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In this paper, we mainly prove the following conjectures of Z.-W. Sun (J. Number
Theory 133 (2013), 2914–2928): let p > 2 be a prime. If p = x2 + 3y2 with x, y ∈ Z

and x ≡ 1 (mod 3), then

x ≡ 1

4

p−1∑
k=0

(3k + 4)
fk

2k
≡ 1

2

p−1∑
k=0

(3k + 2)
fk

(−4)k
(mod p2),

and if p ≡ 1 (mod 3), then

p−1∑
k=0

fk

2k
≡

p−1∑
k=0

fk

(−4)k
(mod p3),

where fn =
∑n

k=0

(n
k

)3
stands for the nth Franel number.
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1. Introduction

In 1894, Franel [2] found that the numbers

fn =
n∑

k=0

(
n

k

)3

(n = 0, 1, 2, . . .)

satisfy the recurrence relation (cf. [14, A000172]):

(n + 1)2fn+1 = (7n2 + 7n + 2)fn + 8n2fn−1 (n = 1, 2, 3, . . .).

These numbers are now called Franel numbers. Callan [1] found a combinatorial
interpretation of the Franel numbers. The Franel numbers play important roles in
combinatorics and number theory. The sequence {fn}n�0 is one of the five sporadic
sequences (cf. [23, § 4]) which are integral solutions of certain Apéry-like recur-
rence equations and closely related to the theory of modular forms. In 2013, Sun

c○ The Author(s), 2023. Published by Cambridge University Press on behalf

of The Royal Society of Edinburgh

887

https://doi.org/10.1017/prm.2023.41 Published online by Cambridge University Press

mailto:maogsmath@163.com
mailto:1325507759@qq.com
https://doi.org/10.1017/prm.2023.41


888 G.-S. Mao and Y. Liu

[19] revealed some unexpected connections between the numbers fn and represen-
tations of primes p ≡ 1(mod3) in the form x2 + 3y2 with x, y ∈ Z, for example, Sun
[19, (1.2)] showed that

p−1∑
k=0

fk

2k
≡

p−1∑
k=0

fk

(−4)k
≡ 2x − p

2x
(mod p2), (1.1)

and in the same paper, Sun proposed some conjectures involving Franel numbers,
one of which is

Conjecture 1.1. Let p > 2 be a prime. If p = x2 + 3y2 with x, y ∈ Z and x ≡ 1
(mod 3), then

x ≡ 1
4

p−1∑
k=0

(3k + 4)
fk

2k
≡ 1

2

p−1∑
k=0

(3k + 2)
fk

(−4)k
(mod p2).

For more details on Franel numbers, we refer the readers to [3, 4, 6, 8, 9, 18, 20]
and so on.

In this paper, our first goal is to prove the above conjecture.

Theorem 1.1. Conjecture 1.1 is true.

Combining (1.1) and theorem 1.1, we immediately obtain the following result.

Corollary 1.1. For any prime p ≡ 1 (mod 3), we have

p−1∑
k=0

kfk

2k
≡ 2

p−1∑
k=0

kfk

(−4)k
(mod p2).

Sun [19] also gave the following conjecture.

Conjecture 1.2. Let p > 2 be a prime. If p ≡ 1 (mod 3), then

p−1∑
k=0

fk

2k
≡

p−1∑
k=0

fk

(−4)k
(mod p3).

Our last goal is to prove this conjecture.

Theorem 1.2. Conjecture 1.2 is true.

We are going to prove theorem 1.1 in §2. Section 3 is devoted to proving theorem
1.2. Our proofs make use of some combinatorial identities which were found by
the package Sigma [13] via software Mathematica and the p-adic gamma function.
The proof of theorem 1.2 is somewhat difficult and complex because it is rather
convoluted. Throughout this paper, prime p always ≡ 1 (mod 3), so in the following
lemmas p > 5 or p > 3 or p > 2 is the same, we mention it here first.
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2. Proof of theorem 1.1

For a prime p, let Zp denote the ring of all p-adic integers and let Z
×
p := {a ∈

Zp : a is prime to p}. For each α ∈ Zp, define the p-adic order νp(α) := max{n ∈
N : pn | α} and the p-adic norm |α|p := p−νp(α). Define the p-adic gamma function
Γp(·) by

Γp(n) = (−1)n
∏

1�k<n
(k,p)=1

k, n = 1, 2, 3, . . . ,

and

Γp(α) = lim
|α−n|p→0

n∈N

Γp(n), α ∈ Zp.

In particular, we set Γp(0) = 1. In the following, we need to use the most basic
properties of Γp, and all of them can be found in [11, 12]. For example, we know
that

Γp(x + 1)
Γp(x)

=

{
−x, if |x|p = 1,

−1, if |x|p < 1.
(2.1)

Γp(1 − x)Γp(x) = (−1)a0(x), (2.2)

where a0(x) ∈ {1, 2, . . . , p} such that x ≡ a0(x) (mod p). And a property we need
here is the fact that for any positive integer n,

z1 ≡ z2 (mod pn) implies Γp(z1) ≡ Γp(z2) (mod pn). (2.3)

Lemma 2.1. ([19, lemma 2.2]) For any n ∈ N we have

n∑
k=0

(
n

k

)3

zk =
�n/2�∑
k=0

(
n + k

3k

)(
2k

k

)(
3k

k

)
zk(1 + z)n−2k (2.4)

and

fn =
n∑

k=0

(
n + 2k

3k

)(
2k

k

)(
3k

k

)
(−4)n−k. (2.5)

For n,m ∈ {1, 2, 3, . . .}, define

H(m)
n :=

∑
1�k�n

1
km

, H
(m)
0 := 0,

these numbers with m = 1 are often called the classic harmonic numbers. Recall
that the Bernoulli polynomials are given by

Bn(x) =
n∑

k=0

(
n

k

)
Bkxn−k (n = 0, 1, 2, . . .).
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Lemma 2.2. ([15, 16]) Let p > 5 be a prime. Then

H
(2)
p−1 ≡ 0 (mod p), H

(2)
(p−1)/2 ≡ 0 (mod p), Hp−1 ≡ 0 (mod p2),

1
5
H

(2)
�p/6� ≡ H

(2)
�p/3� ≡

1
2

(p

3

)
Bp−2

(
1
3

)
(mod p),

H�p/3� ≡ −3
2
qp(3) +

3p

4
q2
p(3) − p

6

(p

3

)
Bp−2

(
1
3

)
(mod p2),

H(p−1)/2 ≡ −2qp(2) + pq2
p(2) (mod p2), H

(2)
�p/4� ≡ (−1)(p−1)/24Ep−3 (mod p),

H�p/6� ≡ H�p/3� + H(p−1)/2 − p

4

(p

3

)
Bp−2

(
1
3

)
(mod p2),

H�2p/3� ≡ −3
2
qp(3) +

3p

4
q2
p(3) +

p

3

(p

3

)
Bp−2

(
1
3

)
(mod p2),

where qp(a) = (ap−1 − 1)/p stands for the Fermat quotient.

Lemma 2.3. Let p > 5 be a prime. If 0 � j � (p − 1)/2, then we have(
3j

j

)(
p + j

3j + 1

)
≡ p

3j + 1
(1 − pH2j + pHj) (mod p3).

Proof. If 0 � j � (p − 1)/2 and j �= (p − 1)/3, then we have(
3j

j

)(
p + j

3j + 1

)
=

(p + j) · · · (p + 1)p(p − 1) · · · (p − 2j)
j!(2j)!(3j + 1)

≡ pj!(1 + pHj)(−1)2j(2j)!(1 − pH2j)
j!(2j)!(3j + 1)

≡ p

3j + 1
(1 − pH2j + pHj) (mod p3).

If j = (p − 1)/3, then by lemma 2.2, we have(
p − 1
p−1
3

)(
p + p−1

3
p−1
3

)

≡
(

1 − pH(p−1)/3 +
p2

2
(H2

(p−1)/3 − H
(2)
(p−1)/3)

)
(

1 + pH(p−1)/3 +
p2

2
(H2

(p−1)/3 − H
(2)
(p−1)/3)

)

≡ 1 − p2H
(2)
(p−1)/3 ≡ 1 − p2

2

(p

3

)
Bp−2

(
1
3

)
(mod p3)

and

1 − pH(2p−2)/3 + pH(p−1)/3 ≡ 1 − p2

2

(p

3

)
Bp−2

(
1
3

)
(mod p3).

Now the proof of lemma 2.3 is complete. �
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Proof of theorem 1.1. With the help of (2.4), we have

p−1∑
k=0

(3k + 4)
fk

2k
=

p−1∑
k=0

3k + 4
2k

�k/2�∑
j=0

(
k + j

3j

)(
2j

j

)(
3j

j

)
2k−2j

=
(p−1)/2∑

j=0

(
2j
j

)(
3j
j

)
4j

p−1∑
k=2j

(3k + 4)
(

k + j

3j

)
. (2.6)

By loading the package Sigma in software Mathematica, we find the following
identity:

n−1∑
k=2j

(3k + 4)
(

k + j

3j

)
=

9nj + 3n + 9j + 5
3j + 2

(
n + j

3j + 1

)
.

Thus, replacing n by p in the above identity and then substitute it into (2.6), we
have

p−1∑
k=0

(3k + 4)
fk

2k
=

(p−1)/2∑
j=0

(
2j
j

)(
3j
j

)
4j

9pj + 3p + 9j + 5
3j + 2

(
p + j

3j + 1

)
.

Hence, we immediately obtain the following result by lemma 2.3,

p−1∑
k=0

(3k + 4)
fk

2k
≡ p

(p−1)/2∑
j=0

(
2j
j

)
4j

9j + 5
(3j + 1)(3j + 2)

(mod p2). (2.7)

It is easy to verify that

p

(p−1)/2∑
j=0

(
2j
j

)
4j

9j + 5
(3j + 1)(3j + 2)

= p

(p−1)/2∑
j=0

j �=(p−1)/3

(
2j
j

)
4j

9j + 5
(3j + 1)(3j + 2)

+
3p + 2
p + 1

(
(2p − 2)/3
(p − 1)/3

)
4(1−p)/3

≡ p

(p−1)/2∑
j=0

j �=(p−1)/3

(p−1
2

j

)
(−1)j 9j + 5

(3j + 1)(3j + 2)
+

3p + 2
p + 1

(
(2p − 2)/3
(p − 1)/3

)
4(1−p)/3

≡ S1 + S2 (mod p2), (2.8)

where

S1 = p

(p−1)/2∑
j=0

(
(p − 1)/2

j

)
(−1)j

(
2

3j + 1
+

1
3j + 2

)
(2.9)

and

S2 =
3p + 2
p + 1

((
(2p − 2)/3
(p − 1)/3

)
4(1−p)/3 −

(
(p − 1)/2
(p − 1)/3

))
.
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Applying the famous partial fraction identity

n∑
k=0

(
n

k

)
(−1)k

k + x
=

n!
x(x + 1) · · · (x + n)

(2.10)

with x = 1/3, n = (p − 1)/2 and x = 2/3, n = (p − 1)/2, we may simplify (2.9) as

S1 =
4p

3p − 1
(1)(p−1)/2

(1/3)(p−1)/2
+

2p

3p + 1
(1)(p−1)/2

(2/3)(p−1)/2
,

where (a)n = a(a + 1) · · · (a + n − 1) is the rising factorial or the Pochhammer
symbol.

In view of (2.2), we have

4p

3p − 1
(1)(p−1)/2

( 1
3 )(p−1)/2

=
4p

3p − 1
Γ(p+1

2 )Γ( 1
3 )

Γ( 1
3 + p−1

2 )
=

4p

3p − 1
(−1)(p+1)/2Γp(p+1

2 )Γp( 1
3 )

(−1)(p−1)/2 p
3Γp( 1

3 + p−1
2 )

=
12

1 − 3p

Γp(p+1
2 )Γp( 1

3 )
Γp(p

2 − 1
6 )

=
12(−1)(p−1)/6

1 − 3p
Γp

(
p + 1

2

)
Γp

(
1
3

)
Γp

(
7
6
− p

2

)
,

where Γ(·) is the gamma function. In view of [7, theorem 14] and [5, (2.4)]
(or [10, (3.2)]), for α, s ∈ Zp, we have

Γp(α + ps) ≡ Γp(α) + psΓ
′
p(α) (mod p2) (2.11)

and

Γ
′
p(α)

Γp(α)
≡ 1 + Hp−〈−α〉p−1 (mod p), (2.12)

where Γ′
p(x) denotes the p-adic derivative of Γp(x), 〈α〉n denotes the least non-

negative residue of α modulo n, i.e. the integer lying in {0, 1, . . . , n − 1} such that
〈α〉n ≡ α (mod n).

Therefore,

4p

3p − 1
(1)(p−1)/2

( 1
3 )(p−1)/2

≡ 12(−1)(p−1)/6Γp

(
1
2

)
Γp

(
1
3

)
Γp

(
7
6

)
1 − 3p

(
1 +

p

2
(H(p−1)/2 − H(p−7)/6)

)
(mod p2).

In view of (2.1) and (2.2), we have

4p

3p − 1
(1)(p−1)/2

( 1
3 )(p−1)/2

≡ 2(1 + 3p)Γp

(
1
2

)
Γp

(
1
3

)
Γp

(
5
6

) (
1 +

p

2
(H(p−1)/2 − H(p−7)/6)

)
(mod p2).
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In view of [22, proposition 4.1], we have

Γp

(
1
2

)
Γp

(
1
3

)
Γp

(
5
6

) ≡
(
(5p−5)/6
(p−1)/3

)
(
1 + p

6 (5H(5p−5)/6 − 3H(p−1)/2 − 2H(p−1)/3)
) (mod p2).

Then with the help of [22, theorem 4.12] and lemma 2.2, we have

4p

3p − 1
(1)(p−1)/2

(1/3)(p−1)/2
≡ 4x + 3pxqp(3) − p

x
(mod p2) (2.13)

and

2p

3p + 1
(1)(p−1)/2

(2/3)(p−1)/2
≡ p

x
(mod p2). (2.14)

Hence,

S1 ≡ 4x + 3pxqp(3) (mod p2). (2.15)

�

Lemma 2.4. Let p > 3 be a prime. For any p-adic integer t, we have

(p−1
2 + pt

p−1
3

)
≡
(p−1

2
p−1
3

)(
1 + pt

(
H(p−1)/2 − H(p−1)/6

))
(mod p2). (2.16)

Proof. Set m = (p − 1)/2. It is easy to check that

(
m + pt

(p − 1)/3

)
=

(m + pt) · · · (m + pt − (p − 1)/3 + 1)
((p − 1)/3)!

≡ m · · · (m − (p − 1)/3 + 1)
((p − 1)/3)!

(1 + pt(Hm − Hm−(p−1)/3))

=
(

m

(p − 1)/3

)
(1 + pt(Hm − Hm−(p−1)/3)) (mod p2).

So lemma 2.4 is finished. �

Now we evaluate S2 modulo p2. It is easy to obtain that

S2 ≡ 2

((− 1
2

p−1
3

)
−
(p−1

2
p−1
3

))
≡ −p

(p−1
2

p−1
3

)(
H(p−1)/2 − H(p−1)/6

)
≡ −3pxqp(3) (mod p2) (2.17)

with the help of lemmas 2.2, 2.4 and [22, theorem 4.12].

https://doi.org/10.1017/prm.2023.41 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.41


894 G.-S. Mao and Y. Liu

Therefore, in view of (2.7), (2.8), (2.15) and (2.17), we immediately get the desired
result

1
4

p−1∑
k=0

(3k + 4)
fk

2k
≡ x (mod p2).

On the contrary, we use equation (2.5) to obtain

p−1∑
k=0

(3k + 2)
fk

(−4)k
=

p−1∑
k=0

3k + 2
(−4)k

k∑
j=0

(
k + 2j

3j

)(
2j

j

)(
3j

j

)
(−4)k−j

=
p−1∑
j=0

(
2j
j

)(
3j
j

)
(−4)j

p−1∑
k=j

(3k + 2)
(

k + 2j

3j

)
.

By using the package Sigma again, we find the following identity:

n−1∑
k=j

(3k + 2)
(

k + 2j

3j

)
=

9nj + 3n + 1
3j + 2

(
n + 2j

3j + 1

)
.

Thus,

p−1∑
k=0

(3k + 2)
fk

(−4)k
=

p−1∑
j=0

(
2j
j

)(
3j
j

)(
p+2j
3j+1

)
(−4)j

9pj + 3p + 1
3j + 2

. (2.18)

Lemma 2.5. Let p > 5 be a prime. If 0 � j � (p − 1)/2 and j �= (p − 1)/3, then

(
3j

j

)(
p + 2j

3j + 1

)
≡ p(−1)j

3j + 1
(1 + pH2j − pHj) (mod p3).

If (p + 1)/2 � j � p − 1, then

(
3j

j

)(
p + 2j

3j + 1

)
≡ 2p(−1)j

3j + 1
(mod p2).

Proof. If 0 � j � (p − 1)/2 and j �= (p − 1)/3, then we have

(
3j

j

)(
p + 2j

3j + 1

)
=

(p + 2j) · · · (p + 1)p(p − 1) · · · (p − j)
j!(2j)!(3j + 1)

≡ p(2j)!(1 + pH2j)(−1)j(j)!(1 − pHj)
j!(2j)!(3j + 1)

≡ p(−1)j

3j + 1
(1 + pH2j − pHj) (mod p3).
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If (p + 1)/2 � j � p − 1, then

(
3j

j

)(
p + 2j

3j + 1

)

=
(p + 2j) · · · (2p + 1)(2p)(2p − 1) · · · (p + 1)p(p − 1) · · · (p − j)

j!(2j)!(3j + 1)

≡ 2p2(2j) · · · (p + 1)(p − 1)!(−1)j(j)!
j!(2j)!(3j + 1)

=
2p(−1)j

3j + 1
(mod p2).

Now the proof of lemma 2.5 is complete. �

It is known that
(
2k
k

) ≡ 0 (mod p) for each (p + 1)/2 � k � p − 1, and it is easy
to check that for each 0 � j � (p − 1)/2:

(
3j

j

)(
p + 2j

3j + 1

)
≡ p(−1)j

3j + 1
(mod p2).

These, with (2.18) yield

p−1∑
k=0

(3k + 2)
fk

(−4)k
≡

(p−1)/2∑
j=0

(
2j
j

)
(−4)j

p(−1)j

3j + 1
9pj + 3p + 1

3j + 2

+
p−1∑

j=(p+1)/2

(
2j
j

)
(−4)j

2p(−1)j

3j + 1
1

3j + 2
≡

(p−1)/2∑
j=0

(p−1
2

j

)
p(−1)j

3j + 1
1

3j + 2
+ S3

= p

(p−1)/2∑
j=0

(p−1
2

j

)
(−1)j

(
1

3j + 1
− 1

3j + 2

)
+ S3 (mod p2), (2.19)

where

S3 =
( 2p−2

3
p−1
3

)
1

(p + 1)4(p−1)/3
−
(p−1

2
p−1
3

)
1

p + 1
−
( 4p−4

3
2p−2

3

)
1

4(2p−2)/3

=
1

p + 1

(( −1/2
(p − 1)/3

)
−
(p−1

2
p−1
3

))
−
( −1/2

(2p − 2)/3

)
.

As above, with (2.10), (2.13), (2.14), lemma 2.2 and [22, theorem 4.12], we have
the following congruence modulo p2:

p

(p−1)/2∑
j=0

(p−1
2

j

)
(−1)j

(
1

3j + 1
− 1

3j + 2

)
≡ 2x +

3px

2
qp(3) − 3p

2x
. (2.20)
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Now we evaluate S3. It is easy to see that( −1/2
(2p − 2)/3

)
=

(− 1
2 )(− 1

2 − 1) · · · (− 1
2 − 2p−2

3 + 1)
( 2p−2

3 )!

=
( 1
2 )(3

2 ) · · · (p
2 − 1)p

2 (p
2 + 1) · · · (p

2 + p−7
6 )

( 2p−2
3 )!

=
(p
2 − p−1

2 ) · · · (p
2 − 1)p

2 (p
2 + 1) · · · (p

2 + p−7
6 )

( 2p−2
3 )!

≡ (−1)(p−1)/2 p
2 (p−1

2 )!(p−7
6 )!

( 2p−2
3 )!

=
(−1)(p−1)/23p

p − 1
1( 2p−2
3

p−1
2

)
≡ −3p(−1)(p−1)/2( 2p−2

3
p−1
2

) (mod p2).

In view of (2.17) and [22, theorem 4.12], we immediately obtain

S3 ≡ −3px

2
qp(3) +

3p

2x
(mod p2).

This, with (2.19) and (2.20) yields

1
2

p−1∑
k=0

(3k + 2)
fk

(−4)k
≡ x (mod p2)

Now the proof of theorem 1.1 is complete.

3. Proof of theorem 1.2

Proof of theorem 1.2. With the help of (2.4), we have

p−1∑
k=0

fk

2k
=

p−1∑
k=0

1
2k

�k/2�∑
j=0

(
k + j

3j

)(
2j

j

)(
3j

j

)
2k−2j

=
(p−1)/2∑

j=0

(
2j
j

)(
3j
j

)
4j

p−1∑
k=2j

(
k + j

3j

)
. (3.1)

By loading the package Sigma in software Mathematica, we have the following
identity:

n−1∑
k=2j

(
k + j

3j

)
=
(

n + j

3j + 1

)
.

Thus, replace n by p in the above identity and then substitute it into (3.1), we have

p−1∑
k=0

fk

2k
=

(p−1)/2∑
j=0

(
2j
j

)(
3j
j

)
4j

(
p + j

3j + 1

)
.
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Hence, we immediately obtain the following result by lemma 2.3:

p−1∑
k=0

fk

2k
≡ p

(p−1)/2∑
j=0,j �=(p−1)/3

(
2j
j

)
4j

1 − pH2j + pHj

(3j + 1)
+ S1 (mod p3), (3.2)

where

S1 =

( 2p−2
3

p−1
3

)(p−1
p−1
3

)(
p+ p−1

3
p

)
4(p−1)/3

=
(− 1

2
p−1
3

)(
p − 1
p−1
3

)(
p + p−1

3

p

)
.

It is easy to verify that

p

(p−1)/2∑
j=0,j �=(p−1)/3

(
2j
j

)
4j

1 − pH2j + pHj

(3j + 1)

≡ p

(p−1)/2∑
j=0,j �=(p−1)/3

( p−1
2
j

)
(−1)j(1 − pH2j + pHj)

(3j + 1)
(
1 − p

∑j
r=1

1
2r−1

)

≡ p

(p−1)/2∑
j=0

( p−1
2
j

)
(−1)j

(
1 + p

2Hj

)
(3j + 1)

− S2 (mod p3),

where

S2 =
(p−1

2
p−1
3

)(
1 +

p

2
H(p−1)/3

)
.

So,

p−1∑
k=0

fk

2k
≡ p

(p−1)/2∑
j=0

( p−1
2
j

)
(−1)j

(
1 + p

2Hj

)
(3j + 1)

+ S1 − S2 (mod p3). (3.3)

It is easy to see that

2p

3p − 1
(1)(p−1)/2

( 1
3 )(p−1)/2

=
(p−1

2 )!
1
3 · · · (p

3 − 1)(p
3 + 1) · · · (p

3 + p−1
6 )

≡
(p−1

2
p−1
3

)
(mod p). (3.4)

On the other hand, we have

p−1∑
k=0

fk

(−4)k
=

p−1∑
k=0

1
(−4)k

k∑
j=0

(
k + 2j

3j

)(
2j

j

)(
3j

j

)
(−4)k−j

=
p−1∑
j=0

(
2j
j

)(
3j
j

)
(−4)j

p−1∑
k=j

(
k + 2j

3j

)
=

p−1∑
j=0

(
2j
j

)(
3j
j

)
(−4)j

(
p + 2j

3j + 1

)
.

So by lemma 2.5 and the fact that for each 0 � k � (p − 1)/2,(
2k
k

)
(−4)k

≡
( p−1

2
k

)
(1 − p

∑k
j=1

1
2j−1 )

(mod p2),
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and for each (p + 1)/2 � j � p − 1,

j

(
2j

j

)(
2p − 2j

p − j

)
≡ 2p (mod p2),

we have the following congruence modulo p3:

p−1∑
k=0

fk

(−4)k
− S3 ≡ p

(p−1)/2∑
j=0

j �=(p−1)/3

(
2j
j

)
(1 + pH2j − pHj)

(3j + 1)4j
+ 2p

p−1∑
j=(p+1)/2

(
2j
j

)
(3j + 1)4j

≡
(p−1)/2∑

j=0
j �=(p−1)/3

p(−1)j
( p−1

2
j

) (
1 + 2pH2j − 3

2pHj

)
3j + 1

+
p−1∑

j=(p+1)/2

4p2

4j(3j + 1)j
(
2p−2j
p−j

)

≡
(p−1)/2∑

j=0

p(−1)j
( p−1

2
j

) (
1 + 2pH2j − 3

2pHj

)
3j + 1

+
(p−1)/2∑

j=1

p24j

(3j − 1)j
(
2j
j

) − S4,

where

S3 =

( 2p−2
3

p−1
3

)(p−1
p−1
3

)(
p+ 2p−2

3
p

)
(−4)

p−1
3

=
(− 1

2
p−1
3

)(
p − 1
p−1
3

)(
p + 2p−2

3

p

)
,

S4 =
(p−1

2
p−1
3

)(
1 + 2pH(2p−2)/3 − 3

2
pH(p−1)/3

)
.

Hence, we have
p−1∑
k=0

fk

(−4)k
−

p−1∑
k=0

fk

2k

≡ 2p2

(p−1)/2∑
j=0

( p−1
2
j

)
(−1)j(H2j − Hj)

3j + 1
+ S5 +

(p−1)/2∑
j=1

p24j

(3j − 1)j
(
2j
j

) (mod p3),

(3.5)

where

S5 = S3 − S4 + S2 − S1.

By Sigma, we can find and prove the following identity:
n∑

j=0

2
(
n
j

)
(−1)j(H2j − Hj)

3j + 1

=
1

3n + 1

n∏
k=1

3k

3k − 2

⎛
⎝ n∑

k=1

1
k

k∏
j=1

3j − 2
3j

−
n∑

k=1

1
k

k∏
j=1

2(3j − 2)
3(2j − 1)

⎞
⎠

=
(1)n

(3n + 1)
(

1
3

)
n

(
n∑

k=1

(
1
3

)
k

k(1)k
−

n∑
k=1

(
1
3

)
k

k
(

1
2

)
k

)
. (3.6)

https://doi.org/10.1017/prm.2023.41 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.41


On two congruence conjectures of Z.-W. Sun 899

In view of [17, lemma 3.1] and lemma 2.2, we have

(p−1)/2∑
k=1

(
1
3

)
k

k(1)k
=

(p−1)/2∑
k=1

(−1/3
k

)
k
(−1

k

) ≡ 3
2
qp(3) − 3p

4
q2
p(3) − p

3

(p−1)/3∑
k=1

4k

k2
(
2k
k

) (mod p2).

(3.7)

(p−1)/2∑
k=1

(
1
3

)
k

k
(

1
2

)
k

=
(p−1)/2∑

k=1

(−1/3
k

)
k
(−1/2

k

) ≡ 4p

3
(−1)(p−1)/2Ep−3 +

3
2
qp(3) − 3p

4
q2
p(3)

− 2p

3
(−1)(p−1)/2

(p−1)/3∑
k=1

4k

(2k − 1)k
(
2k
k

) (mod p2). (3.8)

It is easy to check that

(p−1)/3∑
k=1

4k

(2k − 1)k
(
2k
k

) = 2
(p−1)/3∑

k=1

4k

(2k − 1)
(
2k
k

) − (p−1)/3∑
k=1

4k

k
(
2k
k

) . (3.9)

And by [21, (6)], we have

1(
n+1+k

k

) = (n + 1)
n∑

r=0

(
n

r

)
(−1)r 1

k + r + 1
. (3.10)

2
(p−1)/3∑

k=1

4k

(2k − 1)
(
2k
k

) ≡ 2
(p−1)/3∑

k=1

(−1)k

(2k − 1)
( p−1

2
k

)
≡ (−1)(p+1)/2

(p−3)/2∑
k=(p−1)/6

(−1)k

(k + 1)
( p−1

2
k

)

= (−1)(p+1)/2

⎛
⎝(p−3)/2∑

k=0

(−1)k

(k + 1)
( p−1

2
k

) −
(p−7)/6∑

k=0

(−1)k

(k + 1)
( p−1

2
k

)
⎞
⎠ (mod p). (3.11)

By Sigma, we find the following identity which can be proved by induction on n:

n∑
k=0

(−1)k

(k + 1)
(
n
k

) =
2(−1)n − 1

n + 1
− (n + 1)H(2)

n − 2(n + 1)
n∑

k=1

(−1)k

k2
.

So by setting n = (p − 1)/2 in the above identity and with lemma 2.2, we have

(p−3)/2∑
k=0

(−1)k

(k + 1)
( p−1

2
k

) ≡ 2
(
(−1)(p−1)/2 − 1

)
− (−1)(p−1)/22Ep−3 (mod p). (3.12)
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And by (3.10), we have

(p−7)/6∑
k=0

(−1)k

(k + 1)
( p−1

2
k

) ≡
(p−7)/6∑

k=0

1

(k + 1)
( p−1

2 +k
k

)
=

(p−7)/6∑
k=0

1
k + 1

p − 1
2

(p−3)/2∑
r=0

(p−3
2

r

)
(−1)r 1

k + r + 1

≡ −1
2

(p−1)/6∑
k=1

1
k

(p−3)/2∑
r=0

(p−3
2

r

)
(−1)r 1

k + r

= −1
2
H

(2)
(p−1)/6 −

1
2

(p−3)/2∑
r=1

(−1)r

r

(p−3
2

r

) (p−1)/6∑
k=1

(
1
k
− 1

k + r

)
(mod p).

It is easy to check that

H(p−1)/6 −
(p−1)/6∑

k=1

1
k + r

≡ −
r∑

k=1

1
k(6k − 1)

(mod p).

By Sigma again, we have
n∑

r=1

(−1)r

r

(
n

r

) r∑
k=1

1
k(6k − 1)

= H(2)
n −

n∑
k=1

(1)k

k2
(

5
6

)
k

.

So in view of lemma 2.2 and [22], we have

(p−7)/6∑
k=0

(−1)k

(k + 1)
( p−1

2
k

)
≡ (−1)(p−1)/2

x
− 2 − 5

4

(p

3

)
Bp−2

(
1
3

)
− 1

2

(p−1)/2∑
k=1

(−1)k

k2
(− 5

6
k

) (mod p).

Thus, by (3.10), we have

(p−1)/2∑
k=1

(−1)k

k2
(− 5

6
k

) = −6
5

(p−1)/2∑
k=1

(−1)k

k
(− 11

6
k−1

) ≡ 6
5

(p−3)/2∑
k=0

(−1)k

(k + 1)
( 5p−11

6
k

)

=
6
5

(p−3)/2∑
k=0

1

(k + 1)
( p+5

6 +k
k

) =
6
5

(p−3)/2∑
k=0

1
k + 1

p + 5
6

(p−1)/6∑
r=0

(−1)r

(p−1
6

r

)
1

k+1+r

≡
(p−1)/2∑

k=1

1
k

(p−1)/6∑
r=0

(−1)r

(p−1
6

r

)
1

k + r

= H
(2)
(p−1)/2 +

(p−1)/6∑
r=1

(−1)r

r

(p−1
6

r

) (p−1)/2∑
k=1

(
1
k
− 1

k + r

)
(mod p).
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Also it is easy to see that

H(p−1)/2 −
(p−1)/2∑

k=1

1
k + r

≡ −
r∑

k=1

1
k(2k − 1)

(mod p).

And by Sigma, we have
n∑

r=1

(−1)r

r

(
n

r

) r∑
k=1

1
k(2k − 1)

= H(2)
n −

n∑
k=1

4k

k2
(
2k
k

) .
So in view of lemma 2.2, we have

(p−1)/2∑
k=1

(−1)k

k2
(− 5

6
k

) ≡
(p−1)/6∑

k=1

4k

k2
(
2k
k

) − 5
2

(p

3

)
Bp−2

(
1
3

)
(mod p).

Hence,

(p−7)/6∑
k=0

(−1)k

(k + 1)
( p−1

2
k

) ≡ (−1)(p−1)/2

x
− 2 − 1

2

(p−1)/6∑
k=1

4k

k2
(
2k
k

) (mod p).

This, with (3.11) and (3.12) yields

2
(p−1)/3∑

k=1

4k

(2k − 1)
(
2k
k

)

≡ −2 +
1
x

+ 2Ep−3 − 1
2
(−1)(p−1)/2

(p−1)/6∑
k=1

4k

k2
(
2k
k

) (mod p). (3.13)

By Sigma, we find the following identity which can be proved by induction on n:
n∑

k=1

4k

k
(
2k
k

) = −2 + 2
4n(
2n
n

) . (3.14)

So in view of [22], we have

(p−1)/3∑
k=1

4k

k
(
2k
k

) ≡ −2 +
2( p−1
2

p−1
3

) ≡ −2 +
1
x

(mod p).

This, with (3.9) and (3.13) yields

(p−1)/3∑
k=1

4k

(2k − 1)k
(
2k
k

) ≡ 2Ep−3 − 1
2
(−1)(p−1)/2

(p−1)/6∑
k=1

4k

k2
(
2k
k

) (mod p).

Thus, with (3.8) we have

(p−1)/2∑
k=1

(
1
3

)
k

k
(

1
2

)
k

≡ 3
2
qp(3) − 3p

4
q2
p(3) +

p

3

(p−1)/6∑
k=1

4k

k2
(
2k
k

) (mod p2). (3.15)
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So by (3.7), we have

(p−1)/2∑
k=1

(
1
3

)
k

k(1)k
−

(p−1)/2∑
k=1

(
1
3

)
k

k
(

1
2

)
k

≡ −p

3

⎛
⎝(p−1)/3∑

k=1

4k

k2
(
2k
k

) +
(p−1)/6∑

k=1

4k

k2
(
2k
k

)
⎞
⎠ (mod p2).

Therefore, by (3.6) and (3.4), we deduce

2p2

(p−1)/2∑
j=0

( p−1
2
j

)
(−1)j(H2j − Hj)

3j + 1

≡ −p2

3

(p−1
2

p−1
3

)⎛⎝(p−1)/3∑
k=1

4k

k2
(
2k
k

) +
(p−1)/6∑

k=1

4k

k2
(
2k
k

)
⎞
⎠ (mod p3). (3.16)

Now, we evaluate the second sum on the right-hand side of (3.5). It is easy to see

(p−1)/2∑
j=1

4j

(3j − 1)j
(
2j
j

) = 3
(p−1)/2∑

j=1

4j

(3j − 1)
(
2j
j

) − (p−1)/2∑
j=1

4j

j
(
2j
j

) . (3.17)

By (3.14), we have

(p−1)/2∑
j=1

4j

j
(
2j
j

) ≡ −2 + 2(−1)(p−1)/2 (mod p). (3.18)

Now we consider the first sum of the right-hand side in (3.17):

(p−1)/2∑
j=1

4j

(3j − 1)
(
2j
j

) =
(p−1)/3∑

j=1

4j

(3j − 1)
(
2j
j

) +
(p−1)/2∑

j=(p+2)/3

4j

(3j − 1)
(
2j
j

) .
The following identity is very important to us:

n∑
k=1

4k

(k + n)
(
2k
k

) = −2 + 2
4n(
2n
n

) − n
(
2n
n

)
4n

n∑
k=1

4k

k2
(
2k
k

) . (3.19)

This, with [22] yields

3
(p−1)/3∑

j=1

4j

(3j − 1)
(
2j
j

) ≡
(p−1)/3∑

j=1

4j(
j + p−1

3

) (
2j
j

)

≡ −2 +
2(−1/2

p−1
3

) +
1
3

(−1/2
p−1
3

) (p−1)/3∑
k=1

4k

k2
(
2k
k

)

≡ −2 +
1
x

+
1
3

(p−1
2

p−1
3

) (p−1)/3∑
k=1

4k

k2
(
2k
k

) (mod p). (3.20)
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And by (3.19), we have

3
(p−1)/2∑

j=(p+2)/3

4j

(3j − 1)
(
2j
j

) ≡ 3
(p−7)/6∑

j=0

(−1)(p−1)/2−j

(3(p−1
2 − j) − 1)

( p−1
2
j

)

≡ 6(−1)(p+1)/2

(p−7)/6∑
j=0

4j

(6j + 5)
(
2j
j

) ≡ (−1)(p+1)/2

(p−7)/6∑
j=0

(−1)j

(j + p+5
6 )
( p−1

2
j

)

≡ 6
5
(−1)(p+1)/2 + (−1)(p+1)/2

(p+5)/6∑
j=1

4j

(j + p+5
6 )
(
2j
j

) +
3( p−1
2

p−1
3

) (mod p). (3.21)

In view of (3.19) and [22], we have

(p+5)/6∑
j=1

4j

(j + p+5
6 )
(
2j
j

) ≡ −16
5

+
5(−1)(p−1)/6

2x

− (−1)(p−1)/6

3

(p−1
2

p−1
3

) (p−1)/6∑
k=1

4k

k2
(
2k
k

) (mod p).

This, with (3.21) yields

3
(p−1)/2∑

j=(p+2)/3

4j

(3j − 1)
(
2j
j

) ≡ 2(−1)(p−1)/2 − 1
x

+
1
3

(p−1
2

p−1
3

) (p−1)/6∑
k=1

4k

k2
(
2k
k

) (mod p).

Combining this with (3.20), we have

3
(p−1)/2∑

j=1

4j

(3j − 1)
(
2j
j

)

≡ −2 + 2(−1)(p−1)/2 +
1
3

(p−1
2

p−1
3

)⎛⎝(p−1)/3∑
k=1

4k

k2
(
2k
k

) +
(p−1)/6∑

k=1

4k

k2
(
2k
k

)
⎞
⎠ (mod p).

Thus, by (3.17) and (3.18), we have

(p−1)/2∑
j=1

4j

(3j − 1)j
(
2j
j

) ≡ 1
3

(p−1
2

p−1
3

)⎛⎝(p−1)/3∑
k=1

4k

k2
(
2k
k

) +
(p−1)/6∑

k=1

4k

k2
(
2k
k

)
⎞
⎠ (mod p).

This, with (3.5) and (3.16) yields

p−1∑
k=0

fk

(−4)k
−

p−1∑
k=0

fk

2k
≡ S5 (mod p3). (3.22)
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While

S5 =
(− 1

2
p−1
3

)(
p − 1
p−1
3

)((
p + 2p−2

3
2p−2

3

)
−
(

p + p−1
3

p−1
3

))

+ 2p

(p−1
2

p−1
3

)(
H(p−1)/3 − H(2p−2)/3

)
.

It is easy to check that

(
p + 2p−2

3
2p−2

3

)
≡ 1 + pH(2p−2)/3 +

p2

2

(
H2

(2p−2)/3 − H
(2)
(2p−2)/3

)
(mod p3)

and (
p + p−1

3
p−1
3

)
≡ 1 + pH(p−1)/3 +

p2

2

(
H2

(p−1)/3 − H
(2)
(p−1)/3

)
(mod p3).

So by lemma 2.2 and the fact that H
(2)
p−1−k ≡ −H

(2)
k (mod p) for each 0 � k � p − 1,

we have(
p + 2p−2

3
2p−2

3

)
−
(

p + p−1
3

p−1
3

)
≡ p(H(2p−2)/3 − H(p−1)/3) +

p2

2
(H(2)

(p−1)/3 − H
(2)
(2p−2)/3)

≡ p2
(p

3

)
Bp−2

(
1
3

)
(mod p3)

and

2p
(
H(p−1)/3 − H(2p−2)/3

) ≡ −p2
(p

3

)
Bp−2

(
1
3

)
(mod p3).

So by
(− 1

2
p−1
3

) ≡ ( p−1
2

p−1
3

)
(mod p) and

(p−1
p−1
3

) ≡ (−1)
p−1
3 = 1 (mod p), we can immedi-

ately obtain that

S5 ≡ 0 (mod p3).

This, with (3.22) yields

p−1∑
k=0

fk

(−4)k
≡

p−1∑
k=0

fk

2k
(mod p3).

Now the proof of theorem 1.2 is complete. �
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