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A Janus sphere with a stick—slip pattern can behave quite differently in its hydrodynamics
compared with a no-slip or uniform-slip sphere. Here, using the Lorentz reciprocal
theorem in conjunction with surface harmonic expansion, we rigorously derive the
extended Faxén formula for the stresslet of a weakly stick—slip Janus sphere, capable
of describing the anisotropic nature of the stresslet with an arbitrary axisymmetric
stick—slip pattern in an arbitrary background flow. We find that slip anisotropy not only
causes a variety of additional contributions to the stresslet, but also naturally renders
a stresslet-rotation coupling that may turn a suspension of couple-free stick—slip Janus
spheres into a dipolar one under the actions of an external couple. Moreover, to correctly
account for the impacts of slip anisotropy on the stresslet, it is necessary to include at
least the first four surface harmonic contributions. As a result, the anisotropies of both the
stresslet and torque on the sphere in a linear flow field are purely reflected by a symmetric
quadrupole and hexadecapole. These hydrodynamic quantities can be further mediated by
an antisymmetric dipole and octupole due to the gradients of the imposed strain field.
The average bulk stress and effective viscosity for a suspension of stick—slip spheres
are also determined, showing characteristics quite distinct from those of a suspension of
near spheres. If the spheres possess permanent dipole moments, in particular, additional
stresslets and couplets can be generated by an applied external couple on each sphere
and added into the bulk stress, accompanied by non-Jeffery orientational orbits of such
dipolar stick—slip spheres. In addition to the above, the extended Faxén stresslet and torque
relations found in this work will also provide the formulae needed for tackling problems
involving hydrodynamically interacting stick—slip spheres on which small slip anisotropy
may have profound impacts.
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1. Introduction

In the study of particle motion under low-Reynolds-number conditions, apart from the
need for finding the hydrodynamic force and torque on a single particle, it is often of
interest to determine the bulk viscosity of a particle suspension due to the excess stress
imparted by suspended particles. The stresslet is the key quantity that measures the
additional dissipation by the particles in the ambient fluid.

A stresslet is a symmetric force dipole, defined by the following integral over the surface
(Sp) of a particle (Batchelor 1970):

1 2
Sj = E/S |:(ij1‘ka + xjojng) — §8ijxlo*1knk — 2 (ujx; + uix]'):| ds, (1.1)

P
where u; and oj; stand, respectively, for the fluid velocity and stress at position x;, with the
origin chosen at the particle’s centre and n; being the unit surface normal pointing into the
fluid. The surface velocity term comes from the double layer contribution in the integral
representation of the Stokes flow solution (Kim & Karrila 1991), and can contribute to a
stresslet if a particle is not rigid or the no-slip boundary condition is not satisfied. For a
no-slip spherical particle of radius a, the stresslet is (Batchelor & Green 1972b)

20T
Sij= TWPEU, (1.2)

where Ej; is the rate of strain tensor. With the average particle stress ¢S;;/ (4na’/3), the
effective viscosity can be found in terms of particle volume fraction ¢:

fref = (1 + 2.5¢), (1.3)

which is the well known Einstein relation (Einstein 1906; Batchelor & Green 1972b;
Landau & Lifshitz 1987). For slip particles such as in aerosols and hydrophobic colloids,

the stresslet is further affected by the slip length al (Keh & Chen 1996; Luo & Pozrikidis
2008):

20 (1422

Sj== = nud’Ey. (1.4)
3 \1+54

It is evident that the stresslet in this case will be less than (1.2) because of less viscous

stress on the slippery surface of the particle. For a drop, the stresslet is characterized by

the viscosity ratio « of the drop to the bulk fluid (Rallison 1978):

_4(5K+2

S = —
P73\ k+1

) Tua’Ej. (1.5)
In fact, the inverse of this viscosity ratio can be used to measure the amount of slip: k =

1/(51). A similar analogy can also occur between the drag on a slip particle and that on a
viscous drop (Premlata & Wei 2019).

In the present work, we examine how slip anisotropy modifies the features of the stresslet
on a non-uniform slip particle. Our work is motivated by the need for understanding
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the hydrodynamics of a stick—slip Janus particle which has a dipolar-like surface
made of hydrophilic and hydrophobic portions (Jiang et al. 2008). The stresslet on
such heterogeneous particle will play a crucial role in determining the corresponding
suspension rheology. Our work is also closely relevant to the swimming of a squirmer
self-propelled by a prescribed tangential velocity over its surface (Lighthill 1952; Blake
1971; Wang & Ardekani 2012; Pedley 2016). To maximize the propulsion, a squirmer can
be made of both stick-hydrophilic and slip-hydrophobic portions such that the driving
squirming actions are executed only on the stick surface, while the slip surface serves to
reduce the drag force on the squirmer. How much power is required for the squirmer to
propel itself will be determined by the stresslet on it.

The stresslet of a non-uniform slip sphere can differ fundamentally from that of a
uniform-slip sphere. In the latter, the stresslet is commonly determined by the rate of
strain tensor as given by (1.4). However, if placing a stick—slip—stick Janus sphere at
the centre of a purely straining flow, for instance, it can spin due to the antisymmetric
force pair acting on the stick caps (Premlata & Wei 2021). This implies that an additional
stresslet may arise from a couple on such a striped Janus sphere when it is placed in a
purely rotating flow. In this case, because the force couples on the stick portion and the
slip portion are unequal, the sphere will still feel a non-zero symmetric force moment,
namely a stresslet, due to these asymmetric force couples, contrary to the uniform-slip
counterpart where no stresslet can be produced in the same flow environment. In other
words, both straining and vorticity components of a linear flow field can contribute
to the stresslet on a non-uniform slip sphere, whereas only the straining component is
responsible for the stresslet on a uniform-slip sphere. This follows therefore that for a
non-uniform slip sphere, its stresslet from the symmetrical part of a force dipole may
no longer be unaffected by the couple from the antisymmetric part of a force dipole. In
fact, it has been shown by Batchelor (1970) that based on symmetry considerations, a
stresslet generally consists of an additional contribution from a couple. As also pointed
out by Batchelor, whether the determination of stresslet can be separated from that of
a couple lies in whether symmetry properties of a particle can be preserved, depending
on its shape and orientation. The stick—slip asymmetry of a non-uniform slip sphere
basically affects both the shape (because of the varying hydrodynamic drag coefficient)
and orientation (because of the stick—slip director) of the sphere. For this reason, for a
non-uniform slip sphere, even though its stick—slip pattern is axisymmetric, it may not
necessarily behave like a spheroid but more like an asymmetric doublet. Consequently,
the features of the stresslet for a stick—slip Janus sphere may not resemble those for a
spheroid.

Another motivation of the present work is to clarify the results in early studies by
Khair and his coworkers. Swan & Khair (2008) derived the Faxén relations for a weakly
stick—slip Janus sphere. Their results were written in the integral form obtained by taking
multipole moment expansions of the singularity solutions of Stokes flow. They found
that either the imposed strain field or the sphere’s angular velocity can be expressed in
terms of both the stresslet and torque on the sphere in a given flow field. This indicates
that stresslet—rotation coupling and torque-strain coupling can exist in the motion of the
sphere. However, it is not clear how both the stresslet and torque are determined by the
stick—slip pattern of the sphere. In particular, if the surface of the sphere is not equally
partitioned by stick and slip parts, it will actually comprise both surface dipole and
quadrupole contributions (Premlata & Wei 2021). We recently showed that these surface
moments can have rather distinct impacts on the force and torque on a non-uniform
slip sphere (Premlata & Wei 2021). This raises a question: How do distinct surface
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moments determine the anisotropic nature of the stresslet on a non-uniform slip sphere?
Especially, which surface moment will be responsible for the stresslet-rotation coupling
found by Swan & Khair (2008)? It has been shown that the force—rotation coupling due
to slip anisotropy, which was also found by Swan & Khair (2008), is responsible by a
surface dipole (Premlata & Wei 2021). These different couplings are likely triggered by
different surface moments corresponding to distinct stick—slip symmetries/asymmetries,
implying that such couplings may not always coexist, depending on the surface pattern of
a non-uniform slip sphere.

In the subsequent study by Ramachandran & Khair (2009), they analysed the motion of
a two-faced stick—slip sphere in a linear flow field and solved the detailed flow field around
the sphere in terms of Lamb’s solution. In determining the motion of the sphere, they made
the sphere analogous to a doublet (Nir & Acrivos 1973) or a spheroid (Kim & Karrila 1991)
and used linearity arguments to construct the expressions for the translational and angular
velocities with the coefficients determined from the flow solution they obtained. However,
such an analogy may depend on the surface pattern of a Janus sphere. If the sphere is
precisely half-faced, the surface pattern is antisymmetric, represented by a surface dipole
(Premlata & Wei 2021). While an analogy to a doublet can be made by letting the two
touched spheres be of different sizes, no correspondence to a two-faced Janus sphere
can be found if the doublet becomes perfectly symmetric by letting the two spheres
be of equal size. In fact, a symmetric doublet or spheroid may be a better analogous
model for a stick—slip—stick/slip—stick—slip Janus of striped type whose surface pattern
is symmetric represented by a surface quadrupole (Premlata & Wei 2021). Because the
two Janus sphere types mentioned above represent distinct symmetries in geometry, the
corresponding stresslets should behave differently. Ramachandran & Khair (2009) adopted
a general expression from Ericksen (1959) to determine the stresslet of a stick—slip Janus
sphere, similar to the approach of determining the stresslet of a doublet or a spheroid
(Nir & Acrivos 1973). The expression involves a variety of polyadic contributions of
the stick—slip director. However, it is not clear how these contributions are determined
by distinct symmetric and antisymmetric surface moments that constitute the surface
of the sphere. Also given that the complete description of a stresslet further involves
a couple (due to external torque) (Batchelor 1970), the stresslet expression adopted by
Ramachandran & Khair (2009) may also need to be revised to include this additional
contribution. Including a couple to the stresslet expression is also necessary in order to
be conceptually consistent with the stresslet-rotation coupling found by Swan & Khair
(2008).

As such, all these issues mentioned above will not only be essential to understanding the
anisotropic nature of a stick—slip sphere, but also critical to the rheology of a suspension
made of such heterogeneous spheres. These issues will be better addressed with a more
general approach enabling us to systemically decode how the stresslet is determined by
the stick—slip asymmetry without having to solve the detailed flow field around the sphere,
which is the main theme of this work.

Our paper is organized as follows. In § 2, we first develop a general formulation needed
for computing the stresslet of a weakly stick—slip sphere. With the aid of surface moments
to re-express impacts of slip anisotropy in § 3, we use this general formulation to derive the
Faxén relation for the stresslet as well as that for the torque in § 4. Subsequent impacts on
the rheology of a suspension of stick—slip spheres and their orientational dynamics with
and without an external couple will be presented in §§5 and 6. We conclude this work
along with relevant perspectives in § 7.
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(a) ®)

aB=FEB -x+2Bxx u

Figure 1. The selected problems for applying the reciprocal theorem. (a) The auxiliary problem: a uniform-slip
sphere (of radius @ and slip length aA) in a linear flow field ﬁf . The sphere is located at the zero velocity plane

of the flow. It does not translate with the flow, but can rotate at an angular velocity 2;. (b) The problem of
interest: a stick—slip sphere in an arbitrary background flow field u{°. The sphere is positioned at the zero
velocity plane of the flow without translation, but allowed to rotate at an angular velocity §2;. Here the slip
surface is schematized by grey, in contrast to white for the stick (no-slip) surface.

2. Formulation: stresslet-rotation coupling for a non-uniform slip sphere

A stick-slip sphere at the centre of a purely straining flow may spin (Premlata & Wei
2021) to cause an additional stresslet to the sphere. So the stresslet on the sphere will be
determined not only by the strain rate of a flow but also by the rotation of the sphere. Such
stresslet—rotation coupling is a generic feature of a non-uniform slip sphere and has to be
part of the description of its stresslet, in contrast to a no-slip or uniform-slip sphere whose
stresslet is determined solely by the strain rate of a flow.

To establish the formula for computing the stresslet of a non-uniform slip sphere, we
begin with the Lorentz reciprocal theorem (Happel & Brenner 1983):

/ ol me dS = / W6l dS. 2.1
N

P P

Here (¢/,6’) and (i, 0’) are two different solutions of disturbance velocity and stress
fields satisfying the Stokes flow equations V&' =V .u'=0and V-6' =V .o’ =0.
These disturbance velocity and stress fields decay, respectively, as 1/r and 1/ (or faster)
as distance r to the sphere becomes large. As illustrated in figure 1, we select (i, 67) to be
the solution to the auxiliary problem (figure 1a) for a uniform-slip sphere (of radius a and
slip length @) in a linear flow field with the velocity and stress fields

~B _ 7B 5B
u; = Eij)gj + 6@,-1(.(2]- Xk, (2.2a)

&5 =2ukp, (2.2b)
where Eg and [}1.3 =1/ 2)equ8ﬁ§ /0x, are the straining and vorticity components,
respectively, and u is the viscosity of the fluid. For simplicity, we assume that the sphere
is located at the zero velocity plane of the flow so that it does not translate with the flow
but can rotate at an angular velocity 2.

For the problem we wish to solve for a non-uniform slip sphere (figure 1), (i, o”) is
yet to be determined. The sphere has a spatially varying slip length aA(x) and is immersed
in an arbitrary background flow field u7° which can be nonlinear. The background stress
field is 0;°. Again, we assume that the sphere is positioned at the zero velocity plane of
the flow without translation, but allowed to rotate at an angular velocity £2;.
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With the set-up above, the actual velocity and stress fields in a fixed frame are

(@, 63) = (@, 60) + @7, 67), (i, o) = (u}, ) + W, 7). (2.3a,b)

In the former for the auxiliary problem, the force density &;n; on the surface of the
uniform-slip sphere can be expressed in terms of the known strain resistance tensor X
and rotation resistance tensor R;, :

Gijnj = W EaEf + URipepgs (28 — 20)x;. (2.4)

The two problems are subject to similar sets of boundary conditions on the respective
sphere’s surfaces as follows. For the auxiliary problem, the uniform-slip sphere is
constrained by the no-penetration condition and the slip boundary condition on its surface:

(@, — e S2kx1 + iyn; = 0, (2.5q)

N

N A ~ aa .
(@, — €S2 + i) (8 — miny) = G (3 = mimy). (2.5b)

Similarly, for the problem we wish to solve for a non-uniform slip sphere, the boundary
conditions on the sphere’s surface are

(u; — €ir§2kx; + ui®)n; = 0, (2.6a)
al(x)

(u/. — ijlgkxl + M]OO)(SU - I’l,‘l’lj) =

j Ojmnm(8ij — nin;). (2.6b)

To form a stresslet according to (1.1), we incorporate itf given by (2.2a) into the left-hand
side of (2.1) to separate the straining part and rotational part. With these, we rewrite the
left-hand side of (2.1) as

A1) B / 3B A /
/S uopn; dS = —El.j/S Xjoy ngdS — (.Qj — Qj)/s €jmi Xm Oy Ny dS
P P

P

+ . (@] — €itmS2ixm + i )ojn; dS. 2.7
p
The second term on the right-hand side gives the hydrodynamic torque on the sphere:
L= / €imixmo i dS. (2.8)
S[’

In the last term of (2.7), we recognize that the surface velocity only acts tangentially along
the sphere surface in view of (2.5a). This allows us to replace the surface velocity by
the slip term using (2.5b). Further writing al.’k = ojx — oy , the last term of (2.7) can be
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re-expressed as

(it; — €itomS21Xm + i )0 ITNES " / A Gjm N (8 — nin)ojgng dS

Sp S[;
a 14 00
— — | AGjmnn (85 — ninj)oy; ny dS. 2.9)
nJs,

A A

As for the right-hand side of (2.1), we use ’k Oik — crg and (2.2b) to extract the
velocity part for the stresslet:

/ UGt dS = —ZMI::g(/ ung dS —I—/ w;Gixny dS. (2.10)
N

Sp Sp P

The last term in (2.10) can be rewritten as

/ UGing dS = / (u; — €jjmS2jxm + uS°)Giny dS
Sp

Sp

+ £ Ejmixm6iknk dS—/ u?oa'iknk ds. (2.11)
S, S,

Again, the second term on the right-hand side provides the hydrodynamic torque on the
uniform-slip sphere:

L= f €jmiXminy dS. (2.12)
Sl’

Note that this torque can be non-zero if there is an external couple applied to the sphere

which will spin at £2; # .QjB . The velocity part in the first term on the right-hand side of

(2.11) can be replaced by the slip term with the aid of (2.6a) and (2.6D):

I A
(u €ijm$2jXm + U; Noyng dS = ; / AX) T (85 — ning) o dS. (2.13)
S

P

Comblnmg (2.7)—~(2.13), we obtain the following joint expression for the stresslet S;; and
torque L on a non-uniform slip sphere, representing its rate of dissipation energy:

Egslj + ('QI? - Qk)ﬁk = / u?oc?ijnj ds — Qkﬁk

Sp

a s .
— —/ /laj?nonm(ag — ninj)Gixng dS
wls,
— | Ax) — /1)( lim + O ) (855 — nimy) &y dS. (2.14)
Sp

If the sphere is uniform-slip with A(x) = A, (2.14) is reduced to

ERS;+ (20 — 0Ly = / uf°&;m; dS — / o fon;dS — (L — L7°),  (2.15)
N

Sp P
recovering the stresslet formula derived by Keh & Chen (1996) under the couple free
condition L = fs ElmiXmO; Xn;dS =0 and Lp = 8muad(1 +31)~ 1([23 20 =0.
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On the other hand, if the slip length varies along the sphere’s surface, the last term in (2.14)
represents effects of slip anisotropy. Since this term involves the unknown force density

Ojmlm = aj’mnm + aj?nonm, we determine both S;; and £y approximately by assuming that

the magnitude of the slip variation [A(x) — A, €, is small compared with unity. The average
slip length a(A(x)) is set to be al so that we can formulate the desired non-uniform-slip
problem in reference to the auxiliary uniform-slip problem. Note that (1(x)) can be small,
especially in the case of weakly stick—slip spheres whose stick—slip contrasts are small.
With ¢ « 1, the unknown disturbance force density aj’mnm in the slip variation integral
can be taken as the uniform-slip contribution plus an O(¢) slip anisotropy correction:

Chltn = G5 1 + O(e). (2.16)

Jm

With (2.16), the slip variation integral in (2.14) can be kept accurate to O(¢), and hence S
and L. With (2.16) in (2.14), we can establish the approximate formulae for S;; and Ly in
a more systematic manner as follows.

7(0)
We first re-express Tim

and the rotation resistance tensor R;,, given in (2.4) from the uniform-slip problem,

n,, in terms of the strain resistance tensor Z;Zk = Yjjk — 2udjing

ot = WEER(0) + [4Rpepgs(20°(0) — 29)x;, (2.17)

jm

allowing us to write the force density in a linear form of the strain rate £};°(0) and the rate
of rotation (Q;o (0) — £2,) at the sphere’s centre ‘0. Since the imposed flow stress o >°

jm
involves E/C;‘j (0), it is also necessary to expand 0].;10 in the slip variation term as

e = =P (0)8jm + 21Epm (0) + ASe | (2.18)

Jm

where A%Io = xpV,,aj‘j,flo + (xpxq/2)Vquojz1°|0 + -+-.With (2.17) and (2.18), (oj’mnm +
orjzfnm) in the slip variation term in (2.14) can be approximated as

(Tj/ml’lm + O'J%onm = /L[EjlkEloko 0 + ijepqs(ggo (0) — £24)x]
— PXO)jmnm + Af|gm + O(e). (2.19)

jm

Using (2.19) in (2.16) and writing &j,n, in terms of the resistance tensors in (2.4),
together with Z‘jll'k = Y (8;j — nin;) and RJ“p = Rj»(8; — n;n;) acting tangentially along the
sphere’s surface, we can transform (2.14) into the following grand matrix form:

22, (2f - 20)] 5] 22, (2f - 0] Ry (2.20)
ij’ k k Ly = | L k k R]A? > .
945 A1-8
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where the tensors Rg and R;? are given by

R = / Emijttyy S — “2/ Zi0m i dS

S, Sy

- aﬂ/ ef (x) E,LLii[Empqug (0) + Ry enrs(Qroo 0) — Qr)xs] ds

Sp

—a / &f () 2 (—p™ Oy + Adg] o m1) dS
N

P

~ [ Enjenr(257(0) ~ 23,5, (221a)

Sp

R,{2 = u/ €kinX1 Rty dS — aﬁf lenle,‘lmU,Z;nj ds

Sp Sp

- aM/ &f (x)€xinXi R,‘qlm [EmpqE;;)(O) + queqrs(Qroo(O) - Qr)xs] ds

Sp

—a / ef (X)€inxs R), (—p™ Oy + A% o) ds

Sp

- M/ 6klnéqrsxlstqn~Qr ds. (2.21b)

Sp

Because Efj and (Qf — S}k) are independent of each other and also because (2.20) holds
for arbitrary choices of Eg and (Q,f — [}k), we can eliminate [Eg , (Qf — Qk)] on both

sides of (2.20), giving
8,-,-] RI.J‘?
=| ! 222
[ La |:RI£2 | (2.22)

As indicated by (2.21), since Rg and R;? involve both EIC,’Z (0) and (£27°(0) — £2,), S has
to further couple the rate of rotation (§2°°(0) — £2,), joining together with £ that couples

the strain rate E;;’ (0). This can be seen by rewriting (2.22) in a linear form of E;; (0) and

(£22°(0) — £2,) as follows:
SE S
|:Sl}i| — RUP‘] Rij” EI?ZI)(O) + [SZO} (2'23)
Ly Ré}’fq REZ || 22°(0) — £2, L

in which the elements on the right-hand side are

Ripg = —an /S &f (x) Er‘l,ijzmpq ds, (2.24a)
P

Ry = —ap / ef (x)E,‘,',,.ijnemxs ds —p f Znij€rsnXs dS, (2.24b)
Sp Sp
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Réﬁ; = —au /S ef (x)éklnlell,m Ynpq dS, (2.24¢)
P
Ri = _“/ €xinrsqxixs (agf (OR}, Ring + Ryn) dS, (2.24d)
SP

S;;O:M/S Emiju;zodS—a/l/ ) onn dS

P

—a / £f (X)X (—p™ Oy + A 1) dS, (2.24¢)

Sp

L =nun / €tinXi[Rmnityy, — €qrsXsRgn$2,1dS — al / eklnle,an O 1y S
S S

P P
— a/ gf(x)ekmleJL (=P (O + Ay| 1) dS. (2.24f)
SP
In (2.24b), the second integral is identically zero. Note that the stresslet-strain tensor

satisfies the symmetry R;qu R[qul] The off-diagonal coupling tensors R;j;? and Rsf
also obey the symmetry property R;j;? = Rgf Such symmetry properties between these

resistance tensors are consequences of the reciprocal theorem (Hinch 1972; Masoud &
Stone 2019).
To better see various contributions in (2.23), we split (S;;, L) into the uniform-slip part

(S;.O), E,(CO)) plus the corrections (Sij(.l), E,(cl)) due to slip anisotropy:

G /S St dS — ad / X\ ognds, (2.25a)

P

S = [ F) 2 (—p™(0) n + A m) dS
+u / F ) D) SmpgEne (0) dS
RL iR €rsnts(27°(0) = 2,) dS}, (2.25b)

0
£ =pu /S €xinX1[ Rty — Ryn€qrsS2rxs — adR),,00n;] dS, (2.25¢)

P

E/(cl) — _8a|: f(x)eklnlefllm(_poo(o) M+ AOO |0nq) ds
Sp

+u / F@)€xinxi R}, ZmpgEne (0) dS
Sp

+u f(x)Eklnfrsq-xlstynanq(Q,?o 0) — £2,) dS:| (2.25d)
Sp

As will be shown in §4, we will use the above formulae by expanding the slip length
distribution f(x) in terms of surface moments (see § 3.2) to derive the Faxén stresslet and
torque relations for a non-uniform slip sphere in an arbitrary background flow.
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We reiterate that the present theory is based on small slip anisotropy with ¢ < 1.
At the opposite extreme & >> 1, this is the scenario where there is a large slip contrast
on the surface of a Janus sphere partitioned by, for instance, no-slip and perfect-slip,
bubble-like surfaces. In this case, since the average slip length Ais large, the appropriate
perturbation scheme should use the amplitude of IA(x) " — A1 | as a small parameter with
respect to the large uniform slip problem that should be taken as the auxiliary problem
in the reciprocal theorem formulation. Nonetheless, despite the fact that technically
these two limiting scenarios are formulated differently, we expect that physically the
results for € > 1 should not differ qualitatively than those for ¢ < 1 in the present
work.

3. Re-expressing slip anisotropy in terms of surface moments
3.1. General considerations for constructing the stresslet of a stick—slip sphere

To use (2.25) for computing the stresslet of a stick—slip sphere, it is more convenient to
expand the spatially varying part f(x) of the slip length in terms of surface harmonics
(Premlata & Wei 2021). As to concerning how many terms are required to faithfully
describe impacts of slip anisotropy on the stresslet, we need an additional rule, which
is guided by general considerations, for constructing an anisotropic stresslet.

According to Batchelor (1970), the stresslet S,-j of a force-free particle can have two
contributions. One is the common contribution from the particle exerted by the straining
motion of the ambient fluid under strain rate E,Slo The other is an additional contribution,
which can emerge when the particle is subject to rotation at rate of (£2°° — §2;) due to an
excess couple on the particle. Since Sj; has to be linear in both E7}” and (£27° — £2), it can
be constructed in the general form:

Here Cjj; and Cjj, are the geometric tensors depending on the size, shape and orientation of
the particle, and both are symmetrical with respect to i and j. Here Cjjy; is also symmetrical
with respect to k and [ since it can only be contracted with E}.

Now consider a Janus sphere that possesses a stick—slip polarity in a preferential
direction d;. The geometric tensors in (3.1) can then be constructed below in terms of
d; by satisfying the above-mentioned symmetry classes,

Cijxt = a0dixdj1 + o1 (didi8j1 + dididi) + andid;did), (3.2a)
Cix = a3(€ixmdj + €jxmd;)dm, (3.2b)

with o, o1, oo and a3 being the scalar coefficients.
With (3.2), (3.1) becomes

Sij = aoEgo + (d,'dkE;;9 + didvERY) + ondidididiER + o3 (€ikmd; + €jandi) dim (25° — §2¢),
(3.3)

which furnishes the general expression for the stresslet of a stick—slip sphere. As in Nir
& Acrivos (1973) and Ramachandran & Khair (2009), this general stresslet expression
is made only of dy,d,; and d;d;d;d,, although the last term in (3.3) due to rotation is not
included in these previous studies. Since dpd, can be described by surface quadrupole
corresponding to the second surface harmonics (Anderson 1985; Premlata & Wei 2021),
d;d;dyd; can only be captured by a surface hexadecapole, two orders higher than the former.
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In other words, to describe the stresslet in the form (3.3) it is necessary to keep at least the
first four surface harmonics in the harmonics expansion of the slip length, which will be
presented in the next subsection.

It is worth mentioning that involving only d,d, and d;d;did; in the construction of the
stresslet (3.3) can be understood using a symmetry argument. This is because they are the
only polyadic combinations using d; that can work with El‘j’o and (£27° — £2¢) to form a

stresslet that is a symmetric second-order tensor. It is thus impossible to use d; alone to
make such a construction. It follows that surface dipole will make no contribution to the
stresslet in a linear flow field. That is, if the sphere is half-faced with a dipole only, its
stresslet will show no difference than the uniform-slip one.

3.2. Surface spherical harmonics expansion

Following Premlata & Wei (2021), we expand the spatially varying slip length A(x) as a
series of surface spherical harmonics,

Ax) =Y (@/N" ' Gul-1Sm, (3.4)

where the mth-order polyadic .S, denotes surface spherical harmonics,
Sp= Wy (7). (3.5)

with G,, being the coefficients to form a scalar product with S, through operator [-].
As mentioned in § 3.1, it is necessary to keep the terms at least to m = 4, requiring the
following harmonics for determining the stresslet of a stick—slip sphere:

So=1,
Sti = —ni,
S2ij = 3ninj — &,
Szjic = —15ninjni + 3(nidj + njdix + ndy),
Sajjrt = 105nnmng + 3(8;0k + Sikdji + 8idji)
— 15(ninidk + ninkdj; + nimidjx + njngdi + nnidix + ngidi;).

(3.6)

To determine the coefficients G,, in (3.4), the orthogonal relationships between distinct
surface harmonics are needed,

(SpSy) = 1/ (4m2) /S Sy dS, 3.7)
y2
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with (---) =1/ (4ma®) fSP(- --)dS denoting the average over the sphere’s surface. The
orthogonal relationships for the required surface harmonics (3.6) are given by
(SoSo0) = 1,
1
(S181); = 55,',',

1
(8282) i = S (=288 + 38ixdj1 + 38iji) »

15
(S383)tpgt = = (A pakt + SitApajt + SipAjktg + SigAjkip + SitAjip) 38)
— 3 (8pgAijis + Spiijg + SqiAijip) »
35 9 9
<S4S4>ijklpqrs = ? C[jklpqrs + gA[jklqurs + 7(5rsBijklpq + quBijklpr

+ quBijklps + 8psBijqur + (SprBijqus + 8quUklrs)] .

In the above, Aijkm = 5ij'8km + Sikfsjm + Simfsjka quijkm = Squijkm + 6piqukm + aijiqkm +
‘SpkAiqu + (SpmAijkq and Cpqi/'kmnl = (Skmeqijnl + 8kanqijml + ‘Slepqijnm + (Skmeqijnl +
Squpmijnl + akinqmjnl + (Sijpqimnl-

Applying (3.8) to (3.4) and knowing that monopole (ASp) = (1)(= ) is simply the
average slip length, we can decompose the slip variation part into a superposition of
surface moments by retaining at least the first four ones: dipole P; = —(AS1); quadrupole
P, = (AS3); octupole P3 = —(AS3); hexadecapole Py = (ASy) etc.: X' (y) = (1) — 3Py -
S1+(5/6)Py : So+ -+, etc., giving

ef (x) = =3P1;S1; + (5/6) P2;jS2;j — (7/90)P3xS3iji + (1/280) PajjraSajjra + -+ - . (3.9)

The surface moments Py, Py, P3 and P4 in (3.9) can be written in terms the stick—slip
director d with the corresponding strengths D, Q, O and H:

P = Dd;, (3.10a)
Py = Q(3did; — &), (3.10b)
P3jk = 30(5didjdy — didjic — djdix — didy), (3.10¢)

Pujjig = 3H [35dididrd; + 8ii8u + Sixdjt + Sudjk
— 5(didjdi + dididj1 + dididjk + dididiy + didiSix + didiSyp) ] - (3.10d)

As illustrated in figure 2, the above surface moments represent distinct symmetries of
stick—slip patterns. Dipole P; is the first odd mode. It can be pictured as a half-faced
stick—slip pattern characterized by the director d pointing from the stick face to the
slip face (with D > 0). Quadrupole P> is the first even mode, representing a symmetric
slip—stick—slip (with Q > 0) (or stick—slip—stick with Q < 0) pattern of striped type.
Octupole P3 is the second odd mode, made of two antisymmetric hemispheres with stripes.
Hexadecapole P4 is the second even mode, represented by symmetric caps with an alike
stripe in the middle.

Substitution of (3.9) into (2.25) will allow us to systematically quantify impacts of slip
anisotropy on S;; and Ly in terms of the surface moments above.
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(a).(b) I (C). (d) I (e) l
Q>0 Q<0

Figure 2. Schematic illustrations of the first four surface moments. Dipole P; can be pictured as a half-faced
stick—slip pattern. Quadrupole P, can be thought of as a symmetric slip—stick—slip (Q > 0) or stick—slip—stick
(Q < 0) pattern of striped type. Octupole P3 can be represented by two antisymmetric hemispheres with
stripes. Hexadecapole P4 can be deemed as a pattern possessing symmetric caps with an alike stripe in the
middle.

To see how the strengths of surface moments are determined for a given axisymmetric
slip length distribution, we rewrite (3.9) in terms of the stick—slip director d:

ef (x) = —3Dd;S1; + (5/2) Qd;d;S»ij — (7/6)O0d;d;dr Sk + (3/8)Hd;djdrd;Sajjrs + - - -
3.11)

In deriving (3.11) we have used the fact that these surface moments are zero when any two
indices are identical, namely, S»;i8;, S3;jx8;; and Sajx/8; are zero. Also note that D, Q, O
and ‘H are O(e) because of ¢f (x) in (3.11).

Equation (3.11) plus (1) should be equal to the form by expanding the slip length to a
Legendre series:

A(n) = aogPo(m) +arP1(n) + a2P2(n) + az3P3(n) + asPa(n) + - - - . (3.12)

Here  Po(n) =1, Pi(n) = n, Pa(n) = Bn* — 1)/2, P3() = (5n° = 3n)/2, Pa(n) =
(35174 - 30772 + 3)/8, etc. are the Legendre polynomials with n = cosé in terms of
the polar angle 6 with respect to the symmetry axis and the coefficients a, are given
by a, = (n+1/2) f_ll APy (n) dn. Comparing (3.12) with (3.11), we can determine the
strengths of surface moments in terms of @, (see Appendix A):

(A) =a9,D=a1/3,Q=ay/5,0 =a3/7 and H = a4 /9. (3.13)

Take a commonly prepared two-faced Janus sphere having slip lengths AT and A~ as an
example (see figure 3). With the aid of (3.13), the strengths of surface moments can be
readily found:

(A)=1/2)AT +217 =T —27)cosa), (3.14a)

D = (1/4)A" — 27)sina, (3.14b)

Q= (1/4)(AT — A7) sin e cos a, (3.14¢)

0 = (1/16)(2T — A7) sin? a(5cos® a — 1), (3.14d)

H = (1/16)(AT — 27) sin® & cos & (7 cos® o — 3), (3.14¢)

where « is the stick—slip division angle for the more slippery A" part. As indicated by
(3.14), the strengths of these surface moments are proportional to the stick—slip contrast
(1t — A7) modulated by the stick—slip division angle .
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d ) P3 A P4
= + + > i~ '|' * 9

Figure 3. The slip length distribution of a stick—slip Janus sphere can be represented by its average slip
length plus a linear combination of various surface moments listed in figure 2.

4. Extended Faxén relations for anisotropic stresslet and torque on a stick-slip
sphere

To evaluate S;; and Ly from (2.25), first of all we need the strain resistance tensor X,; and
the rotation resistance tensor R;; for the uniform-slip problem:

A

Sy = Sy (4.1a)
= —SimNi ~NyuNin;, la
" rsa ™ s
3/a
Rij = ————8j;. (4.1b)
(I+30)
Next, we expand > and o> with respect to the sphere’s centre located at x = 0 as
Xjx
u® = u®(0) +ijju?°|0 + jz—ijVkM?o|O +-e, (4.2a)
© _ ;00 4 Vie®| + TRy v,e®| 4 ... 4.2b
O_im_aim()—i_xj Jgim|0+ 21 J kaim|0+ : (4.2b)

Substituting (3.9), (4.1) and (4.2) into (2.25), we are able to compute S;; and Ly on a
stick—slip sphere. Their evaluations, which are given in Appendices B and C, can be
implemented with the aid of the following surface integrals involving even numbers of
surface normal vector n:

/ ninjdS = (4/3)na*s;, (4.3a)
SP
/ ninjngig, dS = (4/15) 716 Ajjin, (4.3b)
SP
/ NN, dS = (4/105)szquijkm, (4.3¢)
P
/ npngninnnnng dS = (4/945)1a> Cogijfomni, (4.3d)
Sp

where Ajjgn, Bpgijm and Cpgjjknm are defined in (3.8).

4.1. Stresslet

Here we merely present the end results after evaluating the stresslet using (2.25a,b). The
detailed evaluations of relevant contributions to the stresslet can be found in Appendix B.
The surface monopole measures the average slip length. The associated stresslet is
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represented by the uniform-slip part (2.25a), which gives

20 {1+221 2 1
SO _ =~ ( * A) nua3E§°|0 + = 3 ( ) TTLd VZE 0’ 4.4)

v 3\1+52 1452

which recovers the result obtained by Keh & Chen (1996) for a uniform-slip sphere.
The O(e) slip anisotropy correction (2.25b) comprises surface dipole, quadrupole,

octupole and hexadecapole contributions, Sé.]) = S[.JD + S[.JQ + SijQ + 857[ , modifying the
stresslet according to

SD (/lslk)/ SlkE,I,Inj( PO + x,V pot | s + -+ -) dS
p
40/7 4 ( Ta? )
= - ~TTua 1+ — VkEOO Py
1151 90 o
12/7

— - S/IT[M(Z4P1]€ |:V Ek |0 + V E |0 + VmE]?rZ O(Sik + VmEzorz 08jk

4
- SHVER L (450)
P

82 = —a(5/6)(AS2yq) [u / S2pg Zpny Enik Eif (0) dS
N

+ M/ Sopq E,LLURmnErsnxs(Q;}o(O) — £2,)dS

P

Xn Xk
+ f Sopg zr‘jw(—p“(o)nm + %Vndaniﬂon[) ds}
Sp .
50/7 3 2
= sy [EJ;°|OP2,-,, +Ep | oPajp — gaﬁEgngzpq}
10
P YT nuad’ [€impPajp + €mpPaip] (22°(0) — £2,)
~20/189

15 TF,U«CISPZM |:5V Vi(E; |o ik + EOO’() Sjk) + 32 (E < 1‘?10|06"P + E?qologjp)

—3V2EX| 8 — 2ViVEN |, + 7Y,V E°°|0] (4.5b)

‘ﬁz—mwwmwwgf&wahhfmnw+meﬁhm+~dﬁ
N

P

8/27
= — H_S;l/u'ca |:2VkE k‘0P3tjn+5lelE |0P3mnl—|—V Emn’oP&mn-i-V Emn‘()P3jmn
nE%bPﬁWr+VnﬂﬁbeWD}, s
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Sfl = —ap(1/280) (AS4pgrs) / Sapgrs EJ,LUEmlk Ej(0)dS
S

P

20/21

3

Note that the stresslet-rotation coupling (£2,°(0) — §2,) term comes from Si]Qin (4.5b).
Combining (4.4)—(4.5) gives the extended Faxén stresslet relation,

20 14221 a®

S = —nud’ - |:1 + - Vz] EX| + wua’ Ty + npatty + tua’Js;,

=3 (1 + 51) 00 +21) |7 o . 0 >
(4.6a)

where various finite-size anisotropic contributions from surface moments can be summed
up below according to their associations with different powers of a:

; 20/21 x|
3ij = T A, L 4ijkl
) (1+5/l)2 vl kl 10
- 10 Popg [8ig€irp + Sig€jrp ] (27°(0) — £2,)
N N 12y 1 T r
(1—|—3/l)(1—|—5/1) Pq L7Jq=p q=jrp r
50/7 [ 2 ]
-7 p + 8 EX —E2| 8ii |, (4.6D)
(1+51)2 Pq |o 74 |o 3 pq|o i
40/7 o
Jyj = —1 S/AIPlkaEij
_ L Plk[V~E°°| + ViER |+ 8k VinEiy| o + 8k VimEqg | — 46V EY |]
N 147
1451 Jk 10 0 mlo mlo — 390 mk |0
8/27 50w 2
- 1+5;1P3mnl EVI(Ejm’()Sm +E |0 jin — 5 mn‘O l]) (V E |0 il
+ ViEgo|o8it) — 2VkE;;j|03,-n3jm], (4.6¢)
20/189
Jsy = 28, [SV,,(V Explo+ ViE | + 392 (Ep |8 + B o)
1451
—3V2E%| 85 — 2ViViEn |, + 7V,,Vqu°|O]. (4.6d)

Here a variety of anisotropic stresslet contributions ((4.60)—(4.6d)) are written in the
traceless form to ensure the total stresslet (4.6a) is trace-free. As indicated by (4.6a), in
a linear flow field the impacts of slip anisotropy on the stresslet are reflected purely by
symmetric quadrupole P, and hexadecapole P4. The Faxén corrections with the @ terms
also come from these symmetric surface moments when the imposed flow is of a cubic
type or of a higher degree. Antisymmetric dipole P and octupole P3 affect the stresslet
through the finite-size a* terms if the imposed strain rate is non-uniform.

While the variety of terms associated with distinct surface moments in (4.60)—(4.6d)
may look complicated, each in fact takes a unique and specific form as computed. They
can be obtained below using simple tensor constructions guided by the linearity of
Stokes flow. For simplicity, we only present canonical forms in the constructions by
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omitting the associated symmetric parts which can be easy to obtain by interchanging
the indices.

First consider the contributions from even surface moments. For quadrupole Py,
constructing a stresslet S; with P in a purely straining field E,fJO can only be done

with §j; = le-kE,‘c’]?’. Similarly, that in a purely rotating field £2°° can only be constructed
as € P2k $27°. These contributions can be seen in (4.6b). As for the Faxén stresslet
corrections due to Pyjx, the admissible forms can only be Pz,-kVZEI.OkO and P,V lViE/‘.f,
by having PzikE,ff operated under differential operators, as obtained in (4.6d). For
hexadecapole P4;ji/, S;j can only be made in the form of Py £}, as shown in (4.6b).

For the contributions from odd surface moments, dipole Py cannot work with a strain
field Efj’o but with a field gradient VkEg.o to yield a stresslet PlkaE;.o or PlkV;Eﬁf, as
derived in (4.6¢). Similarly, octupole P3;; can make a contribution Pz V kEjolo, Py VIER
or V;P3iEj to S when it joins a field gradient V kE;o or V,E}2, as obtained in (4.6¢).

Now return to the total stresslet (4.6a). Since (4.6a) contains both the O(¢g) slip
anisotropy corrections and the finite-size correction terms of O((a /L)z) and smaller (with
L being the macroscopic length over which flow gradients occur), the former can be more
important than the latter if the imposed flow is linear or

&> (a/L). 4.7

Under the above condition, we can neglect the finite-size correction terms VZE™ |y, Py -
VE™|y, V(E®|g - P1), Py : VVE®|y, VZE®|y+ P,V - (P3 - E®|g), P3 - (V - E®|p),
V(P3 : E®|p) due to the non-uniformity of the imposed strain field, simplifying (4.6a) to

Si 20 (1+22 50/7
== =) EFly = s [PanERs Lo + PanEis o — /3P Epel o8
mpad 3 (1+51) o (1502 L2 o+ PapEylo = GrOPapelal b
20721 EY| 10 [€irpPaip + €irpP2ip1(22°(0) — £2,). (4.8)
~ Paijik - 3 ~l€inpP2jp + €jpP2 — 2. “
(14502 RO QG 3y 450y AT AR ’

It is exactly the general stresslet expression (3.3) when writing quadrupole Pp,; and
hexadecapole Py back to dyd, and d;d;ddy using (3.100) and (3.10d), as can be seen
from (5.4) later.

Equation (4.8) reveals that the anisotropic part of stresslet in a linear flow field is
determined purely from symmetric Py, and Pyj. Note that while these two surface
moments contribute to the stresslet in a purely straining field, stresslet—rotation coupling
arises only from P;,. In figure 4 we use a slip—stick—slip sphere whose stick—slip pattern
can be represented by Py, to illustrate how stresslets are generated from asymmetric
forces around the sphere in linear flow fields. Figure 4(b,c) display how these forces turn
into a stresslet and a couple under the actions of a purely straining flow field and those
of a purely rotating flow field, respectively. In the latter case, a stresslet can result from
the vorticity of an imposed flow or from body rotation, giving rise to the stresslet-rotation
coupling term in (4.8) (figure 4¢). Likewise, a couple can be generated by applying a strain
field to the sphere, resulting in torque-strain coupling (figure 4b). Compared with the usual
no-slip case (figure 4a), the main difference is that asymmetric forces on the sphere lead
the resulting force pair to be unaligned with respect to the sphere’s centre, acting as a
symmetric stresslet and an antisymmetric couple across the sphere.

For a Janus sphere whose stick—slip pattern is purely antisymmetric like an equally
divided face represented by dipole P, slip anisotropy will make no contribution to the
stresslet until O(g?). The anisotropic stresslet of such sphere can only be seen by placing
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Figure 4. Schematic cartoons showing the use of a slip—stick—slip sphere for illustrating how different
anisotropic stresslet contributions form due to surface quadrupole in a linear flow field in comparison with
the usual no-slip case (a). Panel (b) illustrates the situation in a purely straining flow field, showing how
asymmetric forces (red arrows) form around the sphere due to the slip asymmetry. These forces then produce
a force pair that acts as a symmetric stresslet and an antisymmetric couple across the sphere. The couple is
responsible for the torque-strain coupling term in (4.12). Panel (¢) displays the similar situation in a purely
rotating flow field, explaining how the stresslet-rotation coupling term in (4.8) arises from the vorticity of an
imposed flow or from body rotation.

the sphere in a nonlinear flow field in which the a* terms in (4.6a) can emerge due to
antisymmetric dipole Py or/and octupole P3jq.

4.2. Torque

As indicated by (4.6a), the stresslet of a stick—slip sphere can further couple to its rotational
motion. To find the rate of rotation for the sphere, we need to determine the hydrodynamic
torque on the sphere. Again, we present the end results by leaving the detailed derivations
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to Appendix C. The uniform-slip part (2.25¢) of the torque is

8
L0 = " _nud(28°0) — 20, (4.9)
Y R

which again agrees with the result obtained by Keh & Chen (1996) for a uniform-slip
sphere. Similar to the stresslet (4.6a), the slip anisotropy correction (2.25d) is found to
consist of surface dipole, quadrupole and octupole contributions, E,(:) = ££ + E,g + L2,
as computed as follows:

£ = =3a(1s))) / S1unxiR, (—p™(0) nw + %,V o2 (0) g + - - )dS
SP
24/5
= +/3;1”““4E’<mn(vm%3z°|op 1= VoEpmloPin), (4.10a)

L8 = —a(5/6)(AS;) { / Soii€rnxiRY, 0 ZmpgEpg (0) dS

Sp

+ M/ S2116kln€rsqxlxs mq(-QOO(O) £2,)dS

Sp

+/Szij€kmxl R,L'm(—poo(O)nm ’;qV \Y aoo}on, ...)dS:|

Sp

20
= — _ p,a €mnP2 E 0+ ———
(14301 +52) e (1 +32)2

8/7
1 +/ 3;1Tl7,ua56klm|: ViV OERE o Pani + ViV iEgg o Paig + (1/2)V2Exg | Paig |
(4.100)

T a Popr(825°(0) — £2,)

LY = ~a(1/90)(AS3pj) f S3piekinXiRyy, (=™ (O + x4V 40,72 (0) ny + - -) dS
P
8/5 V.ERS| P (4.10¢)
= —T[;La €Ll 31 e
(1432 oo A

Note that the torque-strain coupling term ekmnPijEﬁf (0) comes from L,g in (4.10b) due

to the quadrupole. Combining (4.9) and (4.10) yields the extended Faxén relation for the
torque:

8
Li = /Almuﬁ [SPk +

20
(1431 +51)
24/5 4
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8/5 4
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_ 8/7 5 v. 00 . . 00 . 2 00
3y e e ViV ER | Panj + ViV iEne | Pajg + (1/2)VEpe | Pagl | -
4.11)
Again, in a linear flow field or if (4.7) is satisfied, (4.11) is reduced to
L —8 |:8 + —3/2 P :|(.Q°°(O) £2,) —20 P ES°(0)
= =~ ~ - - ~ ~ €kmnd 2mjLy, .
muad  143a L 1 Y P A3 sy
4.12)

Equation (4.12) indicates that only a symmetric quadrupole contributes to the torque due
to slip anisotropy. Antisymmetric dipoles and octupoles will enter to influence the torque
if the imposed strain field is non-uniform, as revealed by (4.11). Note that the second term
in (4.12) is the torque arising from torque-strain coupling, as illustrated in figure 4(b). The
form of (4.12) also agrees with that found by Premlata & Wei (2021) who derived the
coupled Faxén relations for the force and torque on a non-uniform slip sphere. It is worth
mentioning that an additional torque can also be generated from the translational motion
of a stick—slip sphere owing to unequal drag forces exerted on the stick and slip surfaces of
the sphere. Such torque arises from torque-translation coupling and can only be realized
through a dipole (Premlata & Wei 2021), different than that arising from torque-strain
coupling in (4.12).

5. Rheology of a suspension of stick-slip spheres

Having determined the stresslet (4.8) for a stick—slip sphere, in this section we will put
forth to examine its impacts on the rheology of a dilute suspension of force-free stick—slip
spheres in a simple shear flow of shear rate y:

u>* = —yxze;, EX =—(y/2)(eze; +e1e2), and £° = (y/2)es. (5.la—c)
Here we take the direction of the shear flow to be —ej. This is to make the vorticity 2
positive in e3 in order to more conveniently analyse the features of a dipolar suspension in
§ 6 later. The presence of the spheres will cause an additional stress on the ambient fluid.
If the suspension is homogeneous, this additional particle stress, which is reflected by the
stresslet (4.8), affecting the average bulk stress of the suspension according to (Batchelor
1970)

(X)) = —(p)8ij + 2uley) + n(Sy), (5.2)

where n = ¢/V), is the number density of the spheres in terms of the ratio of the volume
fraction ¢ to the sphere’s volume V), = 47ta’ /3. In simple shear flow, the average rate of
strain (e;) = E;o

Given that the stresslet (4.8) is anisotropic depending on the sphere’s orientation, to find
the average stresslet (S;;) for determining the average bulk stress (X;) given by (5.2), it
is necessary to express the stresslet in terms of the sphere’s stick—slip director d (defined
in the direction from the stick face to the slip face, see § 3). This is done by converting
P; and P4 in (4.8) into d using (3.100) and (3.10d). It is also more convenient to express
d = (dy, da, d3) using spherical polar coordinates in terms of polar angle 6 and azimuthal
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Figure 5. The spherical polar coordinates for describing the orientational dynamics of a stick—slip Janus
sphere in a simple shear flow. The sphere can become dipolar to possess a couple in an external force field
g when it has a permanent dipole moment along the stick—slip director d.

angle ¢ (see figure 5):

dy =sinfcosgp, dy=sinfsing and d3 =cosé. (5.3a—c)

With the above, (4.8) can be rewritten as

S;i 1424 1
A = <1 . 5;1> EX(0) + [c]E;O (0) + ca(did; = Z67)didi ERY (0)
2
+ c3(dideER (0) + didi ERS (0) — gsi/'dldk % (0) + ca (dieindy + diejirdy) (827°(0) — 91)] ,

54

wherein the O(¢e) coefficients in the anisotropic part can be expressed in terms of the
quadrupole strength Q and the hexadecapole strength 7:

. 5(15Q+ §H) o 10071
T A+512 (14502 5:5)
__BORe+8 4529
7 (14522 (1+32)(1 + 52

Note that the c4 rotational contribution is reflected solely by quadrupole, as will also be
seen in the orientational dynamics of the sphere in § 6.1.

Recall that for a given stick—slip geometry, the strengths of surface moments can be
related to the coefficients of the Legendre series for the slip distribution (see (3.13)). This
will allow us to determine (5.5) for a given stick—slip pattern. For instance, for a two-faced
stick—slip Janus sphere (see figure 3), (5.5) can be re-expressed as follows by replacing H
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and O using (3.14c,e):

5 ((9/2) + 70082 ) (AT — A7) sinfa cosa
] = — cos” o -
T4 (1+51)2
25 At — A7) sin?
c2:—<7cosza—3)( )SHAI xeosa
4 (14 52)2 5.6)
25 5 (AT — 27) sina cosa '
== <7cos o— (3/4)) -
14 (1+52)?2
45 (AT — 27 ) sin® o cos
4= —— A 8
8 (I+30D)(+52)

where A = (1) is given by (3.14a) and also varies with AT, A~ and «. Equation (5.6)
provides direct links between the strengths of various stresslet contributions in (5.4) and
the stick—slip partition, which will be useful when coming to compute the average bulk
properties of a suspension of stick—slip Janus spheres.

Consider that the stick—slip spheres are couple-free, so the last term due to their rotations
in (5.4) has no contribution (up to O(¢) since (§2/°(0) — §2;) = O(e) according to (4.12)).
Since the directors of these spheres can still vary stochastically, the average of a property
M of a suspension of stick—slip spheres can be obtained from its angle average,

i 27
(M@, @) = / / sind M0, o)W (0, ¢) dep do, (5.7)
0 0

weighted with the orientation probability distribution function ¥ for the director d, in
contrast to Ramachandran & Khair (2009) who treated all the spheres as orienting in
the same direction. Because slip anisotropy is assumed weak here, hydrodynamically a
weakly stick—slip sphere may behave like a no-slip near sphere. There are two reasons
for this analogy. First, geometrically the shape of a near sphere can also be represented
by surface spherical harmonics (Brenner 1964), just like (3.4) for the slip distribution of
a stick—slip sphere. Second, when taking a small asphericity expansion for the no-slip
boundary condition applied on the surface of a near sphere, the resulting expression at
first order resembles the slip boundary condition (2.6b) whose slip length is varying with
the shape of the near sphere.

Having the above analogy in mind, we next show how to make use of the orientation
probability distribution ¥ for a near sphere to determine that for a weakly stick—slip sphere.
Hinch & Leal (1972) showed that the former is controlled by the Bretherton parameter B
arising from small asphericity (Bretherton 1962),

1
WO, 9) = —

In (5.8)

. 3sin” @ sin(2¢ — tan~'(y/6D,))

2(1 + (6D, /y)H)'/? ’
with a modulation by the ratio of shear rate y to the rotary diffusion coefficient D, of the
sphere. For a weakly stick—slip sphere considered here, its asphericity is caused by small
slip anisotropy, allowing its orientation behaviour to be also controlled by the Bretherton
parameter B = O(¢) in the same manner as (5.8). As will be shown later in § 6.1, the
value of B is found to be proportional to the strength Q of quadrupole, determined from
the angular velocity and the equation governing the orientational dynamics (up to O(g))
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of the sphere (see (6.4) and (6.5)). That is,

d,‘ = 6,'jk9jdk = Eijk.Qjoodk + B(5U — d,'dj)Eﬁcodk, (5.9(1)
15/2
B= —ﬁ. (5.90)
1+54

Equation (5.9a) is also exactly the equation governing the orientational dynamics of an
axisymmetric spheroid (Kim & Karrila 1991). Therefore, a symmetric stick—slip sphere
can be made analogous to a spheroid by relating their shape factors through (5.90).
A stick—slip—stick (slip—stick—slip) sphere with Q < 0 (Q > 0) acts like a prolate (oblate)
spheroid with B > 0 (B < 0). Such a spheroid with small 5 is a special class of near
spheres, allowing us to use (5.9b) in (5.8) for determining ¥ for a weakly stick—slip sphere.

Using (5.7), (5.8) and (5.9b), we can evaluate each component of (X;;) in (5.2) according
to

. 15 (1+22 1
(Z12) = uy +du y [_ ( ) + - <cl + 20y d3d5 + c3 (d} + d%)ﬂ . (5.10a)

2\1+31) 2
(Zn) = () + puy (1/3) <d1d2 [Cz G — 1) + c3]>, (5.10D)
(Zn) = (p) + oy (1/3) <d1d2 [C2 G2 — 1) + C3]>, (5.10¢)
(Z33) = () + duy (1/3) (dldz [cz Gd2 — 1) — 2C3]>. (5.10d)

The average shear stress (X») provides the measure for the Einstein effective viscosity
,,Lg? = u(1 4 (Z1)/y) from (5.10a). We find that in the evaluation of (X15), the

contribution from the angle-dependent B term due to slip anisotropy in the orientation
distribution function (5.8) is identically zero. The resulting effective viscosity is found to

be
5(1+22 1 2 2
(E)
— 1 | —= — - — . 5.11
Mgt M[ +¢(2<1+51>+2<01+1502+3C3)>} (5.11)

Equation (5.11) indicates that slip anisotropy will not only contribute an O(¢¢) correction
to the effective viscosity but also the correction will be independent of shear rate y.
This is very different from the effective viscosity of a suspension of near spheres (Hinch
& Leal 1972) in that the viscosity correction due to small asphericity of amplitude
as is O(¢e?) and shearrate dependent. In addition, such slip anisotropy correction
to the effective viscosity can be either positive or negative, depending on the values
of ¢y, ¢ and c¢3 from the stick—slip pattern. If the spheres are of stick—slip—stick or
slip—stick—slip type represented by a quadrupole without a hexadecapole, in particular,
¢ =0 and c¢1 + (2/3)c3 = 0 result in no correction at O(¢¢), meaning that in this case
the slip-anisotropy correction to the effective viscosity will start at O(¢e?).

Figure 6 plots the behaviour of the effective viscosity (5.11) of a dilute couple-free
suspension of two-faced stick—slip spheres. Here we plot the O(¢) correction as a function
of the stick—slip division angle « for different values of the stick—slip contrast (AT — A7)
(with A= = 0 here). It is clear that the results are lower than the value 2.5 of the Einstein
viscosity but higher than the value 1.5 corresponding to the bubble limit. For a given value
of (AT — A7), the viscosity is decreased as the slip portion is increased with «, which is
expected.
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Figure 6. Plot of the O(¢) correction to the effective viscosity of a dilute couple-free suspension of two-faced
stick—slip spheres as a function of the stick—slip division angle «. Results are plotted for different values of the
stick—slip contrast (1* — A7) (with 2= = 0 here), showing lower than the value 2.5 of the Einstein viscosity
but higher the value 1.5 corresponding to the bubble limit. For a given value of (1T — A7), the viscosity is
decreased as the slip portion is increased with «.

The diagonal components of the bulk stress allow us to determine the first and
second normal stress differences, Ny = X} — Y and Ny = X»y — X33. Since these
components are O(¢¢) from the anisotropic part of the stresslet (5.4) and non-zero average
contributions to them come only from the O(¢) angle-dependent part of the orientation
probability distribution (5.8) (because B = O(¢)), the average normal stress differences
(N1) and (N,) generally start at O(¢&?). The actual calculations yield

(N1) =0, (5.12a)
oy B (e y /6Dy
(N2) = MV‘f’Z (g + C3> [W} . (5.12b)

It turns out that a non-zero contribution to (N7) will start at O(¢e>), which differs from
the result of Hinch & Leal (1972) for a near-sphere suspension; (N») is 0(¢82), as
expected. Note that the Bretherton parameter B o« —Q in (5.12b) is determined solely
by a quadrupole in view of (5.90) and thus acts like c4. Equation (5.12b) reveals that
if the sphere’s surface is constituted purely by a quadrupole, ¢ = 0 and ¢3 ox —Q will
make (N;) oc Q% always positive, regardless of whether the sphere is of slip—stick—slip
(Q > 0) or stick—slip—stick (Q < 0) type. In fact, for a two-faced stick—slip sphere, it can
be shown using (5.6) that even including hexadecapole contributions with H # 0 still leads
(N2) described by (5.12b) to be always non-negative. Furthermore, (N,) y? in the weak
shear y — 0 limit, but turns to approach a constant in the strong shear y — oo limit.
This behaviour can be clearly seen in figure 7(a) that plots (N») as a function of y for a
suspension of two-faced stick—slip spheres. Such rate-dependent behaviour for (N;) also
agrees with that found by Hinch & Leal (1972) for a near-sphere suspension.

In terms of impacts of stick—slip geometry, figure 7(b) plots how (N,) varies with
the stick—slip contrast (17 — A7) and the stick—slip division angle o for a suspension of
two-faced stick—slip spheres. First of all, we find that (N2) > 0, which can be proved from
(5.12b) using (5.6). Second, the amplitude of (N5) is increased with (17 — A7). In fact, it
can be shown that (V) oc (AT — 17)2 according to (5.12b) and (5.6). Interestingly, how
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Figure 7. Behaviours of the average second normal stress difference (NV,) described by (5.12b) for a suspension
of two-faced stick—slip spheres. (a) Plot of (N2) against shear rate y /6D, for different values of the stick—slip
division angle a; (1T — A17) = 0.1. (b) Plot of (N,) against the stick—slip division angle « for different values
of the stick-slip contrast (1T — A7). /6D, = 1. Note that if the spheres are precisely half-faced with an
antisymmetric dipole only, (N2) = 0.

(N2) varies with « is not monotonic — it varies up and down as increasing the slip portion.
In particular, the maximum value of (N;) occurs to the spheres having more stick portions
(e < /2) and located at a particular value of «, depending on (1 — A7). For instance,
for (AT — A17) = 0.2, the maximum of (N,) occurs at around o = 7/4 but shifts to a
higher value as (1T — A7) is decreased. Also recall from (5.12b) that only quadrupoles
and hexadecapoles contribute to (N>). If the spheres are precisely half-faced (o = 1t/2),
(N2) = 0 since the slip pattern is described solely by an antisymmetric dipole without a
symmetric quadrupole and hexadecapole, as also displayed in the figure.

As shown above, the average bulk properties of a suspension of weakly stick—slip
spheres behave quite differently compared with those of a suspension of no-slip near
spheres found by Hinch & Leal (1972). The differences in rheology between these two
suspensions is attributed to the fact that slip anisotropy is not just geometric asymmetry.
The reason is that the strain resistance matrix (4.1a) has an additional contribution
nnn when 1 # 0. Physically, this contribution comes from the double-layer part of the
boundary integral representation of the Stokes flow field solution. Such a contribution
vanishes for a no-slip particle. However, if there is slip on the surface of a particle,
this double-layer contribution can cause an additional pressure gradient through the
non-vanishing slip velocity on the particle’s surface. To form a symmetric force dipole,
namely stresslet, for a stick—slip particle in a linear flow field through this slip-induced
pressure gradient, it is determined not only by the slip asymmetry but also by how the
particle orients with respect to the flow field since the pressure will join with the stick—slip
pattern to affect the local force distribution which generally is not symmetric. For a no-slip
particle, on the contrary, an anisotropy in the stresslet only requires an asymmetry in
geometry because it is determined purely by the deviatoric part of the stress tensor without
pressure.

6. Stick-slip sphere with couple: non-Jeffery orbits and spin-induced stresslet
6.1. Non-Jeffery orbits

The results presented in the preceding section are based on the couple-free situation under
which there is no net torque on a force-free stick—slip sphere. However, if the sphere
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possesses a permanent dipole and spins due to an external couple, an additional stresslet
can arise from such dipolar spinning, as indicated by (5.4). This will alter not only the
orientational dynamics of a stick—slip sphere, but also the suspension rheology. Since the
average behaviour of the stresslet in the latter will depend crucially on the orientation of
the sphere in the former that may display a preferential direction, in this section we will
look at how a stick—slip sphere behaves in its orientational dynamics with and without an
external couple.

Suppose that a stick—slip sphere possesses a permanent dipole moment if there exists an
inhomogeneity in the internal mass distribution or a permanent magnetic/electric dipole
embedded within the sphere (Brenner 1970). In our case, we assume that such a permanent
dipole acts along the direction of the stick—slip director d and takes the form (41/3)pa’d
with p being the density of the sphere. This can likely be the case since a polarity may be
naturally brought out by the stick—slip asymmetry through the distinct material properties
of the stick and the slip faces. When an external force field g is applied, if such dipole is
not aligned to g, a body couple [,,(f) will be generated to exert on the sphere according to
(Brenner 1970)

4
L9 = ?T[,oa3d X g. 6.1)

Consider such a dipolar stick—slip sphere freely suspending in a simple shear flow (5.1a—c).
Then the applied external torque (6.1) has to be balanced by the hydrodynamic torque
Ly given by (4.12): Ly + .C,(f) = 0. We determine the sphere’s angular velocity £ in a
perturbative manner by taking small & expansions below for both §2; and £y followed by
their substitutions into the above zero-net-torque condition:

=20+ + -, (6.2a)
Li=LY+L+--. (6.2b)

At 0(e°)
£+ L =o, (6.3a)

with £,(<O) given by (4.9), (6.3a) yields the leading-order rate of rotation
220 - 2 = —(1+3)f, (6.3b)
to be equal to the angular velocity due to the permanent dipole
Q4= Byd x g, (6.3¢)

where
B = pg/3uny (6.3d)

is the dimensionless parameter measuring the magnitude of the dipole-induced angular
velocity relative to the flow vorticity of /2, and g = g/g = ey sin x + e3cos x is the
direction of the external force acting in an angle y with respect to the direction of the flow
vorticity (see figure 5).
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At O(e)
3 5/2
£V = - Zpy,d - L= EZ(0) =0, 6.3
) 2kpRd)p 1+ S/lékmn 2mjL; 0) = (6.3¢)
which yields
3 5/2
-Q/El) — =Py, Q LekmnPZmJEoo 0). (6.3f)

2 Po1452
Combining (6.3b) and (6.3f), the rate of rotation for the sphere can be determined as

A 3 5/2
2O ~ Q= —(+302f + P2l + Hﬁekm PagEX0).  (64)

Using (6.4) together with (3.10b) for Py;, the orientational dynamics of the sphere is
governed by the following equation in terms of the director d:

d=2xd

— 2%(0) xd+ﬂ(1+32)§[1—§ (Hﬂ
1+31

5 >:| (I —dd)+ BE* -d- (I —dd).

(6.5)

Equation (6.5) with B = 0 recovers the equation governing the orientational dynamics of
a homogenous dipolar sphere (Brenner 1970). For a stick—slip sphere without a permanent
dipole at 8 = 0, (6.5) is reduced to (5.9a) with the Bretherton parameter 5 given by (5.9b).
When there is a permanent dipole, not only an additional spinning due to the f term
emerges to affect the orientation of the sphere, but also such dipolar spinning is modified
by slip anisotropy through 5.

Making use of (5.3a—c) together with the following identities (Kim & Karrila 1991)

dy = —sinf6 and didy — dod; = sin’ ¢, (6.6a,b)

we can rewrite (6.5) in terms of spherical polar coordinates, allowing us to examine the
director trajectory of a stick—slip sphere under the actions of both the imposed flow field
(5.1a—c) and the external force field g:

. n B(1+52
0=B1+31)|1—— + (cos@coswsmx—mn@cosx)——Bst@stgo,
5\1+32
(6.7a)
.Y A B{1+54
==—=B04+3D)|1—-— csc 6 sin s1nx——B(cos — sin” ).
p=35-F [ 5(1+3ﬂ @ @ @
(6.7b)

Equation (6.7) with B =0 recovers the equations obtained previously by Hall &
Busenberg (1969) for a homogenous dipolar sphere. Figure 8(a) plots the director
trajectory for a two-faced stick—slip sphere without dipolar spinning when g = 0, showing
a closed Jeffery orbit like that of an axisymmetric spheroid. When the sphere undergoes
dipolar spinning, figure 8(b—d) display the director trajectories of the sphere with different
values of §, showing that the sphere with a given value of § typically will eventually end
up with a fixed orientation, much like the orientation behaviour of a dipolar uniform-slip
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Figure 8. Computed director trajectories of a two-faced stick—slip sphere with 5 = 0.0715 (from Q in (3.14¢)
and (5.9b) with AT — 1~ = 0.2,4~ = 0, and @ = 37/4) in a simple shear flow. Panel (a) plots the case without
dipolar spinning (8 = 0), showing a typical closed Jeffery orbit. Panels (b—d) are the results at different values
of 8 when the sphere undergoes a dipolar spinning with x = n/4: (b) B = 0.1;(c) B = 0.5; (d) B = 1.5. In this
case, for a given value of S the sphere typically will end up with a fixed orientation, much like the behaviour of
a dipolar uniform-slip sphere with B = 0. In all cases, the initial orientation angles (6, ¢) = (w/4, nt/4) and
the data are collected at time to r = 150y ~!.

sphere with B = 0 (Brenner 1970). Displaying a fixed orientation for a dipolar sphere with
and without slip anisotropy is essentially the result that the dipolar spinning is balanced
by the flow vorticity. As will be shown shortly in § 6.2, this result will significantly affect
the rheology of a suspension of stick—slip spheres since every sphere in the suspension
possess the same stresslet provided that rotary Brownian motion is negligible. In this case,
the impacts of slip anisotropy on the stresslet will occur at O(e) due to the dd and dddd
terms, just like those shown in (5.4). The corresponding correction to the bulk stress will
therefore be O(¢¢).

For the special case of x = m/2 and 8 < 1, Hall & Busenberg (1969) showed for a
homogeneous sphere that instead of tending in time to a fixed orientation, it will undergo
a periodic precession, signified by a closed orbit in its orientational dynamics. This is
illustrated by the computed orientation trajectory for a dipolar slip sphere, as shown in
figure 9. For a dipolar stick—slip sphere under the same condition, its director trajectory is
pretty much like the above with a slight change due to slip anisotropy, as also shown in
figure 9.
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Figure 9. Computed director trajectory of a dipolar stick—slip sphere for the special case of x = m/2 and
B < 1. The result is obtained at 8 = 0.1 and B = 0.0715 (from Q in (3.14¢) and (5.9b) with AT — 1~ = 0.2,
A~ =0 and o = 31/4), displaying a closed orbit that signifies a periodic precession, similar to the result for
a uniform-slip sphere with 5 = 0. The calculations are performed with the initial orientation angles (0, ¢) =
(1/4, 7t/4) and the data are collected at time to r = 150y L.

6.2. Additional bulk stress induced by dipolar spinning

As shown above, a stick—slip sphere possessing a persistent dipolar spin typically displays
a fixed orientation in a simple shear flow. The bulk stress of a suspension of such dipolar
stick—slip spheres is expected to behave differently compared with the features shown in
§ 5 under the couple-free condition, which will be demonstrated in this subsection.
According to Batchelor (1970), for a homogeneous particle suspension, the excess bulk
stress El;p ) due to the presence of particles generally consists of two contributions: the

symmetric contribution from stresslet S;;; and the antisymmetric contribution from couplet
(1/2)ei Lk,
2P = nSji+n(1/2)€jLr. (6.8)

The antisymmetric stress due to a couplet can arise when a particle possesses a persistent
spin due to an externally imposed couple — Ly, as shown by Brenner (1970) for a dilute
suspension of dipolar spherical particles. It should be noted that the symmetric stress due
to §;; also involves the rotational contribution from £y proportional to the rate of rotation
(£27° — £24) for an anisotropic particle, as seen from (3.1). For a suspension of dipolar
stick—slip spheres, apart from the bulk stress due to the imposed strain field E;O the
rotational part in (3.1) and the couplet contribution in (6.8) combined are responsible for
the additional bulk stress X iJ(.d) due to the dipolar spinning of these heterogeneous spheres.
As such, this spin-induced stress also comprises both symmetric and antisymmetric
contributions:

(d) (DS (DA
Eij :Eij +2ij . (6.9)

The symmetric part comes from the ¢4 term of O(¢) in (5.4) with the rate of rotation given
by (6.4):

Zi;d)s = pucy (dieidy + diejudy) ($27°(0) — £27)
= —pu(l + 3D ca(djen + diejn) 2{'dx. (6.10)

In the above, we omit the strain field contribution from the last term in (6.4) since it
contributes to O(¢s?) and hence is negligible. We also omit the quadrupole correction to
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the sphere’s angular velocity in (6.4) because of the same reason. The antisymmetric part
comes from the £ term in (6.9) and can be evaluated using (4.12) and (6.4):

S DA = (3/8) ey (Ly/mpa’)
= ey, (1D

This is exactly the bulk stress resulting directly from the external torque (6.1), i.e.

Ly = —/J,(f) in the first line of (6.11), as given by Brenner (1970). This antisymmetric
couplet stress contributes to the bulk stress at O(¢) and hence is more important than the
symmetric stress (6.10) of O(e¢).

Recall in § 6.1 that if rotary Brownian diffusion is negligible, all the dipolar spheres
generally display the same orientation in a simple shear flow. Hence the average bulk
stress should be represented by the bulk stress at that particular orientation d = ds. The
effective viscosity and normal stress differences should also be evaluated in the same
manner with the corresponding orientation angles (0, ¢) = (6s, ¢5) (Brenner 1970). We
remark that in the previous study by Ramachandran & Khair (2009), stick—slip spheres
were couple-free but still treated as oriented in the same direction in their calculations for
the average rheology properties, which conflicts with the notion above.

Combining (6.10) and (6.11), each component of 2.(.d) in (6.9) can be determined as

SO = pupyl3dasin x + ca(1 + 30)da((d} — d3 — d3) sin x + 2dyd5 cos x)], (6.12a)

S = 2¢upyea(l +30)di[(d3 + d2) sin x — dyds cos x1, (6.12b)
S = 2¢uBy ca(l +31)d3 [dy sin x + ds cos x1, (6.12¢)
SO = 20uBy cs(1 + 3 dsldids sin x — (d + d3) cos x]. (6.12d)
The corresponding effective viscosity is found to be
4@
% = 3sinfsingsin x + c4(1 + 31) sin & (sin ¢ (2 sin” 6 cos? ¢ — 1)sin x
"

+ 3 sin 20 sin 2¢ cos x). (6.13)

The first term comes from the antisymmetric stress (6.11), in accordance with the result
obtained by Brenner (1970). The second term is from the symmetric stress (6.10),
providing the slip anisotropy correction due to the quadrupole because c4 o — Q. If the
sphere is half-faced (with dipole only), there will be no contribution to the correction
term.

We also determine the first and second normal stress differences due to dipolar spinning,

NP = 5@ _ 5@ and N = £ — 519 as
Nid) =2¢puypfca(l + 3/1) sin f[cos (p(sin2 0 cos2¢ — 1)sin x + % sin 26 cos 2¢ cos x|,
(6.14a)
N = 2¢uy Bea(l + 3) sinBcos p(sin® 6 sin® ¢ — cos® §) sin x
+ % sin20(1 + sin® @) cos x]. (6.14b)

These stresses are O(¢¢) due again to quadrupole from the symmetric stress (6.10). They
will vanish if the sphere is half-faced.
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Figure 10. Plot of the O(¢) viscosity correction calculated from (6.16) against the stick—slip division angle
«a for a dipolar suspension of two-faced stick—slip spheres: A7 — 1~ = 0.2; A~ = 0; x = 7/4. Note here that
when B #0, every data point at a particular value of « is computed using (6.13) with the corresponding fixed
orientation angles (6, @) obtained from the orientational dynamics like figure 8.

Adding the couple-induced bulk stress (6.12) to the couple-free bulk stress (5.10) to give
the total bulk stress for the present dipolar stick—slip suspension. As a result, the effective
viscosity is the Einstein viscosity (5.11),

E . 4 ) )
— l by ~ by by 9 9 N 6.15
'u“eff + ¢ > (1 /1) + > (C] + > ¢o SIn” G sin 2(ﬂ + ¢3 sIn ) ( )

plus the dipolar viscosity (6.13), giving

H E d
Teﬁ = Gt + )/t

S{1+22 o 1 Ly 2
=1l+¢]|= ~ | +3Bsinfsingsiny |+ <=¢ | c; + = casin” 6 sin” 29 + c3 sin” 0
2\1+51 2 2

R 1
4+ 2Bc4(1 +32) sin6 <sin<p(2 sin® 0 cos® @ — 1) sin x + 2 sin 26 sin 2¢ cos X>:| .
(6.16)

For a dipolar suspension made of two-faced stick—slip spheres with ¢, given by (5.6),
figure 10 shows that the O(¢) viscosity correction calculated from (6.16) basically
decreases as the slip portion is increased with the stick—slip division angle «. Note here
that when 8 # 0 every value of « has its own fixed orientation angles (s, @) obtained
from the orientational dynamics like in figure 8. In addition, compared with (5.11) for
the couple-free case (8 = 0), the viscosity of the dipolar case (8 #0) is always higher,
regardless of the stick—slip partition because of the additional dissipation caused by the
applied external couple.

The first and second normal stress differences of the dipolar stick—slip suspension can
be obtained by combining the straining part (5.10b—d) and the dipolar part (6.14):

Ni = uy¢ teasin® 6 sindp + N, (6.17a)
Ny = uy ¢ Lea(sin 0sin® ¢ — cos? 6) + 3] + Ny (6.17b)
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Figure 11. Typical plots of how both N; and N> vary with the stick—slip division angle « for a dipolar
suspension of two-faced stick—slip spheres: AT — 1~ =0.2; = = 0; x = /4. When B #0, these normal
stress differences at a particular value of « are evaluated using (6.17) with the corresponding fixed orientational
angles (6, ¢,) obtained from the orientational dynamics like figure 8.

Compared with at most 0(¢82) shown by (5.12) for the couple-free case, the normal stress
differences (6.17) are O(¢¢) because all the dipolar stick—slip spheres in the suspension
orient in the same direction. While N; and N, are constituted by both quadrupole and
hexadecapole contributions, they are made of different contributions in the anisotropic part
of the stresslet (5.4), namely N; consists of ¢ and ¢4 whereas N> can further involve c3.

Recall that N fd) and Néd) are made only of c4. For this reason, by analysing how N1 and N,
vary with these anisotropic stresslet contributions and how these normal stress differences
change with B that controls the strength of the dipolar contributions and the spheres’
orientations, one may be able to extract the strengths of the quadrupole and hexadecapole
to quantify their contributions to the stick—slip patterns of the spheres.

Figure 11 displays typical plots of how both N1 and N, vary with the stick—slip division
angle o for a dipolar suspension of two-faced stick—slip spheres. Again, for a given
non-zero value of B, these normal stress differences at a particular value of « are evaluated
using (6.17) with the corresponding fixed orientational angles (6;, ¢;) obtained from the
orientational dynamics like in figure 8. Figure 11(a) shows that N1 > O(< 0) when the
spheres are covered more with the stick (slip) faces with ¢ < m/2(> m/2). Note that
N1 = 0at 8 = 0because of (5.12a). A similar behaviour can also be seen for N,, as shown
in figure 11(b). Note that at 8 = 0, (N>) is actually very small according to figure 7(b).

7. Conclusions and perspectives

In this work, we have devised a new theoretical framework enabling us to systematically
quantify the anisotropic nature of the stresslet of a weakly stick—slip sphere. Making use
of the Lorentz reciprocal theorem joint with surface harmonic expansion, this framework
allows us to come up with an extended Faxén stresslet formula, capable of describing the
stresslet for the sphere with an arbitrary axisymmetric stick—slip pattern in an arbitrary
imposed flow field. Using this framework we are able to identify how the stresslet is
determined by distinct surface moments that can be used to reflect a variety of stick—slip
symmetries/asymmetries. We show that the anisotropic contribution to the stresslet is
made only of even surface moments: quadrupole and hexadecapole, like symmetric surface
patterns of a striped type. This means that if the sphere is precisely half-faced with an
antisymmetric dipole only and immersed in a simple shear flow, there will be no correction
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to the stresslet at first order of small slip anisotropy, making the stresslet in this case behave
like the uniform-slip one. In other words, to generate such a stresslet due to a surface
dipole, it can only be done in a nonlinear flow field. The average bulk stress and effective
viscosity of a suspension of couple-free stick—slip spheres are also determined by taking
into account random Brownian rotation, showing quite different characteristics compared
with those a suspension of near spheres (Hinch & Leal 1972).

Because the stresslet here is anisotropic, another important feature that follows is
stresslet—rotation coupling. Unlike the force-rotation coupling due to a surface dipole
(Premlata & Wei 2021), the stresslet—rotation coupling arises from a surface quadrupole.
This coupling will make the stresslet no longer determined solely by the imposed strain
field but further depend on a couple exerted on the sphere. This additional dependence of
a stresslet on a couple can qualitatively change the orientational dynamics of a stick—slip
sphere and in turn affect the rheology of a suspension made of such heterogeneous spheres.
This is attributed to the fact that a stick—slip sphere is generally made of different materials,
its natural chemical polarity may make it susceptible to possessing a permanent dipole
moment to give rise to a couple upon an application of an external force field. As a result,
the sphere will not only undergo a dipolar spinning, but also such spinning will cause
additional stresses from both stresslet and couplet in a suspension of dipolar stick—slip
spheres. We show that the orientation of a dipolar stick—slip sphere in a simple shear flow
generally does not display a closed orbit that signifies a periodic tumbling or precession.
Rather, it is tending in time to a fixed orientation due to a balance between the dipolar
spinning and the flow vorticity. Since all the spheres in such a dipolar suspension orient
in the same direction, this will make the bulk properties of the suspension qualitatively
different from those of the couple-free situation under which the spheres’ orientations are
more susceptible to randomization by Brownian rotation. This is in particular manifested
by the O(¢¢e) normal stress differences for the former whereas those for the latter are
O(¢e?) at most. Utilizing such normal stress differences with and without a couple, one
may be able to extract the strengths of relevant surface moments and hence to quantify
their contributions in the surface patterns of stick—slip spheres.

The present work mainly demonstrates the use of the simplified version (4.8) and (4.12)
of the extended Faxén stresslet and torque relations in a simple shear flow. In this linear
flow field, there are no finite-size corrections to the stresslet, allowing us to study the
first impacts of O(¢) on the rheology of a dilute suspension of stick—slip spheres in
terms of their volume fraction ¢. And yet, if one wishes to examine the O(¢?) effects
due to hydrodynamic interactions between the spheres, the full expressions (4.6) and
(4.11) of these relations will be needed (in conjunction with the method of reflections)
to capture the correction to the stresslet of a stick—slip sphere due to the presence of its
distant neighbours. In this case, the strain field experienced by one sphere, aside from

the bulk strain field, will further include the disturbance strain field decaying as R—>
generated from another, where R is the interparticle distance between the spheres. The
slip anisotropy contribution to the stresslet generated by such disturbance strain field
thus varies like éR™>, which can be more important than the standard Faxén stresslet
correction ~ R™>. In addition, because of the stresslet—rotation coupling, similar impacts
from the disturbance vorticity field also have to be taken into consideration. Therefore, to
analyse full impacts of hydrodynamic interactions on the stresslet of a stick—slip sphere
due to its surrounding partners, the task will not be a straightforward extension of the
studies by Batchelor & Green (1972a,b) for a suspension of no-slip spheres. Nevertheless,
in a broader perspective, perhaps the value of these extended Faxén stresslet and torque
relations would stand out when they join with the one for the force derived by Premlata
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& Wei (2021) to provide a complete set of the Faxén formulae for tackling a variety of
problems involving hydrodynamically interacting stick—slip spheres.

Last but not least, it would be appealing if the predictions of the present study can
be compared with experiments. To our best knowledge, we have not found any such
experiments that can be used to compare with our findings. Nonetheless, we can still
suggest experiments to test our theory. Perhaps the best way to do so is to carry out
rheological experiments for suspensions of stick—slip Janus particles. These particles
can be made typically in an amphiphilic fashion by having hydrophilic (stick) colloids
(e.g. inorganic particles) partially coated with another hydrophobic (slip) substance (e.g.
polymer) (Jiang et al. 2008; Chen et al. 2019). The rheology properties of a suspension of
such particles can then be measured to make a comparison with those of a suspension of
no-slip or uniform-slip particles. Since such particles typically take the form of two faces
in equal or unequal partition, the predicted effective viscosity and average normal stress
differences shown in figures 6, 7, 10 and 11 can be used to compare with those measured
from experiments. Alternatively, by fitting the data with these theoretical predictions, one
can extract the average slip length and the stick—slip partition of Janus particles.
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Appendix A. Expressing surface moments in terms of Legendre polynomials

The purpose of this appendix is to establish connections between the strengths of the
surface moments in (3.11) and the coefficients in the Legendre expansion (3.12) for a given
axisymmetric slip distribution. To do so, we start with (3.11):

ef (x) = =3D d;S1; + (5/2)Q did;S2ij — (7/6)0 did;di S3ik + (3/8)H didjdyidiSajjrs + - - - .
(A1)

Substitution of the surface harmonics Sy;, S2j, S3;jk, and Sy, defined in (3.6) into (A1)
gives

sf(x) =3D d,'ni + (S/Z)Q (3dﬂ’ll’ djnj — didl') + (7/2)0 (5 d,'n,' djnj dknk -3 dﬂ’ll’ djdj)
+ (9/8)H (35d;n; djnj diny ding + 3 d;d; djdj —30d;n; djl’lj didy) +--- . (A2)

Recognizing din; = cos @ = n and d;d; = 1, (A2) can be reduced to

ef () = 3D+ (5/2)Q (3n* — 1) + (7/2)0 (50 — 3n) + (9/8)YH 357* — 300> +3) +--- .
=3DPi(n) +50P(n) +TO0P:(n) + SH Pa(n) + - - - . (A3)

Comparing (A3) with (3.12), (3.13) can be readily obtained.
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Appendix B. Derivation of the Faxén stresslet relation

To make the derivations of the stresslet and torque more concise, we write the resistance
tensors given by (4.1) in the more general forms for a homogeneous sphere,

Znij = Abimn; + Bnynin;, (Bla)
EJ,L,J A(Simn;j — npniny), (B1b)
Ry =Ca™'s;, (Blo)
Rll Ca~ ( — ninj), (B1d)

with the coefficients A = 5/(1 + 51), B = 401/(1 + 51) and C = 3/(1 + 3). Hereafter
we use the above wherever these tensors appear in the course of evaluating the stresslet
and torque.

As given by (2.25a) and (2.25b), the stresslet comprises the uniform-slip contribution

SIS.O) and the slip anisotropy correction 8;.1):
0 1
Sj=38;"+8;". (B2a)

S(O)—M/ il dS—a/l/ ) onds, (B2b)
S = sa[ / F@)Z)(—p™(0) ny + A% | ) dS

+ M/ f(x)xmljzmpq (O) ds + M/ f(x)zmlj mnersnxs(g;?o(o) — £2)) dS]
(B2c)

B.1. Uniform-slip stresslet Si](.o)

Here 815_0) given by (B2b) is made of two terms: the #* term and the o °° term. The former
can be evaluated by expanding u*° as (4.2a) and by using (4.3a—c), giving

,u/ uff Em,'j ds
Sp

XX,
= ,u/ (ASjunj 4 Bnynin;) [kaku |0 L q .

VoV Vaely+ | s
= Tc,ua3 |:§A8jk8im + EBAijkm:| Vkuf;lo(O)

1 s[4 4
+ —Ttpa [BAAquréim+ IOSIBBBUm[,q,:| VYV,

6
4 2B 2 2B
= grt,ua [A + — :| 5-0|0 En,ua [A + 71| V2E00|0_ (B3)

In the above, we have used V;u7° = 0 and EOO = (1/2)(V; u + Vju®).
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For the 6 term, we can evaluate by expanding ojio as (4.2b) followed by the use of
(4.3a)-(4.3¢), yielding

I
—a/l/ Eml] ml”l ds

— _ad / Ay — nunimy) | o,50) + 1 " Y,V 008 + | mas

SP

34 4

= —ma’ 1A SlmSJk 15 Atjmk mk(o)
1 4
- EJWSAA[ 15 AjipqSim — ﬁBijmkpq] VpVyo k|0
4 A 1 2 2
= —gj‘t/j,a3/lA ( i) — 51] (0)> - ﬁ“:“vaS/lA <V2 oo‘() gvivjaxﬂ 0) ’
(B4)

In deriving (B4), we have used VUI.;?O = 0. Combining (B3) and (B4) by recognizing

that 00° = —p™8; + 2UE®, o5, = —3p™ and V;V o0 = =3V, V;p™ = —3MV2E§J’.°,
(B2b) becomes

4 2 A 2
5 = Zpa [A+§(IB%—3/IA)]E§°|O < THa AVZER|, (BS)

3 15

which is (4.4).

B.2. Anisotropic stresslet S l;-])

The slip anisotropy correction (B2c¢) is made of surface dipole, quadrupole, octupole and

hexadecapole contributions: St;l) = Sl? + SUQ + SiJQ + 851 . Each contribution is evaluated
separately as follows.

B.2.1. Dipole stresslet Sl?

Sy = / &f (xX) 2 (=p™(0) ny + A5 | ni) dS, (B6)
SI’
with
&f (x) = 3{AS1)S1k = 3P1xni. (B7)

The contribution from p®°(0) is identically zero. For the contribution from A that
represents the stress gradient terms in the expansion (4.2b), it can be evaluated using
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(4.3b,c), which turns (B6) into

Sl? = —CZA/ 3P1kl’lk(81‘mnj — nmninj) (xnvno-ﬁ‘onl + .. ) ds
l 5,

4 4
4
= —3na"A Py |:15 jklnatm - 105 yklmni| ndni?‘o

4 3
= —§ﬂa4A Plk |:Vk0,, |0 10 <V,O’]io|0 + VjO'l%o 0)

1
-3 (8ikVjomnlo + 8k Viommlo + 5,Jvkamm|0)} : (B8)

In deriving the above we have used V,-al;?o = 0. Further making use of the relations al.j.’o =
—p>8; + 2,uE , = —3p™ and V;p>° = 2uVE7, (B8) is reduced to (4.5a).

B.2.2. Quadrupole stresslet Si]Q

The quadrupole stresslet Si? consists of three contributions according to

82 =82 +87 + 82, (BYa)
82 = —ap /S ef (x) 2, S ERY (0) dS, (B9b)
»
S& = —au /S &f (x) Z ) Rn€rsnXs(2£°(0) — £2,) dS, (B9c¢)
»
8P =-a /S gf(x)E,',LU —p® (O)ny + A5 ) dS, (B9d)
:
wherein
ef (x) = (5/6)(AS2pq)S2pg = (5/6)P2py(3npng — Spg). (B10)
Equation (B9b) can be calculated as
SE' = —au(5/6)(AS2p) /S Sapg Dy Emik Eig (0) dS
»
= —au(5/6)Pzpq/S Az(&lnjnk — ninjmeny) (3npng — q)E 0)dS
»
= _§”M03A2 Papg [35511A1kpq 135 l/klpq:| Ej(0)
= _%was A2 Py [5,-,{15;;3(0) + SR EX(0) — ééijEﬁf(O)] . (B11)
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In arriving at the above, we have used 8,4P2,, = 0. Similarly, (B9c) can be evaluated as

SiJQZ = —au(5/6) (ﬂSqu>/ SquEmURmn Ersnxs(goo(o) £2,)dS
S

P

= _M(5/6)P2pq/ A(C((Sinnj - ”n”i”j)enpnq - 5pq)enrsxs(h(zfo(O) — £2,)dS

4

4 4

5
= —E'.IT/L(13A(C Pqu |:158mAJpqs - RBniqus] Enrs([z,?o(o) — £2)

2
= —gwamc [€irpP2jp + €jrpP2ip] (22°(0) — £2,). (B12)
Equation (B9d) can be computed in a manner similar to (B6), yielding

8P = —a(5/6)(AS2yq) / S2pg Ty <—p°°(0)nm kg, Vo 2|, i+ ) s
S,

P

2

ank

5
= —gaPzpq/ A(Simnj — npnin;) Bnpng — pq)( V.,.Vio l|o”l +-..)dS
N

P

105

5 4
— _2nd’AP
o [ 945

Sthjklnpq - —ijk[mnpqi| A\ Vko’ nl ‘0

2 5
=_§9m5AP2pq[ (592055l + 8V 20ie]) = 85920

+5(VpVjoil|y + VpVio | ) + 79, an lo —2ViVjosd|,

=20 VgViommlo +8pVqVi omm|0+ 8UV qumm|0)] (B13)

Writing aij and o, in terms of E;’o using the relations below (B8), (B13) can be
simplified to

4
8P = —@n,uaSA Popgl3GipV2E |, + 81 VPES |, — 85 V2ES )
+5(V,ViER |y + VoViERy |o) + TV VET |, — 2ViV,En | o] (B14)
Combining (B11), (B12) and (B14) gives (4.50).
B.2.3. Octupole stresslet SUQ
S = fs &f () Z (=™ (0) i + A np) dS, (B15)
P
with
8f(x) = (7/90) </1S3kpq)S3kpq
= (7/90)P31pg (15minpny — 3(mi8pg + npdig + 1g81))- (B16)
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In (BI6). 3(ni8pg + npdeg + 1gdip) Paipg = 0. Like S shown by (B13), S¢ can be
evaluated as '

89 = —a(7/90)(AS3pq) f S3kpg Zpyi (—P™ Oy + Voo i+ -+ ) dS
N

mij
P

= _(7/90)aP3kpq/ 15nknpnq2mlj(xn onllon+-)dS
5

P

7 [ee]
= —g@hPsipq | minpngGint; = nunin)xn Vi | 11
Sp

7, 4 4
= _g”a AP3pq [ﬁ‘simBi‘klnﬂq 945 Ct/klnpq] Va0l |0

4 5
= —Ena‘tA[i (PSimnVnt(y)nO|0 + P3jmnvnai(;>:|0)

— (85P3mni Vo o + P3iinV nOn | + P3jimn ¥ i0m| o + P3imn ¥ j0mm| o) ] (B17)

Written in terms of Ef’.o, (B17) can be reduced to

8
80 = —3smna A[ <P3ZmnV ESS| o+ Pyjmn VS O) 8iP3mntVaESS,
— P3imnV Emn|() P3jmnViEsl?1|0 - 2P3ijndE§2|0:|, (B18)

which is (4.5¢).
B.2.4. Hexadecapole stresslet Slg-{

Sl-7 = —au/ ef(x)E,LLU ZnikEj (0) dsS, (B19)
S[’
with
gf(y) = (1/280) (/lS4pqrs>S4pqrs
= (1/280) Papgrs[105n,ngn,ng + 3Ap4ss
— 15(npngdys + npnydys + npngdyr + ngnypdps + ngnsdpr + npngdpg)].  (B20)

In  (B20), [3Apgrs — 15(mpngdys + npn,Sgs + npngdyr + ngnedps + ngngdpr + nyngdpg)|
Pypgrs = 0. Equation (B19) can be evaluated as

851 = —a,u,(1/280) </1S4pqrs>/ S4pqrc E,LLUEmlkE;;{O(O) ds
S,

4

= —a,u(1/280)P4pqu/ A? (Bimjni — ninjngny) 10511,,nqn,nsE}7{o 0)dsS
Sp

3 4
= —gnﬂa:;AzPAlpqm [

4
105 3ilB, pqrsjk — 945 Cl/klpqr3:| Elk 0)

= o5 e AP (0), (B21)

which is (4.5d).
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Appendix C. Derivation of the Faxén torque relation
Similar to the stresslet, the derivation of the torque involves the uniform-slip part E,(CO)
(2.25¢) and the slip anisotropy correction L',(:) (2.25d):

Ly =L+ £, (Cla)
E]({()) = M/ €kinX] |:Rmnl431O - aneqrsgrxs] ds
Sp
—ald / €xinXiR),, 0 n; dS, (Clb)
Sp

'C(l) Sa[/ f(x)eklnle“ n(—Poo(O) Ny + Aoo |0 nq) ds

J ) €nX1 R}y ZmpgEng (0) dS
Sl’

+ [L/ S ) eklnersqxlxs mq(Qoo 0) — £2,) dSi| . (Cle)

These two contributions are evaluated separately below.

C.1. Uniform-slip part E,(CO)

Here E,(co) given by (Cla) is made of the body rotation term (#*° — £ X x) and the ¢
term. For the former, it can be evaluated below by expanding u™ as (4.2a) and using
(4.3a,b):

/L/ Eklnxl[Rmnu,%O - aneqrsgrxs] ds
N

P

C
= ;M[S €kin X1 [8mn (xpvpufno|0 + - ) - 8qn€qrs‘9rxs] ds

P

4
= gCnucﬁ [ekpmVpu,C;l°|o — Z.Qk]

- gcwcﬁ (28°00) — 21) . (€2)

The 0 term is evaluated by expanding o *° as (4.2b) followed by the use of (4.3a)—(4.3¢).
We find that this term is identically zero (Premlata & Wei 2021).

C.2. Slip anisotropy correction E,(Cl)

The slip anisotropy correction given by (Clc) is constituted by surface dipole, quadrupole,

and octupole contributions: E,ED

these different contributions.

= Ef + £kQ + E,?. Below are separate evaluations for
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C.2.1. Dipole torque EkD
EkD = —a/ 8f(x)ek1,1x1R,”m(—p°° ) ny + Ay o) ds, (C3)
Sp

with ef (x) given by (B7). Similar to the procedures to compute the dipole stresslet Sé.)
(B6), (C3) can be evaluated as

L = —ea | f()eunx; R}, (—p>(0) ny + Ane|, ng) dS
S[’

= —3a(C(/lS1j)/ €kin nlnj(‘smn - nmnn)(xprO'nO12|0 ng+--- )dS

Sp

4 4
4
= -3na"C Pij€pin |:15 SmnAjipg — 105anﬂpq:| VI’GVZZ|O

4
= — 3 na*C Pij€imnV mo (C4

o0
jn |0'

Using al.;?o = —p°°8,'j+2,uE3° and V;p* =2uV(ET, the above can be reduced to
(4.10a).

C.2.2. Quadrupole torque E,g
The quadrupole torque Eg is made of three contributions,

2 =02+ 28+ 2, (C5a)
£ = —ap / ef (%) €xnxiRY, Zpg ES (0) dS, (C5b)
Sp
‘CQZ _a:u/ &f (x) €kin€rsq XI1Xs Rlllmqu(Q;?o (0) — £2,)dS, (C5¢)
Sp
£1(Q3 = —a/ ef (X) €xnxy R}y, (—p™(0) ny + Ay 2lo 1a) dS, (C5d)
Sp

wherein gf (x) is given by (B10). Using (4.3), these different contributions can be evaluated
as follows:

L0 = —au(5/6)(AS2;) / 8247 €kin iRl Smpg ESS (0) dS
N

P

5
= —g,u,aA(C Pz,-j/ €xinni(3nin; — 8;) (Sppng — nnnpnq)E;;(O) ds
Sp

5, 4 4
= —5Tha AC Prjjenn [ I 55npAqul 105 upqnl] ZZ(O)

4
= —§TE/LQ3A(C 6kmnPijE 0), (Co6)
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‘CQZ —ap(5/6)( /lSth f SZij €kin€rsq X1Xs Rllnanq(Qfo(O) — £2,)dS
S,

P

5
= _gﬂa(cz P2ij/ €kin€rsq nlns(?’ninj - 81]) (8qn - nqnn)(g;?o 0) — £2,)dS

Sp

5 4
= _Eﬂﬂa3c2 P2ij €kin€rsq |:15 aanl]ls - 105 yqnls:| (QOO(O) £2,)

4
= gwcﬁcz Py (£22°(0) — £2,), (C7)

LE = —a(5/6)(AS) / Saij €t Ry, (—p™(0) n + Aper|, 1) dS
SI’
5

= —ga(C P2ij/ €k (3ninj — 8i) (Smn — Nmhn) ( ;'qv Voomelonr+ - ) ds
S

5 s 4 4
= _Zna C P2ij€kln EgmnBiqurl 945 Cypqmnlr V v q%m ’0

2
= — 5@ Ceanl 2Py V; V10,5 | + ParV2os] . (C8)

Equation (C8) can be rewritten as the following form by writing ol.;’o in terms of Efj’o using
the relations below (BS):

4
£& = —inua%e,dm[zPZ,,V VIESS |y — 2P ViV ESS | + ParVEES ). (C9)

Combining (C6), (C7) and (C9) gives (4.10b).

C.2.3. Octupole torque ,Cko

L0 =—a / &f (X)€kinXIR),, (—p™°(0) n + Aje| ny) dS, (C10)

Sp

with gf (x) given by (B16). Similar to (C4), (C10) can be evaluated as

£0 = ~a1/90) 35 [ Sspeta 5Rl (™ O) 5,V e+ -+ S
S

P

= —(7/90)a’ P35, / 15ninjnp€xnmiR), gV qome| o nr + -+ ) dS
SP

7 2 00
= _ga C P3ijp €kin ninjnpnl((smn - nmnn)(nqvqamr|0 ny)
S[]

T 4 4 4 00
= _g’w C P3jjp €xin 105 ~2OmnBijpgir — 945 Cijpgtrmn anmr|0

4
= _gm“(c P3jtp €kimV p0i |- (C11)

With al.j = —p™8;; + 2uE;°, the above leads to (4.10c).

U 9
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