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Abstract

Let C"[0, ] be the function space of the vector-valued continuous paths x : [0, 1] — R” and define
X; : CT[0, ] — RO by X, (x) = (x(0), x(11), . . ., x(t,)), where 0 < #; < - - - < t, = ¢. In this paper,
using a simple formula for the conditional expectations of the functions on C"[0, ] given X;, we evaluate
the conditional analytic Feynman integral E“"/s[F;|X,] of F; given by

t
F(x)= exp{/(; 0(s, x(s)) ds} for x € C"[0, 1],

where (s, -) are the Fourier—Stieltjes transforms of the complex Borel measures on R”, and provide an
inversion formula for E4"f4[F, |X,]. Then we present an existence theorem for the solution of an integral
equation including the integral equation which is formally equivalent to the Schrodinger differential
equation. We show that the solution can be expressed by E“/4[F,|X,] and a probability distribution
on R" when X, (x) = (x(0), x(¢)).

2000 Mathematics subject classification: primary 28C20.
Keywords and phrases: analytic Feynman integral, conditional analytic Feynman integral, Schrodinger
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1. Introduction
We consider the Schrodinger differential equation in quantum mechanics,
" By - Lr By 4o, Bora, By =0 (1.D)
2q 8[2 ’ 1 8[ ’ 1 ’ 1 ’ 1 - ’ .

for (¢, 51) € (0, 00) x R, where ¢ € R — {0} and 6 is the time-dependent potential,
and the initial state of the particle is given by

Jlim T, E)=vy () forg eR’. (1.2)
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Let Cg[O0, t] be the r-dimensional Wiener space. It is well known that the space
Cy10, 7] is equipped with the Wiener measure, which is a probability measure. On the
Wiener space, several solutions of an integral equation which is formally equivalent
to (1.1) with the initial condition (1.2) were presented in [2, 3, 5-7, 9]. In [2, 3],
Cameron and Storvick showed that the solution can be expressed as the analytic
Feynman integral of the functional of the form

t
exp{/o 6(s, x(s)) ds}lﬁ(x(t) + &) (1.3)

when r =1. 1In [9], Johnson and Skoug extended the result of [2] to arbitrary
dimension r € N, and in their proof they were able to avoid the dependence on
the use of the machinery from [1]. In [10], Park and Skoug derived a simple
formula for the conditional Wiener integrals of the functions on Cé [0, t] with the
conditioning function X : Cé [0, 1] — R" given by X (x) = (x(¢1), ..., x(t;)), where
O<ty<---<t,=t. In [7], Chung and Skoug proved that the solution can be
expressed as the conditional analytic Feynman integral of the functional given by (1.3)
using the conditioning function X on Cy[0, ], whenn = 1.

On the other hand, let C[O, ¢] denote the space of the real-valued continuous
functions on the interval [0, f]. Ryu and Im introduced a probability measure
w, on (C[O0, 1], B(CIO, t1)), where B(CI[O, t]) denotes the Borel o-algebra on
C[0, z] and ¢ is a probability distribution on (R, B(R)) [8, 11]. This measure
space is a generalization of the Wiener space Cé [0,7]. In the Wiener space,
every path x starts at the origin, that is, x(0)=0. If the paths x start at
any points, that is, if x € C[0, t], certain theories on the space cannot hold or
some of them must be modified. Fortunately, in [4], the author was able to
derive a simple formula for the conditional w,-integral of the functions on C|[O0, ]
with the vector-valued conditioning function X; : C[0, ¢] — R+ given by X;(x) =
(x(0), x(#1), . . ., x(#,)). This formula expresses the conditional w,-integral directly
in terms of the nonconditional w,,-integral.

In this paper, using the simple formula with the conditioning function X; on
C"[0, t], the product space of C[0, t], we evaluate the conditional analytic Feynman
w(’p—integral E®Ja[F;|X,] of F, of the form

t
F,(x):exp{/ 9(s,x(s))ds} for x € C"[0, 1],
0

where 0 (s, -) are the Fourier—Stieltjes transforms of the complex Borel measures on
R’, and provide an inversion formula for £ anfq[ F;|X,]. Then we present an existence
theorem for the solution of the integral equation

R q r/z zq - . . t q 7'/2
He B =i = (520) [ e SE - ai)arco+ [0

- S iq
0 H —
X/RV (s, u)H (s, u, lq)exp{z(t_s)

1€ — ﬁu%} dii ds,
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which includes an integral equation formally equivalent to (1.1). We show that the
solution can be expressed as the function of the form

q
2mwit

r/2 .
- . g - > anf > > >
H(t, &, —iq) = < ) / exp{z—zllél - Soll%}E [ F| X, 1(o, &) do” (&),
where X, : C'[0, 1] — R? is given by X;(x) = (x(0), x(¢)), in particular. Then
[7, Theorem 6], can be obtained from our result if ¢ is the Dirac measure concentrated
at 0.

2. The analogue of the Wiener space

Throughout this paper, let C and C, denote the set of the complex numbers and
the set of the complex numbers with positive real parts, respectively. We begin by
introducing the probability measure w, on (C[0, 1], B(C[O, 1])).

For a positive real ¢, let C = C[0, ¢] be the space of all real-valued continuous
functions on the closed interval [0, ¢] with the supremum norm. For

f=(tg,t1,...,ty) WwithO=tfy<ty<---<t, <t,
let J; : C[0, t] — R"*! be the function given by
Jr(x) = (x(t0), x(11), . . ., x(tn)).

For Bj(j =0, 1,...,n) in B(R), the subset J;_I(H?:O Bj) of CJ0, t] is called an
interval; let Z be the set of all such intervals. For a probability measure ¢ on

R, B(R)), we let

=0 By JIT}; B

where

. n 1 1/2 1 (u._u__l)z
W (t; M07“la---7”n):|:l—[ m} eXp{—EZ#}.
J =

=1 v A A

B(C[0, t]), the Borel o-algebra of CJ[O0, ], coincides with the smallest
o-algebra generated by Z and there exists a unique probability measure w, on
(C[0, 11, B(CIO, t1)) such that wy,(I) =m,(I) for all I in Z. This measure w, is
called an analogue of the Wiener measure associated with the probability measure
¢ [8, 11]. Let r be a positive integer and C" = C"[0, ¢] be the product space
of C[O0, ¢] with the product measure w;. Since CIO0, t] is a separable Banach
space, we have B(C"[0, t]) = ]_[;.:1 B(C[0, t]). This probability measure space
(C"0, 1], B(C"[0, 1]), w;) is called an analogue of r-dimensional Wiener space.
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LEMMA 2.1 [8, Lemma 2.1]. If f : R"*!' — C is a Borel measurable function, then

/ f(x(to), x(t1), . . ., x(tn)) dwy(x)

C

;/ fo,ur, o u)Wa (T ug, wr, - ooy un) duy, ..., uy) do(uo),
R JR”?

where = means that if either side exists, then both sides exist and they are equal.

Let{ex | k=1, 2, ...} be acomplete orthonormal subset of L,[0, ¢] such that each
ey 1s of bounded variation. For f in L,[0, #] and x in C[O0, t], we let

n t
(fox)= lim > /0 (f. ex)er(s) dx(s)
k=1

if the limit exists. Here (-, -) denotes the inner product on L>[0, t]. (f, x) is called the
Paley—Wiener—Zygmund integral of f according to x. Note that (-, -) also denotes the
inner product on the Euclidean space if there is no danger of confusion.

Applying [8, Theorem 3.5], we can easily prove the following lemma.

LEMMA 2.2. Let {hy, ha, ..., h,} be an orthonormal system of L»[0,t]. For
i=1,2,...,n, let Zij(x)=(hj, x) for x € C[0,t). Then Zi,7Z>,...,Z, are
independent and each Z; has the standard normal distribution. — Moreover, if
f :R" — R is Borel measurable, then

/C F(Z1(x), Z2(x), ..., Zp(x)) dwy(x)

. 1 n/2 1
= (E) /R" fuy, uz, ..., uy) exp{—i Zuf} d(uy, uy, ..., uy),

Jj=1
where = means that if either side exists, then both sides exist and they are equal.
The following lemma is needed to prove Theorem 4.1.

LEMMA 2.3. LetO<u <s <t and
Yys(x)=x@)—x(0) — %(X(S) —x(0)),  Ys;(x)=x(s) —x(0) — ;(X(I) —x(0)),

forx € C"[0, t]. Then Y, s is normally distributed with mean vector 0 and covariance
matrix (u/s)(s — u)l,, where I, is the r-dimensional identity matrix. Moreover, if g is
a Borel measurable function on R?" such that 8(Y, s(x), Y5 ;(x)) is integrable on C”,
then the function g(Y, s(x), Y5 :(y)) is integrable on C"[0, t] x C"[0, t] and

f g(Yus (), Yy () duly (x) = / / ¢ (Vus (), Yo () dw), () dw)y ()

= / r fc g (), Yo () dwf, (v)dw), (x).
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PROOF. Let B be any Borel subset of R”. Then, by the change of variable theorem
and Lemma 2.1,

wy,(Yys € B) = /C XB <x(u) —x(0) - g(x(S) - x(O))> dwy,(x)
1 2 . ou. .
= [—(Zn)zu(s — u)] /Rzr XB <v1 - ;vz) CXP{—ZIIWIIQ

1 N > 2 N N
— m”vz - U1||2} d(v1, v2),

where xp denotes the indicator function of B. Let u = vy — (u/s)vs.
Fubini’s theorem and the change of variable theorem again,

1 r/2
w;(Yu,seB>=[(2n)2u(s_u)} ( /r/pr(mxp{——nvluz

__
2(s —u)

Then, by

S —u._

v —

S
u u
1 12
[<2n>2u(s—u)} (Z> fr/r“(”)exp{ 2 03

I AR P
2u(s —u)

B s r/2/ B sllall3 -
| 2mu(s — u) R XBUL) EXP " 2u(s — u) “

which proves the first part of the theorem.

To prove the second part of the theorem it suffices to prove the theorem for the case
g = xB, where B is any Borel subset of R?" . Now, by Lemma 2.1,

}dvl du

/C’ 8(Yu s(x), Y5 1(x)) dw;)(x)

1 ’/2/ Lu. . s Lo
= V] — —U2, VU ——V ($),4 —— ||V
Q1)uls — )t —s) ey KB\ V1T gV V2 s JEXP T

T TR (.
B =0l - ——— T2 — d(1, B, B3).
36— llvr = v2li3 20—y llv2 v3||2} (v, v2, V3)

Let

- - - s
1%) and u2=v2—2v3.

h|’§

Then

5 s . 5 o r . 5 t.
vp=—(1 —u1) and v3=—(V —u1)— —us,
u u S
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and hence, by Fubini’s theorem and the change of variable theorem,

‘/;r g(Yu,s(x)7 Ys,t(x)) dw:)(x)

1 2N 1 1
_ - - - o - 2_—
- [(2n)3u(s—u)(t—s)] <u> /Rar X1, u2) eXp{ 22 500

2 2
u—=s. s 1 t—s_ t—s_ t. I
X U 4 —up|| — vy — Uy — —us }d(vl,ul,uz)
u u s 2t—9)|| u u s 2
1 r/2
= , expy ——= -
|:(27r)3u(s—u)(t—s):| ( ) /Rzr/r“(’“ ii2) p{ v i
2
u
L - —— — dvy d(iy,
S|, B - )II 15 - 350 = )Iluzllz} vy d(iy, U2)

r/2 r/2
—|— t // (i1, ii2) exp] ————— |13
| 27u(s — u) 27s(t — ) , J KB U2V EXP 2u(s —u) 12

t ol e -
e — duy d
35 —3) ||u2||2} uy duy

) / /C 8§(Yu,s(x), Y50 () dwg, (x) dwg,(y),

where («) follows from the first part of the theorem. The other equality can be easily
obtained from Fubini’s theorem. O

DEFINITION 2.4. Let F : C"[0, t] — C be integrable and let X be a random vector
on C"[0, t] assuming that the value space of X is a normed space with the Borel
o-algebra. Then, we have the conditional expectation E[F|X] of F given X from a
well-known probability theory. Further, there exists a Px-integrable complex-valued
function ¥ on the value space of X such that E[F|X](x) = (¢ o X)(x) for w(;—almost
everywhere x € C”[0, t], where Py is the probability distribution of X. The function
V¥ is called the conditional w,-integral of F' given X and it is also denoted by E[F|X].

LetO0=1 <t <---<t, =t be a partition of [0, t]. For any x in CI[O, ¢], define
the polygonal function [x] on [0, 7] by

[x1(s) = x(tj—1) + —4=L (x(t) X(tj-), tji<s<tjj=1l....n.

J ]

Similarly, for 5 = (£0, &1, ..., &) e R"1 we define the polygonal function [g? 1,
replacing x(¢;) by &;. Then both [x] and [5] are continuous on [0, #], their graphs
are line segments on each subinterval [¢;_1, ¢;], and [x](¢;) = x(¢;) and [g](tj) =¢;
at each ;.

In the following theorem, we introduce a simple formula for conditional
wy-integrals on C[0, ¢]. The proof is given in [4].
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THEOREM 2.5. Let F : C[0, t] — C be integrable and X : C[0, t] — R’”‘l be given
by X (x) = (x(t9), x(t1), . . ., x(t,)). Then, for Px-almost everywhere & € Rt

E[F|X1(€) = E[F (x — [x] + [E])],

where Px is the probability distribution of X on (R"T!, B(R"t1)).

Let 7, :0=tjo<tj1<---< tin; =t be a partition of [0, f] and define X :
C[o0, t] » Rt by X;(x) = (x(tjo), x(tj1), .. -, x(tjnj)) for j=1,...,r. We
obtain the following theorem from Theorem 2.5.

THEOREM 2.6. Let F : C"[0, t] — C be integrable and X, : C"[0, t] — ]_[;.:1 R+

be given by
X (x) = X1(x1), ..., Xp(xp)) 2.1
for x =(x1,...,x,) € C"[0, t]. Then, for Px,-almost everywhere g? = (51, e, §,)
= 1_[;_:1 an-l-]’
E[F|X0¢) = E[F(x; — [x]]+ [E1l. ..., x — [x ]+ [ED], (2.2)

where Py, is the probability distribution of X, on ([, R+ BT~ R7i+1y).

For a function F:C’[0,7]— C and A >0, let F*(x) = F(."Y2x) and X;\(x) =
X, (x"12x), where X; is given by (2.1). Suppose that E[ F*] exists for each A > 0. By
the definition of the conditional w;, -integral (Definition 2.4) and (2.2),

E[F*XMNE) = EIFOT2(x — [a]) + [E1] - . A7 Y20 — []) + [E])]

for Pth—almost everywhere 5—-: (s}l, e §,) € ]_[;-:1 R%+L where PX? is the
probability distribution of X ,}‘ on the Borel class of ]_[;.:1 R"i*!. Throughout this
paper, let

@ =EFO "2y =) + &L - 2720 — D +ED] (23)

unless otherwise specified. If / %_ (§ ) has the analytic extension J;*(F )(§ yonC, as a
function of 2, then it is called the conditional analytic Wiener w,,-integral of F given
X; with the parameter A and is denoted by

EMA[FIX, () = JF (F) ()

for € € H;’:l R+, Moreover, if for a nonzero real ¢, E“"“*[F|X,](¢) has the limit
as A approaches to —ig through C, then it is called the conditional analytic Feynman
w; -integral of F' given X; with the parameter ¢ and denoted by

Ea[FIX, () = Jlim E“MAFIX,](E).
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If E[F*] itself has the analytic extension JY¥(F) on C,, then we call J(F) the
analytic Wiener w,-integral of F" over C"[0, ¢] with the parameter 2 and it is denoted
by

EYHFl= JE(F).
Furthermore, if, for a nonzero real g, E“""*[F] has the limit as A approaches —ig
through C,, then it is called the analytic Feynman w,,-integral of F over C"[0, 7] with
the parameter ¢ and is denoted by

Ea[Fl= lim E“"“[F].
A——iq

REMARK 2.7. For each j e ({1,...,r}, the paths [x;] and [g?j] in Theorem 2.6
must be understood as the polygonal functions obtained by using the partition ;.

Furthermore, if 1y = 7p = - - - = 7,-, then we denote [x] and [§ ] as

x]=(x1], ..., [x]) and [E]=([&], ..., [&])
forx = (x1,....x) € C'[0, 1]and € = (&1, ..., &) e [[j_ RTL

3. The conditional analytic Feynman w(’p -integrals

We begin with this section by introducing the Banach algebra S;)(p corresponding
to Cameron and Storvick’s Banach algebra S [1]. Let M(LE[O, t]) be the space of the
complex Borel measures on L5[0, t] and let SZ)«, be the space of the functions of the
form, for o € M(L4]0, 1]),

p
F(x):f exp{iZ(vj,xj)}da(vl,...,vr) 3.1)
L5[0.1] =
forx =(xy,...,x,)€C"[0,¢]. Foreach j=1,...,randk =1, ..., n;,let
(s) 1 (s)
air(s) = —————— %+ 1(s).
Jk mx(t./kflstjk]

For j =1, ..., r,let V; be the subspace of L;|0, f] generated by {o1, . . ., ozj,,j}, let
VjL denote the orthogonal complement of V;, and let P; and le be the orthogonal

projections from L3 [0, #] to V; and VJ.L, respectively.

The following two theorems give the evaluation formulas for the analytic and
conditional analytic Feynman wy-integrals of F € S;@. The first one follows
immediately from Lemma 2.2.

THEOREM 3.1. Let F € Ss)(p be given by (3.1). Then, for A € C,,

1 r
EYA [ Fl = / exp{—— ||v||2} do (), 3.2)
L5[0,1] 21 ; 2
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where ¥ = (v1, . .., v.). Moreover, for a nonzero real g, E"fa[F] is given by the
right-hand side of (3.2), replacing ) by —iq.

THEOREM 3.2. Let X; and F € S{Uw be given by (2.1) and (3.1), respectively. Then,
forx e Cy,

. 1 r r R .
E“"[FIX1(6) = / exp{—ﬁ D IPFvills+i Y (), [sm} do(v) (3.3)
j=1 j=1

L5[0,1]
forg € ]_[;.:1 R+ ywhere E = (§1, A §,) and v = (vy, ..., v,). Moreover, for a
nonzero real g, E¥"fa[F IX,](g ) is given by the right-hand side of (3.3), replacing \
by —iq.

PROOF. For A >0 and ge ]_[;-:1 R+ et 1}(5) be given by (2.3). Then, by
Fubini’s theorem and Lemma 2.2,

1:E) = / - / exp{ik‘”zZ(vj,xj—[x,-]>+iZ(v,-,[éﬂ)}dw;<x>do(5>
210,11 JCr i=1 =1

1 < - " .
= f exp{—z— Yo IPvil+i Y (), [5,-])} do ()
L10.1] A = =
because (vj, x; — [x;]) = (v; — Pjv;, xj) = (Pj.lvj, xj) for each j. The theorem
follows from Morera’s theorem and the dominated convergence theorem. O

COROLLARY 3.3. Letn; =1, thatis, tj; = Lin; = tforj=1,...,r. Then under the
assumptions and notation of Theorem 3.2, for . € C,

E“"™H[F|X,](E)

- - i. . - R
=f expy —=— [t 1513 — Vi3] + - (&1 — &0, Vi) [ do (D) (3.4)
L[0,1] 2At t

for € = ((£10, €11), - - . » (50, £1)) € RY, where
(0, £1) = (510, - - > £0), (E11, - - - > E1))

t t
\2:(/ vl(s)ds,...,/ vr(s)ds>.
0 0

Moreover, for a nonzero real g, E“"fa E[F |X,](§) is given by the right-hand side
of (3.4), replacing X by —igq.

and

PROOF. Since 77]2- =P, and P; is self-adjoint,

1 t 2
1P3 vl = llv,113 = 1Pjvsl5 = llvjll3 — ;(/O v;(s) ds>
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and
= Eir—&jo ('
(v, &) = =—— fo vj(s) ds.
Now the corollary follows. O
For notational convenience, ifgo = (&10, ..., &) € R" and {?1 = ((511, ooy &y,

(%‘217 L] %‘21’[2)’ LR ] (%‘rla LR ] Srnr)) € 1_[ =1 an we erte %‘ (%‘0’ gl) - (("S]O’
Eit, -5 Einy)s (520, 8210 -5 E2my), - - - (Ero, &1, - - &m,)), which is a vector in
]_[;-:1 R 1 Furthermore, the product measure of ¢ on (R, B(R")) is denoted by ¢" .

Let f be defined on ]_[;-:1 R"/. We adopt the following notation which coincides
with [9, (6.1)] when n; = 1:

/n, lef@l)dsl lim / f@l)exp{—ﬂZZ@,k—;k b }dgl

j=1 k=

if the limit exists, where (£19, ..., &0) = (0, ..., 0).

With this notation, the following theorem provides an inversion formula for
E™a[F|X,].

THEOREM 3.4. With the assumptions and notation of Theorem 3.2, for A € Cy,

roonj N 12
e Al
[T;— R rlj[”[[l 27 (tjx — tjk—1)

« exp{——ZZ =€) }E“”“’Amxt]@o, E)) dy’ (o) dEy

=i Lik — jk—1

and, for a nonzero real q,

— ronj q 12
E*™a[F] =/ f [—]
[Tj= R" JRr ljll llj[l 2wi(tjp — tjg—1)

x exp{lq ZZ G = Eecn). v° }E“"fqut](?o,é’ndqo’(é’o) dE.

PROOF. For A € C,, let

r nj 1/2 r 2
A A S (Ejk — Ejr—1)
IZ/r n-/rllll[2n(1~—t- )] eXp{_EZ e —1
[Tj=1 R j=1k=1 jk = Ljk=1 —1 k=1 Lk Tkl

J
x EMHF|X,1(&o, &1) de” (Bo) dE) .
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By Theorem 3.2 and Fubini’s theorem,

ron 2 12 L 2 2
= 27 (tig — tik—1) / eXP{_— Ll = 1Pl ]}
H H[zn(tjk _tjk—l):| L5[0.1] 22 Z 712 ivill2

j=1k=1

// RJCXP{_‘ZZ by +i) ) (Pip)

Lik = Tjk=1 j=1k=1
X (&jk — sjk_n} d&idg’ (&) do (D).

Using the well-known integral formula

1/2 2

2. v/ b
/ exp{—au” +ibu}du = (—) exp{——} 3.5
R a 4a

for a € C, and any real b,

1 r
= /L’[o,t] exp{ Z Iojlz + 2 Z Z i vj)*

j=1 k=1

r

ZZ(% tik-De ik, v (Ejp)] }do(v)

j 1 k=
1 A
= expy—== ) vl }da(v)=E“”w*[F],
/L;[o,z] { 22 ; e

where the last equality immediately follows Theorem 3.1.
To prove the second equality, for A > 0 and nonzero real g, let

ro 1/2 Cponp e o
q iq Ejk — &jk—1)
J(A) = | | | | e 1 §
“ /;_IR'lj ./.ijlk:1|:27'[l‘(l‘jk—tjk_1)i| CXpi 2 4 Z fik — i1

j=1 k=1
1 [ S - o
-4 [Z@jk —Ejr1)’ + s,%] }E“"fqut](so, £1) dg” (€0) d&1.
j=1tk=2

By Theorem 3.2 and Fubini’s theorem,

r 1/2 1 r
-4 _ L2
=z 5] fola D]

j=1k=1

iq G —Er-1)* 1 ¢ [
X exp{ (&jk
Lol Sn s xe

j=1 k= tjk_t]kl

— £’ + sfl] iy Z(P,-vj)(rjk)(sjk - sjk_l)} d&1de’ (o) do ().

j=1k=1
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12 D. H. Cho [12]

For j=1,...,randk=1,...,nj,letu;y =&, —&;x—1. Then, by the change of
variable theorem,

! 1/2 |
J(A i expy — Py 2}
(A) = l_[l_[[zjn(tjk_tjk 1)} /L,_[Ot] p{Zqi;” ;13

j=1k=1

1 r nj
BRI 3) S 3 P
"I R"f =1 k= ’Jk_tfk 124 i=1Li=2

+ (uj1 + s,-of} +iy Z(Pjvﬂ(r,-k)u ,-k} dii dg" (o) do (v)

j=1k=1

1/2 1
= — expy — ||7>+v-||2}
nn[Zﬂl(t]k—t]k 1)} ./L’[o,t] {241 ; J 2

j=1k=1
T e
r R A(tjk_tjk—l) Lk

+iy Z(P VUi +i Z[(P Vi) + sjo]u,l

j=1 k=2

- — ) & }dﬁ d¢’" (&) do (V)
2A ; o

where u = ((ui1, ..., Uiny)s - - - WUr1, ..., Urn,)). Now, by (3.5),
r nj . 1/2 r
—igA 1 12
J(A) = [ - ] / / exp{—, 1P5v;l
lellllzll tjk — tjk_] — lqA E[O’I] r 2Ql ; Jo

r nj o iU 01
A [ (tjk — tik—D[(Pjvj)(r)] + 7l [(7? v;j) (1)

2 miliz tjk—tjk_]—iqA fj1—1 iq A
i 11
. _ 2 I =
+Zgj0:| ] 2A;€j0}d¢ (é0) do (v).
Let K be the exponential function of the last integral. Then

jl +ltJ1qA

exp{__ Z |+ (qA)?

j=1

K| <

s 1 ¢
[[(P )P - 22 + sjo(P vf><m>} A Zéfo}
=1
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[13] Conditional Feynman integral and Schrodinger integral equation 13

1 & 62‘1 ,  2tjigA%Ejo
= eXP{—ﬂ Z[[l - m}é&jo - 2—(7Djvj)(fj1)

= 15 + (qA)?
(At; )2
[q%-jo _tjl(P]vj)(tjl)] }
B eXp{ 2 ; 12+ (qA)? =

so that also, by the dominated convergence theorem,

1 < 1 K&
lim J(A) =/ exp{—. lojl3 = 5= {oji, vj)?
A—00 L’[O,t] 2ql X_: J12 qu X_; kX:]: / /

r

ZZ(z,k—t,k D@k, vj)ejep)] }da(v)

2‘11 =1 k=
= eXpy 5 ||v'I|2} do (V) = E™4[F],
/L;[o,z] {241 ; 2
where the last equality immediately follows from Theorem 3.1. O

The following example shows that there exists an unbounded function G such that
E®™fa[G|X,] exists.

EXAMPLE 3.5. Let ¢ € L,(R") be Borel measurable for 1 < p < oco. Moreover, let
X,and F € S;w be given by (2.1) and (3.1), respectively, and let G (x) = F (x)y (x(t))
for x =(x1,...,x,)€C"[0,¢]. Then for A >0, by Lemma 2.1 and Holder’s
inequality,

/|Gk< ) dw),(x) < | ||< ! )r/z
X w, (X o 2t

" iy —dol3) - -
xf f o 1)|ep{ R i d Gio)
r/2p
r/2p) A
< R
lollpy ||1/f||p<2m>

with 1/p + 1/p1 =1, because ¢" is a finite measure. For E=(1, ... &) = (0.
o B e E0n e Em)) € T2 RYTL Tt 14(E) be given by (2.3) with F
replaced by G. Since
YO P = DO + E10, - AP = e D) + 6 10)
= W(Slnla e é"rnr),
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14 D. H. Cho [14]
then Ié (é’) =vEinys - émr)lfg(g). Now, by Theorem 3.2, for any nonzero real ¢,
EGIXE) =V Enys - - Ern ) E"FFIXE).

4. The integral equation

In this section, we present a solution of an integral equation including the integral
equation which is formally equivalent to the Schrédinger equation.

Let M(IR") be the class of all complex Borel measures on R” and G be the set of
all C-valued functions 6 on [0, o0) x R” which have the form

0 (s, ﬁ)=/ exp{i (i, vo)} do (o), (4.1)
Rr

where {oy | s € [0, 00)} is the family from M (R") satisfying the following conditions:

(1) for each Borel subset E of R, o,(E) is a Borel measurable function of s on
[0, 71;
() llosll € L1[0, £].

We now adopt the following notational conventlons for 50 = (&10, &20, .. ., &0)

eR and & = (&1, 521,.; &1) eR", leté (o, Sl)—((?;'lo, &), - (éro &r1))
€ R%". Moreover, I}. (€0, £1) means I}; &, sl)_ﬂ (£) for such & = (so, £), where

1 IA”} is given by (2.3). Further, in the expression for / )‘S (s), each polygonal function is
given by using the partition 0 < s.

THEOREM 4.1. Let X be given as in Corollary 3.3, replacing t by the varying
parameter s(0 < s <t), and let

t
F:(x)= exp{/ 0(u, x(u)) du} “4.2)
0

for x € C"[0, t], where 0 € G is given by (4.1). Furthermore, for (t, &1, 1) € (0, 00)
x R" x (0, 00), let

. A \72 A - .o .
H(t, &, )= (ﬁ) er eXP{—leél —éoll%}lﬁ,(éo, &) dg" (%),

where 1 IA’; is given by (2.3) in the sense of the conditioning function X, given as in
Corollary 3.3. Then F; € Sw& and H satisfies the integral equation

- A \7? A=z 20 p T * v
H(t,él,)\)z(ﬁ> /reXP{_Z”él—EO||2}d(Pr(EO)+/O [2n(t_s)}

X / O(s, u)H (s, i, 1) exp{— & — ﬁll%} dii ds (4.3)

A
2(t —s5)
for (¢, &1, A) € (0, 00) x R" x (0, 00).
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[15] Conditional Feynman integral and Schrodinger integral equation 15

PROOF. It is not difficult to show that F; € Sw;} using the same process used in [1].
For s € [0, t], let F be given by (4.2), replacing ¢ by s. Differentiating F with respect
to s and then integrating the derivative on [0, ¢],

'
FFx)=1+ / O(s, x(s))Fy(x)ds, forxeC'[O0,t].
0

Since |0(s, x(s))| < [los | for s € [0, ],
t t t
/ 0 (s, x(s)) Fs(x)| ds Sexp{/ ol dS}/ llosll ds < oo
0 0 0

so that by Fubini’s theorem, for A > 0 and 5 = (50, .;g]) = ((£10, £11), - - - » (610, &1))
= RZr’

- ! -
o dy =1+ [ [ 6627260 — ) + B0k

x (A2 = [x]) + [E]) dw)y (x) ds
t s
- 1+/ / 0(s, A~12Y 1 (x) + [E](s)) exp{/ 9<u,,\—1/2
0 r 0
x (x(u) —x(0) = ~(x(0) - x(0)>) + = —E)+ 50) du} dw),(x) ds
t N
=1+ / f 0(s. A2y (x) + [E1(s)) exp{ f 9<u,r1/2Yu,s<x>
0 r 0

u ., -1 £ “U\z r
+;(A Y, (x) + [E1(s)) + (1 - ;)So) du} dwy,(x) ds,

where Y, s and Y, , are given as in Lemma 2.3. Now, by Lemma 2.3 and Fubini’s
theorem,

t At r/2 A
Ik (& §1>=1+/ [—} / 0(s, il) exp{——nﬁ—[%](s)n2
FA5T 0 | 2ws(t —s) r ’ cr 25(t — ) 2

s
+ / 9(u, A2y, (0 + %(ﬁ — &) + 50) du} dw},(x) dii ds
0

[T 2 0(s. i) I3 (€. i ¥
A b W ML L B e

2

S - - -
- ;(El — &) —&

} du ds.
2
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16 D. H. Cho [16]

Multiplying by (A/271)"/? exp{—(r/(2t)) ||§1 - 50 ||%} on the both sides of the equality
and then integrating over R” with respect to ¢, Fubini’s theorem leads to

o A r/2 A - R - t At r/2
H(t, &, A) = (2—7”) /r eXP{—Z—t”gl —$0||%} de" (o) +/0 [m}
A ’/29 S s Ao At
X /r/r<%> (s, u) FS("EO’ u) eXP{—leél—follz— m
- 22 s2 o 2 25 . 2 o2 2 FOEN g7
X [Ilu —&oll5 + [—zllél—éollz - T(M —&0, 81 — Eo)“ dy’ (§0) du ds
A r/2 A - . - t A r/2
= (2_nt) /r eXP{—Z—t”él —$0||2} de' (%) +/0 [m}
0(s, ii e A a r/zﬂ £, ii
X /Rr (s, u) eXP{‘m”él - M||2} ,/l(%) FS(EO» u)

wexpl— i — B2 aor &) dit d
p 2Sllu éoll5 ¢ do’ (§o0) du ds

B A r/2 A o > p 2 t A r/2
= (%) /Rf eXP{‘Z“fl _“30”2} 2 (50)4‘/0 [m}

x/ 0(s, W) H (s, ii, \) exp{— €] —ii||§}dﬁds

2(t —s)
which completes the proof. Note that the justification for using Fubini’s theorem will

be contained in the proof of the next theorem. O

THEOREM 4.2. With the same assumptions and notation as in Theorem 4.1, let for
(t7 "é::]a )") € (07 OO) X Rr X (C—‘,-’

. A r/2 A o - . -
H(t, 6,0 = <%> /Rr CXP{—ZIISI - SOII%}EG"W’\[FzIXt](So, &) do” (§o).

Then H (t, §1, M) satisfies the integral equation (4.3) given in Theorem 4.1.
PROOF. Take of, € M(L}[0, t]) such that F; and of, are related by (3.1) since
F; eS;}w. Because |E“""*[F;|X/1(%0, &1)| < lloF,|| by Theorem 3.2 and ¢" is a

probability measure, H (¢, §1, A) is well defined and analytic on C; by Morera’s
theorem. If the right-hand side of (4.3) is analytic on C,, then the theorem
follows by the uniqueness of the analytic continuation and Theorem 4.1. Since
lexp{—(A/2t)|&1 — EOH%H <1 for A € C, and ¢ is a probability measure,

»\"? Az 200 do’ (B
(E) /V CXP{—ZHSI —€0||2} o' (&0)
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[17] Conditional Feynman integral and Schrodinger integral equation 17

is analytic on C by Morera’s theorem. Now, for A € C,

0 EMWA[F X, ] |A |2 r/2 Re A
/ /r/r| (s, u)]| | (50’”)||:(2 Vs = )] eXp{_Z(t—s)

5 R Re R o R o
x & —iill5 — Tnu —son%} dii d¢" (£) ds

—ex {ftnandu}/tnan[ A ]rﬂ// { o
=ExP | 0w o N 2myis—s) iy - 25t —s)

tRe A
2 (t—s)

S - r—s-> 2
u——& — 50

t

Re A
- —IISoIIz} dii d¢" (&) ds

AR /n ld / || ||/ Re 12 — &2
= _— X O, u o X _— —
2wt Re A P 0 " 0 N Rr P 2t ! 0l2

x dg’ (&) ds

|A|2 r/2 t t
< <—2 > exp{/ llowll du} / llogll ds < oo.
wt Re A 0 0

By Morera’s theorem,

¢ A r/2 . . -2 o
/(; [m} /,. O(s, u)H (s, i, \) exp{ 2 )||§1 u||2} du ds

is analytic on C as a function of A, which is the desired result. U

S—> t—s-

—%&o

t

T Red g
, 20—s) 2

THEOREM 4.3. With the assumptions and notation of Theorem 4.2, let, for (t, 5‘1, q)
€ (0, 0) x R" x (R — {0}),

q
2mwit

- r/2 g - - . -
H(t, &1, —iq) = < ) /Rr eXP{gllél - Soll%}Ea"f"[FzIXt](So, &) dy’ (%0).

Then H (t, § 1, —iq) satisfies the integral equation

R g r/2 zq . s N t q r/2
nob o= () [ CXP{2—t||§1—§O||2}d¢r(§0)+/ s

x / 9<s,ﬁ)H<s,ﬁ,—iq)exp{ I — ||}d,;ds.
Rr

2(r =)

PROOF. Let

_ 2 r/2 - . 2 . s
G(s,u, A) = [m] O(s, u)H(s, u, A) eXp:—z(t 9 &1 — u||2}

https://doi.org/10.1017/5S0004972708000920 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972708000920

18 D. H. Cho [18]
for Re A > 0 and XA # 0. By Theorem 4.2, for nonzero real ¢,

lim H(t, &, 2 = H(t, &, —iq)

—)lq

and

: A\ 72 Ao s, 3
AEHII’q(%) _/ eXp:_ZH‘SI - S0”2} do" (&)
r/2 .
a iq - = -
= (mn) f exp{znsl —son%}d(,; (o)

by the dominated convergence theorem so that limy_, ;4 f(; er G(s,u, ))duds
exists. To complete the proof, we must show that

13 t o,
lim / / G(s, i, \) du ds=/ / G(s,u, —ig)du ds.
A——iq Jo r 0 R”

For A > 0, let

- (2
K(s)= G(s, u, A) exp Y du.

Then, by Fubini’s theorem,

K()—[A—Z}rﬂf {L 12 ‘;2}
Yo lensc—s) L510.5] o _sz[suvlb_” slal

f,/,/rexp{ i, o) ——||u—so||2 <u—so, V)

2 ”u”z - 4 .7 > >
& — ilI3 EYS du dy’ (§) dog(vo) doF, (v),

2(t s)

where f/s is given as in Corollary 3.3, replacing ¢ by s, and F; and oF, are related
by (3.1). Thus, by (3.5),

A2 /2 1 -
K(s) = [m] /;’[0 . ex P{ [S||U||2 ”Vs”z]}

MA+ st —5) _ -
/// { 25(t — 5)A “a—na 17

> 1- Ao
+l<vo——§o+ Vs — 51,u>
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[19] Conditional Feynman integral and Schrodinger integral equation

M a2 - L@, v Y g di de Go) dos (o) do 5
_z—slléollz—;(éo, s)—mllélllz} udy’ (&) dos(vo) dop,(v)

a7 M A 2 LT S
- _ expy—=—Islvllz — IVsliz]
2mt AMA st —5) L5[0,5] 2hs

// {_ st —s)A L Al- 1 Al -
e Jor PV 2[0A 15 — 9)]

2
vo— —&+ Vs — &1
S S
&, V. Y g2t agr o) doy o) dor, (8)
9 15 ¢ do” (o) dos(vo) dop, (v).

r—s

2
Ao,

- = — — (&), V,) —

2sllc‘Eollz S(é‘o s) 2

Leta=ReA, b=ImA, a0 =atA+ s —s) and

s(t—s5)A
Z[MA +s(t — s)]

—E(%‘o, Vi) — 20_ )Ilflllz

K. =

Then

2

KOy = ( — 8)A(a — btAi) [

1- b
—V -

2

2
- 1- b b -
—2ai<vo +-Vit+ —fo+ —4&1,
N N t—s

5 1- 1 -
&+ —&
s t—s

1- 1 - a+ bi [ > - a+bi - 5
- - 7V - b
Sso+t_ssl>] 180113 — = Bo. Vi) 2oy I3

so that

Re K() = — st —s)A [[
¢ T T2l + Ayl ”

Lo lo be b |
vo+ —Vi+ —fo+ —&
N N t—s

2
2

R 1- b- b -
— 2abtA{vyg + -V + =& + —&1,
) s s r—s

1- I -
Jhot :§1>] - —||§o||2 ( ) —— &3

s(t —s)Aa |- +1‘—/» n g n g abtA]1-
—_—— U f— — — p— f—
2[a? + (btA)?] O T T et 0

2
t—s$1i|

a(t

2

as - 5 a*A - > 5
IISOIIQ o —l&ill; — Elléo —&il3

<0.
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Consequently, limg_, o K (s) exists and, in particular, TR,G(S, u, —iq) du exists by
the dominated convergence theorem. Since

|G(s, u, 1)| ex —”I;”% =< A ”/2”0 o, Il ex —%
VNPT [ S Lantsa—sy ) VOREERI T )

by the dominated convergence theorem again

. a3y . . . lal3) .
G(s, u, —iq) exp BEYS du:kgrgq - G(s, u, A) exp Ty du.

Further, because

2A

B r/zno low | expl ——S2 &, — a2
= 22t —s) sHORIEP) =5 Ty It — 4l

=12
G (s, ii, 1) exp{— lclly }

for A € C_., it follows from the dominated convergence theorem that

=12
u
/ G(s, i, X)) du = lim G(s, ii, 1) exp l ||2 dii
r A—o0 JRr 2A

which implies that

_ -
u -
/RrG(s, i, —iq) dii = Ali_)moo ./Rr G(s, u, —iq) CXP{— ”21!2 } du

=12

- u -

= lim lim G(s,u,k)exp:—w}du
A—o00 A—>—iq Jrr 2A

=12

u

= lim lim G(s, i, 1) exp _Mulb
A—>—ig A—>0 JRr 2A

= lim G(s, i, \) du
A——iq JRr

if the double limit can be changed. Indeed, for any complex X in the bounded set
{LeC:|r+iq|l <lql/2,Rer>0}and any A > 0,

Kooy < (Y| _2A
— \2nt AMA+s(t—5)

3|q| r/2 t
5(4—> o3 ]| exp / ol du
Tt 0

which is in the class L1[0, ¢] as a function of s and independent of A and A. Now the
change of the iterated limits is justified by the dominated convergence theorem, and

r/2
loslllor, |l
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[21] Conditional Feynman integral and Schrodinger integral equation 21

hence

' t
/ / G(s, u, —iq) dﬁds:/ lim G(s u, M) diuds
0 R"

A——iq

= lim // G(s, i, \)duds
A—>—iq r

because limy—, 4 fé Jgr G(s, i, M) dii ds exists and [, G(-, i, 1) dii € L1[0, 1] for
A € C,. The proof is complete. O

COROLLARY 4.4. With the assumptions and notation of Theorem 4.3, if ¢" is the

Dirac measure concentrated at 0, then w;) is exactly the r-dimensional Wiener measure
on the Borel class of C6 [0, t], and

r/2 .
: q iq, = oz
H(t, &, —iq) = (E) exp{znsl ||%}E“”fq[Ft|Xt]<o, £)

so that H(t, 5:1, —iq) satisfies the following integral equation which is formally
equivalent to the Schrodinger equation:

r/2 . t r/2
z . q g .z 2 q
H(t, &, — =— — + _—
&1, =iq) (2711'1‘) exp{ 2t ”51”2} /0 |:27Ti(t —s):|

x/ O(s, u)H (s, it, —iq) ex p{ ||§1 —ullz}du ds

2(r =)
which is the integral equation given in [7, Theorem 6].

As an application of Theorem 4.3, the following theorem holds if ¢ < m, where
m denotes the Lebesgue measure on (R”, B(R")).

THEOREM 4.5. With the assumptions and notation of Theorem 4.3, suppose that
¢ K my, that is, ¢" has the probability density W on R”. Moreover, for (t, &1, q) €
(0, 00) x R" x (R — {0}), let

q
2mit

] & q,: = L
H(t,sl,—im:( ) fR rexp{%ns]—so||§}E“"fq[Ff|Xt](so,sl)wso)dso.

Then H (t, §1, —iq) satisfies the integral equation

; r/2 ! 2
He B i) = (520) [ i@ enf 26 - sonz}dsw [ =]

x/ e(s,mH(s,ﬁ,—iq)exp{ I&) — ﬁn%}dﬁds
Rr

2(r =)

which is formally equivalent to the Schrodinger equation.
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22 D. H. Cho [22]

REMARK 4.6. If i is Lebesgue measurable, then we can take a Borel measurable
function vy with v () = v; (u) for m-almost everywhere # € R”, so that we can
assume that v is Borel measurable. Furthermore, since ¢ € L1(R"), by the dominated
convergence theorem

/ w@o)exp{’z—qn%—§o||§}d§o=/ w(é'o)exp{ﬁné—§o||%}d§o,
Rr t R 2t

so that H (¢, é’l, —igq) satisfies the integral equation

. r2 t /2
H(t, &, —iq) = <2n t) / ¥ (8) eXP{—Ilél Sollz} d50+/ |:—27ri(6t1—s):|

X /Rre(s, W)H (s, u, —iq) exp{z( )|IE1 ully } du ds,

which is formally equivalent to the Schrodinger equation [2, 3, 9].
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