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A DILATION AND NORM 
IN SEVERAL VARIABLE OPERATOR THEORY 

PAUL BINDING, D. R. FARENICK AND CHI-KWONG LI 

ABSTRACT. For every w-tuple of operators acting on a Hilbert space, it is shown 
that there exists a common dilation of these operators to m commuting normal operators 
on some larger Hilbert space. We then introduce a norm on the w-fold cartesian product 
of (B(9{) that is defined to be, for a given w-tuple, the infimum of the joint spectral radii 
of all joint normal dilations of the m operators. This norm has several good features, 
one of which is that it is invariant under the passage to adjoints. 

Introduction. In the influential paper [12], Paul Halmos proved that every contrac­
tion on a Hilbert space has a unitary dilation. This important result was followed by the 
far reaching Sz.-Nagy Dilation Theorem: every contraction T has a unitary dilation U 
such that every power T" of T dilates to the unitary If1. (In other words, the Sz.-Nagy 
dilation applies not just to T9 but to the discrete semigroup generated by T.) An extension 
of the Sz.-Nagy dilation to two commuting contractions was carried out by T. Ando [1], 
but several years later S. K. Parrott [19] demonstrated that the dilation theory of Sz.-
Nagy is limited to the cases of one contraction or two commuting contractions. In fact, 
the theorem of Halmos—that of a dilation of T rather than of powers of T—itself does 
not extend to the case of three commuting contractions. This is described by Halmos in 
[13; p. 909] where he presents Parrott's example, as viewed by C. Davis, of three com­
muting contractions such that if each has an isometric dilation, then the three isometries 
cannot commute. If one removes the demand that the dilations be isometries, then the 
arguments of Davis do not apply and indeed the situation changes. 

In this paper we show that for every m-tuple of operators on a Hilbert space, one can 
simultaneously dilate each operator (to the same dilating Hilbert space) so that the dila­
tions are normal, have finite spectrum, and are pairwise commuting. One such dilation is 
constructed via a polyhedral containment region for the joint numerical range of the orig­
inal operators. The existence of this dilation leads to the introduction of a joint norm for 
several operators (commuting or otherwise) having many desirable features. One would 
like, for example, that a joint norm || • || satisfy ||(^(i,^2)|| = Mi + i^i\\ whenever A\ 
and A2 are hermitian, and that \\A*\\ = \\A\\, where A* is the m-tuple obtained by taking 
the adjoints of the operators in the w-tuple A; our norm has these properties. In addition, 
the norm that we introduce on m-tuples is shown to dominate both the Clifford norm of 
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an m-tuple, which has recently been employed by Pryde in the study of joint spectral 
variation [21], and the multivariable norm introduced several years ago by Cho and Tak-
aguchi [7]. It is shown in Theorem 2.2 that all of these norms are, however, equivalent 
(in the sense that they induce the same topology). 

By a dilation of an m-tuple A — (A\,... ,Am) of operators on a Hilbert space Of is 
meant an m-tuple T = (T\,..., Tm) of pairwise commuting operators on a Hilbert space 
H' and an isometry V: H —> Of' such that At = V*TiV for each /. (Thus, W* is a 
projection with range V(9f) and each At has the action At — F P L ^ . ) A normal 
dilation of an m-tuple A is a dilation N such that each of the operators Nt is normal; 
a hermitian dilation of hermitian operators is defined in the obvious analogous way. A 
normal extension N of an m-tuple A is a normal dilation via an isometry V such that 
the subspace V(9f) is invariant for each Nj. Using this manner of speaking our theorem 
is like Halmos's: every AW-tuple A has a normal dilation. What differs from the Halmos 
dilation, however, is the method by which our dilation is constructed, even in the single 
operator case. 

We will make extensive use of the joint spectra and the joint numerical range of several 
operators. Suppose that 9f denotes a Hilbert space, that (x,y) denotes the inner product 
of two vectors x j G Of, and that (B{9() is the algebra of bounded linear operators on 
9f. The joint numerical range of an m-tuple A — (A\9... ,Am) of operators on Of is 
the set W(A) of complex ra-tuples of the form {{A\x,x),..., (^wx,x)), where x G Of is 
a unit vector. The joint numerical radius w(A) of the m-tuple A is the supremum of the 
euclidean norms of the complex m-tuples in W(A). 

There are several notions of joint spectrum, most of which are discussed in the recent 
survey [9] of Curto. We will be interested in the following joint spectra. The joint point 
spectrum of the m-tuple A is the set op(A) of complex m-tuples (Ai, . . . , \m) for which 
there exists a unit vector x G Of satisfying Atx = A/x for every /. The joint approximate 
point spectrum of the w-tuple A is the set a^A) of complex m-tuples (Ai,. . . , Aw) for 
which there exists a sequence of unit vectors xjç G 9{ satisfying lim* \\(At — A//)x |̂| = 
0 for every /. The joint approximate point spectrum is compact; it is always nonvoid 
whenever^ is an m-tuple of commuting operators [8]. For m-tuples A of commuting 
operators, a(A) will denote Taylor s joint spectrum, which coincides with ap(A) whenever 
9i has finite dimension [9; p. 38]. The joint spectral radius p^iA) of an m-tuple A is the 
maximum of the euclidean norms of the elements of G^{A), or is — oo if an(A) is void. 
For m-tuples A of commuting operators, p(A) will denote the joint spectral radius of the 
joint spectrum o(A). 

1. The dilation. 

THEOREM 1.1. Suppose that the joint numerical range W(A) of an m-tuple A of her­
mitian operators Ai G S(j^) is contained in a simplex %^ C IRW with vertices vo,.. . , vm, 
where vt = (yn,..., Vim)for i = 0 , . . . , m. Then there exist positive semidefinite contrac­
tions PQ, . . . , Pm G *B(9f) satisfying PQ + • • • + Pm = I such that for eachj = 1 , . . . , m, 

Aj = EvgP, = ê i f V ! 7 2 = y*Djv, 
i=0 i=0 
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where Dj = v0jI 0 • • • 0 vmjI acts on ©£L0 9i and V: !H —* ©^ 0 Oi is the isometry 

defined by Vx — iQ X 0 • •• • 0 rmX. Consequently, Aj is a compression ofDj to the range 
of V, and D\,...,Dm are commuting hermitian operators satisfying 

W(D) = com (Tp(D)= %. 

PROOF. Let M be the real matrix with (/j)-entry v,y—vq/, and let lik be the (&, /)-entry 
of M~x (which exists because the vertices of %, are affinely independent). Define 

m 

Pi = E ^tkiAk - vokI) i = 1,.. . ,m 

m 

Po = i-YJpi-
i=\ 

Then 
m 

TDjV = voy/+ £ (V0 - v0y-)ry îfc - v0kI) = Aj 
i,k=\ 

as required. 
Now let u G 9l be a unit vector and write <zy = (;47w, «), /?/ = (P/w, w), and a — 

(au...,am). Then 

X>i(vi/ ~ VQ/) = X! Oy ~ v0y)7,*(û* - v<)*) = aj - v0J, 
i=\ i,k=\ 

from which we see that p\,... ,pm are the coordinates of a — vo relative to the linear 
basis {vi — vo,... , vm — vo} of Rm. Because W{A) C ^C, po,Pu • • • ,Pm are in fact the 
barycentric coordinates of a G W(A) relative to vo,.. . , vm and so T!JL0Pi — 1- From this 
it is clear that the operators Po,... ,Pm are positive semidefinite contractions. 

Finally, because each Dj is a diagonal operator with finite spectrum, the joint range 
W(D) is closed and is readily seen to coincide with the convex hull of the joint eigen­
values. • 

Although the dilation multiplies dim H by m + 1, this factor can be reduced to one 
plus the affine dimension a of the joint range W{A). Indeed, if a < m, then m — a of 
the Aj depend affinely on the remainder [4], and the construction above can be applied 
to the latter. In the case a — 1, no dilation is needed since the Aj are already multiples of 
/—see [4] for this result. 

COROLLARY 1.2. Every m-tuple of operators has a normal dilation. More precisely, 
if Au... ,Am G *B(9-[), then there exist commuting normal operators N\9... 9Nm acting 
on ©*=1 Of for some k < 2m + 1, and an isometry V: *H —> ©f=1 Of such that Ai = 
V*NiVfor all i = 1,...,m. Furthermore, Ni can be chosen so that there exists a unitary 
U satisfying IPNiU = ©*=1 pyl. As a result, for anylu...,lm G C, || Y™=x 7/^,-|| < 
II ET=i 1M < max{| £ * ! load : 1 < / < *}. 

PROOF. Express each operator^, as a sum of its real and imaginary parts and apply 
Theorem 1.1. • 
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We wish to point out that our dilation results extend and are motivated by the insightful 

observations of B. Mirman [17] and Y. Nakamura [19] concerning numerical ranges and 

their triangular containment regions. 

2. A joint spectral norm. It follows from the Halmos dilation theorem that an op­

erator is a contraction if and only if it has a unitary dilation. Consequently, the norm of 

an operator A G ^(Of) can be achieved via the equality | |^| | = inf{||iV|| : N is a nor­

mal dilation of A}. Therefore, it is natural to define the joint norm ofA\9... 9Am via the 

infimum of the joint spectral radii of the normal dilations of A. 

If N = (N\9.. .,Nm) is an m-tuple of commuting normal operators on 9f9 then the 

joint spectrum a(N\9.. ,,Nm) is the set of all complex w-tuples of the form (ip(N\)9..., 

(f(Nm)), where (f is an element of the maximal ideal space of the commutative C*-algebra 

generated by the elements of TV [9; 7.2]. The joint spectral radius p(N\9... 9Nm) in fact 

coincides with the value of || TjNJNjW 2. This follows directly from C*-algebra theory: 

if {Ey}ij denote the canonical matrix units for Mm9 then 

7=1 » V=l J 7=1 J 
7=1 
m I 

7=1 ' 

f i i 11 
max \\J2 XjEji : ( A i , . . . , Xm) G cr(Nu.. .9Nm) 

uiy=1 11 

K m x i 

£ | A y | 2 J : (Ai , . . . ,A m )G(7(M, . . . , iVm) 7=1 

DEFINITION. For an arbitrary m-tuple A — (A\,... ,Am) of operators on 9{9 let 

1||—that is, \\(A\9... 9Am)\\—be given by the quantity 

inf 
7=1 

N is a normal dilation of A 

THEOREM 2.1. The function \\ • || is a norm on the m-fold cartesian product vector 

space <B(9t) x • • • x *B(J}{). In addition, the norm has the following properties: 

1. If m = 1, then the norm of the 1 -tuple A — (A\) is precisely the norm of the 

operator A\. 

2. IfA\ andAj are hermitian operators, then \\A\ +1A2W = \\(A\9A2)\\. 

3. I K ^ ! , . . . , ^ ) ! ! = \\{BX9...9Bm)\\, whenever each Bj e {Aj9-Aj9 A] 9-A*}. 

PROOF. TO show that || • || is norm, the only nontrivial point to be verified is the 

triangle inequality. To this end, suppose that A and B are m-tuples of operators on Of and 

suppose that S and T are, respectively, normal dilations of A and B on Hilbert spaces *E 

and L via the isometries V: 5t —> *E and W: 9( —»- L. Let 77 = || T,jSJSj\\i and /i = 
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|| Ey TjTj:|| 2, the norms of S and T respectively. Consider the m-tuple N of commuting 
normal operators ^Sj 0 ^ 7 } acting on £ 0 L, and letZ: 9{ -> £ 0 L be the isometry 

77 -VxeJ-^—Wx. 

For eachy, JfWyX = P5)V + JP7} ̂  - ^ + Bj and so TV is a normal dilation of A + 5. 
Thus, 

2 ' =v + n, 
Il y II // Il y II / i II y 

and consequently 
|M + 5||<|M|| + ||B||. 

We now prove that the norm has the stated properties. Property (1) follows from the 
Halmos dilation theorem: there exists a normal dilation N of A such that \\A \ \\ — || Â i || = 
\\N\NX\\\. 

To prove (2), we use the elementary fact that for hermitian operators H\ and H2, 
Wrf+Hjp < \\HÏ +iH2\\ and equality occurs whenever//] and H2 commute. To begin 
with, if (H\,H2) is an arbitrary hermitian dilation of (A\,A2) via an isometry V, then 

\\AX +iA2\\ = \\r(H{+iH2)V\\ < ||//i +///2|| = WHÎ+HlWK 

which implies that \\A\ + iA2\\ < \\{A\,A2)\\. On the other hand, the Halmos dilation 
theorem yields a hermitian dilation (H\, H2) of {A \, A2) such that \\A 1 +iA2 \\ = \\H\ +iH2 \\ 
and so 

\\AX+U2\\ = \\H\+Hl\\*> \\{AUA2)1 

Property (3) is an immediate consequence of the définition of the norm. • 

REMARK. Suppose that A is an m-tuple of hermitian operators A1,... ,Am G (Bffl) 
such that W(A) is contained in a simplex ^ with vertices v i , . . . , v*. Then 

\\A\\<max{\\vi\\:i=h...,k}. 

This reason for this is that Theorem 1.1 provides a hermitian dilation H of A such that 
\\H\\ = max{||v,-|| : i = 1,. ..,&}; hence, the result follows from the fact that \\A\\ < ||//||. 
In the case where m = 2, | |(^i,^2)| | = IMi + ^ 2 | | < max{||v/|| : / = l,...,k} and this 
is precisely Mirman's Theorem [17]. 

There are other norms that one can place on m-tuples of operators and we discuss 
some of them below. 

Two very natural norms are introduced in [7] by Cho and Takaguchi and in [18] by 
Muller and Vasilescu. In [7], the quantity || £y^4jM/|| 2 is considered as the norm of the 
m-tuple A — (A\,... ,Am); in [17], the norm of A is defined to be the norm of the positive 
operator whose action on the C*-algebra <B(9{) is given by T 1—> T,jAJTAj. However, 
these norms can change value when passing from A to the m-tuple A* of adjoints. (One 
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example of such behavior occurs with isometries A\9...,Am having mutually orthogonal 
ranges.) A second observation is that the norms of [7] and [18] do not have the property 
that the norm of a hermitian pair (A\,A2) is ||̂ 41 + 1A2W. 

Along the lines of [7] and [18], Bunce [6] generalises the norm and the spectral radius 
of a single operator in the following manner. For an ra-tuple A, consider the quantity 
|| Ylf(EF(k,m)dj-Af\\ 2, where F(k, m) is the set of functions {1,2 , . . . , k} —> {1,2, . . . , m} 
and Af = Af(\yAfç>) • - • Af^. In addition, it is shown in [6;7] that p^{A) < 
lini£ || J2feF(k,m)A}Af\\{/2k < 00, which is nearly an extension of the spectral radius for­
mula to several variables. 

In a rather different direction, Pryde [21] uses the norm of the Clifford operator in­
duced by an m-tuple to prove some spectral variation results analogous to those estab­
lished by Bauer and Fike. Recall that the Clifford algebra R(m) is a 2m-dimensional com­
plex associative algebra generated by the forms e\9...9em subject to the relations 

1. ej = — 1 for ally, where 1 is the unit of R^my9 

2. ej-e/ç = —e^ej whenevery ^ k\ 
3. es — ejx - • • ejn, whenever S = \jk : 1 < n} withyi <J2 < • • • <jn (if S is the 

null set, then es = 1); 
By using all subsets S C {1 , . . . ,«} , R(m) is spanned by the 2m elements es, the set of 

which form an orthonormal basis under the inner product 

[J2xses,J2v<ses) = E A s /4> v s s J s 

where Ç denotes the complex conjugate of Ç The involution * on R(w) is denned so that e*s 

is equal to one of es or — es, whichever satisfies e^es — ese\ — 1 ; m particular, e* = —ej. 
The operator algebra (B(?{)®R(m) can be identified with a subalgebra of *B(?{® R(m)) 

as follows. Suppose that we have 2m operators As on 9f indexed by the subsets S C 
{ 1 , . . . , m}. The operator T,s^s 0 es is the unique operator on 9i 0 R^m) whose action on 
elements of the form Er* r ® ej is YISJ^SXT <8> esej. Thus, / ® 1 is the identity operator 
and has norm 1. In particular, if A = (A\,... 9Am)9 then the Clifford operator Cliffy) on 
Of ® R(W) is the operator given by / T,jAj ® ej. We have 

(t) Cliffy)* Cliffy) = ZAJAJ ® (1) - YfiA*jAk ~ A\Aj) 0 ejek 
j j<k 

and 

(t*) Cliffy)Cliffy)* = Y,M1 ® (!) - YJLMt ~ M * > ® ejek 
j j<k 

Evidently, Cliffy) is normal whenever^ consists of commuting normal operators. 

THEOREM 2.2. For every m-tuple A = (A\9.>. ,Am), the following statements are 
true. 

1- pM) < W(A) < WTjAfAjW* < ||ClifF(^)|| < y/2\\A\\ < y/l{r + 2s)w(A), 
where r and s are the number of normal and nonnormal A[ respectively. In fact, 
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r + 2s can be replaced by k if we know that the real and imaginary parts of At 
can be partitioned into k subsets, each of which consists of commuting hermitian 
operators. 

2. IfA\9. ..,Am are commuting, then p(A) = pn{A) < w(A). 
3. IfA\,. ..9Am are commuting normals, then p(A) = \\A\\. 

4. IfA\ andA2 are hermitian, then || Cliff(4)|| = \\A\\ = \\A\ +iA2\\. 

PROOF. If A is a joint approximate eigenvalue of the w-tuple A, then À is in the 
closure of the joint numerical range of A and p^{A) < w(A). Suppose that JC G 9f is an 
arbitrary unit vector. Note that x ® 1 is a unit vector in !H ® R(W). Then 

£I(M*)I2<£H*II 
j J 

(Y;A*AJX,X) < £44 
j 

and 
2 .,9 

^2AjAjx\\ < (EAjAj ® (+l))(x ® 1)1 + \E{A*Ak - A\Aj) ® epfc ® 1) 
j " "y j ' " "j<k 

( £ 4 4 ® (+!))(* ®1) 

— Y^i-djA/c — A*kAj) <8> e7-et(x ® 1) (Pythagoras Theorem) 
j<k " 

= || CliflPC )̂* Cliff(^)(jc ® 1)||2 < || ClirT(^)* Cliff(^)||2, 

from which it follows that w(A) < \\ EjA*Aj\\X2 < || Cliff(^)||. Next, if N is an arbitrary 
normal dilation of A via an isometry V, then Cliff(JV) is a (possibly non-normal) dilation 
of Cliffy) via the isometry V® 1 and hence || Cliff(^)|| < || Cliff(A0||. Because 

| Cliff(JV)|| < II Cliff(A0* Cliff(A0 + Cliff(JV) Cliff(JV)* 1/2 

2£A7ty. 
j 

II1/2 
= V2 

|l/2 

it follows that || C]iff(A)\\ < y/2\\A\\. Finally, express the m-tuple A as the sum of m-
tuples Bj9 where Bf consists of At in the z-th position and zero elsewhere. If At is normal, 
then | \Bt \ \ = w{Bt) < w(A). This proves that \\A\\ < £,-1|#/|| < (r+2s)w(A)9 where r and s 
are the number of normal and nonnormal^y respectively. If the real and imaginary parts of 
the operators Aj can be partitioned into k subsets, each consisting of commuting hermitian 
operators, then for the tuples C\,..., Q obtained by this partition, each Q consist of 
commuting hermitians and \\A\\ < £,- ||C/|| = £; w{Ct) < kw(A). This completes the 
proof of statements (1) and (3). 

In the case that A is a commuting w-tuple, the joint spectral radius p(A) coincides with 
Pn(A) [8] and so (2) follows from what we have just proved. 

In [21; 7.1], Pryde computes the Clifford norm in the case where 4̂ = (A\9A2). If A 
is hermitian, then || Cliff(4)|| = p i +W2||, whence || Cliff(^)|| = p | | by Theorem 2.1. 
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In general, || Cliff(^()|| is the maximum of\\A\ + iA^\ and \\A\ — 1A2W. By taking A\ and 
A2 to be the identity, we see that v^2 = || Cliff(4)|| = \/2|M||, and so the inequality 
|| Cliff04)|| < V2\\A\\ is sharp. • 

Toeplitz and subnormal operators have natural normal dilations and extensions. The 
following examples show that in the several variable theory these same dilations and 
extensions can be used in computing the norms of tuples of Toeplitz operators and sub­
normal w-tuples. 

EXAMPLE 1. If A is a subnormal m-tuple, that is A is an m-tuple of commuting sub­
normal operators that possess a joint normal extension, and if/V is the minimal normal 
extension of A, then p(A) = ||^|| = \\N\\. 

PROOF. AS N is an extension of A, certainly \\A\\ < \\N\\. But Putinar's spectral 
inclusion theorem (see [9; §7]) has that <J(N) C a(A) and that a(A) is contained within 
the polynomial-convex hull ofcr(7V), and therefore \\N\\ = p(N) < p(A) < \\A\\ < \\N\\.m 

EXAMPLE 2. Let Sl denote the unit circle in C, C(Sl) the continuous maps S{ —> C, 
and H2(Sl) the Hardy space of Sl. If Th,..., 7 ^ are Toeplitz operators on H2(S{ ) with 
symbols </>j G C(Sl), then 

EMOI2) • 
™ - 7 = 1 

PROOF. The ra-tuple M — (M^, . . . , M^m) of multiplication operators on L2(Sl) D 
H2(Sl) with symbols 4>j G QS1) is a normal dilation of the Toeplitz tuple T = 
(7 0 1 , . . . , 7^,J. Hence, 

| | r | | < | |M | | = p(iW) = m a x ( E I ^ ( 0 | 2 ) • 

Let <T denote the C*-algebra of operators on H2(Sl ) generated by all Toeplitz operators 
with continuous symbol, and let ^(/Z2^1)) denote the compact operators on the Hardy 
space. By Coburn's theorem [10; 7.23], there is a unital *-homomorphism Q: T —> C(Sl) 
such that 

(0) —• K(H2(S1)) —• f —>C(Sl) —> (0) 

is an exact sequence for which the map £: C(Sl) —> T given by £(</>) = T^ is a cross 
section (z.e. £(£(<£)) = </> for all </> G QS1)). Hence, g(T) = (QÇT^), . . . , £(7^)) is an m-
tuple of elements in the commutative C*-algebra C(Sl ) and has joint spectrum a(g(T)) — 
o(M). However, if À G cr(g(T)\ then there exists a character xjj on the unital C*-algebra 
A generated by 7 ^ , . . . , T^m that annihilates every compact operator in .# and that sends 
the tuple T to the tuple A. But this implies that there exists a sequence of unit vectors 
Xk G H2(S{) converging weakly to zero and such that lim^ ||7^jty — ^(T^.yxkW = 0 for 
every7 [5; 2.1]. Hence, a(M) C cr^{T) and so 

(
• m v I 

EIMOI2) <P«(T)<\\T\\. 
™ - 7 = 1 
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We do not know whether the infimum in our definition of joint norm can always be 
achieved by the spectral radius of some normal dilation (as is the case in one-variable). 
If the infimum can be achieved, it would be of interest to know if in the case of matrices 
A\9... 9Am one of the normal dilations N satisfying \\N\\ = \\A\\ occurs using matrices 
Nu...,Nm. 

3. Joint approximate eigenvalues. If A is an m-tuple of arbitrary operators and if 
À G (Jp(A\ then there is a unit vector x G 9( that is a joint eigenvector of the operators 
Aj. Therefore, with respect to the decomposition H — span {x} 0 {JC}1, each Aj has the 
form 

( * : ) • 
If À is a joint reducing eigenvalue, which is to say that both Ajx — XjX and AJx = A*x 
hold, then the matrix above is in fact a block-diagonal matrix; such occurs, for example, 
if each Aj is hyponormal (i.e. AJAj — AjAJ > 0). 

The purpose of the first proposition is to clarify the structural meaning of a joint ap­
proximate eigenvalue, a joint reducing approximate eigenvalue, and of an element in 
the closure of the joint numerical range. (A reducing approximate eigenvalue of A is a 
complex m-tuple A for which lim„ \\(Aj — Xjfyc„\\ — lim„ \\(Aj — Xjl)*x„\\ = 0 for some 
sequence of unit vectors xn G 9{.) The result is a special case of a more general theorem 
ofHadwin [11]. 

DEFINITION. An m-tuple of operators Aj is (jointly) approximately equivalent to an 
m-tuple of operators 7} if there exist unitaries U„ such that lim„ \\LTnAjUn — 7}|| = 0 for 
every j . If Un = Um for all m, «, then A is said to be unitarily equivalent to T. We denote 
approximate equivalence by A ~a T. 

REMARK. The joint approximate point spectrum and the closure of the joint numer­
ical range are invariant under approximate equivalence; thus, it makes no difference if 
we replace A by some T ~a A when dealing with these sets. 

THEOREM 3.1. For every m-tuple A = (A\,... ,Am), the following statements are 
true. 

1. A is in the closure ofW(A) if and only if A ~a T and each Tj has the form 

J y * * J * 

2. A is a joint approximate eigenvalue of A if and only if A ~a T and each Tj has 
the form 

Hï :)• 
3. A is a joint reducing approximate eigenvalue of A if and only if A ~a T and each 

Tj has the form 
Tj=[o *J-
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PROOF. All three statements have similar proofs and are applications of Proposi­
tions 3.1 and 3.2 of Hadwin [11] to the cases at hand; thus, only (2) will be demonstrated 
here. 

Let X = {1,..., m} and let/: X -> C andg: X -> $(?{) be the functions/(/) = Xj and 
g(J) — Aj. By hypothesis, there exist unit vectors x„ G i # for which \\g(j)xn —f(J)xn\\ —» 0 
for eachy. On the C*-algebra generated by g(X), let (p„ be the vector state (fn(T) — 
(Txn,xn). By the weak*-compactness of the state space, there is a subsequence of these 
vector states that is weak*-convergent to a state ip on C*(g(X)). Furthermore, because 
Xj is a joint approximate eigenvalue, the state (p satisfies <p(Aj) = Xj and cp(A*Aj) = 
(p(Aj)*(p(Aj) for eachy. That is,/(x) = ^(g(x)) and ^(g(x)*g(x)) =f(x)*f(x) for every 
JC G X By [ 11 ; 3.1,3.2], / is the restriction of a function h approximately unitarily equiv­
alent to g and so there exist unitaries U„ having the properties claimed in the statement 
of the proposition. • 

Theorem 3.2 below extends two results known to hold in the case of a single operator. 
The first statement extends the corresponding one-variable result of Wintner [24]. The 
second statement concerns the fact, for example, that every point on the unit circle is a 
reducing approximate eigenvalue of the unilateral or bilateral shift operator W (indeed, 
as is well-known, W ~a el6 @ W for every 0 G R.) It seems an interesting problem to 
determine whether it is true in general that every À G &n(A) on the topological boundary 
of W(A) is actually a reducing approximate eigenvalue. 

THEOREM 3.2. For every m-tuple A, p^{A) = \\A\\ if and only ifw(A) = ||^||. Fur­
thermore, every X in the closure of W(A) satisfying ||A|| = ||^|| is a joint reducing ap­
proximate eigenvalue, which is to say that A = (A\,... ,Am) is approximately equivalent 
to some T — (T\,... ,Tm) with Tj = Xj 0 Bjfor each). 

PROOF. Of course it is true that w(A) — \A\ whenever p^{A) = \\A\\. Conversely, 
suppose that À is in the closure of the joint numerical range of A and is such that || A|| = 
w(A). By Theorem 3.1, there exist unitaries Un and operators 7} such that 7} = 
lim„ lFnAjUn for eachy and À G W(T). Thus, there is a unit vector x G H for which 
Ay = (TjX,x) for ally. From 

MII2 = i m i 2 = w ( 7 f = E \(Tjx,x)\2 < E I M I 2 < E IIT;^II2 < imi2 

j j J 

and the Cauchy-Schwarz inequality we may conclude that |(7}jt,x)| = ||7}x|| and hence 
TjX = XjX for eachy. Thus A G crn(T) = a^{A) and p^(A) = ||^||. 

Let A* denote the complex conjugation of the vector A and observe that || A* || = w(A*) 
and Xj = (T*x,x) for eachy. The argument above shows that A* is a joint eigenvalue of 
T corresponding to the joint eigenvector x. Hence, A is a joint reducing eigenvalue of T 
and, by Theorem 3.1, A must be a joint reducing approximate eigenvalue of A. • 

COROLLARY 3.3. If A = (A\,... ,Am) is such that 

sup tel(^,x)|2)* = 11^4/4-11*. 
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then (T^{A) is not the empty set In fact, A has a joint reducing approximate eigenvalue. 

PROOF. The proof of Theorem 3.2 remains valid when ||^|| is replaced by 
|| T,jAJAj\\ 2 (or by any norm dominating this latter one). • 

4. Multiparameter spectral theory. In this section we are concerned with pencils 
of the form 

m 

Li(\)=Ai + Y,Bij\-> A ^ c m > 

where the At and By are linear operators (By being bounded) on Hilbert spaces fHi, 1 < 
/ < n. Under "regularity" (see below), which implies, in particular, that m = n, some 
elegant connections are available between the singularity (in the sense of 0 belonging 
to the spectra) of the Li(\) and the joint spectrum of certain commuting operators Tj 
defined on the tensor product 9i = (g)^ 9^. For finite-dimensional .?£, where only 
point spectra are involved, the theory is detailed in the treatise of Atkinson [2]. In the 
case of infinite-dimensional spaces, Sleeman's monograph [23] develops the theory for 
selfadjoint operators^, and By and it includes completeness theorems involving the joint 
spectral measure of the Tj. In the nonselfadjoint case, Rynne [22] investigates the relation 
between the Taylor spectra of L/(A)t and Tj. 

Here t denotes induction from ^ to 9i, so that B\. is the operator I<g>I®- — ®By® 
•••(£)/, where By appears in the i-th position of the tensor product. Because the operators 
B\- commute for different /, the formal determinant Ào of the square matrix B = [i?!.]™=1 

is a well-defined linear operator on 9f. The theory is advanced under the "regularity" 
assumption that Ao is nonsingular. In finite dimensions, all operators are bounded and so 
one can define the operators Tj = AQ1 Ay, where Ay is the operator determinant obtained 
by replacing they-th column of the matrix B with [A\ • • -A^. In infinite dimensions, 
the ideas are similar if A^1 is bounded, but significant complications arise if Ao is only 
one-to-one. 

Multiparameter equations of the form Lt(X)x = 0 arise in separation of variables 
for partial differential equations, in linearised bifurcation models, and in certain inverse 
problems. Equations of the form Tjx = 0 are connected not only with multiparameter 
equations, but also with simultaneous diagonability of more general (not necessarily de-
terminantal) operators Ay [3]. Here we shall discuss how the dilation of Theorem 1.1 
relates to a basic idea in multiparameter theory, namely the solubility of the equation 

(*) Bx = y 

for x = [x\ • - • xmy and y = \y\ • • -ymW where eachj>y is in the range of Aj. 
This appears implicitly in several works (see [2; Chapter 6],[23; Chapter 3]) and is 

explicitly studied in [14], [15]. In 1976, Isaev [14; Theorem 4] stated that the commu-
tativity of the By for each fixed / suffices, but this fails for m = l,B\\ = 0 ^ A\, so 
some extra condition is obviously missing. One version of Isaev's theorem suitable for 
dilation is as follows. 
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THEOREM 4.1. If the operators By commute for each fixed i, and ifA0
 l exists and is 

bounded, then (*) is soluble for ally. 

PROOF. Because all of the entries of B commute, the operator AQ1 C is the inverse of 
B, where Qj is the (/', /)-cofactor of Ao. • 

In infinité dimensions, the solubility of (*) is nontrivial, so the following result is of 
some interest. 

COROLLARY 4.2. Every bounded selfadjoint multiparameter system has a dilation 
such that (the dilated equivalent of) (*) is soluble. 

PROOF. For each z, suppose that the joint range W(Ai9 Bn,..., Bim) is contained in l/h 

which we may assume (without loss of generality) to be a simplex. Using Theorem 1.1, 
dilate Bn,..., Bim to commuting hermitian operators Da,..., Dim. The (bounded) deter-
minantal operator Do = det[Z)!.], which is the dilated equivalent of Ao, is diagonal with 
entries that are determinants whose columns are the (final m components of) vertices of 
the Vi. By a perturbation of the vertices, if necessary, we can assume that DQ1 exists. • 

Theorem 1.1 is not the only dilation relevant for multiparameter spectral theory. The 
dilation given by T. Kosir [16] shows that an arbitrary set of m commuting matrices can 
be dilated to the Tj for some regular multiparameter system. This is not obvious, since 
the Tj are constrained by the relations A\ = £y BlTj. 
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