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Abstract

In this paper, motivated by Catalan numbers and higher-order Catalan numbers, we study factors of
products of at most two binomial coefficients.

2010 Mathematics subject classification: primary 11B65; secondary 05A10, 11A07.

Keywords and phrases: binomial coefficients, divisibility, congruences, Catalan numbers.

1. Introduction

There are many papers on the divisibility of sums of binomial coefficients. See, for
example, [2–4, 7, 8, 10].

Bober (see [1]) made sophisticated use of the theory of hypergeometric series to
determine all positive integers a1, . . . , ar, b1, . . . , br+1 such that

a1 + · · · + ar = b1 + · · · + br+1

and
(a1n)! · · · (arn)!

(b1n)! · · · (br+1n)!

is an integer for any n ∈ Z+ = {1, 2, 3, . . .}. In particular, if k, l ∈ Z+, then(
ln
n

)(
kln
ln

)(
kn
n

) =
(kln)!((k − 1)n)!

(kn)!((l − 1)n)!((k − 1)ln)!
∈ Z ∀n ∈ Z+

⇐⇒ k = l or {k, l} ∩ {1, 2} , ∅ or {k, l} = {3, 5}.

In this paper we study factors of products of at most two binomial coefficients. Our
methods are elementary and combinatorial and the proofs may be easily understood.
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Recall that for n ∈ N = {0, 1, 2, . . .} the nth (usual) Catalan number is given by

Cn =
1

n + 1

(
2n
n

)
=

(
2n
n

)
−

(
2n

n − 1

)
.

The Catalan numbers arise naturally in many enumeration problems in discrete
mathematics (see, for example, [6, pp. 219–229]). For h, n ∈ N the nth (generalized)
Catalan number of order h is defined to be

C(h)
n =

1
hn + 1

(
(h + 1)n

n

)
=

(
(h + 1)n

n

)
− h

(
(h + 1)n

n − 1

)
.

We extend the basic fact that (hn + 1) |
(

(h+1)n
n

)
in the following theorem.

T 1.1. Let k, l, n ∈ Z+. Then

ln + 1
gcd(k, ln + 1)

∣∣∣∣∣ (kn + ln
kn

)
, (1.1)

where gcd(k, ln + 1) denotes the greatest common divisor of k and ln + 1. In particular,
(ln + 1) |

(
kn+ln

kn

)
if l is divisible by all the prime factors of k.

The following conjecture seems difficult to prove.

C 1.2. Let k and l be positive integers. If (ln + 1) |
(

kn+ln
kn

)
for all sufficiently

large positive integers n, then each prime factor of k divides l. In other words, if k has
a prime factor not dividing l, then there are infinitely many positive integers n such
that (ln + 1) -

(
kn+ln

kn

)
.

In order to study Conjecture 1.2 we introduce a new function f : Z+ × Z+→ N as
follows. For positive integers k and l, if (ln + 1) |

(
kn+ln

kn

)
for all n ∈ Z+ (which happens

if all prime factors of k divide l), then we set f (k, l) = 0. Otherwise we define f (k, l)
to be the smallest positive integer n such that (ln + 1) -

(
kn+ln

kn

)
. We have computed the

following values of f using Mathematica.

f (7, 36) = 279, f (10, 192) = 362, f (11, 100) = 1187, f (22, 200) = 6462,

f (74, 62) = 885, f (213, 3) = 3384, f (223, 93) = 13 368, f (307, 189) = 31 915.

Wee turn to our results on the factors of products of two binomial coefficients.
They are related to either Catalan numbers or higher-order Catalan numbers. Note that
nC(h)

n =
(

(h+1)n
n−1

)
for all h, n ∈ Z+. Recall that the odd part of an integer k is the largest

odd divisor of k.

T 1.3. Let k, n ∈ Z+.

(i) Then (
kn
n

) ∣∣∣∣∣ (2k − 1)Cn

(
2kn
2n

)
.
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Moreover,

(2k − 1)Cn

(
2kn
2n

)/(kn
n

)
is odd if and only if n + 1 is a power of two.

(ii) Let (k + 1)′ be the odd part of k + 1. Then(
2n
n

) ∣∣∣∣∣ (k + 1)′C(k−1)
n

(
2kn
kn

)
.

Moreover,

(k + 1)′C(k−1)
n

(
2kn
kn

)/(2n
n

)
is odd if and only if (k − 1)n + 1 is a power of two.

By Theorem 1.3(ii), if n ∈ Z+ and k = 2l − 1 for some l ∈ N, then(
2n
n

) ∣∣∣∣∣ (2kn
kn

)
C(k−1)

n ⇐⇒ n

(
2n
n

) ∣∣∣∣∣ ( kn
n − 1

)(
2kn
kn

)
.

Using Mathematica we find that this result can be further strengthened.

T 1.4. For every k, n ∈ Z+,

2k−1

(
2n
n

) ∣∣∣∣∣ (2(2k − 1)n
(2k − 1)n

)
C(2k−2)

n . (1.2)

A key step in our proof of Theorem 1.4 is to prove the first assertion in the following
conjecture for prime values of m.

C 1.5. Let m be an integer greater than 1 and let k and n be positive integers.
Then the sum of all digits in the expansion of (mk − 1)n in base m is at least k(m − 1).
Also, the expansion of n(mk − 1)/(m − 1) in base m has at least k nonzero digits.

The following result relies on certain particular properties of the integers 3 and 5.

T 1.6. For every n ∈ Z+,

(6n + 1)
(
5n
n

) ∣∣∣∣∣ (3n − 1
n − 1

)
C(4)

3n

and (
3n
n

) ∣∣∣∣∣ (5n − 1
n − 1

)
C(2)

5n .

We define two new sequences {sn}n≥1 and {tn}n≥1 of integers by

sn =

(
3n−1
n−1

)
C(4)

3n

(6n + 1)
(

5n
n

) =

(
3n−1
n−1

)(
15n
3n

)
(6n + 1)(12n + 1)

(
5n
n

) =

(
3n
n

)(
15n

3n−1

)
9n(6n + 1)

(
5n
n

)
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and

tn =

(
5n−1
n−1

)
C(2)

5n(
3n
n

) =

(
5n−1
n−1

)(
15n
5n

)
(10n + 1)

(
3n
n

) =

(
5n
n

)(
15n

5n−1

)
25n

(
3n
n

) .
It would be interesting to find recursion formulae or combinatorial interpretations for
sn and tn.

Based on our computations using Mathematica, we formulate the following
conjecture about the sequence {tn}n≥1.

C 1.7. Let n ∈ Z+. Then (10n + 3) | 21tn.

If p is a prime, then the p-adic valuation of an integer m is given by

νp(m) = sup{a ∈ N : pa | m}.

For a rational number x = m/n where m ∈ Z and n ∈ Z+, we set νp(x) = νp(m) − νp(n)
for any prime p.

The following lemma is fundamental for our approach in this paper.

L 1.8.

(i) A rational number x is an integer if and only if νp(x) ≥ 0 for all primes p.
(ii) (Legendre’s theorem) If p is prime and n ∈ N, then

νp(n!) =

∞∑
i=1

⌊ n
pi

⌋
=

n − ρp(n)

p − 1

where ρp(n) is the sum of the digits in the expansion of n in base p.
(iii) Let n be a positive integer. Then ν2(n!) ≤ n − 1. Also ν2(n!) = n − 1 if and only if

n is a power of two.

P. Part (i) is obvious. Part (ii) is well known and may be found in [5, pp. 22–24].
Part (iii) follows immediately from part (ii); see also [9, Lemma 4.1]. �

E 1.9. Let m ∈ N and n ∈ Z+ and set

Q(m, n) :=

(
2n
n

)(
2m+2n

2n

)
2
(

m+n
n

) .

Then

Q(m, n) =
2n−1

n!

n∏
j=1

(2m + 2 j − 1) = (−1)n22n−1

(
−m − 1/2

n

)
.

Applying Lemma 1.8, we see that Q(m, n) ∈ Z and that 2 - Q(m, n) if and only if n is a
power of two. When n > 1 we see that(

2n
n

)(
2m+2n
2n−1

)
8
(

m+n
n

) = Q(m + 1, n − 1) ∈ Z.
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Also, (
2n
n

)(
2m + 2n
2n − 1

)/ (
8
(
m + n

n

))
is odd if and only if n − 1 is a power of two.

By Example 1.9 we see that
(

kn
n

)
|
(

2n
n

)(
2kn

2n−1

)
for any k, n ∈ Z+. In view of this and

Theorems 1.3, 1.4 and 1.6, we raise the following conjecture.

C 1.10. Let k and l be integers greater than one. If
(

kn
n

)
|
(

ln
n

)(
kln

ln−1

)
for all

n ∈ Z+, then k = l or l = 2 or {k, l} = {3, 5}. If
(

kn
n

)
|
(

ln
n−1

)(
kln
ln

)
for all n ∈ Z+, then k = 2

and l + 1 is a power of two.

We will prove Theorems 1.1 and 1.3 in the next section. Section 3 is devoted to
the sophisticated proofs of Theorems 1.4 and 1.6. Throughout this paper, for a real
number x we let {x} = x − bxc denote the fractional part of x.

2. Proofs of Theorems 1.1 and 1.3

P  T 1.1. Clearly (1.1) holds if and only if (ln + 1) | k
(

kn+ln
kn

)
. For any

prime p, we calculate

νp

(k
(

kn+ln
kn

)
ln + 1

)
= νp

( (kn + ln)!k!
(kn)!(ln + 1)!(k − 1)!

)
=

∞∑
j=1

(⌊kn + ln
p j

⌋
−

⌊kn
p j

⌋
−

⌊ ln + 1
p j

⌋
+

⌊ k
p j

⌋
−

⌊k − 1
p j

⌋)
.

So it suffices to show that for any m ∈ Z+ the inequality⌊kn + ln
m

⌋
−

⌊kn
m

⌋
−

⌊ ln + 1
m

⌋
+

⌊ k
m

⌋
−

⌊k − 1
m

⌋
≥ 0 (2.1)

is satisfied. If m - kn, then⌊kn
m

⌋
+

⌊ ln + 1
m

⌋
=

⌊kn − 1
m

⌋
+

⌊ ln + 1
m

⌋
≤

⌊ (kn − 1) + (ln + 1)
m

⌋
.

If m - (ln + 1), then ⌊kn
m

⌋
+

⌊ ln + 1
m

⌋
=

⌊kn
m

⌋
+

⌊ ln
m

⌋
≤

⌊kn + ln
m

⌋
.

When m | kn and m | (ln + 1), clearly gcd(m, n) = 1, m | k and hence⌊kn + ln
m

⌋
−

⌊kn
m

⌋
−

⌊ ln + 1
m

⌋
+

⌊ k
m

⌋
−

⌊k − 1
m

⌋
= 0.

Therefore inequality (2.1) holds and this concludes the proof. �
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L 2.1. Let m ∈ Z+ and k, n ∈ Z. Then⌊2kn
m

⌋
−

⌊kn
m

⌋
+

⌊ (k − 1)n
m

⌋
−

⌊2(k − 1)n
m

⌋
≥

⌊n + 1
m

⌋
−

⌊2k − 1
m

⌋
+

⌊2k − 2
m

⌋
, (2.2)

unless 2 | m, k ≡ m/2 + 1 mod m and n ≡ −1 mod m, in which case the left-hand side
of inequality (2.2) minus the right-hand side of inequality (2.2) is equal to −1.

P. As bxc = x − {x} for any rational number x and

2kn − kn + (k − 1)n − 2(k − 1)n + (2k − 1) − (2k − 2) = n + 1,

inequality (2.2) holds if and only if{2kn
m

}
−

{kn
m

}
+

{ (k − 1)n
m

}
−

{2(k − 1)n
m

}
+

{2k − 1
m

}
−

{2k − 2
m

}
< 1. (2.3)

Clearly inequality (2.3) holds when m = 1. Below we assume that m ≥ 2. There are
three cases to consider.

Case 1. Either both {kn/m} < 1/2 and {(k − 1)n/m} < 1/2, or both {kn/m} ≥ 1/2 and
{(k − 1)n/m} ≥ 1/2.

In this case, the left-hand side of inequality (2.3) is equal to

C :=
{kn

m

}
−

{ (k − 1)n
m

}
+

{2k − 1
m

}
−

{2k − 2
m

}
.

If m - (k − 1)n, then
C < {kn/m} + 1/m ≤ 1.

If m | (k − 1)n and n . −1 mod m, then

C ≤ {n/m} + 1/m < 1.

If m | (k − 1)n and n ≡ −1 mod m, then

{kn/m} = (m − 1)/m ≥ 1/2 > {(k − 1)n/m} = 0,

which leads to a contradiction.

Case 2. In this case
{kn/m} < 1/2 ≤ {(k − 1)n/m}

and thus the left-hand side of inequality (2.3) is equal to

D :=
{kn

m

}
−

{ (k − 1)n
m

}
+ 1 +

{2k − 1
m

}
−

{2k − 2
m

}
.

If n . −1 mod m, then
{(k − 1)n/m} − {kn/m} , 1/m

and so
D < −1/m + 1 + 1/m = 1.
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If n ≡ −1 mod m and 2k ≡ 1 mod m, then

D = −1/m + 1 − (m − 1)/m < 1.

If n ≡ −1 mod m and 2k . 1 mod m, then we must have 2 | m and

k ≡ m/2 + 1 mod m

since
{−k/m} < 1/2 ≤ {(1 − k)/m}.

If 2 | m, k ≡ m/2 + 1 mod m and n ≡ −1 mod m, then it is easy to verify that the
right-hand side of inequality (2.2) minus the left-hand side of inequality (2.2) is equal
to 1.

Case 3. In this case
{kn/m} ≥ 1/2 > {(k − 1)n/m}

and thus the left-hand side of (2.3) is{kn
m

}
− 1 −

{ (k − 1)n
m

}
+

{2k − 1
m

}
−

{2k − 2
m

}
≤

{kn
m

}
− 1 +

1
m
≤ 0.

Thus Lemma 2.1 is satisfied in all cases. �

L 2.2. Let m > 2 be an integer. For any k, n ∈ Z,⌊2kn
m

⌋
+

⌊ n
m

⌋
+

⌊k + 1
m

⌋
≥

⌊ k
m

⌋
+

⌊2n
m

⌋
+

⌊kn
m

⌋
+

⌊ (k − 1)n + 1
m

⌋
. (2.4)

P. As
k + ((k − 1)n + 1) + kn − 2kn + 2n − n = k + 1,

inequality (2.4) is equivalent to the inequality M ≥ 0 where

M :=
{ k

m

}
+

{ (k − 1)n + 1
m

}
+

{kn
m

}
−

{2kn
m

}
+

{2n
m

}
−

{ n
m

}
.

If {n/m} < 1/2 ≤ {kn/m} or both {n/m} < 1/2 and {kn/m} < 1/2 or both {n/m} ≥ 1/2
and {kn/m} ≥ 1/2, then one can easily show that M ≥ 0.

Below we suppose that {kn/m} < 1/2 ≤ {n/m}. Clearly m - n and

M =

{ k
m

}
+

{ (k − 1)n + 1
m

}
−

{kn
m

}
+

{ n
m

}
− 1.

If
(k − 1)n + 1 ≡ 0 mod m,

then
{(n − 1)/m} = {kn/m} < 1/2 ≤ {n/m}

and hence m is odd (otherwise n ≡ m/2 mod m and thus 1 ≡ 0 mod m/2, which is
impossible). Moreover,

n ≡ (m + 1)/2 mod m,
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from which it follows that

k − 1 ≡ (k − 1)2n ≡ −2 mod m

and

M =

{ k
m

}
−

{n − 1
m

}
+

{ n
m

}
− 1 =

{ k
m

}
−

m − 1
m

= 0.

If
(k − 1)n + 1 . 0 mod m,

then {kn/m} < {(n − 1)/m} and hence

M =

{ k
m

}
+

({kn
m

}
−

{n − 1
m

}
+ 1

)
−

{kn
m

}
+

{ n
m

}
− 1 ≥

1
m
.

This concludes the proof. �

P  T 1.3. To prove part (i) we observe that

Q1 :=
(2k − 1)Cn

(
2kn
kn

)(
kn
n

) =
(2kn)!((k − 1)n)!(2k − 1)!

(n + 1)!(kn)!(2(k − 1)n)!(2k − 2)!
.

So, for any prime p,

νp(Q1) =

∞∑
i=1

Api (k, n)

where Am(k, n) denotes the left-hand side of inequality (2.2) minus the right-hand side
of inequality (2.2). By Lemma 2.1, Api (k, n) ≥ 0 unless p = 2, k ≡ 2i−1 + 1 mod 2i and
n ≡ −1 mod 2i in which case Api (k, n) = −1. Therefore 2Q1 ∈ Z.

Note that

Q1 =
2n(2k − 1)

(n + 1)!

n∏
j=1

((2k − 2)n + 2 j − 1)

and thus
ν2(Q1) = n − ν2((n + 1)!).

By Lemma 1.8(iii), Q1 ∈ Z, and Q1 is odd if and only if n + 1 is a power of two.
We now prove part (ii). Obviously

Q2 :=
(k + 1)C(k−1)

n

(
2kn
kn

)(
2n
n

) =
(k + 1)!(2kn)!n!

k!(kn)!((k − 1)n + 1)!(2n)!
.

As in the proof of part (i), by Lemma 2.2, we have νp(Q2) ≥ 0 for any odd prime p.
We now consider ν2(Q2). Set m = (k − 1)n. Then

Q2 =
2m(k + 1)
(m + 1)!

m∏
j=1

(2 j + 2n − 1)
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and therefore
ν2(Q2) = ν2(k + 1) + m − ν2((m + 1)!).

Applying Lemma 1.8(iii), we see that ν2(Q2) ≥ ν2(k + 1). So Q2/2ν2(k+1) is an integer.
With the help of Lemma 1.8(iii), we also see that

Q2

2ν2(k+1)
=

(k + 1)′C(k−1)
n

(
2kn
kn

)(
2n
n

) is odd

⇐⇒ ν2((m + 1)!) = m

⇐⇒ m + 1 = (k − 1)n + 1 is a power of two.

This concludes the proof of Theorem 1.3(ii). �

3. Proofs of Theorems 1.4 and 1.6

L 3.1. Let p be a prime and let k ∈ N and n ∈ Z+. Then

ρp((pk − 1)n)

p − 1
=

∞∑
j=1

{ (pk − 1)n
p j

}
≥ k (3.1)

and hence the expansion of (pk − 1)n in base p has at least k nonzero digits.

P. For any m ∈ Z+, by Lemma 1.8 (ii),

ρp(m)

p − 1
=

m
p − 1

− νp(m!) =

∞∑
j=1

m
p j
−

∞∑
j=1

⌊ m
p j

⌋
=

∞∑
j=1

{ m
p j

}
.

If the expansion of m in base p has less than k nonzero digits, then ρp(m) < k(p − 1).
So it remains to show that the inequality in formula (3.1) holds.

Observe that

pk

(
pkn − 1
n − 1

)
=

(
pkn
n

)
=

(pkn)!
n!((pk − 1)n)!

and

νp((pkn)!) − νp(n!) − νp(((pk − 1)n)!)

=

∞∑
j=1

⌊ pkn
p j

⌋
−

∞∑
j=1

⌊ n
p j

⌋
−

∞∑
j=1

⌊ (pk − 1)n
p j

⌋

=

k∑
j=1

pk− jn −
∞∑
j=1

⌊ (pk − 1)n
p j

⌋
=

∞∑
j=1

{ (pk − 1)n
p j

}
.

So the inequality in formula (3.1) holds and we are done. �
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P  T 1.4. Since the odd part of (2k − 1) + 1 is 1 by Theorem 1.3(ii) and
its proof, we see that

Q3 :=

(
2(2k−1)n
(2k−1)n

)
C(2k−2)

n(
2n
n

) ∈ Z

and also that
ν2(Q3) = m − ν2((m + 1)!)

where m = ((2k − 1) − 1)n is even. We now apply Lemma 1.8(ii) and Lemma 3.1 with
p = 2 to deduce that

ν2(Q3) = m! − ν2(m!) = ρ2(m) = ρ2((2k−1 − 1)n) ≥ k − 1.

Therefore 2k−1 | Q3 and hence formula (1.2) holds. �

L 3.2. Let x be a real number.

(i) Then
{12x} + {5x} + {2x} ≥ {4x} + {15x}. (3.2)

(ii) Suppose also that {5x} ≥ {2x} ≥ 1/2. Then {5x} ≥ 2/3.

P. Since
12x + 5x + 2x − 4x = 15x,

inequality (3.2) reduces to

{12x} + {5x} + {2x} − {4x} ≥ 0

which can be easily checked and part (i) is proved.
As {5x} ≥ {2x} ≥ 1/2 we can easily see that

{x} ∈ [1/3, 2/5) ∪ [3/4, 4/5).

It follows that {5x} ≥ 2/3 and (ii) is proved. �

L 3.3. Let m > 1 and n be integers.

(i) If 3 - m, then⌊15n − 1
m

⌋
+

⌊ 2
m

⌋
+

⌊4n
m

⌋
≥

⌊12n + 2
m

⌋
+

⌊2n
m

⌋
+

⌊5n − 1
m

⌋
. (3.3)

(ii) If 5 - m, then ⌊15n − 1
m

⌋
+

⌊2n
m

⌋
≥

⌊10n + 1
m

⌋
+

⌊4n
m

⌋
+

⌊3n − 1
m

⌋
. (3.4)

P. First we prove (i). Clearly (3.3) holds when m = 2. Below we assume that
m > 2 and 3 - m.
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Since m | 15n if and only if m | 5n,{5n − 1
m

}
−

{15n − 1
m

}
=

{5n
m

}
−

{15n
m

}
and thus inequality (3.3) has the following equivalent form:{12n + 2

m

}
+

{5n
m

}
+

{2n
m

}
−

{4n
m

}
≥

{15n
m

}
+

2
m
. (3.5)

If
12n + 1, 12n + 2 . 0 mod m,

then inequality (3.5) is equivalent to the inequality

{12x} + {5x} + {2x} − {4x} ≥ {15x}

where x = n/m, which holds by Lemma 3.2(i).
Below we assume that

12n + δ ≡ 0 mod m

for some δ ∈ {1, 2}. Clearly m does not divide 3n and inequality (3.5) can be rewritten
as {5n

m

}
+

{2n
m

}
−

{4n
m

}
≥

{3n − δ
m

}
+
δ

m
=

{3n
m

}
.

(Note that if m | (12n + 2) and m | (3n − 1), then m divides

12n + 2 − 4(3n − 1) = 6

which contradicts the conditions that m > 2 and 3 - m.)
Now it suffices to show that

f (x) := {5x} + {2x} − {4x} − {3x} ≥ 0

where x = {n/m}. Clearly

f (x) = b3xc + b4xc − b2xc − b5xc

=

∣∣∣∣∣{ 1
3 ,

2
3 ,

1
4 ,

2
4 ,

3
4

}
∩ (0, x]

∣∣∣∣∣ − ∣∣∣∣∣{ 1
2 ,

1
5 ,

2
5 ,

3
5 ,

4
5

}
∩ (0, x]

∣∣∣∣∣.
It follows that f (x) < 0 if and only if

x ∈ [1/5, 1/4) ∪ [3/5, 2/3).

Clearly
a := 12x + δ/m ∈ {1, . . . , 11}

and

x =
a
12
−
δ/m
12
∈

(a − 1
12

,
a

12

)
.

Note that [
1
5 ,

1
4

)
⊆

(
2
12 ,

3
12

)
and

[
3
5 ,

2
3

)
⊆

(
7
12 ,

8
12

)
.

Also a , 3, 8 since 12 divides neither 3m − δ nor 8m − δ. We have thus proved part (i).

https://doi.org/10.1017/S1446788712000171 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000171


200 Z.-W. Sun [12]

To prove part (ii), suppose that 5 - m. Then m | 15n if and only if m | 3n. Note also
that

(10n + 1) − 1 + 3n + 4n − 2n = 15n.

Thus inequality (3.4) has the following equivalent form:

W :=
{10n + 1

m

}
−

1
m

+

{3n
m

}
+

{4n
m

}
−

{2n
m

}
≥ 0. (3.6)

In the case where m | 3n, inequality (3.6) reduces to

{(n + 1)/m} + {n/m} ≥ {2n/m} + 1/m,

which holds whether m divides 2n + 1 or not.
Below we assume that m - 3n. Then

W :=
{10n + 1

m

}
+

{3n − 1
m

}
+

{4n
m

}
−

{2n
m

}
.

If {2n/m} < 1/2, then
{4n/m} − {2n/m} = {2n/m} ≥ 0.

Moreover, if {2n/m} ≥ 1/2 and {(5n − 1)/m} < {2n/m}, then

W =

{10n + 1
m

}
+

{3n − 1
m

}
+

{2n
m

}
− 1 ≥

{5n − 1
m

}
≥ 0.

We now consider the remaining case, that is, when

{(5n − 1)/m} ≥ {2n/m} ≥ 1/2.

Note that

W =

{10n + 1
m

}
+

{3n − 1
m

}
+

{2n
m

}
− 1 =

{10n + 1
m

}
+

{5n − 1
m

}
− 1.

Clearly W = 0 if m | 5n. If m | (10n + 1), then 2 - m,

5n ≡ (m − 1)/2 mod m

and hence {(5n − 1)/m} < 1/2.
Now we simply assume that m - 5n and m - (10n + 1). Then {5x} ≥ {2x} ≥ 1/2,

where x = n/m. Thus
W = 2{5x} − 1 + {5x} − 1 ≥ 0

by Lemma 3.2(ii). This concludes the proof. �

P  T 1.6. Observe that

A :=

(
3n−1
n−1

)
C(4)

3n

(6n + 1)
(

5n
n

) =
(15n − 1)!2!(4n)!

(12n + 2)!(2n)!(5n − 1)!
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and

B :=

(
5n−1
n−1

)
C(2)

5n(
3n
n

) =
(15n − 1)!(2n)!

(10n + 1)!(4n)!(3n − 1)!
.

By Lemma 3.3, νp(A) ≥ 0 for any prime p , 3, and νp(B) ≥ 0 for any prime p , 5.
Thus it suffices to show that ν3(A) ≥ 0 and ν5(B) ≥ 0. In fact

C(4)
3n

(6n + 1)
(

5n
n

) =
1

(6n + 1)(12n + 1)

3n∏
j=1
3- j

12n + j
j

is a 3-adic integer and
C(2)

5n(
3n
n

) =
1

10n + 1

5n∏
j=1
5- j

10n + j
j

is a 5-adic integer. We are done. �
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