ̂(k) = ˆ̄φ(k)
(

1 − a2kk + O(k4)
)−1 = ˆ̄φ(k) + a2

ˆ̄φ(k)kk + O(k4). (3.4)

The above equation is an approximation of the Fourier transform of the inverse filter –
an alternative approach to obtain this for a specific filter is to use the exact transform
of the inverse filter used. For a Gaussian filter, for instance, Ĝ−1 = eΔ2k2/24 that can be
expanded in Taylor series resulting in the same expression as above (Balarac et al. 2008).
Taking an inverse Fourier transform of the above we obtain an approximation φ∗ of the
original field φ,

φ∗(x) = φ̄(x) − a2∇ · ∇φ̄(x) + O(Δ4). (3.5)

For a forward filter having a filter width Δ, the above equation is an approximation
of the unfiltered field with a truncation order of O(Δ4). As Δ → 0, a2 → 0 while
φ̄(x) → φ(x), hence, φ∗(x) → φ(x). The above approximation holds for any filter, and
higher-order approximations/reconstructions can be obtained by including higher-order
derivatives (Leonard 1997; Carati, Winckelmans & Jeanmart 2001); however, such
expressions become substantially more complex for deriving (simple) algebraic models.
The reconstruction operation in (3.5) can also be written in terms of a reconstruction
operator RΔ = (I − a2∇2) acting on the filtered scalar φ, i.e. RΔ[φ̄]. This notation will
prove useful in the sections that follow.
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3.1. Constant-density flows
The approximate reconstruction operator in (3.5) opens up a number of possibilities for
modelling the scalar variance. We begin with constant-density flows where σ 2 = φ2 −
φ̄φ̄. One option would be to model the variance using φ∗2 − φ̄φ̄ since φ2 is the unresolved
part. However, this approach involves two distinct fields (φ, φ∗) and properties (ii)–(iii) of
§ 2 may not always be satisfied. An alternative option is to use

σ 2 = φ∗2 − φ∗ φ∗, (3.6)

where φ∗ is the reconstructed scalar on the LES mesh. Clearly, as Δ → 0, the filter
must tend to a δ function, and property (i) is satisfied. Property (ii) is always satisfied
inherently – this follows from the linearity of the filtering operation and the filter’s
consistency condition. With regards to property (iii), provided φ∗ ∈ [0, 1] then, as shown
in Appendix A, φ∗ ∈ [0, 1] as well. As a result, the predictions of the above model
will be bounded in a similar manner as the actual variance specifically in the region
[0, φ∗(1 − φ∗)]. For a perfect reconstruction, φ∗ → φ, and the model bounds approach
the actual variance bounds. For an imperfect reconstruction, the model bounds may not
necessarily coincide with the actual variance bounds but guarantee that the theoretical
upper bound of 1/4 is never exceeded. This is in contrast with models of the gradient
type that are not intrinsically bounded, and whose upper bound depends solely on the
magnitude of the scalar gradient.

With the above modelling approach, and an O(Δ2) approximation of φ, i.e. φ∗ = φ̄ +
O(Δ2), we obtain the model

σ 2(φ) = φ̄φ̄ − ¯̄φ ¯̄φ + O(Δ2), (3.7)

which is essentially the scale-similarity model of Bardina, Ferzinger & Reynolds (1980)
applied to a scalar. The bounds of this model are [0, ¯̄φ(1 − ¯̄φ)]. We will refer to this model
as the SM2 model for constant-density flows. For an O(Δ4) approximation on the other
hand, i.e. φ∗ = φ̄ − a2∇2φ̄, we obtain

σ 2 = (φ̄ − a2∇2φ̄
)2 − (φ̄ − a2∇2φ̄

) · (φ̄ − a2∇2φ̄
)+ O(Δ4)

= φ̄φ̄ − ¯̄φ ¯̄φ︸ ︷︷ ︸
SM2

+2a2

( ¯̄φ∇2 ¯̄φ − φ̄∇2φ̄
)

+ O(Δ4). (3.8)

The above model is composed of the SM2 model term in (3.7) ensuring compatibility,
and an additional correction term that arises from the higher-order reconstruction terms
retained in the expression for φ∗. We will refer to the above model as the SM4 model.
Following this modelling procedure it is clear that one may develop higher-order models
by retaining higher-order terms in the Taylor-series expansion all the while ensuring
backwards compatibility with lower-order models. In contrast with the SM2 model
however, the variance bounds may not be satisfied for the SM4 model since the O(Δ4)

reconstruction that involves gradients of φ̃ may cause φ∗ to lie outside its physical limits
and, as a result, so will the variance predictions. A remedy to this problem will be
presented in the sections that follow. For now, we focus our attention on the SM4 model. If
we further expand all the double-filtering operations in (3.8) in Taylor series and truncate
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Δ Δ̂

ũ = ρu/ρ̄ ǔ = ̂̄ρu/ ˆ̄ρ
ũ∗ = ρ∗u∗/ρ∗ ǔ∗ = ρ̂∗u∗/ρ̂∗

ŭ = ρ̄u/ ¯̄ρ “u = ̂̄̂ρu/
ˆ̄̂
ρ

u∗ = RΔ[ū] u∗
L = R

Δ̂
[ ˆ̄u]

Table 2. Operations involving the normal filter Δ and the test filter Δ̂.

these to O(Δ4), we obtain

σ 2 = φ̄φ̄ − ¯̄φ ¯̄φ + 2a2

( ¯̄φ∇2 ¯̄φ − φ̄∇2φ̄
)

= φ̄φ̄ + a2∇2φ̄φ̄ + O(Δ4) −
(
φ̄ + a2∇2φ̄ + O(Δ4)

)2 +
(
φ̄∇2φ̄ − φ̄∇2φ̄ + O(Δ4)

)
= a2∇2φ̄φ̄ − 2a2φ̄∇2φ̄ + O(Δ4)

= 2a2
∂φ̄

∂xi

∂φ̄

∂xi
+ O(Δ4). (3.9)

The above is none other than the gradient model but having a well-defined model
parameter given by 2a2 = M2 that, for a Gaussian filter, is Δ2/12 – a similar expression
was derived for the Reynolds stresses by Clark, Ferzinger & Reynolds (1979). Therefore,
based on the above procedure, we see that the gradient model is a subset model of the
more general scale-similarity model in (3.8) (SM4).

3.2. Variable-density flows
For variable-density flows, the modelling procedure becomes somewhat more complicated
but the key idea remains the same: we use approximate reconstructions ρ∗ = RΔ[ρ̄] and
(ρφ)∗ = RΔ[ρφ] in order to obtain an expression for the variance. For variable-density
flows, in the same spirit as for constant-density flows, we model the variance using

σ 2 = ρ∗φ∗φ∗

ρ∗ −
(

ρ∗φ∗

ρ∗

)2

= φ̃∗φ∗ − φ̃∗φ̃∗, (3.10)

where φ∗ = (ρφ)∗/ρ∗; table 2 lists all the different operations/notations that will be used
throughout the rest of the paper for clarity. The above model satisfies conditions (i) and
(ii) always and provided φ∗ ∈ [0, 1] the model bounds are [0, φ̃∗(1 − φ̃∗)]. Therefore, as
φ∗ → φ, the bounds approach the actual variance bounds. For an imperfect reconstruction
on the other hand, these bounds ensure that the upper bound of 1/4 is never exceeded.

For an O(Δ2) approximation, ρ∗ = ρ̄ + O(Δ2) and (ρφ)∗ = ρφ + O(Δ2). Inserting
these in (3.10) we obtain the equivalent SM2 model for variable-density flows:

σ 2 = ρ̄φ̃φ̃

¯̄ρ −
(

(ρ̄φ̃)

¯̄ρ

)2

=
(
φ̃φ̃
)̆

− ˘̃
φ

˘̃
φ. (3.11)
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Revisiting the modelling framework for the scalar variance

Here ˘̃
φ = ρ̄φ̃/ ¯̄ρ (notation that is extended in the form (·)̆ = ρ̄̃·/ ¯̄ρ in (3.11)). The bounds of

the above model are [0,
˘̃
φ(1 − ˘̃

φ)]. Note that, for constant-density flows, ˘̃
φ = ¯̄φ and (3.11)

reduces to (3.7) thus ensuring compatibility with the constant-density case. For an O(Δ4)
approximation, the reconstruction operator is given by

RΔ[ū] = ū − a2∇2ū; (3.12)

therefore, ρ∗ = ρ̄ − a2∇2ρ̄ + O(Δ4), (ρφ)∗ = ρφ − a2∇2ρφ + O(Δ4), and it is
straightforward to show after some algebraic manipulation that(

(ρφ)∗

ρ∗

)2

= ˘̃
φ

˘̃
φ + 2

a2
¯̄ρ

˘̃
φ

˘̃
φ∇2 ¯̄ρ − 2

a2
¯̄ρ

˘̃
φ∇2ρ̄φ̃ + O(Δ4) (3.13)

and

(ρφ2)∗ = (ρφ)∗(ρφ)∗

ρ∗

=
(
ρφ − a2∇2ρφ + O(Δ4)

)2
ρ̄ − a2∇2ρ̄ + O(Δ4)

= 1
ρ̄

(
ρφ·ρφ − 2a2ρφ∇2ρφ + O(Δ4)

)(
1 − a2

ρ̄
∇2ρ̄ + O(Δ4)

)−1

= 1
ρ̄

(
ρφ·ρφ − 2a2ρφ∇2ρφ + O(Δ4)

)(
1 + a2

ρ̄
∇2ρ̄ + O(Δ4)

)
= ρ̄φ̃φ̃ + a2φ̃φ̃∇2ρ̄ − 2a2φ̃∇2ρ̄φ̃ + O(Δ4), (3.14)

which constitutes an O(Δ4) approximation of ρφ2. Inserting the above in (3.10) we
eventually obtain the equivalent SM4 model for variable-density flows:

σ 2 =
(
φ̃φ̃
)̆

− ˘̃
φ

˘̃
φ︸ ︷︷ ︸

SM2

+2a2
¯̄ρ
( ˘̃
φ∇2ρ̄φ̃ − φ̃∇2ρ̄φ̃

)
+ a2

¯̄ρ
(
φ̃φ̃∇2ρ̄ +

(
φ̃φ̃
)̆
∇2 ¯̄ρ − 2 ˘̃

φ
˘̃
φ∇2 ¯̄ρ

)
. (3.15)

The above model is composed of the scale-similarity term of the SM2 model in (3.11)
augmented by two more correction terms. For constant-density flows, the entire third term
in the parentheses disappears, in which case we recover (3.8). If we further expand all
filtering operations up to O(Δ4) it is straightforward to show that

˘̃
φ = φ̃ + a2∇2φ̃ + 2a2

ρ̄

∂ρ̄

∂xi

∂φ̃

∂xi
+ O(Δ4), (3.16)

˘̃
φ

˘̃
φ = φ̃φ̃ + 2a2φ̃∇2φ̃ + 4a2

ρ̄
φ̃

∂ρ̄

∂xi

∂φ̃

∂xi
+ O(Δ4) (3.17)

and (
φ̃φ̃
)̆

= φ̃φ̃ + 2a2φ̃∇2φ̃ + 2a2
∂φ̃

∂xi

∂φ̃

∂xi
+ 4a2

ρ̄
φ̃

∂ρ̄

∂xi

∂φ̃

∂xi
+ O(Δ4). (3.18)

Since the second and third terms in (3.15) already include a Δ2 term in the parameter
a2 outside of the parentheses, all terms inside the parentheses must be expanded up to
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O(Δ2) only to keep the overall expansion order to O(Δ4), i.e. ˘̃
φ = φ̃, ¯̄ρ = ρ̄, etc., causing

them to vanish. As a result, after some algebraic manipulation the approximation of (3.15)
eventually reduces to

σ 2 = 2a2
∂φ̃

∂xi

∂φ̃

∂xi
+ O(Δ4), (3.19)

which is the gradient model for variable-density flows. Therefore, the gradient model
is a subset model of the more general reconstruction-based SM4 model of (3.15).
It is important to note that this derivation of the gradient model is based on a
purely mathematical approach using approximate reconstruction operators. No explicit
assumptions on the nature/structure of the scalar (passive, reactive) and/or the flow field
were made in this process. This implies that the gradient model alone should in principle
be sufficient to model both non-reactive and reactive scalars as evidenced by previous LES
of turbulent premixed flames (Vreman et al. 2008, 2009a,b; Mukhopadhyay et al. 2015)
that employed either the static or the dynamic gradient model.

3.3. Post-reconstruction bounding
For a general reconstruction operator RΔ, (3.10) may not necessarily satisfy the variance
bounds because φ∗ = (ρφ)∗/ρ∗ may not lie in the range [0, 1]. Possible reasons for this
may include ρ∗, (ρφ)∗ lying outside their physical minimum/maximum limits because of
approximate reconstruction, but also due to numerical errors. A straightforward remedy
to this problem is to bound the reconstructed fields. Therefore, (3.10) is still employed,
but using the bounded reconstructed fields instead such that φ∗ ∈ [0, 1] by construction.
Bounding serves two purposes: (i) that φ̃∗ ∈ [0, 1], and (ii) that the bounds for (3.10) are
[0, φ̃∗(1 − φ̃∗)] always.

One approach to implement bounding is directly in the reconstruction operator RΔ,
i.e. use a constrained reconstruction algorithm, and such algorithms were employed in
previous a priori (Wang & Ihme 2017; Nikolaou & Vervisch 2018) and a posteriori
(Wang & Ihme 2019) studies. Constrained reconstruction guarantees that φ∗ ∈ [0, 1],
but is generally computationally more expensive than unconstrained reconstruction, and
may also hinder the convergence of the deconvolution process. A computationally more
efficient approach is to use post-reconstruction bounding. Provided the reconstruction
operator is sufficiently accurate, post-reconstruction bounding helps to bound the minority
of points lying outside their physical boundaries. A general approach for doing so is to use
two levels of bounding: a physical one and a numerical one. For a general reconstruction
operator RΔ, physical bounding may be applied in a computationally efficient approach
using

ρ∗ = max (min (RΔ[ρ̄], ρh), ρl), (3.20)

(ρφ)∗ = max
(
min

(
RΔ[ρφ], (ρφ)h

)
, (ρφ)l

)
, (3.21)

where the subscripts l, h denote the corresponding low and high values. Alternatively, a
smoother function other than maxmin can also be employed. Physical bounding ensures
that the reconstructed fields lie within their physical limits. For instance, in the case of
premixed flames ρl = ρp the density of the hot products, and ρh = ρr the density of the
cold reactants while (ρφ)l = 0 and (ρφ)h = ρr. Following physical bounding, numerical
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Revisiting the modelling framework for the scalar variance

bounding can also be applied directly on φ∗ using

φ∗ = max
(
min

(
(ρφ)∗/ρ∗, 1

)
, 0
)
, (3.22)

which ensures that any numerical errors in evaluating φ∗ from the physically bounded
reconstructions do not cause it to exceed the limits [0, 1]. As we show later on, the above
approach substantially improves the reconstructions, hence, the variance predictions. To
illustrate the procedure, we consider an O(Δ4) reconstruction operator, RΔ = (I − a2∇2),
in which case we have

ρ∗ = max
(

min
(
(I − a2∇2)[ρ̄], ρh

)
, ρl

)
, (3.23)

(ρφ)∗ = max
(

min
(
(I − a2∇2)[ρφ], (ρφ)h

)
, (ρφ)l

)
. (3.24)

Calculating φ∗ using (3.22)–(3.24), and inserting all in (3.10) we obtain a scalar variance
model bounded exactly in the range [0, φ̃∗(1 − φ̃∗)] – we will refer to this particular
model as AD4. Note however that the above procedure is general, and can be applied
for any general reconstruction operator RΔ that may well be based on any reconstruction
algorithm.

4. Inverse filter reconstruction

Higher-order reconstruction operators RΔ can be obtained using iterative algorithms such
as van Cittert iterations (van Cittert 1931). A constrained version of this algorithm was
introduced in previous work (Nikolaou & Vervisch 2018) where it was used to successfully
model the progress-variable variance in turbulent premixed flames. In iterative algorithms
the iteration count N determines the extent of reconstruction with higher N corresponding
to higher-order reconstruction (larger wavenumbers are recovered). Compared with
approximate reconstruction methods such as the one presented in the previous section,
iterative methods have superior performance albeit at an increased computational cost
that depends on N, the stencil size of the filter, but also the problem dimension – an
expression quantifying this has been developed by Nikolaou et al. (2023). An alternative
computationally efficient yet high-order reconstruction process recently proposed by
Nikolaou et al. (2023) is based on the concept of inverse discrete filters. In this approach,
the same way a discrete forward explicit filter is used to filter a signal, an inverse discrete
explicit filter is applied on the filtered signal in order to recover a reconstruction estimate.
This approach was demonstrated to be computationally more efficient (by orders of
magnitude) than iterative reconstruction while maintaining the same level of accuracy
(Nikolaou et al. 2023).

The procedure for obtaining an optimised inverse filter begins by first obtaining an
optimised forward filter. We begin from the 1-D discrete and explicit filtering operation
defined as

ūi = Gd � ui =
M∑

l=−M

glui+l, (4.1)

where M is the half-stencil size of the filter and gl are the discrete filter coefficients for
each point on the stencil (we will be dealing with symmetric filters). With a mesh spacing
h, xi = ih, i ∈ [0, Nx − 1], the transfer function Ĝd of the above discrete filtering operation
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is given by

Ĝd(kr) =
M∑

l=−M

glejkrhl = g0 + 2
M∑

l=1

gl cos (krhl), (4.2)

where kr = 2πr/(Nxh). The coefficients gl in (4.2) completely determine Ĝd that ideally
should match Ĝ (the actual filter transfer function) for all krh ∈ [0, π]. Standard methods
for obtaining the filter coefficients include Newton–Cotes rules, using filters derived from
truncated Taylor expansions, etc. As discussed in Nikolaou et al. (2023), both of these
approaches have some important drawbacks. For instance, filters based on Newton–Cotes
rules generally have poorer responses at higher wavenumbers, and are not consistent
(Ĝd(0) /= 1). Filters based on Taylor expansions on the other hand are consistent, but their
predictive ability deteriorates above a threshold value of γ = Δ/h. In addition, in both of
these approaches there is no explicit error control. In order to circumvent such issues, but
at the same time to automate the process for developing discrete filters, an optimisation
procedure was proposed to obtain the coefficients gl. The optimisation problem reads

arg min
gl

(∫ π

kh=0

(
Ĝd(kh; gl) − Ĝ(kh; γ )

)2
d(kh)

)
. (4.3)

To ensure consistency (Ĝd(0) = 1), the following constraint is applied:

g0 + 2
M∑

l=1

gl = 1. (4.4)

To ensure 0 ≤ Ĝd ≤ 1 (positive transfer function), an additional constraint is introduced,

Ĝ(π) ≤ g0 + 2
M∑

l=1

gl cos(krhl) ≤ 1 for all krh ∈ (0, π]. (4.5)

The optimisation problem can be solved by providing the actual transfer function Ĝ and
half-stencil size M, but can also be solved adaptively. In the adaptive version, which is the
approach used here, Ĝ and the target optimisation error are provided. An error controller
then adjusts M until the target optimisation error is obtained. Once the optimised 1-D
filter coefficients are obtained, for the 3-D case the filtering operation is calculated using
dimensional splitting, i.e. the optimised 1-D filter coefficients are used to filter in each
coordinate direction.

In a similar fashion, we can also define a discrete reconstruction operation (de-filtering)
as

RΔ[ūi] = u∗
i = VN

d � ūi =
MIF∑

l=−MIF

βlūi+l, (4.6)

where VN
d is an approximate discrete inverse filter now acting on the filtered field. The

superscript N denotes that this filter corresponds to the same operator obtained by applying
N van Cittert iterations on the filtered field while MIF is the stencil size of the inverse filter.
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Revisiting the modelling framework for the scalar variance

It is straightforward to show that the transfer function of VN
d is given by (Nikolaou et al.

2023)

V̂d(kr) =
MIF∑

l=−MIF

βlejkrhl = g0 + 2
MIF∑
l=1

βl cos (krhl) , (4.7)

and is completely determined by the coefficients βl. In order to obtain these coefficients
we solve the optimisation problem

arg min
βl

(∫ π

kh=0

(
V̂N

d (kh;βl)Ĝd(kh; gl) − Q̂N
d (kh; gl)

)2
d(kh)

)
, (4.8)

where Q̂N
d (kh; gl) is the discrete transfer function of the reconstructed signal obtained

using N van Cittert iterations with a forward discrete filter Gd,

Q̂N
d (kr) = 1 −

(
1 − bĜd(kr)

)N (
1 − Ĝd(kr)

)
. (4.9)

Note that b is a constant typically taken to equal unity. We further impose the constraints,

β0 + 2
MIF∑
l=1

βl = 1, (4.10)

β0 + 2
MIF∑
l=1

βl cos(krhl) < (N + 1) for all, krh ∈ (0, π]. (4.11)

The first constraint ensures that V̂N
d (0) = 1 and the second ensures that the upper bound

is not exceeded (Nikolaou et al. 2023). It is important to note that the half-stencil size
of the inverse filter MIF need not be equal to the half-stencil size of the forward filter
M. In practice, we take the following steps in order to compute optimised inverse filter
coefficients βl.

(i) For a given actual filter transfer function Ĝ, solve the optimisation problem in (4.3) to
obtain an optimised discrete forward filter with coefficients gl and a transfer function
Ĝd.

(ii) Specify the number of van Cittert iterations N and calculate Q̂N
d (krh; gl).

(iii) Specify the optimisation error and solve the optimisation problem in (4.8) to obtain
βl, each time adjusting the stencil size MIF until the target optimisation error is
obtained.

Reconstruction in the 3-D case is performed by applying the 1-D inverse filter operator
in each coordinate direction. The reconstruction operator can be applied on ρ̄ and ρφ to
obtain higher-order reconstructions simply by increasing N and solving a new optimisation
problem to obtain the corresponding coefficients, and the variance modelled following the
procedure outlined in § 3. In other words, the modelling procedure remains the same,
all that changes is the reconstruction operator RΔ for which we now have an automated
procedure through which its accuracy can be made arbitrarily high/low.
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Forward filter Inverse filter

γ 4 N 5
kf h 1.016 kf h 1.825
M 4 MIF 4
g0 3.4541548066530248 × 10−1 β0 3.4854421863613538 × 100

g1 2.3756559200884170 × 10−1 β1 −1.2481478317981463 × 100

g2 7.7013518685369819 × 10−2 β2 −1.5529293982071232 × 10−1

g3 1.1900936808129101 × 10−2 β3 1.8924837810742531 × 10−1

g4 8.1221216500810569 × 10−4 β4 −2.8528699669243762 × 10−2

Table 3. Optimised discrete explicit forward and inverse filter coefficients and properties for γ = 4. Note that
the filters are symmetric, hence, g−l = gl and β−l = βl.

4.1. Optimised inverse filters
The number of iterations N is an input parameter for the above optimisation problem. In
practical LES, and using the classic iterative van Cittert algorithm, 3–5 iterations were
used in previous works (Stolz & Adams 1999, 2001). In fact, N = 5 is sufficient to recover
the filter’s cutoff wavenumber kf defined as Ĝ(kf ) = 0.5. For larger N, wavenumbers that
are damped by more than 50 % are recovered, which may not be desirable in practical
LES. For instance, the performance of a second-order accurate centred numerical scheme
(typical of most LES solvers) drops substantially after about kh > 1 (Lele 1992) and these
wavenumbers should not be recovered. In practical LES, Δ/h that determines kf should in
principle be chosen such that wavenumbers beyond which the accuracy of the numerical
scheme deteriorates are not recovered. In this work, Δ/h = 4 is used that results in kf h �
1, and which ensures that the filtered fields are well resolved as per the criterion developed
in earlier work (Nikolaou & Vervisch 2018). As a result, we also use N = 5 to solve the
optimisation problem in an effort to mimic what would be done in actual LES. Note that
in principle, we can increase N and obtain ever improved models; however, in practice,
as N increases, so does the range of higher wavenumbers being recovered. As a result, an
ever-increasing stencil size MIF would be required that would make reconstruction more
expensive – the exact MIF threshold of when this process becomes more expensive than
using iterative reconstruction has been derived in our earlier work (Nikolaou et al. 2023).
The choice N = 5 results in an explicit inverse filter for the γ = 4 case with MIF = M = 5,
and the inverse filter reconstruction being about 5 times faster than iterative reconstruction
according to the criterion derived (and validated) by Nikolaou et al. (2023).

Tables 3 and 4 list the important parameters for the optimised forward and inverse
discrete Gaussian filters obtained by solving the above two optimisation problems for γ =
4 and γ = 8, respectively, while figure 1 shows the corresponding transfer functions of
the actual/discrete forward/inverse filters. Note how the filter cutoff wavenumber increases
when applying the inverse filter (almost doubles) that signifies the reconstruction of the
damped wavenumbers. Clearly, both at the filtering and reconstruction levels the optimised
discrete filters closely match the actual corresponding transfer functions. Application of
the inverse filter to ρ̄, ρφ, and then following the procedure outlined in § 3 leads to a new
base static model for the scalar variance known as the deconvolution-inverse filter (DEIF)
model. For more details on the numerical implementation, the effect of using different
filters (Helmholtz, implicit, etc.), different iteration counts N and so on, we refer the reader
to our earlier work (Nikolaou et al. 2023).
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Forward filter Inverse filter

γ 8 N 5
kf h 0.508 kf h 0.912
M 8 MIF 8
g0 1.7281235518838708 × 10−1 β0 3.6225796969507149 × 100

g1 1.5727024335484499 × 10−1 β1 −2.0114664835843585 × 10−1

g2 1.1875047232243820 × 10−1 β2 −8.5901296273738481 × 10−1

g3 7.4326164362626373 × 10−2 β3 −5.2702491452982902 × 10−1

g4 3.8552094759875553 × 10−2 β4 1.5576346690679571 × 10−1

g5 1.6581685041517420 × 10−2 β5 1.9140276795709291 × 10−1

g6 5.9354294696557794 × 10−3 β6 −2.9855846257031377 × 10−1

g7 1.7673745940579428 × 10−3 β7 3.5288499249418004 × 10−1

g8 4.1035850079021625 × 10−4 β8 −1.2559808763746258 × 10−1

Table 4. Optimised discrete explicit forward and inverse filter coefficients and properties for γ = 8. Note that
the filters are symmetric, hence, g−l = gl and β−l = βl.
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Figure 1. Actual transfer function of a Gaussian filter Ĝ, actual reconstructed transfer function Q̂N obtained
using N = 5 van Cittert iterations, discrete transfer function of optimised filter Ĝd , discrete reconstructed
transfer function Q̂N

d obtained using van Cittert iterations and the product between the discrete forward filter
transfer function and the optimised inverse discrete filter transfer function ĜdV̂N

d : (a) γ = 4 and (b) γ = 8.

5. Dynamic models

5.1. The classic dynamic gradient model revisited
The purpose of this section is to discuss the well-known dynamic gradient model. This will
serve as a prelude to § 5.2 where the dynamic procedure will be reinterpreted in the context
of reconstruction modelling. In turn, this will enable us to derive a structured framework
for developing general dynamic models for arbitrary reconstruction operators.

The dynamic procedure was originally introduced by Germano et al. (1991) for
modelling the unresolved Reynolds stresses, specifically to correct the predictions of the
static Smagorinsky model (Smagorinsky 1963) that was found to be too dissipative in the
near-wall region. The procedure was later used to develop a dynamic variance model by
Pierce & Moin (1998). In this procedure, the base static gradient model is corrected using
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a dynamic parameter Cd,

σ 2 = CdΔ
2 ∂φ̃

∂xi

∂φ̃

∂xi
, (5.1)

which must be determined. The original dynamic evaluation of Cd essentially involved the
following two assumptions.

(i) The dynamic parameter Cd remains constant between the two filtering levels, at least
locally and over the region spanned by the test filter Δ̂.

(ii) The filter itself is idempotent, i.e. ˆ̄φ = φ̂.

Here ˆ denotes filtering with a filter having a characteristic length scale Δ̂ > Δ (typically
Δ̂ = 2Δ). We now derive the original expression for Cd formally using the above two
assumptions, and next we derive an alternative expression for the model’s dynamic
parameter irrespective of the filter properties. To proceed, we write (5.1) as

ρφ2 − ρ̄φ̃φ̃ = CdΔ
2ρ̄

∂φ̃

∂xi

∂φ̃

∂xi
, (5.2)

which we test filter to obtain

ρ̂φ2 − ̂̄
ρφ̃φ̃ = CdΔ

2

(
ρ̄

∂φ̃

∂xi

∂φ̃

∂xi

)̂
. (5.3)

Defining ˇ̃
φ = ̂̄

ρφ̃/ ˆ̄ρ (for filtering operations, refer to table 2), the above can be neatly
written as

ˇ̃
φ2 −

(
φ̃φ̃
)̌

= CdΔ
2

(
∂φ̃

∂xi

∂φ̃

∂xi

)̌
, (5.4)

which involves the unresolved quantity ˇ̃
φ2. The objective is to obtain a second expression

involving ˇ̃
φ2 and solve for Cd. Provided the filter is idempotent we may immediately write

an expression for the variance at the test-filter level, i.e.

ρ̂φ2

ρ̂
− ρ̂φ

ρ̂

ρ̂φ

ρ̂
= CdΔ̂

2 ∂(ρ̂φ/ρ̂)

∂xi

∂(ρ̂φ/ρ̂)

∂xi
, (5.5)

which because of the filter idempotency assumption is equivalent to

ρ̂φ2

ˆ̄ρ − ρ̂φ

ˆ̄ρ
ρ̂φ

ˆ̄ρ = CdΔ̂
2 ∂(ρ̂φ/ ˆ̄ρ)

∂xi

∂(ρ̂φ/ ˆ̄ρ)

∂xi
(5.6)

or

ˇ̃
φ2 − ˇ̃

φ
ˇ̃
φ = CdΔ̂

2 ∂
ˇ̃
φ

∂xi

∂
ˇ̃
φ

∂xi
. (5.7)

It is important to note that, for non-idempotent filters, the equivalent filter incorporating
the effects of both the original and test filters should be used in order to write down an
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Revisiting the modelling framework for the scalar variance

expression for the variance at the test-filter level – in the original works by Germano et al.

(1991) this was denoted using ˆ̄Δ, where Δ̄ stood for the original filter (denoted here as Δ).
Equations (5.4) and (5.7) can now be used to solve for Cd. In practice however, using

(5.4) and (5.7) to calculate Cd may lead to instabilities (Pierce & Moin 1998). The
alternative approach used by Pierce & Moin (1998) is to calculate Cd using

CM
d = 〈LMP〉

〈MPMP〉 (5.8)

instead. In the expression above, L = ̂̄
ρφ̃φ̃ − ˆ̄ρ ˇ̃

φ
ˇ̃
φ is the Leonard term and MP =

Δ̂
2 ˆ̄ρ|∇ ˇ̃

φ|2 − Δ2 ̂
ρ̄|∇φ̃|2 is the model term. This approach is analogous to the least-squares

minimisation approach proposed by Lilly (1992) for calculating the dynamic parameter
in the Smagorinsky model for the Reynolds stresses (excluding the averaging in the
nominator and denominator). The brackets 〈〉 typically denote averaging in statistically
homogeneous directions, and serve to further stabilise Cd (Pierce & Moin 1998). If
no homogeneous directions exist, an alternative integral-based formulation can be used
instead proposed by Ghosal et al. (1995).

For non-idempotent filters, we can use the results of § 3 to derive an approximate

expression of the unresolved quantity ˇ̃
φ2 without invoking the idempotency assumption.

A similar procedure was employed by Balarac et al. (2008) in order to derive an improved
expression for the dynamic parameter of a gradient-based model for the scalar variance in
the case of constant-density flows. Extending the procedure to variable-density flows we
have, from (3.19),

ρ̄φ̃2 = ρ̄φ̃φ̃ + 2a2ρ̄
∂φ̃

∂xi

∂φ̃

∂xi
, (5.9)

which we test filter to obtain

̂̄
ρφ̃2 = ̂̄

ρφ̃φ̃ + 2a2

(
ρ̄

∂φ̃

∂xi

∂φ̃

∂xi

)̂
(5.10)

or

ˇ̃
φ2 =

(
φ̃φ̃
)̌

+ 2a2

(
∂φ̃

∂xi

∂φ̃

∂xi

)̌
= ˇ̃

φ
ˇ̃
φ + 2a′

2
∂

ˇ̃
φ

∂xi

∂
ˇ̃
φ

∂xi
+ 2a2

(
∂φ̃

∂xi

∂φ̃

∂xi

)̌
, (5.11)

where the second step follows by expanding (φ̃φ̃)̌ using (3.19) at the test-filter level
(a′

2 corresponding to the test-filter second moment using Δ̂ instead of Δ). In order to
correct the above base static model by taking into account SGS effects through a dynamic
parameter Cd, the dynamic model should be proportional to both a2(∂φ̃/∂xi∂φ̃/∂xi)̌ and

(a′
2∂

ˇ̃
φ/∂xi∂

ˇ̃
φ/∂xi). Since a2 is proportional to Δ2, and a′

2 is proportional to Δ̂2 the
dynamic formulation should read

ˇ̃
φ2 − ˇ̃

φ
ˇ̃
φ = CdΔ̂

2 ∂
ˇ̃
φ

∂xi

∂
ˇ̃
φ

∂xi
+ CdΔ

2

(
∂φ̃

∂xi

∂φ̃

∂xi

)̌
. (5.12)

In contrast to (5.7), (5.12) contains an additional term that is the filtered gradient product.
Solving for Cd using (5.4) and (5.12) and regularising, we obtain an alternative expression
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for the dynamic parameter,

CB
d = 〈LMB〉

〈MBMB〉 . (5.13)

In the above expression, the Leonard term remains the same, but the model term is now

MB = Δ̂
2 ˆ̄ρ|∇ ˇ̃

φ|2. For constant-density flows, (5.13) reduces to that of Balarac et al.
(2008), which was shown to provide improved predictions for the scalar variance in
the case of a non-reactive scalar under forced homogeneous isotropic turbulence. The
assumptions involved in deriving (5.8) were shown by Balarac et al. (2008) not to be
verified, at least when using non-idempotent filters as was done in the original derivation
of the method (Pierce & Moin 1998). This leads to the p.d.f. of Cd having substantial
probabilities/contributions over a wide range of negative values that of course leads to
negative, i.e. unrealisable variance predictions (Balarac et al. 2008). In contrast, CB

d is
always positive by construction. Furthermore, the evaluation of the dynamic parameter
using (5.13) was shown to be more robust (Balarac et al. 2008). For reacting scalars, a
thorough a priori testing of both the CM

d and CB
d formulations was conducted by Knudsen

et al. (2010) using DNS data of statistically planar turbulent premixed flames. The testing
was conducted for a wide range of Δ values. For small Δ, (5.13) improved the predictions
substantially in line with the results of Balarac et al. (2008). For larger Δ, it was found
that both formulations, but also even the static gradient model, all resulted in similar
performances. On this point, it is interesting to note that Mukhopadhyay et al. (2015)
conducted both a priori and a posteriori studies of turbulent premixed Bunsen flames
using both the static and the dynamic gradient model (using CM

d ), and it was concluded that
the dynamic model did not improve the predictions over its static counterpart. Therefore,
the overall evidence appears to suggest that the improvements obtained by a dynamic
procedure might be limited by the filter size.

5.2. A reconstruction-based interpretation of the dynamic procedure
The role of a dynamic procedure is to correct a base static model, call this Bm. However,
in LES the unresolved variance is unknown, and the only information available to correct
Bm are the LES variables ρ̄, ρφ, etc. Nevertheless, from the resolved variables one can
calculate a corresponding resolved variance σ 2

r – an equivalent resolved stress tensor
was used for developing a dynamic model for the unresolved Reynolds stresses by Liu,
Meneveau & Katz (1994). If the resolved variance is modelled using a model Tm, a natural
approach is to try to correct the base model of the unresolved variance using σ 2

r and Tm.
In fact, the Leonard term in the expression for CB

d in (5.13) (numerator) divided by ˆ̄ρ is the
resolved variance σ 2

r at the test-filter level,

σ 2
r =

̂̄
ρφ̃φ̃

ˆ̄ρ −
( ̂̄

ρφ̃

ˆ̄ρ

)2

=
(
φ̃φ̃
)̌

− ˇ̃
φ

ˇ̃
φ = L

ˆ̄ρ . (5.14)

Also, the remaining denominator term in (5.13) Δ̂2|∇ ˇ̃
φ|2 is in fact a gradient model

Tm for the resolved variance. Therefore, the expression for CB
d in (5.13) can also be

written as σ 2
r /Tm, which is the ratio between the resolved and the modelled resolved

variance at the test-filter level. This ratio can be interpreted as a measure of the
error in modelling the resolved variance σ 2

r using Tm. We may therefore express the
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Revisiting the modelling framework for the scalar variance

scale-similarity assumption as

σ 2

Bm
� σ 2

r

Tm
� CN

d , (5.15)

essentially stating that the error in approximating the unresolved variance σ 2 using a base
model Bm scales as the error in modelling the resolved variance σ 2

r using a base model Tm.
Regularisation (〈 〉) of the dynamic parameter CN

d then leads to the following expression
of the dynamic model:

σ 2 = Bm
〈σ 2

RTm〉
〈TmTm〉 = BmCN

d . (5.16)

As shown in § 3, the gradient model is a subset model of more general reconstruction base
models Bm such as SM4 and AD4. Therefore, if Bm is a general reconstruction-based
model, a natural approach to obtain a model Tm for the resolved variance is to use
reconstruction as well but at the test-filter level. Denoting ρL = ρ̄ and φL = φ̃ we can
write the resolved variance as

σ 2
r = ρ̂LφLφL

ρ̂L
−
(

ρ̂LφL

ρ̂L

)2

= (φLφL)̌ − φ̌Lφ̌L. (5.17)

Clearly, the above equation is analogous to the definition of the unresolved variance, the
only difference being the filter size and the definition of the Favre averaging. We are now
in a position to write the reconstruction model at the test-filter level for σ 2

r as

Tm = ρ̂∗
Lφ∗

Lφ∗
L

ρ̂∗
L

−
(

ρ̂∗
Lφ∗

L

ρ̂∗
L

)2

= (φ∗
Lφ∗

L
)̌ −

(
φ̌∗

L

)2
, (5.18)

where ρ∗
L and φ∗

L = (ρφ)∗L/ρ∗
L are the reconstruction estimates at the test-filter level.

Specifically, denoting the reconstruction operator at the test-filter level as R
Δ̂

, the
reconstructions at the test-filter level are given by ρ∗

L = R
Δ̂

[ ˆ̄ρ] and (ρφ)∗L = R
Δ̂

[ρ̂u].
Provided φ∗

L ∈ [0, 1] then φ̌∗
L ∈ [0, 1] as well, and Tm ∈ [0, φ̌∗

L(1 − φ̌∗
L)] ensuring that

the modelled resolved variance is bounded. Also, since σ 2
r ∈ [0, φ̌L(1 − φ̌L)], CN

d ≥ 0
and the variance predictions are always positive. Furthermore, in the limit RΔ[φ̄] → φ

and R
Δ̂

[ ˆ̄φ] → φ̄, Bm → σ 2 while Tm → σ 2
r , therefore, CN

d → 1, and the dynamic model
recovers the actual variance.

The reconstruction operator R
Δ̂

acting on the test-filtered variables can be obtained
using the same procedure as in § 3 but at the test-filter level. For example, using truncated
Taylor-series expansions we have, for a general variable ûL = ˆ̄u, the reconstruction
estimate

R
Δ̂

[ ˆ̄u] = u∗
L = ûL − a′

2∇2ûL + O(Δ̂4) = ˆ̄u − a′
2∇2 ˆ̄u + O(Δ̂4), (5.19)

where a′
2 is the filter’s second moment but using Δ̂ instead of Δ (see table 1). As

an example, for an O(Δ̂2) reconstruction at the test-filter level: ρ∗
L = ρ̂L = ˆ̄ρ, (ρφ)∗L =

ρ̂LφL = ̂̄
ρφ̃ and φ∗

L = ̂̄
ρφ̃/ ˆ̄ρ = ˇ̃

φ. Inserting these reconstructions in (5.18) we obtain an
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equivalent SM2 model for the resolved variance,

Tm =
̂̄̂
ρ

ˇ̃
φ

ˇ̃
φ

ˆ̄̂
ρ

−
⎛⎝ ̂̄̂ρ ˇ̃

φ

ˆ̄ρ

⎞⎠2

=
( ˇ̃
φ

ˇ̃
φ
)“

− “̌
φ̃

“̌
φ̃, (5.20)

and the dynamic parameter for the SM2 model (with regularisation) becomes

CN
d =

〈((
φ̃φ̃
)̌

− ˇ̃
φ

ˇ̃
φ

)(( ˇ̃
φ

ˇ̃
φ
)“

− “̌
φ̃

“̌
φ̃

)〉
〈(( ˇ̃

φ
ˇ̃
φ
)“

− “̌
φ̃

“̌
φ̃

)(( ˇ̃
φ

ˇ̃
φ
)“

− “̌
φ̃

“̌
φ̃

)〉 . (5.21)

The overall dynamic SM2 model, call this DSM2-N, is just the base static SM2 model of
(3.11) corrected using the above expression for the dynamic parameter,

σ 2 = CN
d

((
φ̃φ̃
)̆

− ˘̃
φ

˘̃
φ

)
. (5.22)

For an O(Δ̂4) reconstruction on the other hand: ρ∗
L = ρ̂L − a′

2∇2ρ̂L + O(Δ̂4) =
ˆ̄ρ − a′

2∇2 ˆ̄ρ + O(Δ̂4) and (ρφ)∗L = (̂ρφ)L − a′
2∇2(̂ρφ)L + O(Δ̂4) = ρ̂φ − a′

2∇2(ρ̂φ) +
O(Δ̂4). As before, φ∗

L = (ρφ)∗L/ρ∗
L . Inserting these reconstructions in (5.18) and following

the same procedure as in § 3, we eventually obtain an equivalent SM4 model for the
resolved variance,

Tm =
( ˇ̃
φ

ˇ̃
φ
)“

− “̌
φ̃

“̌
φ̃ + 2a′

2
ˆ̄̂
ρ

(
“̌
φ̃∇2 ̂̄̂ρ ˇ̃

φ − ˇ̃̂
φ∇2 ˆ̄ρ ˇ̃

φ

)
+ a′

2
ˆ̄̂
ρ

(
ˇ̃̂
φ

ˇ̃
φ∇2 ˆ̄ρ +

( ˇ̃
φ

ˇ̃
φ
)“

∇2 ˆ̄̂
ρ − 2

“̌
φ̃

“̌
φ̃∇2 ˆ̄̂

ρ

)
.

(5.23)

Expanding the test-filtering operations up to O(Δ̂4) in the above SM4 model, as done
in § 3, it is straightforward to show after some algebraic manipulation that the above
expression reduces to

Tm = 2a′
2
∂

ˇ̃
φ

∂xi

∂
ˇ̃
φ

∂xi
, (5.24)

which is the equivalent gradient model for the resolved variance at the test-filter level. For
a Gaussian filter, a′

2 = Δ̂2/24 in which case we recover the gradient model for the resolved
variance employed in the classic dynamic models. Therefore, the expression for the model
term in (5.13) is a subset of the more general model in (5.23). As a result, if the expression
in (5.23) is used to develop a dynamic model, we obtain (with regularisation)

CN
d =

〈((
φ̃φ̃
)̌

− ˇ̃
φ

ˇ̃
φ

)(( ˇ̃
φ

ˇ̃
φ
)“

− “̌
φ̃

“̌
φ̃ + 2a′

2
ˆ̄̂
ρ

(
“̌
φ̃∇2 ̂̄̂ρ ˇ̃

φ − ̂ˇ̃
φ∇2 ˆ̄ρ ˇ̃

φ

)
+ a′

2
ˆ̄̂
ρ

(
̂ˇ̃
φ

ˇ̃
φ∇2 ˆ̄ρ +

( ˇ̃
φ

ˇ̃
φ
)“

∇2 ˆ̄̂
ρ − 2

“̌
φ̃

“̌
φ̃∇2 ˆ̄̂

ρ

))〉
〈(( ˇ̃

φ
ˇ̃
φ
)“

− “̌
φ̃

“̌
φ̃ + 2a′

2
ˆ̄̂
ρ

(
“̌
φ̃∇2

̂̄̂
ρ

ˇ̃
φ − ̂ˇ̃

φ∇2 ˆ̄ρ ˇ̃
φ

)
+ a′

2
ˆ̄̂
ρ

(
̂ˇ̃
φ

ˇ̃
φ∇2 ˆ̄ρ +

( ˇ̃
φ

ˇ̃
φ
)“

∇2 ˆ̄̂
ρ − 2

“̌
φ̃

“̌
φ̃∇2 ˆ̄̂

ρ

))2〉 .

(5.25)

It is important to note that in contrast to the dynamic parameter for the SM2 model, the
above expression is not necessarily always positive as a result of truncating the filtering
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operations to obtain the expression for Tm. The dynamic SM4 model DSM4-N then
becomes

σ 2 = CN
d

((
φ̃φ̃
)̆

− ˘̃
φ

˘̃
φ + 2a2

¯̄ρ
( ˘̃
φ∇2ρ̄φ̃ − φ̃∇2ρ̄φ̃

)
+ a2

¯̄ρ

(
φ̃φ̃∇2ρ̄ +

(
φ̃φ̃
)̆

∇2 ¯̄ρ − 2 ˘̃
φ

˘̃
φ∇2 ¯̄ρ

))
. (5.26)

As shown above, the dynamic procedure employed in classic algebraic dynamic models
is essentially a two-level approximate reconstruction-based modelling approach. At the
normal filter level Δ reconstruction serves to obtain a base model Bm for the unresolved
variance σ 2 while at the test-filter level Δ̂ it serves to obtain a model Tm for the resolved
variance σ 2

r . Then, by employing the scale-similarity assumption through (5.16) the ratio
of the resolved variance to the modelled resolved variance is used to correct the variance
prediction of the base static model.

5.3. Generalized dynamic reconstruction models
In this section we consolidate all the results thus far in an effort to present a general
methodology for obtaining a dynamic model for any given general reconstruction operator
RΔ acting on the LES fields, and for any reconstruction operator R

Δ̂
acting on the

test-filtered LES fields. This also includes bounding of the reconstructed fields. The overall
model reads

σ 2 = CN
d

⎛⎝ρ∗φ∗φ∗

ρ∗ −
(

ρ∗φ∗

ρ∗

)2
⎞⎠. (5.27)

The bounded reconstructions at Δ are obtained using

ρ∗ = max(min(RΔ[ρ̄], ρh), ρl),

(ρφ)∗ = max(min(RΔ[ρφ], (ρφ)h), (ρφ)l),

φ∗ = max(min((ρφ)∗/ρ∗, 1), 0),

⎫⎪⎬⎪⎭ (5.28)

and at Δ̂ by

ρ∗
L = max(min(R

Δ̂
[ ˆ̄ρ], ρh), ρl),

(ρφ)∗L = max(min(R
Δ̂

[ρ̂φ], (ρφ)h), (ρφ)l),

φ∗
L = max(min((ρφ)∗L/ρ∗

L, 1), 0).

⎫⎪⎪⎬⎪⎪⎭ (5.29)

The dynamic parameter CN
d is then calculated using

CN
d =

〈((
φ̃φ̃
)̌

− ˇ̃
φ

ˇ̃
φ

)((
φ∗

Lφ∗
L
)̌ − φ̌∗

Lφ̌∗
L

)〉
〈((

φ∗
Lφ∗

L
)̌ − φ̌∗

Lφ̌∗
L

) ((
φ∗

Lφ∗
L
)̌ − φ̌∗

Lφ̌∗
L

)〉 . (5.30)

Clearly, the above expression is always positive ensuring that we recover realisable
predictions of the variance. As we will see in the sections that follow, in the case where
RΔ = (I − a2∇2) and R

Δ̂
= (I − a′

2∇2) the above procedure results in a dynamic model
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Model Short name Reference equation(s)

Static:

(φ̃φ̃)̆ − ˘̃
φ

˘̃
φ SM2 (3.11)

(φ̃φ̃)̆ − ˘̃
φ

˘̃
φ + 2a2

¯̄ρ (
˘̃
φ∇2ρ̄φ̃ − φ̃∇2ρ̄φ̃)+ SM4 (3.15)

a2
¯̄ρ (φ̃φ̃∇2ρ̄ + (φ̃φ̃)̆∇2 ¯̄ρ − 2 ˘̃

φ
˘̃
φ∇2 ¯̄ρ)

2a2
∂φ̃

∂xi

∂φ̃

∂xi
GR (3.19)

φ̃∗φ∗ − φ̃∗φ̃∗ AD4 (3.12), (3.22), (3.23) and (3.24)
φ̃∗φ∗ − φ̃∗φ̃∗ DEIF (3.22), (3.23) and (3.24)
Dynamic:
CN

d · SM2 DSM2-N (5.21) and (5.22)
CN

d · SM4 DSM4-N (5.25) and (5.26)

CB
d Δ2 ∂φ̃

∂xi

∂φ̃

∂xi
DGR-B (5.1) and (5.13)

CN
d · AD4 DAD4-N (3.12), (5.27) and (5.30)

CN
d · DEIF DEIF-N (5.27) and (5.30)

Table 5. Summary of the various models tested and the relevant equations used. A Gaussian filter is used for
all models for which a2 = Δ2/24. Note that the parameter CN

d is different for each model and calculated using
the procedure outlined in § 5.2.

far superior than the DSM4-N model developed in the previous section. We will refer to
this model as DAD4-N. Furthermore, in the case where the reconstruction operator is given
by the optimised inverse discrete filter we will refer to this model as DEIF-N. Note that in
this case optimised inverse filters are used both at the normal filter level Δ, and at the test
filter Δ̂. At the normal filter level the inverse filter coefficients are listed in table 3 (γ = 4),
and at the test-filter level the inverse filter coefficients are listed in table 4 (γ = 8).

6. Results

A summary of all the different models tested is given in table 5. These include five static
models (SM2, SM4, GR, AD4, DEIF) and their dynamic versions (DSM2-N, DSM4-N,
DGR-B, DAD4-N, DEIF-N). Here ‘B’ in the dynamic models indicates that the dynamic
parameter is calculated using CB

d from (5.13) (the dynamic gradient model with CM
d is

not considered due to its poorer performance in comparison), while N indicates using CN
d .

Note that the CN
d formulation depends on the base static model used and the reconstruction

operator used as outlined in § 5.2. The performance of each model is quantified by
calculating the mean-squared error between the modelled variance σ 2

m and the actual
reference variance σ 2 as obtained on the LES mesh. This is defined using

e = 1
Ns

∑
x,t

(σ 2
m(x, t) − σ 2(x, t))

2|c̃∈[ε,1−ε], (6.1)

where Ns = NxNyNzNt is the total sample size and ε = 0.05. The conditioning on c̃ ∈
[ε, 1 − ε] ensures that no-reaction regions are not sampled thereby biasing the results.
This is because in no-reaction regions the scalar fields are more or less constant and
filtering/reconstruction would be nearly perfect. The performance of each model is also
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Figure 2. Progress-variable isosurface of the leading edge of the flame (c = 0.1) for (a) the planar flame and
(b) the V-flame. Dimensions are in mm.

evaluated by calculating the conditional variance based on c̃ denoted by σ 2|c̃. The
conditional averages are also time averaged 〈 〉 over several samples in time to increase
the statistical accuracy of the results. In the following section a brief description of the
DNS databases used for testing is presented.

6.1. The DNS databases
The DNS databases correspond to two turbulent premixed flames simulated using detailed
chemistry. Database PB corresponds to a statistically planar multi-component-fuel/air
flame propagating in an inflow–outflow configuration, and database V97 is a statistically
stationary hydrogen/air V-flame anchored on a fixed rod. In both cases, turbulent reactants
enter from one end of the computational domain forming a flame that interacts with
the incoming turbulence. Figure 2 shows the flow configuration for each flame. Flame
PB was simulated using the in-house fully compressible solver SENGA2 (Cant 2012)
and flame V97 using the TTX solver (Minamoto et al. 2011). The solver SENGA2
employs a tenth-order centred finite-difference scheme for the spatial derivatives and
a fourth-order Runge–Kutta scheme for the time stepping, while TTX employs a
fourth-order finite-difference scheme and a third-order Runge–Kutta scheme. Boundary
conditions in both codes are implemented using the Navier–Stokes characteristics
boundary conditions formalism (Thompson 1987; Poinsot & Lele 1992; Sutherland &
Kennedy 2003).

Chemistry is modelled using a 49 reaction 15 species chemical mechanism for the
planar flame (Nikolaou & Swaminathan 2013), and a 27 reaction 12 species chemical
mechanism for the hydrogen/air flame (Gutheil, Balakrishnan & Williams 1993). Table 6
lists the important parameters for each database: urms is the root-mean-square value of the
fluctuating component of the incoming turbulent velocity field, lT is the turbulence integral
length scale in the reactant side, the turbulence Reynolds number is ReT = urmslT/νr, the
Damkohler number is Da = (lT/urms)/(δ/sL) and the Karlovitz number is Ka = (δ/ηk)

2,
where sL is the laminar flame speed. The (diffusive) thickness is δ = νr/sL. The laminar
flame thickness is defined as δL = 1/ max(dc/dx), where c is the progress variable. The
progress variable is defined using species mass fractions, i.e. c = (Y − Yr)/(Yp − Yr).
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Database sL (m s−1) δL (mm) urms/sL lT/δ ReT Da Ka Lx (mm) Ly (mm) Lz (mm)

PB 2.5 0.64 9 16.7 150.1 1.9 6.6 14 7 7
V97 11.4 0.20 6 93.8 562.8 15.6 1.5 10 5 5

Table 6. Important flame parameters for the planar (PB) and V (V97) flames.

Case Δ+ Nx Ny Nz

PB DNS 768 384 384
1 89 45 45
2 45 23 23
3 31 15 15

V97 DNS 769 385 385
1 201 101 101
2 101 51 51
3 67 34 34

Table 7. The DNS and LES meshes for Δ/h = 4.

For the planar flame, c is based on the CO mass fraction, and for the V-flame it is
based on the H2 mass fraction. Further details of the simulations, numerical schemes,
etc. can be found in Nikolaou & Swaminathan (2015) and Minamoto et al. (2011). As
noted in table 6, the databases differ substantially in their thermo-chemical properties
(laminar flame speed, flame thickness, etc.) and flow configuration (freely propagating
and with mean shear). Note that even though the Da number for the planar flame is
lower, the V-flame experiences smaller-scale wrinkling due to the presence of the rod that
‘re-energizes’ the flow. In the planar flame, turbulence decays with downstream distance x
and, as a result, the flame experiences larger-scale wrinkling as evidenced in figure 2(a).
This has some important modelling consequences since reconstruction for the V-flame
must recover a wider range of wavenumbers for an accurate variance estimation. Therefore,
for the same reconstruction order, we would expect the variance predictions for the V-flame
to be of lower accuracy.

The DNS data are filtered using a Gaussian filter: G(x) = (6/(πΔ)2)3/2 exp(−6x·x/

Δ2). The analytic form of the filter is approximated in physical space using a 3-D discrete
filtering operator that is constructed by the successive application of 1-D discrete filters in
each coordinate direction. This implies that the discrete filter operator does not preserve
the isotropy of the analytic filter. However, in practice, the filter width is sufficiently larger
than the mesh spacing that ensures that any anisotropic effects are negligible. On the
boundaries, the discrete filter is applied as usual taking into account the corresponding
boundary conditions for each case. In order to simulate an LES, the filtered DNS data
are then sampled from the DNS mesh onto a coarser LES mesh. The choice of the LES
mesh size h is based on the criterion derived by Nikolaou & Vervisch (2018), specifically
h = Δ/4 is used. This criterion ensures that the filtered flame thickness is adequately
resolved on the LES mesh. Table 7 shows for each filter size the corresponding LES
mesh. Note that Δ+ = Δ/δL, and the range of Δ+ values considered corresponds to
well-resolved LES conditions – all three LES meshes are substantially coarser than the
DNS mesh.

983 A47-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

17
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.178


Revisiting the modelling framework for the scalar variance

Δ+ SM2 SM4 GR AD4 DEIF

PB
1 6.381 × 10−5 1.470 × 10−5 2.076 × 10−5 8.738 × 10−6 1.093 × 10−6

2 4.082 × 10−4 1.725 × 10−4 2.062 × 10−4 1.137 × 10−4 2.097 × 10−5

3 7.585 × 10−4 3.837 × 10−4 4.671 × 10−4 2.748 × 10−4 5.216 × 10−5

V97
1 8.290 × 10−5 1.963 × 10−5 2.539 × 10−5 1.300 × 10−5 2.600 × 10−6

2 6.002 × 10−4 2.183 × 10−4 2.669 × 10−4 1.436 × 10−4 2.360 × 10−5

3 1.390 × 10−3 6.281 × 10−4 7.459 × 10−4 4.320 × 10−4 7.754 × 10−5

Table 8. Mean-squared errors obtained using (6.1) for each of the static models.
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Figure 3. Conditionally averaged variance predictions of the static models against the reference variance at
Δ+ = 3 for (a) the planar flame and (b) the V-flame. Note that these are normalised using the maximum of the
reference conditional variance. Results are shown for (a) PB − Δ+ = 3, (b) V97 − Δ+ = 3.

6.2. Static models
In order to test the validity of the modelling framework developed in § 3 we begin
by examining the performance of the base (static) models. Table 8 lists the errors for
each model, and figure 3 shows the corresponding conditional averages. Instantaneous
predictions for each model are shown for the V-flame in figure 4 (similar scatter plots were
obtained for case PB). The results in table 8 indicate that the SM4 model substantially
improves the predictions over the SM2 model for all three filter widths and for both
databases. The SM4 model also performs better than the GR model that, as shown in
§ 3, is a subset of SM4. This behaviour is also evident in the instantaneous predictions
shown in figure 4: the GR model has an inferior correlation with the reference variance,
and a similar instantaneous distribution for this model was also obtained by Knudsen
et al. (2010). Even though the SM4 model has some negative predictions these are
very few, which contributes to the lower overall error for this model. The AD4 model,
which is of the same reconstruction order (O(Δ4)) as the SM4 model, has substantially
improved performance over the SM4 model for both databases and all three filter widths.
This implies that post-reconstruction bounding has a substantial effect on the model
performance; however, part of the improvement also originates from the direct use of
the approximately reconstructed fields. This is in contrast to the SM4 model where the
approximate reconstructions are used to develop an algbebraic model that entails further
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Figure 4. Instantaneous variance predictions of the static models against the reference variance for case V97
and Δ+ = 3. The predictions are normalised using the maximum reference variance. Results are shown for
(a) SM2, (b) GR, (c) SM4, (d) AD4, (e) DEIF.

truncations of the filtering operations. Furthermore, we observe from figure 3 that the
predictions of the AD4 model improve consistently over the entire range of c̃ values.
Overall, the DEIF model has the best performance as evidenced by the lowest error, and
the corresponding substantially improved conditional averages – figure 4(e) shows that this
is a direct result of the much improved correlation with the reference variance. Between
the two databases, DEIF performs better for the planar flame that exhibits larger-scale
wrinkling. This is not surprising since the inverse filter was designed to correspond
to N = 5 iterations of the van Cittert algorithm that is sufficient to recover the largest
scales (smaller wavenumbers) for this flame. The V-flame on the other hand contains
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Figure 5. Probability density functions of the different dynamic parameters: (a) CM
d , (5.8); (b) CB

d , (5.13);
(c) CN

d for the SM2 model, (5.21); (d) CN
d for the SM4 model, (5.25); (e) CN

d for the AD4 model, (5.30) and
( f ) CN

d for the DEIF model, (5.30). The p.d.f.s are for case V97.

contributions from smaller scales and higher-order reconstruction is required to recover
these, which leads to a slight under-prediction of the peak variance. Despite this, the
predictions of the DEIF model are still substantially improved in comparison to the rest of
the models.

Overall, these results combined serve to confirm the validity of the reconstruction-based
modelling framework proposed in § 3, and one could employ higher-order reconstructions
leading to further improvements. In the following section we examine whether the
corresponding dynamic formulations of each of the above static models improve their
predictions and to what extent.
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Δ+ DSM2-N DSM4-N DGR-B DAD4-N DEIF-N

PB
1 2.364 × 10−5 8.169 × 10−6 1.288 × 10−5 5.302 × 10−6 6.474 × 10−7

2 9.662 × 10−5 4.959 × 10−5 8.050 × 10−5 3.758 × 10−5 9.080 × 10−6

3 1.993 × 10−4 1.229 × 10−4 1.763 × 10−4 9.515 × 10−5 2.707 × 10−5

V97
1 3.364 × 10−5 9.057 × 10−6 1.244 × 10−5 6.811 × 10−6 1.678 × 10−6

2 1.928 × 10−4 6.782 × 10−5 1.024 × 10−4 5.213 × 10−5 1.483 × 10−5

3 5.599 × 10−4 2.683 × 10−4 3.744 × 10−4 1.897 × 10−4 6.247 × 10−5

Table 9. Mean-squared errors obtained using (6.1) for each of the dynamic models.

6.3. Comparison of Cd formulations
Before quantifying the performance of the dynamic models, it is imperative to examine
the distribution of each model’s dynamic parameter. The p.d.f.s for each one are shown
in figure 5 for case V97 (similar distributions were obtained for the planar flame). In
accordance with the results obtained for a passive scalar by Balarac et al. (2008) but also
for reacting scalars by Knudsen et al. (2010), CM

d can become negative as evidenced by
the finite non-zero probability for negative CM

d values in figure 5(a). This leads to negative
variance predictions that are not realisable. Perhaps more important however is that for
increasing filter widths Δ, the probability of CM

d becoming negative increases whereas the
probability of becoming positive decreases. This trend, which is also in accordance with
the results obtained by Balarac et al. (2008), implies that the predictions for this model
deteriorate for increasing Δ. For these reasons, the variance predictions using this dynamic
model were found to be inferior to the rest of the models. The formulation in (5.13) (CB

d )
on the other hand is always positive as expected, and more robust as it is less affected
by variations in Δ. In the case of the DSM2-N model, the dynamic parameter is always
positive by construction that is also reflected in the corresponding p.d.f. The distribution
of CN

d for the DSM4-N model on the other hand has some negative contributions owing
to truncating the filtering operations to obtain the expression for Tm in (5.25). In the case
of the DAD4-N model, CN

d is also always positive by construction. It is also important to
note that all four CN

d formulations are much less sensitive to variations in filter width in
comparison to the formulation for CM

d . Also, since the base static models AD4 and DEIF
already provide adequately good predictions of the variance, the corresponding p.d.f.s of
their dynamic parameters approach a delta function centred around 1 in accordance with
the limiting behaviour of the dynamic reconstruction models presented in § 5.

6.4. Dynamic models
Table 9 shows the errors for the five dynamic models. The conditional averages are
shown in figure 6, and instantaneous predictions are shown in figure 7 for case V97
at Δ+ = 3. It is important to note at this point that all dynamic models employ a test
filter Δ̂ = 2Δ, and regularisation of the dynamic parameter is conducted by averaging
in the homogeneous directions in accordance with standard practice in the literature.
Firstly, by comparing tables 8 and 9 we see that the dynamic procedure improves the
predictions of the static models. This results in improved predictions of the peak variance
as evidenced from the instantaneous predictions shown in figure 7 despite the generally
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Figure 6. Conditionally averaged variance predictions of the dynamic models against the reference variance
at Δ+ = 3 for (a) the planar flame and (b) the V-flame. Note that these are normalised using the maximum of
the reference conditional variance. Results are shown for (a) PB − Δ+ = 3 and (b) V97 − Δ+ = 3.

more distributed predictions observed for the dynamic models. This increased scatter
is the result of local variations in the dynamic parameter particularly in regions of
intense heat release. In such regions, the standard averaging procedure in homogeneous
directions may not be sufficient to smooth out any large variations. This issue has also
been identified in past studies on turbulent premixed flames modelling, for instance, when
calculating the dynamic Smagorinsky parameter (Klein, Kasten & Chakraborty 2015).
An alternative averaging procedure that involves conditioning on c̃ may help to reduce
the scatter as suggested by Klein et al. (2015). Nevertheless, the conditional averages
are also improved for all c̃ values as we observe from figure 6. The dynamic procedure
proposed in § 5 even improves the results of the static SM2 model that is the lowest-order
reconstruction model (O(Δ2)), and which has the largest error of all the static models.
In fact, for the largest filter width, the DSM2-N model compares favourably with the
dynamic gradient model that is derived from an O(Δ4) reconstruction approximation.
These results serve to validate the dynamic modelling procedure that was reinterpreted
as a two-level reconstruction-modelling approach in § 5. The DSM4-N model improves
the results considerably over the DSM2-N model as a result of the higher-order Taylor
expansion for the reconstructed fields. Some negative predictions do occur for reasons
discussed in the previous section, however, the overall error is lower than the dynamic
gradient model. Furthermore, from the instantaneous predictions in figure 7(d) we see
that the overall correlation of the DSM4-N model is improved in comparison to the
dynamic gradient model. The DAD4-N model on the other hand has the lowest error,
highest correlation and best overall performance of all the algebraic models. The dynamic
inverse filter model DEIF-N has the best overall performance and improves the predictions
particularly in the leading edge (c̃ < 0.4) of the flame surface as evidenced in figure 6(b).
It is interesting to note that, for the V-flame, all models show similar responses when
comparing their conditional averages, however, they all have substantially different errors
and correlations with respect to the reference variance. This serves to illustrate that
comparing conditional averages alone is insufficient for model comparison/evaluation.

7. Conclusions

A generalized modelling framework for the scalar variance in LES is presented. This
new modelling framework is based on reconstruction of the primary variables with the
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Figure 7. Instantaneous variance predictions of the dynamic models against the reference variance for case
V97 and Δ+ = 3. The predictions are normalised using the maximum reference variance. Results are shown
for (a) DSM2-N, (b) DGR-B, (c) SM4, (d) AD4, (e) DEIF.

degree of reconstruction determining the accuracy of the model. It is shown that the classic
scale-similarity model of Cook & Riley (1994) but also the gradient model by Pierce &
Moin (1998) are subsets of more general models derived using the proposed framework.
Another novelty of the proposed framework is that the base static models are physically
realisable by construction since the variance predictions are bounded, thus satisfying the
relevant properties of the scalar variance.

The methodology for the development of dynamic models stems from a new
interpretation of the classic scale-similarity assumption as a two-level reconstruction
process whose aim is to correct the prediction of the base static model using information
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from the resolved scales. This involves a reconstruction step at the normal filter level Δ that
serves to obtain a base static model, and a reconstruction step at the test-filter level Δ̂ that
serves to obtain a model for the resolved variance. This naturally leads to an alternative
interpretation of the model dynamic parameter Cd, which is intrinsic to the base model but
also to the specific reconstruction operator used.

By employing approximate reconstruction operators obtained using truncated
Taylor-series expansions, a range of static and dynamic algebraic models are developed.
In addition, a novel and computationally efficient reconstruction operator based on the
concept of optimised inverse explicit filters is used to develop a new high-order static and
dynamic reconstruction model. All models are eventually tested a priori using high-fidelity
DNS data of two turbulent premixed flames. The highest-order reconstruction models
show a substantial improvement in comparison to the classic models serving to justify the
proposed modelling framework. At the same time, their performance is consistent with
variations in filter width despite the large differences in thermo-chemical properties and
flow configuration between the two databases.

Even though approximate reconstruction operators were employed, the proposed
modelling framework allows for any arbitrary higher-order approximate or iterative
reconstruction operator to be used, therefore leading to higher-order variance models. In
addition, the proposed dynamic procedure allows SGS effects to be incorporated in a base
reconstruction model, thereby extending the capabilities of current reconstruction-based
modelling methods. Furthermore, in contrast to classic modelling approaches, the
modelling framework presented in this work is general. As such, it can be used to model
a wide range of unresolved terms in the governing equations for LES, thereby providing a
single, coherent and unified modelling framework for the simulation of turbulent flows.

Acknowledgement. Z.N. acknowledges Dr Y. Minamoto for providing the hydrogen V-flame DNS data.

Funding. Z.N. acknowledges funding received under both the ‘Hydrogen and Energy Decarbonisation’
program by Agence Nationale de la Recherche (ANR) and the REDAFLOW project under the European
Union’s Horizon 2020 research and innovation programme-Marie Skłodowska-Curie grant agreement no
101019855.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Z. Nikolaou https://orcid.org/0000-0003-4201-2352.

Appendix A

Let φ(x, t) ∈ [0, 1] and G̃(s; x, t) = G(s)ρ(x − s, t)/ρ̄(x, t) ≥ 0 for all s, x, t ∈ R with the
consistency condition

∫∞
−∞ G̃(s; x, t) ds = 1. We have

φ̃(x, t) − 1 =
∫ ∞

−∞
G̃(s; x, t) (φ(x − s, t) − 1) ds, (A1)

where (φ(x − s, t) − 1) ∈ [−1, 0] and G̃(s; x, t)(φ(x − s, t) − 1) ≤ 0. As a result,
φ̃(x, t) ≤ 1 for all x, t ∈ R. Also, G̃(s; x, t)φ(x − s, t) ≥ 0, hence, φ̃(x, t) ≥ 0. Therefore,
overall if φ ∈ [0, 1] then φ̃ ∈ [0, 1] as well.

For non-positive filters, φ̃ may not be bounded in [0, 1] even if φ ∈ [0, 1]. For such
filters, there always exists by definition at least one region in space and time such that
G̃(s; x, t) < 0 for all s ∈ [a, b] where we will take b > a without loss of generality.
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In such a case we may define, for all t ∈ R, the function

φ(x − s, t) =
{

v ∈ [0, 1] constant, for all (x − s) ∈ [x − b, x − a],
0, otherwise.

(A2)

For the above distribution, the filtering integral reduces to

φ̃(x, t) − 1 =
∫ b

a
G̃(s; x, t) (v − 1) ds (A3)

for all (x − s) ∈ [x − b, x − a] and where G̃(s; x, t)(v − 1) ≥ 0. Therefore, φ̃(x, t) ≥ 1 for
all (x − s) ∈ [x − b, x − a]. Similarly, the lower bound is not satisfied either since for all
(x − s) ∈ [x − b, x − a] G̃(s; x, t)v ≤ 0. In short, we have shown that, for non-positive
filters and a bounded scalar φ ∈ [0, 1], there always exists a bounded distribution in [0, 1]
such that φ̃(x, t) is not bounded in [0, 1].
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