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Another Proof of Totaro’s Theorem on

E8-Torsors

Vladimir Chernousov

Abstract. We give a short proof of Totaro’s theorem that every E8-torsor over a field k becomes trivial

over a finite separable extension of k of degree dividing d(E8) = 26325.

1 Introduction

In the paper we give a short proof of the following theorem due to B. Totaro [7].

Theorem 1.1 Let k be an arbitrary field. Then every E8-torsor defined over k becomes

trivial over a finite separable extension of k of degree dividing d(E8) = 26325.

Note that in a second paper on E8-torsors [8], Totaro showed that the bound 26325
is exact, i.e., there is an E8-torsor that cannot be split by an extension whose degree is
a proper divisor of 26325.

The original proof of Theorem 1.1 is based on an analysis of the subgroup struc-
ture of the Weyl group of type E8, Brauer’s theory of blocks, Aschbacher’s theorem
on the maximal subgroups of the classical groups over finite fields, and the classifica-

tion of solvable primitive linear groups. Moreover, some of the computations in [7]
were made with the aid of a computer. The aim of the present paper is to simplify
the proof. Eventually, following the Totaro’s main idea on considering Galois orbits
in the corresponding root system Σ(E8), we give a short straightforward proof of

Theorem 1.1.

2 Generic Case and Possible Bad Cases

Let G0 be a split group of type E8 over k. Let ξ ∈ Z1(k, G0), and let G =
ξG0 be the

corresponding twisted group. Consider a maximal k-defined torus T ⊂ G. Let E/k

be a minimal finite extension splitting T. The extension E/k is necessarily Galois, and
its Galois group Γ acts in a natural way on the root system Σ = Σ(G, T) of G with

respect to T. This gives rise to a canonical embedding Γ →֒ W where W = W (E8)
is the corresponding Weyl group. If we choose a base of Σ, then the action of Γ on
Σ induces an action of Γ on the set R = Σ/(±1). This set has 120 elements and we
always choose positive roots as representatives of the elements of R.

The case of “generic” E8-torsors is easy.
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Lemma 2.1 Assume that Γ has an orbit on R of size dividing 120 = 23 · 3 · 5. Then

there is a finite separable extension L/k of degree dividing d(E8) such that G splits over L.

Proof Let α ∈ R be such that |Γ(α)| divides 120. Let StabΓ(α) be the stabilizer
of α in Γ, and consider the subfield L1 ⊂ E corresponding to StabΓ(α). Taking an
extension L2/L1 of degree 2 if necessary, we may assume that Σ has a root α stable

with respect to an (absolute) Galois group of L2. The centralizer Σ
′ of α in Σ is the

subsystem of type E7 which is stable with respect to the Galois group of L2. If H ⊂ G

is the subgroup in G of type E7 corresponding to Σ
′, then H is L2-defined and, by

a result of Tits [6], splits over a separable extension L3/L2 of degree dividing 223.

Clearly L3 also splits G, and [L3 : k] = [L3 : L2][L2 : L1][L1 : k] divides (223)2(120) =

26325, as required.

If Σ contains a proper subroot system stable with respect to Γ, then using known

results on groups of classical types and Tits results [6] on splitting fields of groups of
types G2, F4, E6, E7, it is easy to conclude that G splits over a finite separable exten-
sion of k of degree dividing d(E8). Thus, we may henceforth assume without loss of
generality that Σ does not contain root subsystems stable with respect to Γ. In this

case, possible “bad” orbit decompositions are given by the following:

Lemma 2.2 ([7, Lemma 4.1]) If Γ has no orbits on R of size dividing 120, then the

orbit sizes of Γ are either

(a) 64 + (multiples of 7 summing to 56);

(b) 50 + (multiples of 7 summing to 70);

(c) 45 + (multiples of 25 summing to 75);

(d) 36 + (multiples of 7 summing to 84) or

(e) (multiples of 16 summing to 48) + (multiples of 9 summing to 72).

For the convenience of the reader we give a sketch of the proof due to Totaro. It is
based on the following result.

Lemma 2.3

(i) A 7-Sylow subgroup of W has only one fixed point in R.

(ii) A 5-Sylow subgroup of W has 4 orbits of size 25 and 4 orbits of size 5 in R.

Proof This is easy to check by direct inspection.

Proof of Lemma 2.2 Let us first assume that 7 divides |Γ|. Then, by Lemma 2.3, all

orbits of Γ in R have sizes divisible by 7 except for one whose size is ≡ 1 modulo 7.
The size of this exceptional orbit is either 36, 50 or 64, since by our assumption there
is no orbit of size dividing 120. Thus, assuming that |Γ| is a multiple of 7 we have
cases (a), (b), and (d).

Assume next that |Γ| is not divisible by 7, but divisible by 25. Since the sum of
sizes of all orbits of Γ in R is 120, and sizes of orbits do not divide 120, we find, by
Lemma 2.3, that all orbits of Γ have size divisible by 25 except for one whose size is
45. Hence we have case (c).
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Finally, assume that the order of Γ is divisible by neither 7 nor 25. Recall that
|W | = 21435527. Since there is no orbit of Γ whose size divides 120, all of them have

sizes a multiple of 16 or 9. The only way it can happen is case (e).

By [7, Lemma 6.1], cases (b) and (c) are impossible. By [7, Lemma 4.2], in case
(a) the complementary subset to the orbit of size 64 forms a subsystem of type D8.

The remaining cases (d) and (e), which caused most of the complications in [7], will
be dealt with in a simple fashion in the following two sections.

For later use, we need the following fact related to the Rost invariant for E7. For
the definition and properties of the Rost invariant RG of an algebraic group G we

refer to [4].

Proposition 2.4 Let H0 be a split simple simply-connected algebraic group of type E7

defined over an arbitrary field K, and let

RH0
: H1(K, H0) → H3(K, Q/Z(2))

be the Rost invariant of H0. Let ξ ∈ H1(K, H0) be such that the 3-component of RH0
(ξ)

is trivial. Then there is a separable extension L/K of degree dividing 4 such that ξ is

trivial over L.

Proof By [6], there is a quasi-split subgroup H ′ ⊂ H0 of type E6 such that ξ is in

the image of H1(K, H ′) → H1(K, H0). Taking a proper quadratic extension E/K if
necessary, we may assume that H ′ is split over E. One knows that for a split group H ′

E

of type E6 the 2-component of RH ′(ξE), where ξE is the image of ξ under the restric-
tion map H1(K, H0) → H1(E, H0), is a symbol. Taking again a separable quadratic

extension L/E killing this symbol, we may assume that the 2-component of RH ′(ξL)
is trivial over L. Then ξL ∈ Ker RH ′ . It remains to observe that Ker RH ′ = 1, by [3]
(see also [2]).

3 An Orbit of Size 36

Let R1 ⊂ R be an orbit of Γ of size 36, and let R2 = R \ R1. Take a positive root
α ∈ R1 and consider Γ1 = StabΓ(α). Note that in the definition of Γ1, α is viewed as

an element of R, but not of Σ. Let E ′

1
⊂ E be the subfield corresponding to Γ1. Taking

a proper quadratic extension E1/E ′

1
if necessary, we may assume that α viewed as a

root in Σ is stable with respect to an (absolute) Galois group of E1. Since |R1| = 36,
the index [E1 : k] is either 2232 or 2332.

Lemma 3.1 If the 3-component of RG0
([ξ]) is trivial over E1, then there is a separable

extension E2/k of degree dividing 2532 which kills ξ.

Proof Let Σ
′ be the root subsystem of Σ consisting of roots orthogonal to α. Con-

sider the subgroup H of G corresponding to Σ
′. It has type E7 and is defined over

E1 since α is. Since H contains a semisimple anisotropic E1-kernel of G, by a result
due to R. Steinberg (cf. [2, Theorem 3.2]), there is a cocycle ξ1 ∈ Z1(E1, H0), where
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H0 ⊂ G0 is a canonical E1-split subgroup of type E7, such that ξ is equivalent to ξ1

over E1. Note that RG0
(ξ) = RH0

(ξ1). Then, by Proposition 2.4, there is a separable

extension E2/E1 of degree dividing 4 which kills ξ1, and hence ξ. Its degree over k

divides 4(2332), as required.

By Lemma 3.1, we may henceforth assume without loss of generality that the

3-component of RG0
([ξ]) is nontrivial over E1.

Lemma 3.2 Let β ∈ R2. Then |Γ1(β)| is a multiple of 21.

Proof Since Γ1 contains a 7-Sylow subgroup of W , the size of Γ1(β) is divisible by
7 by Lemma 2.3(i). Assume that |Γ1(β)| is not divisible by 3. Take the extension

E2/E1 of degree prime to 3 corresponding to the stabilizer Γ2 = StabΓ1
(β). By a

counting argument, there are at least two roots in R2 different from β whose Γ2-
orbits have sizes not divisible by 3. Repeating the above construction 2 times, we can
find a finite extension E/E1 of degree prime to 3 with the property that an (absolute)

Galois group of E stabilizers α and at least 3 roots in R2. Then it follows from Tits’
classification [5] that the E-rank of G is at most 5. Again, by Tits’ classification, all
simple groups which could appear in a semisimple E-anisotropic kernel of G have
trivial 3-components of the Rost invariant, implying therefore that RG0

(ξE) has also

trivial 3-component. On the other hand, since [E : E1] is prime to 3, the 3-component
of RG0

(ξE) is still nontrivial — a contradiction.

Recall that we assumed that Σ has no subroot systems stable with respect to Γ;

in particular we may assume that R1 is not a subroot system. It follows that there is
δ ∈ R1 such that either α + δ or α − δ is a root, call it β = α ± δ, belonging to
R2. Since the size of Γ1(β) is divisible by 21, so is |Γ1(δ)|. Since R1 consists of 36
elements, the size of Γ1(δ), hence that of Γ1(β), is exactly 21.

Let R ′

1
= Γ1(δ), R ′ ′

1
= R1 \ R ′

1
, R ′

2
= Γ1(β), R ′′

2
= R2 \ R ′

2
. Recall that we denote

the subsystem of Σ of type E7 consisting of all roots in Σ orthogonal to α by Σ
′.

Lemma 3.3 ±R ′ ′

2
coincides with Σ

′.

Proof Since (α, β) = ±1 and (α, δ) = ±1, the intersection of Σ
′/± 1 with R ′

1
and

R ′

2
is empty, hence

(Σ ′/ ± 1) = ((Σ ′/ ± 1) ∩ R ′ ′

1
) ∪ ((Σ ′/ ± 1) ∩ R ′′

2
).

The order of (Σ ′/± 1)∩R ′′

2
being Γ1-stable is divisible by 21. Since R ′′

1
has order 16

and |Σ ′/ ± 1| = 63, we have (Σ ′/ ± 1) ∩ R ′′

1
= ∅.

As a direct consequence of the above lemma we have

Corollary 3.4

(i) (α, γ) = ±1, if γ ∈ R1 and γ 6= α.

(ii) α ± γ1 ∈ R ′′

1
, if γ1 ∈ R ′′

1
.
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(iii) (γ1, γ2) = ±1, if γ1, γ2 ∈ R1, γ1 6= γ2.

Proof Properties (i) and (ii) are clear since (Σ ′/ ± 1) ⊂ R2. Property (iii) follows
from (i), since α was an arbitrary root in R1.

Lemma 3.5 ±R ′ ′

1
is a subroot system of Σ.

Proof Let γ ∈ R ′′

1
. We have to show that γ ± γ ′ ∈ R ′′

1
for all γ ′ ∈ R ′′

2
differ-

ent from γ. Arguing as above, we see that there exists a subset R ′

1,γ of R1, with 21
elements, comprised of roots whose sum with γ is in R2. By Corollary 3.4, the re-

maining 14 roots in R1 \ R ′

1,γ have sum with γ in R1 \ R ′

1,γ . We will be finished if we
show that R ′

1,γ = R ′

1
.

Let δ ∈ R ′

1
. By Corollary 3.4(iii), either γ + δ or γ − δ is a root. Call it β. Since

(α, β) ≡ 0 modulo 2, we have either α = ±β or β ∈ Σ
′

= R ′ ′

2
. The first case

is impossible, since the Γ1-orbits of δ and γ consist of 21 and at most 14 elements,
respectively. Then β ∈ R2, so that δ ∈ R ′

1,γ .

To finish the consideration of orbits of size 36, it remains to note that the subroot

system R ′′

1
is Γ1-stable, hence it has an automorphism of order 7. However the mini-

mal simple root system having an automorphism of order 7 has type A6 and consists
of 42 elements.

4 An Orbit of Size a Multiple of 16

We start with an explicit description of a 3-Sylow subgroup of W , denoted below by
Ψ, and its action on the root system Σ. Recall that |Ψ| = 35. Let Π = {α1, . . . , α8}
be a fixed basis of Σ. Here and below we label roots as in [1]. Consider the subroot
system of type E6 × A2 in Σ generated by Σ1 = 〈α1, . . . , α6〉 and Σ2 = 〈α8,−α〉
where α is the highest root of Σ

+. Comparing the orders of the Weyl groups of type
E6, A2, E8, we find that the direct product Ψ = Ψ1 × Ψ2 of 3-Sylow subgroups Ψ1 of

W (E6) and Ψ2 of W (A2) is a 3-Sylow subgroup of W .
Recall that Ψ2 has order 3. As for Ψ2, we choose the subgroup in W (A2) generated

by the element e which takes α8 into −α and −α into −(α8 − α).
The root system Σ1 contains a subroot system Σ3 of type A2 × A2 × A2 gener-

ated by the roots 〈α1, α3〉, 〈α5, α6〉 and 〈α2,−β〉, respectively, where β is the positive
root of maximal length in Σ1 with respect to the basis α1, . . . , α6. Let w0, w1 ∈
W (E6) be the elements of maximal length with respect to the bases {α1, . . . , α6} and
{α1, α3, α4, α2,−β, α5}, respectively. Let d = w0w1. It is easy to see that d has order

3 and takes the roots α1, α3, α5, α6, α2,−β into α6, α5, α2,−β, α3, α1, respectively.
Therefore d permutes the components of Σ3 and their Weyl groups.

Let a be an arbitrary element of order 3 in the Weyl group of the first component
of Σ3. Denote b = dad−1 and c = dbd−1. Clearly, a, b, c commute and d permutes

them. Consider the subgroup Ψ1 in W (E6) generated by a, b, c, d. Since Ψ1 has order
34, it is a 3-Sylow subgroup of W (E6).

One easily checks that there are 4 orbits of Ψ on R which are as follows. The
Ψ-orbit of α7 consists of 81 elements in Σ

+ \ {Σ+

1
∪Σ

+

2
}. The Ψ-orbit of α1 consists
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of 9 elements and coincides with Σ
+

3
. The Ψ-orbit of α8 consists of 3 elements in

Σ
+

2
= {α8, α, α−α8}. Lastly, the Ψ-orbit of α4 consists of the remaining 27 elements

in Σ
+

1
\ Σ

+

3
.

We also need information about the stabilizer StabΨ(β) of a root β ∈ R. It is
easy to see that for each root β ∈ Ψ(α7) = Σ

+ \ {Σ+

1
∪ Σ

+

2
} one has StabΨ(β) ⊂

〈a〉 ∪ 〈b〉 ∪ 〈c〉. Furthermore, for each β ∈ Ψ(α4), StabΨ1
(β) has order 3 and is

generated by an element of the form daǫ1 bǫ2 cǫ3 where ǫi is 0, 1 or 2.
Let R1 and R2 be unions of orbits of Γ whose sizes are divisible by 16 and 9 respec-

tively. Let Γ3 ≤ Γ be a 3-Sylow subgroup. Without loss of generality we may assume
that Γ3 is a subgroup of Ψ.

Lemma 4.1 |Γ3| ≤ 33.

Proof If |Γ3| = 35, then Γ3 = Ψ and hence Γ3 has the orbit Γ3(α7) = Ψ(α7) of size

81, which is impossible.
Assume that |Γ3| = 34

= 81. Then Γ3 is a normal subgroup in Ψ and hence Ψ

acts in a natural way on Γ3-orbits. Since Ψ has the orbit Ψ(α7) of size 81, Γ3 has at
least three orbits of size 27. Since R1 and R2 contain at most one and two orbits of

size 27 respectively, we find that Γ3 has exactly 3 orbits of size 27 and their union is
necessarily Σ

+ \ {Σ+

1
∪ Σ

+

2
}. It follows that for each β ∈ Σ

+ \ {Σ+

1
∪ Σ

+

2
} we have

StabΨ(β) ⊂ Γ3 and this implies 〈a, b, c〉 ⊂ Γ3. But then the orbit Γ3(α4) contains at
least 27 elements giving thus the fourth orbit of size 27 — a contradiction.

We are ready to finish the proof. Since |Γ3| ≤ 27, the Γ3-orbits of roots in R2 have
sizes divisible by 9 or 27. Since |R2| = 72, there is at least one β ∈ R2 such that the
size of its Γ3-orbit is not divisible by 27. As in §3, consider Γ

′
= StabΓ(β) and let

E1 ⊂ E be the subfield corresponding to Γ
′. If the 3-component of RG0

(ξ) is trivial
over E1, then the same argument as in Lemma 3.1 completes the proof. Thus we may
assume without loss of generality that |Γ3| = 27, and that for each root β ∈ R2,
whose Γ3-orbit has size divisible by 9 but not by 27, the 3-component of RG0

(ξ) is

nontrivial over the corresponding field E1.
Note that in this possible “bad” case we have that StabΓ3

(β), being a group of or-
der 3, is a 3-Sylow subgroup of Γ

′. By arguing as in Lemma 3.2, we may therefore
additionally assume that a nontrivial x ∈ StabΓ3

(β) has at most 3 invariant positive

roots with respect to the canonical action of Γ3 ⊂ W on Σ. In particular, this as-
sumption implies that for each root in R2 ∩ (Σ+ \ {Σ+

1
∪ Σ

+

2
}) its Γ3-orbit has size

27, hence that β with the above property is in Σ
+

1
. We also have e /∈ Γ3, since each

root in Σ1 is stable with respect to e.

Consider the canonical morphism

f : Ψ → Ψ/〈e〉 ≃ Ψ1 = 〈a, b, c, d〉.

Since e /∈ Γ3, the image f (Γ3) has order 27, hence it is a normal subgroup in Ψ1. As
in Lemma 4.1, we find that Ψ1 acts on Γ3-orbits of Γ3 on Σ

+

1
. Thus Σ

+

1
\ Σ

+

3
, being a

unique Ψ1-orbit of size 27, is a disjoint union of 3 Γ3-orbits of size 9. Then for each
root β ∈ Σ

+

1
\Σ

+

3
, StabΨ1

(β), being a group of order 3, is contained in Γ3. However it
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is easy to see that all such stabilizers generate Ψ2, whose order is 34. This contradicts
our assumption that |Γ3| = 27.
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Paris Sr. I Math. 315(1992), no. 11, 1131–1138.

[7] B. Totaro, Splitting fields for E8-torsors. Duke Math. J. 121(2004), no. 3, 425–455.
[8] , The torsion index of E8 and other groups. Duke Math. J. 129(2005), no. 2, 219–248.

Department of Mathematical Sciences

University of Alberta

Edmonton AB

T6G 2G1

e-mail: chernous@math.ualberta.ca

https://doi.org/10.4153/CMB-2006-020-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2006-020-5

