
Glasgow Mathematical Journal (2024), 1–10
doi:10.1017/S0017089524000181

RESEARCH ARTICLE

Girth Alternative for subgroups of PLo(I)

Azer Akhmedov

Department of Mathematics, North Dakota State University, Fargo, ND, 58108, USA
Email: azer.akhmedov@ndsu.edu

Received: 10 September 2023; Revised: 16 March 2024; Accepted: 10 April 2024

2020 Mathematics Subject Classification: Primary - 37E05; Secondary - 37C85

Abstract
We prove the Girth Alternative for finitely generated subgroups of PLo(I). We also prove that a finitely generated
subgroup of Homeo+(I) which is sufficiently rich with hyperbolic-like elements has infinite girth.

1. Introduction

The notion of a girth for a finitely generated group was first introduced in [14] motivated by the study
of Heegaard splittings of closed 3-manifolds.

Definition 1.1. Let � be a finitely generated group. For any finite generating set S of �, girth(�, S) will
denote the minimal length of relations among the elements of S. Then, we define

girth(�) = sup
〈S〉=�,|S|<∞

girth(�, S).

By definition above, an infinite cyclic group has infinite girth, but this fact should be viewed as
a degeneracy since (as remarked in [1]) any group satisfying a law and non-isomorphic to Z has a
finite girth.

In [2], we have proved that if a finitely generated group is word hyperbolic, or one-relator, or linear
then it is either virtually solvable or has infinite girth. More generally, given a class C of finitely generated
groups, we will say that C satisfies the Girth Alternative if any group from the class C is either virtually
solvable or has infinite girth.

In [15], S. Yamagata has proved the Girth Alternative for convergence groups and for irreducible
subgroups of mapping class groups. Independently, in [12] and [13], K. Nakamura proves the alternative
for convergence groups but also for all subgroups of mapping class groups as well as for subgroups of
Out(Fn) that contain irreducible elements with irreducible powers.

In this paper, we will prove that the Girth Alternative holds for subgroups of PLo(I)—the group of
orientation-preserving piecewise linear homeomorphisms of the closed interval I = [0, 1]. It is known
that any virtually solvable subgroup of PLo(I) is indeed solvable (see [7], Corollary 1.3.), so the Girth
Alternative in this case is equivalent to the following:

Theorem 1.2. Any finitely generated subgroup of PLo(I) is either solvable or has infinite girth.

It is remarked in [1] that a finitely generated noncyclic group which satisfies a law has a finite girth.
Thus, we obtain the following corollary.

Corollary 1.3. If a subgroup of PLo(I) satisfies a law then it is solvable.
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Remark 1.4. As another corollary of Theorem 1.2, we obtain that girth(F) = ∞ where F denotes the
R.Thompson’s group. This fact has been proved in [9] and in [4]; both proofs use different ideas from
each other and from the proof of Theorem 1.2. Theorem 1.2 also implies that girth(B) = ∞ where B
is the Brin group introduced in [10] under the notation G1 (the notation B is used in [7] and in [11],
among other places).

It is easy to prove the Girth Alternative for Diff ω(I)—the group of orientation-preserving analytic
diffeomorphisms of I, however, we do not know if the alternative still holds when the regularity is
decreased. The following questions are interesting to us:

Question 1. Does Girth Alternative hold for subgroups
(a) of Homeo+(I)? (b) of Diff+(I)?

Question 2. 1 Is there a finitely generated subgroup of PLo(I) which is not embeddable into Diff +(I) ?

In regard to Question 1, we prove the following partial result.

Theorem 1.5. Let � be any finitely generated subgroup of Homeo+(I). Assume that for all N ∈N, for
every sequence 0< x1 < x2 < · · ·< xN < 1, and for all ε > 0, one can find an element γ ∈ � such that
Fix(γ ) = {0, c1, . . . , cN , 1}, and |ci − xi|< ε, for all 1 ≤ i ≤ N. Then girth(�) = ∞.

Remark 1.6. As a corollary of Theorem 1.5, we obtain yet another proof of the fact that girth(F) = ∞.

At the end of this section, let us also note that the core of the ideas in our proofs (more visibly in
the proof of Theorem 1.5) aligns with (and can be viewed as a case of) the method of “fast generating
sets” which has been developed systematically in [5]. In [6], the authors exploit this method to build
elementary amenable subgroups of PLo(I) with very complex EA class.

2. Towers and exemplary towers: review of Collin Bleak’s results

In the proof of Theorem 1.2, as a crucial tool, we use the result of C. Bleak on the existence of arbitrarily
high towers in a non-solvable subgroup of PLo(I), [7]. First, we would like to introduce the following
notions essentially borrowed from [7], with a slightly different terminology.

Definition 2.1. An ordered n-tuple (f1, . . . , fn) of elements of PLo(I) is said to form a strict tower if there
exist intervals (ai, bi), 1 ≤ i ≤ n such that

(i) 0< a1 < . . . < an < bn < . . . < b1 < 1;
(ii) for all i ∈ {1, . . . , n}, fi(ai) = ai, f (bi) = bi, and fi has no fixed points in (ai, bi).
(iii) for all i, j ∈ {1, . . . , n}, if i< j then fi(x)> fj(x), ∀x ∈ [aj, bj]

We will denote the strict tower by T = [(f1, . . . , fn); (a1, b1), . . . , (an, bn)]; n will be called the height
of the tower T , and the interval (ai, bi) will be called the i-th base of the tower.

Definition 2.2. We will say that a strict tower

T = [(f1, . . . , fn); (a1, b1), . . . , (an, bn)]

is suitable if for any nonzero integer p and for all 1 ≤ i< j ≤ n, the following condition holds:
f p
i ([aj, bj]) ∩ ∪

i+1≤k≤n
supp(fk) = ∅ (1).

1This question has now been answered positively in [8].
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Remark 2.3. Condition (1) of Definition 2.2 implies that for any nonzero integer p and for all
1 ≤ i< j ≤ n, f p

i ([aj, bj]) ∩ [aj, bj] = ∅ (2). Notice that, if the n-tuple (f1, . . . , fn) of elements of PLo(I)
forms a tower then for sufficiently big q ∈N, the n-tuple (f q

1 , . . . , f q
n ) forms a tower with the same

bases which satisfies condition (2). Also, the existence of a suitable tower of arbitrary height in non-
solvable subgroups of PLo(I) immediately follows from the existence of the exemplary towers of arbitrary
height, [7].

To explain the existence of exemplary towers, we would like to make a digression into some of the
results of C. Bleak. For the rest of this section, let � ≤ PLo(I). The following notions and notations are
all borrowed directly from [7].

We will call the convex hull of a point in I under the action of � an orbital of �, if this convex hull
contains more than one point. We note that the orbitals are open intervals. If g ∈ �, we will refer to an
orbital of the group 〈g〉 as an orbital of g. If an open interval A is an orbital of g, then the pair (A, g) will
be called a signed orbital of G. g will be called the signature of the signed orbital (A, g).

Given a set Y of signed orbitals of G, the symbol SY will refer to the set of signatures of the signed
orbitals in Y . Similarly, the symbol OY will refer to the set of orbitals of the signed orbitals of Y . We note
that the set of signed orbitals of PLo(I) is a partially ordered set under the lexicographic order induced
from the partial order on subsets of I (induced by inclusion) in the first coordinate, and the left total
order of the elements of PLo(I) in the second coordinate.

A tower T of G is a set of signed orbitals which satisfies the following two criteria.

1. T is a chain in the partial order on the signed orbitals of G.
2. For any A ∈ OT , T has exactly one element of the form (A, g).

Given a tower T of G, if (A, g), (B, h) ∈ T then one of A ⊆ B and B ⊆ A holds, with equality occurring
only if g = h as well. Therefore, one can visualize the tower as a stack of nested levels that are always
getting wider as one goes “up” the stack.

The cardinality of the set OT will be called the height of the tower T . Besides the cardinality, we also
want to make use of the order structure of towers which allows to define the following more sensitive
notions: if there is an order-preserving injection from N to T , then we will say T is tall, and if there is
an order-preserving injection from −N to T , then we will say T is deep. If T is both deep and tall, then
we will say T is a bi-infinite tower; in the latter case, there will be an order-preserving injection from
Z to T .

A major result of [7] is the following beautiful geometric characterization of solvable subgroups of
PLo(I).

Theorem 2.4. If G ≤ PLo(I) is a non-solvable subgroup if and only if G admits a tower of height n for
any n ≥ 1.

If G admits two signed orbitals (A, g) and (B, h) so that A = (a1, a2) and B = (b1, b2), with a1 < b1 <

a2 < b2 then we will say that G admits a transition chain of length two. One can similarly define transition
chains of any (finite) length, but we will have no need for that generality here.

If A = (a, b) is an orbital of the group G, and G has an element g which has an orbital B = (c, d) so
that either c = a or d = b, then we say that g has an orbital that shares an end with A.

Given an orbital A of H, we say that h realizes an end of A if some orbital of h lies entirely in A and
shares an end with A. If g and h are elements of PLo(I) and there is an interval B = (a, b) ⊂ I so that both
g and h have B as an orbital, then we will say that g and h share the orbital B.

We will say that an orbital A of a group H ≤ PLo(I) is imbalanced if some element h ∈ H realizes
one end of A, but not the other, and we will say A is balanced if whenever an element h ∈ H realizes one
end of A, then h also realizes the other end of A (note that h might do this with two distinct orbitals).
A subgroup H ≤ PLo(I) will be called balanced if given any subgroup G ≤ H, and any orbital A of G,
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every element of G which realizes one end of A also realizes the other end of A. In the case where H has
a subgroup G with an imbalanced orbital, then we will say that H is imbalanced.

We say a tower T is an exemplary tower if the following two additional properties hold:

1. Whenever (A, g), (B, h) ∈ T then (A, g) ≤ (B, h) implies the orbitals of g are disjoint from both
ends of the orbital B.

2. Whenever (A, g), (B, h) ∈ T then (A, g) ≤ (B, h) implies no orbital of g in B shares an end with B.

C. Bleak proves several technical results which indicate the plethora of exemplary towers in PLo(I).
The following two lemmas are stated in [7] as Lemmas 1.4 and 2.12, respectively.

Lemma 2.5. If H is a subgroup of PLo(I), and H admits a transition chain of length two, then H admits
infinite towers.

Lemma 2.6. If H is a subgroup of PLo(I) which does not admit a transition chain of length two and H
has a tower T , then T is exemplary.

Thus, the existence of a transition chain of length two implies the existence of infinite towers, and
the absence of the transition chain of length two implies that all towers are nice, that is, exemplary. It
turns out the absence of a transition chain of length two also implies certain nice properties of the group
itself. The following result is stated as Remark 4.9 in [7].

Lemma 2.7. If G is a subgroup of PLo(I) that does not admit transition chains of length two, then G is
balanced.

We also need the following two technical results from [7].

Lemma 2.8 (Corollary 2.13, [7]). If G is a balanced subgroup of PLo(I) and G admits a tall tower in
some orbital A, or G admits a deep tower in some orbital A, or G admits a bi-infinite tower in some
orbital A, then G admits an exemplary tall tower in A, or G admits an exemplary deep tower in A, or G
admits an exemplary bi-infinite tower in A, respectively.

Lemma 2.9 (Lemma 2.8, [7]). Suppose H ≤ PLo(I), and that G ≤ H has an imbalanced orbital A =
(a, b). Then H admits an exemplary bi-infinite tower E whose orbitals are all in A.

Corollary 2.10. If H is an imbalanced subgroup of PLo(I), then H admits an exemplary bi-infinite tower.

Combining the above results we can now claim the following lemma.

Lemma 2.11. If � ≤ PLo(I) is not solvable, then it contains an exemplary tower of any height n ≥ 1.

Proof. If � does not admit a transition chain of length two, then the claim follows from Theorem 2.4
and Lemma 2.6. If � is not balanced then the claim follows from Corollary 2.10. Thus, we can assume
that � is balanced and admits a transition chain of length two. Then by Lemma 2.5, � admits an infinite
tower. Then by Lemma 2.8, it admits an exemplary bi-infinite tower.

3. Proof of Theorem 1.2

For any natural number r, let Gr = ( . . . ((Z �Z) �Z) � . . .Z) �Zwhere the iterated wreath product is taken
r times. The group Gr can be defined inductively as G0 = 1, Gi+1 = Gi �Z := Z� ⊕

n∈Z
Gi, 0 ≤ i ≤ r − 1.
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In the wreath product Gi �Z, the standard generator of the acting group Z will be denoted by gr−i. (in
[7], the group Gr is denoted by Wr).

The following lemma will be useful; the idea of its proof is essentially borrowed from the proof of
Lemma 2.3 in [1].

Lemma 3.1. For all q, k ∈N, there exist r ∈N and w1, . . . , wk ∈ Gr such that there is no relation of
length less than q among w1, . . . , wk.

Proof . Since a free group on two generators contains a free group on k generators for any k ≥ 3, it is
sufficient to prove the claim for k = 2. We will do this by induction; more precisely, it suffices to prove
the following claim: if A, B are nontrivial groups and A satisfies no law in two variables of length less
than n ≥ 4, then the wreath product B � A = A � ⊕

i∈A
B satisfies no law in two variables of length less than

n + 1.
Indeed, let w1, w2 ∈ A with no relation of length less than n. An element of ⊕

i∈A
B can be written as

(xg)g∈A where all but finitely many “coordinates” are 1. Let b be a non-identity element of B, and t =
(xg)g∈A be the element of ⊕

i∈A
B where xg = b for g = 1 and xg = 1 otherwise.

Then there is no relation of length less than n + 1 among the elements tw1 and w2. Indeed, let W(x, y)
be a nontrivial reduced word of length k< n + 1 in the alphabet {x±1, y±1} such that W(tw1, w2) = 1 ∈ B �
A. For every 1 ≤ i ≤ k, let also Wi be the prefix of W of length i. Then W(w1, w2) = Wk(w1, w2) = 1 ∈ A,
moreover, for at least one i ∈ {1, . . . , k} there exists j ∈ {1, . . . , k}\{i} such that Wi(w1, w2) = Wj(w1, w2).
Indeed, we have

W(tw1, w2) =
(

s

�
i=1

(Wni t
εi W−1

ni
)

)
W(w1, w2)

where 1 ≤ s ≤ k, εi ∈ {−1, 1}, 1 ≤ i ≤ s and 0 ≤ n1 < n2 < . . . < ns ≤ k (here, we define W0 = 1).
Now, we have Wni t

εi W−1
ni

∈
⊕
α∈A

B for all 1 ≤ i ≤ s. Moreover, by the re-indexing action of A on
⊕
α∈A

B,

for each of the terms Wni t
εi W−1

ni
we have only one nontrivial (i.e. non-identity) coordinate consisting of

b or b−1 depending if εi = 1 or εi = −1 respectively. Hence, to have a necessary cancelation, we need to
have two distinct p, q ∈ {1, . . . , s} such that Wnp = Wnq (and εp = −εq). Thus, we can take i = np, j = nq.

Thus, we established that for at least one i ∈ {1, . . . , k} there exists j ∈ {1, . . . , k}\{i} such that
Wi(w1, w2) = Wj(w1, w2). But this implies a relation of length less than n among w1 and w2.

Let us note that in the proof of Lemma 3.1, we are using a careful re-examination of the word
W(tw1, w2). We view the latter as a word in the alphabet {t±1, w±1

1 , w±1
2 }. There will be no consecutive

occurrences of t±1; as we read through from left to right, we write W(tw1, w2) as a product of conju-
gates of t±1. The residue at the very right will be the word W(w1, w2). For example, if W(x, y) = [x, y] =
xyx−1y−1, then we will have

W(tw1, w2) = [tw1, w2] = tw1w2w−1
1 t−1w−1

2

= (1t1)(w1w2w−1
1 t−1w1w

−1
2 w−1

1 )[w1, w2].

We also would like to observe the following simple lemma.

Lemma 3.2. Let T = [(f1, . . . , fn, fn+1); (a1, b1), . . . , (an, bn), (an+1, bn+1)] be a suitable tower, and
φ1, . . . , φn ∈ PLo(I) be such that for all i ∈ {1, . . . , n}, supp(φi) ⊆ [ai, bi] and φi|[ai ,bi] = fi|[ai ,bi]. Then

(a) the maps φ1, . . . , φn generate a subgroup Hn ≤ PLo(I) such that there exists an isomorphism
	:Hn → Gn given by 	(φi) = gi, 1 ≤ i ≤ n;

(b) if W = W(g1, . . . , gn) is any non-identity element of Gn, then there exists a word U =
U(g1, . . . , gn) ∈ Gn such that W1((U1(an+1, bn+1))) ∩ U1((an+1, bn+1)) = ∅ where W1 = W(φ1, . . . , φn),
U1 = U(φ1, . . . , φn);
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(c) if W = W(g1, . . . , gn) ∈ Gn and x ∈ (an+1, bn+1), then W(f1, . . . , fn)(x) = W(φ1, . . . , φn)(x).

Now, let � be a finitely generated non-solvable subgroup of PLo(I), s = d(�) (i.e. s is the minimal
cardinality for a generating subset of �). Without loss of generality, we may assume that � is irreducible,
that is, it has no global fixed point in the interval (0, 1).

For every finite generating set X of �, we will fix the left-invariant Cayley metric on � with respect
to X, and let Bk(1; X) denote the ball of radius k centered at identity element 1 ∈ �, for all k ≥ 1. We
also let

Sk(�, X, c) = {γ ∈ Bk(1; X) | γ ′(0) = c}, Sk(�, X) = {γ ∈ Bk(1; X) | γ ′(0) = 1},

Ck(�, X) = {c ∈R+ | Sk(�, X, c) �= ∅}.
Fix a positive integer m, and let q = 2m2. By Lemma 3.1, there exists r ∈N such that in the group Gr

there exist s elements w1, w2, . . . , ws such that there is no relation of length less than q among w1, . . . , ws.
Let g1, . . . , gr be the standard generators of Gr and let wi = Wi(g1, . . . , gr), 1 ≤ i ≤ s, where Wi is a
reduced word in the free group of rank r formally generated by the letters g1, . . . , gr.

Since � is non-solvable, the commutator subgroup [�, �] is non-solvable. Then by Remark 2.3 and
Lemma 2.11, there exists an ordered (r + 1)-tuple (f1, . . . , fr, fr+1) of elements of [�, �] which form a
suitable tower of height r + 1. Let 0< d<D< 1 such that ∪

1≤i≤r+1
supp(fi) ⊂ (d, D).

Then, we can find ε0 > 0, a finite generating set S of � of cardinality s, and a suitable tower
(h1, . . . , hr, hr+1) of elements of�with bases (ai, bi) ⊂ (0, ε0), 1 ≤ i ≤ r + 1 and
= ∪

1≤i≤r+1
supp(hi) such

that S ∩ S−1 = ∅ and the following conditions hold:

(i) for all β ∈ B2m(1; S), β(
) ⊂ (0, ε0);
(ii) for any two distinct c1, c2 ∈R+, and for all β1 ∈ S2m(�, S, c1), β2 ∈ S2m(�, S, c2), β1(
) ∩

β2(
) = ∅;
(iii) for all c ∈R+, β1, β2 ∈ S2m(�, S, c), and for all x ∈
, β1(x) = β2(x) (so, in particular, for all

β ∈ S2m(�, S) and for all x ∈
, β(x) = x).

Indeed, let X0 = {α1, . . . , αs} be any generating set of � of cardinality s. Without loss of generality,
we may assume that

1 ≤ α′
1(0) ≤ · · · ≤ α′

s(0) and α′
s(0)> 1.

Let δ > 0 such that αs has no singularity in (0, δ). By irreducibility, there exists φ ∈ � such that
φ(D)< δ. For n ≥ 1 and 1 ≤ i ≤ r + 1, we let f (n)

i =ψ−1
n fiψn, where ψn = φ−1αn

s . Let also (dn, Dn) =
ψ−1

n ((d, D)), n ≥ 1. Notice that the interval (dn, Dn) (in particular, its subset ∪1≤i≤r+1 supp(f (n)
i )) converges

to zero as n → ∞; moreover, there exists a positive integer p such that for all k ≥ p, we have Dk
dk

= Dp

dp
.

We can choose a finite generating set S = {γ1, . . . , γs} such that the inequality min{c ∈ C2m(�, S) | c>
1}> Dp

dp
holds. To see this, first, we let X1 = {β1, . . . , βs} where βs = αs, and βi = αiα

ni
s , 1 ≤ i ≤ s − 1 for

some ns−1 ≤ · · · ≤ n2 ≤ n1 such that 1<β ′
s(0) ≤ β ′

s−1(0) ≤ · · · ≤ β1
′(0) and β1

′(0)> Dp

dp
. After this, we

modify the generating set X1 further by letting S = {β1, βλ1β2, βλ
2

1 β3, . . . , βλ
s−1

1 βs} where λ= 4m + 1.
Then, for sufficiently big n, we can take hi = f (n)

i , 1 ≤ i ≤ r + 1 to satisfy the claims (i)–(iii).
Now, let Am be a minimal subset of Bm(1;S) such that Am ∩ Sm(�, S, c) �= ∅ for every c ∈ Cm(�, S); and

for all k ∈ {1, . . . , s}, let

ωk =
∏
γ∈Am

(γ vkγ
−1), ηk =

∏
γ∈Am

(γ ukγ
−1)

where vk = Wk(h1, . . . , hr), uk = vm
k and for the products (the formulas forωk and ηk) we choose any linear

order on the set Am.
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Notice that because of conditions (i)–(iii), for any two γ ′, γ ′ ′ ∈ Bm(1), we have
[γ ′vk(γ ′)−1, γ ′ ′vk(γ ′ ′)−1] = 1 and [γ ′uk(γ ′)−1, γ ′ ′uk(γ ′ ′)−1] = 1, so the order in the products

∏
γ∈Am

(γ vkγ
−1)

and
∏
γ∈Am

(γ ukγ
−1) does not matter.

Now, let S(m) = {η1γ1η2, η2γ2η3, . . . , ηsγsη1,ω1, . . . ,ωs}. Then, since ωm
k = ηk for all 1 ≤ k ≤ s, the set

S(m) generates �, and there is no relation of length less than m among the elements of S(m).
Indeed, let R = R(η1γ1η2, η2γ2η3, . . . , ηsγsη1,ω1, . . . ,ωs) denote such a relation. Then, we

can write

R(η1γ1η2, η2γ2η3, . . . , ηsγsη1,ω1, . . . ,ωs) = R0(θ1R1θ
−1
1 )(θ2R2θ

−1
2 ) . . . (θnRnθ

−1
n )Rn+1

where n ≤ m, θi ∈ Bm(1) for all 1 ≤ i ≤ n, and Rj = Rj(η1, . . . , ηs,ω1, . . . ,ωs) is a reduced word of length
at most m for all 0 ≤ j ≤ n + 1; moreover, R1, . . . , Rn are nontrivial.

Notice that for all g ∈ Bm(1; S), the shift gBm(1; S) still contains 1 ∈ �. Then we obtain a non-
trivial relation V(v1, . . . , vs) among v1, . . . , vs of length at most 2m2.2 We can write V(v1, . . . , vs) =
W(h1, . . . , hr) = 1 where W is a nontrivial reduced word. Notice that V(v1, . . . , vs) = W(h1, . . . , hr) rep-
resents a map in PLo(I), while V(w1, . . . , ws) represents a word in Gr which by our choices does not
represent an identity element in Gr. Then, by Lemma 3.2, for some word U = U(h1, . . . , hr) and for all
x ∈ U((ar+1, br+1)) we have W(x) /∈ U((ar+1, br+1)), thus W(x) �= x. Since m is arbitrary, we conclude that
girth(�) = ∞.

The main idea of the proof of Theorem 1.2 is described below. For any given q, k, in a suitable tower
of sufficiently big height r, formed by PL-maps φ1, . . . , φr, φr+1, one can find words w1, . . . , wk in the
alphabet {φ±1

1 , . . . , φ±1
r } such that the corresponding elements (let us denote them by w1, . . . , wk) do not

have a relation of length less than q. This is because, upon the action on the innermost base of the tower
(an orbital of φr+1), a suitable tower behaves as if the maps generate a genuine copy of Gr, for elements
in the ball of certain radius. The problem is how to find a finite generating set without a short relation
among the generators, not just among some elements. For this, we pick up a tower with sufficient height
such that the PL homeomorphisms forming this tower are supported in a very small interval. This interval
can be made arbitrarily small; therefore, using irreducibility of �, one can push this support (interval)
close enough to the end 0 of the interval [0, 1] such that the new support 
 satisfies conditions (i)–(iii),
namely, (i) any PL map β from the ball Bm(1) still keeps 
 inside an interval (0, ε0); (ii) the image of

 by elements of Bm(1) with different slopes at 0 are disjoint; and (iii) the images of 
 by elements
of Bm(1) with the same slope at 0 are the same. Then we pick up a generating set which involves the
elements w1, . . . , wk. By properties (i)–(iii), we again obtain a short relation among w1, . . . , wk thus a
contradiction.

4. Girth of subgroups with hyperbolic-like elements

In this section, we will prove Theorem 1.5.
Let d(�) = s, and m be a natural number. We will find s + 2 generators of � such that there is no

relation of length m or less in � in these generators. (since m is arbitrary, this proves that girth(�) = ∞).
Let S = {X1, . . . , Xs} be a finite generating set of �, and S∗ be the symmetrization of S, that is

S∗ = {X1, . . . , Xs, X−1
1 , . . . , X−1

s }. Let also p0 ∈ (0, 1) (one could take p0 = 1
2
). We can find a natural

number N > 4m and a sequence 0 = c0 < c1 < c2 < . . . < c2N < c2N+1 = 1 such that the following three
conditions are satisfied.

(i) p0 ∈ (cN , cN+1);
(ii) for all X ∈ S∗ and p ∈ {p0, c1, . . . , c2N}, X(p) /∈ {c1, . . . , c2N}\{p};

2For all 1 ≤ k ≤ s, both ωk and ηk are products of commuting conjugate copies supported on disjoint shifts of 
. We obtain our
relation by considering the copies over the shift by the identity element, that is, over the original copy of 
.
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(iii) W(X1, . . . , Xs, YN)(p0) ⊂ (c1, c2N) for all reduced words W of the form W0Yn1
N W1Yn2

N . . .Wk−1

Ynk
N Wk where YN is any orientation-preserving homeomorphism satisfying the conditions

YN(ci) = ci+4, 1 ≤ i ≤ 2N − 4, n1, . . . , nk ∈ {−1, 1}, and Wi is a reduced word in the alphabet

{X±1
1 , . . . , X±1

s } of length Li, 0 ≤ i ≤ k where
k∑

i=0

Li ≤ 2m.

Notice that condition (iii) implies that

W(X1, . . . , Xs, Yn)(p0) ∈ (c1+4d, c2N−4d)

where d = 2m −
k∑

i=0

Li.

Let δ = min
0≤i≤2N

|ci+1 − ci| and ε < 1
8

min{δ, |p0 − cN |, |p0 − cN+1|} be such that X(p − ε, p + ε) ∩ (q −
ε, q + ε) = ∅ for all X ∈ S∗ and distinct p, q ∈ {p0, c1, . . . , c2N}. Then we can find a natural number M>

2m and elements γ , θ ∈ � such that:

(iv) Fix(γ ) = {0, a1, a2, . . . , aN , 1}, Fix(θ ) = {0, b1, b2, . . . , bN , 1} and for all 1 ≤ i ≤ N, the inequal-
ities |ai − c2i−1|< ε and |bi − c2i|< ε hold;

(v) for all n ≥ M, we have γ ±n(Uγ ) ⊂ Vγ where

Uγ = �
0≤i≤N

(ai + ε, ai+1 − ε), Vγ = �
0≤i≤N+1

(ai − ε, ai + ε);

(vi) for all n ≥ M, we have θ±n(Uθ ) ⊂ Vθ where

Uθ = �
0≤i≤N

(bi + ε, bi+1 − ε), Vθ = �
0≤i≤N+1

(bi − ε, bi + ε).

It is straightforward to make all these arrangements. (Let us also clarify that we define a0 = b0 = 0
and aN+1 = bN+1 = 1.)

Notice that p0 ∈ Uγ ∪ Uθ and p0 /∈ Vγ ∪ Vθ . Now, let r ≥ 2M, and S′ = {γ r, θ r, γ r2
X1θ

r2
, . . . ,

γ sr2
Xsθ

sr2}.
Then if W0 is a nontrivial reduced word in these generators of length at most m, and if W ′ is any suffix

of W0 in the alphabet S′, then because of (i)–(vi), we have W ′(p0) ∈ (c1, cN).
Indeed, W ′ can be written as:

W ′ = α1X
ε1
j1 α2X

ε2
j2 . . . αkX

εk
jk αk+1

where for all 1 ≤ i ≤ k, ji ∈ {1, . . . , s}, εi ∈ {−1, 1} and αi, 1 ≤ i ≤ k + 1 belong to the set:

{γ n : |n|>M} ∪ {θ n : |n|>M} ∪ {γ mθ n : |m|, |n|>M} ∪ {θmγ n : |m|, |n|>M}.
From the re-writing W ′ as a suffix of W0, we obtain that k ≤ m. On the other hand, for all 1 ≤ i ≤ k, ε ∈

{−1, 1} and x ∈ (c4, cN−4) we have the inequality Y−1
N (x)<αεi (x)< YN(x). Then letting Wi = Xεi

ni
, 1 ≤ i ≤ k,

we obtain that |Wi| = 1, 1 ≤ i ≤ k in the alphabet S∗, hence
k∑

i=1

|Wi| = k ≤ m<
N

4
.

By condition (iii), for every suffix W ′ ′ of W ′, we have W ′ ′(p0) ∈ (c1, c2N), in fact, W ′ ′(p0) ∈
(c1+4d, c2N−4d) where d = 2m − L and L is the number of occurrences of X±1

i , 1 ≤ i ≤ s in W ′ ′. So, we
have W ′(p0) ∈ (c1+4d, c2N−4d) with d = 2m − k.

Then, inductively (ping-pong argument), W0(p0) ∈ Vγ ∪ Vθ ; more precisely, W0(p0) ∈ Vγ if W0 starts
with γ ±1 and W0(p0) ∈ Vθ if W0 starts with θ±1. Then, W0(p0) �= p0, hence W0 �= 1.

Remark 4.1. The assumptions of Theorem 1.5 can be weakened significantly (at the expense of making
the statement more technical).
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The proof of Theorem 1.5 uses the well-known “ping-pong idea” where one designs a certain “ping-
pong table” which could involve two or more sets (in our case Uγ and Uθ ), and (in one of the versions) the
point (in our case p0) taken outside of these sets arrives to one of these sets and then either jumps from
one to another never returning back to its original position or in a slightly more subtle version as in our
case, even if it leaves Uγ ∪ Uθ (in our case this might happen by the action of X ∈ S∗), then immediately
returns back to it. In condition (i) of our proof, p0 is taken in the middle interval just for convenience.
We are following the orbit of it by the consecutive suffixes of W0. Notice that by our choice of r, there
will not be any occurrence of X±1

i X±1
j in W0; moreover, the exponents of both γ and θ are sufficiently

big. By condition (ii) and the choice of ε, our point stays away from Fix(γ ) ∪ Fix(θ ) whenever X ∈ S∗

is applied. It may get close to Fix(γ ), then hits Uγ and is immediately taken away from it by X ∈ S∗

or by sufficiently big powers of θ . Similar effect happens when we get close to Fix(θ ). Condition (iii)
guarantees that we stay in the field of action where arrangements are suitable.

Remark 4.2. From the proof we see that one can state a much more general theorem for the girth of
groups acting on metric spaces by homeomorphisms. For every non-elementary word hyperbolic group
we do have such a theorem indeed (see Theorem 2.6, [2], where the metric space is the boundary of the
group, and for every hyperbolic element we have one attracting and one repelling point). In our case, the
metric space is typically non-compact (in the case of Theorem 1.5, the metric space is the non-compact
space (0, 1) ∼=R), and the “hyperbolic-like” elements have several points (instead of two) which are
“attractive-repelling like” within “certain compact subspace.”

We would like to give a precise definition of a hyperbolic-like element.

Definition 4.3. Let X be a Hausdorff topological space, � be a subgroup of Homeo(X) generated by a
finite subset S ⊆ �, S� = S ∪ S−1 ∪ {1}, z ∈ X, m ∈N, and γ ∈ �. We say γ is (S, z, m)-hyperbolic-like if
there exists a chain 
0 ⊂
1 ⊂ . . .⊂
m of finite subsets of X such that

(i) 
0 = {z};
(ii) s(
m) ∩
m = ∅, ∀s ∈ S�\{1};
(iii) for all x ∈ (S�\{1})
k, 0 ≤ k ≤ m − 1, there exist distinct pa, pr ∈
k+1 such that for all disjoint

open neighborhoods Upa , Upr of pa and pr, respectively, there exist M ∈N such that for all
n ≥ M, γ n(x) ∈ Upa , γ −n(x) ∈ Upr .

The proof of the following theorem utilizes the main idea of the proof of Theorem 1.5.

Theorem 4.4. Let X be a Hausdorff space, z ∈ X, � be a finitely generated subgroup of Homeo (X), S
be a finite generating set of �. Assume that for all natural m. there exists an (S, z, m)-hyperbolic-like
element of �. Then girth(�) = ∞.

Proof. Without loss of generality, we may assume that 1 /∈ S. Since X is Hausdorff, the attrac-
tive and repelling points pa, pr in condition (iii) are unique. By condition (ii), we also have pa, pr /∈
(S�\{1})
k, 0 ≤ k ≤ m − 1. Then we can claim that there exists a natural number M such that for all
0 ≤ k ≤ m − 1, there exist unique and distinct p(k)

a , p(k)
r ∈
k+1 and disjoint open neighborhoods Up(k)

a
, Up(k)

r

of p(k)
a and p(k)

r , respectively, such that for all n>M and for all x ∈ (S�\{1})
k, γ n(x) ∈ Up(k)
a

, γ −n(x) ∈ Up(k)
r

;
moreover, (Up(k)

a
� Up(k)

r
) ∩ (S�\{1})
k = ∅. Then for sufficiently big n, there is no relation of length

less than m − 2 among the elements of the generating set {γ , γ nγ1γ
n, γ 2nγ2γ

2n, . . . , γ snγsγ
sn} where

S = {γ1, . . . , γs}.
Indeed, such a relation would be of the form:

W = γ n1δ1γ
n2δ2 . . . γ

nrδrγ
nr+1
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where r ≤ m − 2, |ni| ≥ n − m, 1 ≤ i ≤ r + 1, and δi ∈ S�\{1}, 1 ≤ i ≤ r. Let y ∈ (S�\{1})z. Then for suf-
ficiently big n, we have W(y) ∈ Up(r+2)

a
� Up(r+2)

r
. Hence, W(y) �= y. Since m is arbitrary, we conclude that

girth(�) = ∞.

Remark 4.5. Theorem 4.4 generalizes Theorem 2.1 from [2] which states that any finitely generated
non-elementary subgroup of a word hyperbolic group has infinite girth.

Remark 4.6. It is interesting that the group F (the standard representation of it in PLo(I)) is very rich
with hyperbolic-like elements, for the standard finite generating set S of F. It is not known to us if the
same can be true for a faithful representation of an elementary amenable subgroup of Homeo+(R).

We will borrow the following definition from [3].

Definition 4.7. Let � be a finitely generated group, d(�) be the minimal number of a generating set of
� and k ≥ d(�) be a positive integer. Then, we define girthk(�) = sup

〈S〉=�,|S|≤k
girth(�, S).

While proving Theorem 1.2, we indeed proved a bit more, namely, for any non-solvable finitely generated
group � of PLo(I), we proved that girth2d(�) = ∞ where d = d(�). Also, in the proof of Theorem 1.5,
we indeed proved that girthd+2(�) = ∞. With a slightly different argument, one can improve this result
showing that girthd+1(�) = ∞; and in Theorem 4.4, one can prove that girth|S|+1(�) = ∞.

Acknowledgment. I am thankful to Collin Bleak and Matthew Brin for useful discussions. I am also very grateful to an
anonymous referee for many useful suggestions and corrections.

References
[1] A. Akhmedov, On the girth of finitely generated groups, J. Algebra 268(1) (2003), 198–208.
[2] A. Akhmedov, The girth of groups satisfying Tits Alternative, J. Algebra 287(2) (2005), 275–282.
[3] A. Akhmedov, Quasi-isometric rigidity in group varieties, PhD Thesis (Yale University, 2004).
[4] A.Akhmedov, M. Stein and J. Taback, Free limits of R.Thompson’s group F, Geom. Dedicata 155(1) (2011), 163–176.
[5] C. Bleak, M. Brin, M. Kassabov, J. T. Moore and M. C. B. Zaremsky, Groups of fast homeomorphisms of the interval

and the ping-pong argument, J. Comb. Algebra 3(1) (2019), 1–40.
[6] C.Bleak, M. Brin and J. T. Moorie, Complexity among the finitely generated subgroups of Thompson’s group, J. Comb.

Algebra 5(1) (2021), 1–58.
[7] C. Bleak, A geometric classification of some solvable groups of homeomorphisms, J. London Math. Soc. (2) 78(2) (2008),

352–372.
[8] C.Bonatti, Y. Lodha and M. Triestino, Hyperbolicity as an obstruction to smoothability for one-dimensional actions,

Geom. Topol. 23(4) (2019), 1841–1876.
[9] M. Brin, The free group of Rank 2 is a limit of Thompson’s group F, Groups Geom. Dyn. 4(3) (2010), 433–454.

[10] M. Brin, Elementary amenable subgroups of R. Thompson’s group F, Int. J. Algebra Comput. 15(4) (2005), 619–642.
[11] A.Dranishnikov and M. Sapir, On the dimension growth of groups, J. Algebra 347(1) (2011), 23–39.
[12] K. Nakamura, PhD Thesis (University of California Davis, 2008).
[13] K. Nakamura, The girth alternative for mapping class groups, Groups Geom. Dyn. 8(1) (2014), 225–244.
[14] S. Schleimer, The girth of groups. Preprint.
[15] S. Yamagata, The girth of convergence groups and mapping class groups, Osaka J. Math. 48(1) (2011).

https://doi.org/10.1017/S0017089524000181 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089524000181

	Introduction
	Towers and exemplary towers: review of Collin Bleak"2019`s results
	Proof of Theorem 1.2

	Girth of subgroups with hyperbolic-like elements

