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Recent studies of viscous dissipation mechanisms in impacting droplets have revealed
distinct behaviours between the macroscale and nanoscale. However, the transition of
these mechanisms from the macroscale to the nanoscale remains unexplored due to
limited research at the microscale. This work addresses the gap using the many-body
dissipative particle dynamics (MDPD) method. While the MDPD method omits specific
atomic details, it retains crucial mesoscopic effects, making it suitable for investigating
the impact dynamics at the microscale. Through the analysis of velocity contours within
impacting droplets, the research identifies three primary contributors to viscous dissipation
during spreading: boundary-layer viscous dissipation from shear flow; rim geometric
head loss; and bulk viscous dissipation caused by droplet deformation. This prompts a
re-evaluation of viscous dissipation mechanisms at both the macroscale and nanoscale.
It reveals that the same three kinds of dissipation are present across all scales, differing
only in their relative intensities at each scale. A model of the maximum spreading factor
(βmax) incorporating all forms of viscous dissipation without adjustable parameters is
developed to substantiate this insight. This model is validated against three distinct datasets
representing the macroscale, microscale and nanoscale, encompassing a broad spectrum
of Weber numbers, Ohnesorge numbers and contact angles. The satisfactory agreement
between the model predictions and the data signifies a breakthrough in establishing a
universal βmax model applicable across all scales. This model demonstrates the consistent
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nature of viscous dissipation mechanisms across different scales and underscores the
importance of integrating microscale behaviours to understand macroscale and nanoscale
phenomena.

Key words: drops and bubbles

1. Introduction

A droplet impacting a solid surface is a familiar occurrence in everyday life, offering
a wide range of complex outcomes such as spreading, retraction, deposition, splashing,
bouncing and breakup (Josserand & Thoroddsen 2016). Despite its commonplace nature,
the study of droplet impact dynamics on solid surfaces remains a vibrant area of research.
Since being initially documented by Worthington (1876), this field has continued to
thrive in recent years. Substantial efforts have been made to unravel the secret of impact
dynamics, encompassing diverse approaches such as experimental studies (Bertola 2009;
Visser et al. 2012, 2015; Lee et al. 2016a; Yang et al. 2018; Srivastava & Kondaraju 2020),
numerical simulations (Eggers et al. 2010; Kobayashi et al. 2016; Lee et al. 2016a; Koishi,
Yasuoka & Zeng 2017; Bordbar et al. 2018; Du et al. 2021a) and theoretical analyses
(Ukiwe & Kwok 2005; Attané, Girard & Morin 2007; Laan et al. 2014; Lee et al. 2016b;
Wang et al. 2019, 2020a,b).

The vitality of studying droplet impact on solid surfaces stems from the various
parameters governing this seemingly simple phenomenon. This includes a balance of
competing forces and the influence of various surface characteristics. In the case of
droplet impact, inertial, capillary and viscous forces are the primary influencers if the
droplet diameter (D0) is less than the capillary length (2.7 mm for water, for example).
The key dimensionless numbers to quantify this interplay are the Weber number (We =
ρD0V2

0/γ ), representing the ratio of inertial to capillary forces; the Reynolds number
(Re = ρD0V0/μ), indicating the ratio of inertial to viscous forces; and the Ohnesorge
number (Oh = We1/2/Re = μ/(ρD0γ )1/2), denoting the ratio of viscous to inertial-capillary
forces. Surface features also play a crucial role, encompassing intrinsic wettability,
roughness, microstructure and topography. The intrinsic wettability, in particular, is
effectively quantified by the intrinsic contact angle, θ , which is the angle at the three-phase
contact line of an equilibrium sessile droplet on a smooth surface. These diverse
parameters mean that even the most straightforward scenario of a droplet impacting a
smooth surface is governed by a complex group of dimensionless numbers, including We,
Oh (Re) and θ . This richness of parameters endows the impact dynamics with fascinating
mechanisms, continually inspiring in-depth studies and research in this area.

One of the critical areas of interest in droplet dynamics research is investigating the
energy conversion mechanism of impacting droplets. This is often analysed by modelling
the maximum spreading factor (βmax = Dmax/D0), which is a ratio of the maximum
spreading diameter (Dmax) to its original diameter (D0). This modelling is frequently based
on the energy conservation equation, which tracks the droplet’s journey from its initial
state to the maximum spreading state, as adopted and refined in various studies (Yarin &
Weiss 1995; Clanet et al. 2004; Laan et al. 2014; Lee et al. 2016b; Wildeman et al. 2016).
The energy conservation equation can be expressed as

Ek,0 + Es,0 = Es,max + Edis, (1.1)

where subscripts of k, s and dis represent the kinetic energy, surface energy and viscous
dissipation; 0 and max stand for the initial state and the maximum spreading state,
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Evolution of the viscous dissipation across scales

respectively. The initial spherical shape of droplets leads to simple expressions for initial
kinetic and surface energy (Ek,0 and Es,0). The assumption of a cylindrical shape at
the maximum spreading state, supported by most studies (Pasandideh-Fard et al. 1996;
Ukiwe & Kwok 2005; Du et al. 2021a), allows for the derivation of Es,max. However, as
compared with the surface energy, which depends only on shape, the viscous dissipation
during spreading is also highly influenced by velocity gradients within impacting droplets,
presenting a significant challenge in its quantification. Historically, assumptions about
velocity gradients have evolved. Initially, there were assumptions of violent velocity
gradients throughout droplets, considering only the ∂Vz/∂z (Chandra & Avedisian 1991)
or ∂Vr/∂z (Madejski 1976) components, where Vz and Vr represent the velocities in
the impact and spreading directions, respectively, and z stands for the coordinate in the
impact direction. Recent studies, however, have recognised that the velocity gradient
∂Vr/∂z in the thin boundary layer near solid walls predominantly contributes to viscous
dissipation during spreading (Mao, Kuhn & Tran 1997; Ukiwe & Kwok 2005; Attané
et al. 2007; Visser et al. 2015; Srivastava & Kondaraju 2020; Du et al. 2021a). To
estimate this dissipation, models for the thickness of the boundary layer (δ) have been
proposed, such as δ = 2D0Re−1/2, derived by analogising the plane stagnation flow
with the flow inside impacting droplets (Pasandideh-Fard et al. 1996; Ukiwe & Kwok
2005). In a comparison by Ukiwe & Kwok (2005) of theoretical βmax models based on
the boundary-layer viscous dissipation assumption with experimental results on weak
hydrophilic and hydrophobic surfaces, the models (Pasandideh-Fard et al. 1996; Ukiwe
& Kwok 2005) tend to overpredict the maximum spreading factor in a moderate range of
Weber numbers (approximately from 30 to 100). Beyond this range, however, there is a
better alignment between the theoretical predictions and experimental observations.

Contrary to previous assumptions, the groundbreaking study by Wildeman et al. (2016)
numerically analysed the impact of a droplet on free-slip solid surfaces. This analysis
specifically aimed to exclude the boundary-layer viscous dissipation. Interestingly, the
results revealed that significant dissipation of the initial kinetic energy still occurred
during spreading, suggesting the presence of an alternative form of viscous dissipation.
This dissipation was identified not as boundary-layer viscous dissipation but rather as a
geometric head loss at the entrance of spreading rims, where a rapid reduction in velocity
leads to the dissipation of nearly half of the initial kinetic energy. Crucially, this rim
head loss was also observed in impacts on no-slip surfaces, where it similarly dissipated
approximately half of the initial kinetic energy (Wildeman et al. 2016). This finding is
further supported by the distribution of viscous dissipation observed by Lee et al. (2016a).

These insights imply that viscous dissipation in millimetre-sized droplets impacting
solid surfaces results from both the boundary layer and rim. This understanding
may explain why models that only consider boundary-layer viscous dissipation tend
to overestimate βmax in a moderate range of Weber numbers on weakly hydrophilic
and hydrophobic surfaces (Pasandideh-Fard et al. 1996; Ukiwe & Kwok 2005). After
incorporating this additional mechanism of viscous dissipation, the βmax model proposed
by Wildeman et al. (2016) achieves a more accurate fit for a broad range of Weber numbers,
from 30 to 3000, on surfaces with contact angles ranging from 90° to 180°.

Recently, there has been a surge in interest in the nanoscale impact dynamics on
solid surfaces, principally due to the emergence of nanodroplet-based technologies such
as nanoscale ink-jet printing (Galliker et al. 2012) and the preparation of high-entropy
materials (Glasscott et al. 2019). Observing nanodroplet impact processes through
direct experimentation is challenging due to the limitations of high-speed cameras.
Consequently, molecular dynamics (MD) simulations, serving as ‘virtual experiments’
have become the primary investigative tool. Through MD simulations, several studies
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(Li, Zhang & Chen 2015; Wang et al. 2019, 2020a,b 2021a,b, 2022a,b, 2023; Xie
et al. 2020) have identified that nanodroplets exhibit distinct dynamics compared with
millimetre-sized droplets, highlighting significant scale effects. One notable scale effect
is the presence of velocity gradients throughout the entire nanodroplet (Li et al. 2015),
as opposed to only in specific regions. This discovery implies that models developed
for macroscale droplets fail to predict βmax at the nanoscale, which is subsequently
proven by Li et al. (2015). In response, recent studies have reevaluated the estimation
of viscous dissipation during spreading, accounting for velocity gradients across the entire
droplet at the nanoscale. Various velocity distributions have been proposed to establish
βmax models (Li et al. 2015; Wang et al. 2019, 2020a,b, 2022b). For example, Wang
et al. (2020a) suggested Vr = Vsrz/(RH) and Vz =−z2Vs/(RH), where R is the spreading
radius, H is the droplet height, r is the coordinate in the spreading direction and Vs is
the spreading velocity. Despite differing assumptions among nanoscale studies, there is
a consensus that viscous dissipation at this scale occurs throughout the entire droplet.
However, the mechanism underlying these scale effects remains unclear. No studies have
directly explored why the similarity in velocity gradients breaks down when transitioning
from macroscale to nanoscale droplets. It is generally believed that due to their minimal
diameters, nanodroplets are entirely within the boundary layer (Li, Li & Chen 2017; Wang
et al. 2020a).

In droplet impact dynamics, the dominant forms of viscous dissipation vary significantly
between the macroscale and nanoscale: at the macroscale, boundary-layer and rim
viscous dissipation predominantly influence the dynamics, while at the nanoscale, viscous
dissipation throughout the entire droplet becomes the critical factor, referring to as
scale effects by recent studies. Nonetheless, it is essential to consider that the internal
flow characteristics of droplets should seamlessly transition from the macroscale to the
nanoscale. Within this context, the major obstacle to understanding scale effects is the
lack of research on impacting droplets at the microscale. Achieving this comprehensive
understanding of droplet impact dynamics across all scales presents significant challenges.
Experimental studies to date have found it challenging to investigate the impact
dynamics of droplets with diameters smaller than 40 μm approximately, primarily due
to the limitations of high-speed camera technology (Visser et al. 2012, 2015). On the
computational front, the typical diameter of droplets studied in current MD simulations
is of the order of 10 nm. This limitation is primarily due to computational performance
constraints, as highlighted in studies by Li et al. (2015, 2017), Wang et al. (2019, 2020a,b,
2021a,b, 2022a,b, 2023), Xie et al. (2020) and Du et al. (2020). Therefore, a noticeable
research gap exists for droplet diameters approximately between 10 nm and 40 μm. This
range, referred to as the microscale in this study, remains a largely unexplored territory.

The recent development of the many-body dissipation particle dynamics (MDPD)
method offers a promising avenue for advancing our understanding of droplet impact
dynamics at the microscale. This innovative coarse-grained numerical method strategically
omits specific atomic-level details while retaining crucial mesoscopic effects. Such an
approach allows for studying larger-scale systems than those typically examined in MD
simulations. This capability of MDPD has been supported by the studies of Warren
(2001, 2003), Nie, Zhong & Fang (2019), Chen, Nie & Fang (2020) and Zhao et al.
(2021). Given its advantage, the MDPD method is expected to be particularly effective
for investigating the impact dynamics of droplets within the microscale range. This
fills the critical gap in current research methodologies, bridging the divide between
nanoscale-focused MD simulations and the limitations of high-speed camera technology
in capturing macroscale phenomena. The application of MDPD thus holds significant
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potential for providing new insights into droplet dynamics at this vital but previously
inaccessible scale.

The primary goal of this research is to decipher the mechanisms of viscous dissipation
during spreading across all scales. This work first addresses the research gap at the
microscale using MDPD simulations. Through these simulations, the velocity distribution
within impacting droplets is meticulously extracted and analysed, gaining insights
into the viscous dissipation mechanisms at the microscale. This analysis is pivotal
in revealing that the progressive flow characteristics shift from the macroscale to the
microscale and eventually to the nanoscale. Tracing this transition reveals how viscous
dissipation mechanisms evolve from the macroscale to the nanoscale. As a result of this
comprehensive study, a full-scale βmax model is developed and validated. This model is
supported by extensive data covering the macroscale, microscale and nanoscale, verifying
the viscous dissipation mechanism throughout the full scales.

2. Simulation method

The MDPD method is a coarse-grained approach wherein each coarse particle symbolises
a cluster of real atoms/molecules. This method ignores atomic details while maintaining
mesoscopic effects (Zhao et al. 2021). Consequently, MDPD simulations are particularly
adept at exploring microscale dynamics. All simulations are implemented using the
LAMMPS (large-scale atomic/molecular massively parallel simulator) software package.
Each simulation includes three steps: the creation of initial systems; the establishment of
interactions between particles; and the implementation of simulation procedures.

As figure 1 shows, the initial step features a water droplet (the map between the MDPD
liquid and water to be discussed later) and a solid substrate. The droplet is positioned at a
distance of 5 DPD units (the units will be elucidated later) from the solid substrate to avoid
premature contact, where the DPD stands for dissipation particle dynamics. Moreover, the
system is filled with gas particles to replicate a nitrogen environment of 100 kPa, similar to
an atmospheric environment. The simulation’s dimensions are 80 × 80 × 48, with periodic
boundary conditions applied along the x- and y-axes and a fixed boundary condition on
the z-axis. The droplet and solid substrate are initially generated using simple cubic crystal
structures.

In MDPD simulations, water–water (w-w), solid–solid (s-s) and water–solid (w-s)
particle interactions are governed by three distinct forces, as proposed by Groot & Warren
(1997) and Warren (2001, 2003). These forces are the conservative force (F C

ij ), the
dissipative force (F D

ij ) and the random force (F R
ij ), i.e.

F ij = F C
ij + F D

ij + F R
ij , (2.1)

where F ij represents the force exerted by particle j on particle i. The mathematical
expressions for these forces are formulated as

F C
ij = Aωc(rij)eij + B(ρi + ρj)ωd(rij)eij, (2.2)

F D
ij = −γdωD(rij)(eijvij)eij, (2.3)

F R
ij = σωR(rij)ξij�t−1/2eij. (2.4)

The relative position and velocity vectors, denoted as eij and vij, are determined by rij/rij
and vi − vj, respectively. In (2.2), the conservative force comprises two components: the
attractive and repulsive forces, modulated by parameters A and B. The weight functions,
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z y

x

Solid particle

Water particle

Nitrogen particle

Figure 1. The schematic of the simulation system containing a droplet above a solid substrate after achieving
equilibrium. The system is filled with nitrogen particles to replicate a nitrogen environment of 100 kPa, similar
to an atmospheric environment.

ωc (for the attractive force) and ωd (for the repulsive force), are computed using the
expressions 1 − rij/rc and 1 − rij/rd, respectively, where rc and rd signify the cutoff
distances for these forces. For accurately simulating the liquid–vapour interface, the
soft repulsion is tailored to depend on local density. The local density ρi is calculated
using the formula ρi = ∑

i /= j ωρ(rij), where ωρ is defined as 15(1 − rij/rd)
2/2πr3

d with
a cutoff distance of rd. According to the fluctuation–dissipation theorem, the dissipative
and random force function is akin to a pairwise Brownian dashpot, and the coefficients
can be expressed as σ 2 = 2γ dkBT, where kB represents the Boltzmann constant, T is the
temperature of the system, γ d and σ are the coefficients for dissipative and random forces,
respectively. When γ d is given, σ can be calculated by the expression. In (2.3) and (2.4),
the weight functions ωD and ωR, which are dependent on the distance r, are computed by
ωD(rij) = ωR(rij)2 = (1 − rij/rc)2. The variable ξ ij is a Gaussian random number with zero
mean and unit variance, and �t denotes the time step used in the simulations.

The MDPD method, with its local-density-dependent soft repulsion, has been proven to
successfully create a stable liquid–vapour interface (Ghoufi, Malfreyt & Tildesley 2016).
Additionally, the dynamics of bulk liquids have been validated through the Navier–Stokes
(NS) equations (Arienti et al. 2011), bolstering confidence in the MDPD method’s ability
to simulate droplet behaviour accurately. Beyond the droplet, the interaction between
solid and liquid is also critical. The MDPD method’s soft potential is recognised as
the reason for enabling the simulation of a more extensive system compared with MD
simulations (Murtola et al. 2009); however, this approach can lead to a challenge: when the
density of solid is low, non-physical penetration by the liquid may occur. A high-density
solid is employed in the present simulations to avoid non-physical penetration of liquid.
Recent studies also proposed various methods to prevent non-physical penetration, such as
modifying the solid–liquid potentials (Li et al. 2018) and employing artificial bounce-back
schemes (Li et al. 2013). Nevertheless, these treatments tend to create a no-slip surface
condition, contradicting the observed slip effect at small scales (Arienti et al. 2011). Hence,
this study does not apply these methods.

The final challenge is establishing a correlation between MDPD-simulated liquids and
their experimental counterparts. The MDPD method, being a coarse-grained approach,
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Parameter Symbol Value

Attractive coefficient Aw-w −40
Repulsive coefficient Bw-w = Bw-s 8
System temperature kBT 1
Dissipation parameter γ d 24
Cutoff radius rc 1
Repulsive interaction range rd 0.89
Time step �t 0.01

Table 1. The parameters of MDPD simulations.

does not focus on specific liquids but on general interactions, as represented in (2.2)–(2.4).
Consequently, while MDPD simulations accurately represent the general dynamics of
liquids (Yamada, Yuan & Sunden 2015), this generality poses difficulties in directly
mapping an MDPD-simulated liquid to an experimental liquid. Fortunately, a significant
advancement was made by Jamali et al. (2015), who introduced a generalised equation
of state for MDPD liquids. This equation enables the calculation of dimensionless
compressibility, effectively bridging the gap between a simulated MDPD liquid and an
experimental one. Based on this work, the simulation parameters are carefully chosen
and set, as shown in table 1, to ensure that the dimensionless compressibility of the
MDPD-simulated liquid aligns with that of water. The values of γ d, rc and rd do not
alter for different pairs of interactions in our simulations. Because the solid particles
are fixed to their positions, the parameters of As−s and Bs−s are not included in this
table. The interactions of nitrogen particles (n-n) and between nitrogen and other particles
(n-w and n-s) are described in see supplementary material and table S1 available at
https://doi.org/10.1017/jfm.2024.911. According to our tests, the density ratio of vapour
to liquid in MDPD simulations is approximately 2.9 × 10−5 when phase equilibrium
between liquid and vapour is achieved. This density ratio closely matches the experimental
value of 2.5 × 10−5 for water, indicating that the MDPD liquid can be mapped to water
in experiments. Additionally, the density ratio of nitrogen gas to liquid in the MDPD
simulation is 1.1 × 10−3, aligning with that of a water droplet in a nitrogen environment
at 100 kPa in experiments. Agreement on these properties facilitates a more accurate and
meaningful comparison between simulations and experiments.

Once the MDPD-simulated liquid is mapped to an experimental one, the relationship
between the actual physical units and the DPD units can be determined using the following
formulae: lreal = [L] × lDPD for length, mreal = [M] × mDPD for mass and treal = [T] × tDPD

for time. The quantities in square brackets indicate the scaling relationships between the
actual and DPD units. Using the parameters in table 1, the density, surface tension and
viscosity of the MDPD liquid are calculated as ρDPD = 6.23, γ DPD = 4 and μDPD =
4.78. In comparison, the properties of water at 300 K in experiments are as follows:
ρ = 996 kg m3, γ = 72 mN m−1 and μ = 854 μPa s. By aligning these physical properties,
the scaling relationships are determined to be [L] = 1.15 × 10−8 m, [M] = 2.43 × 10−22 kg
and [T] = 1.16 × 10−10 s. The diameter of droplets with a DPD diameter of 20 is 230 nm
in the actual physical units.

The parameter Aw−s is not included in table 1 because it is an adjustable parameter to
generate a range of surface wettability. For each value of Aw−s, a droplet is gently placed
on the surface, allowing it to spread and then reach an equilibrium state spontaneously.
Subsequently, the intrinsic contact angle at this Aw−s is determined by fitting the outer
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Aw-s −21 −25 −30 −32 −36 −37
θ /° 164 147 137 125 109 100

cos θ −0.96 −0.84 −0.73 −0.57 −0.33 −0.17

Table 2. Relationships between contact angles and the values of Aw-s.

contour of the droplet and measuring the angle at the three-phase contact line. Table 2 lists
the contact angles used in this work and their corresponding values of Aw−s.

The implementation of simulation comprises two processes. The first is the equilibrium
process, during which the centre of mass of the droplet is held fixed while the system
undergoes relaxation over 200 000 time steps. Once the equilibrium process is completed,
the simulation transitions into the impact process. In this process, the control of the droplet
is released. Concurrently, the droplet is given with a velocity directed towards the substrate,
leading to a variety of outcomes based on impact conditions.

The rarefaction and compressibility effects are discussed at the end of this section.
Recent advancements in small-scale ink-jet printing technology have revealed that ink
droplets can attain high impact velocities of the order of 100 m s−1 (Galliker et al.
2012). Similarly, this study also explores a broad velocity range from 25 to 600 m s−1,
creating a wide range of We spanning three orders of magnitude. This wide range suggests
that the compressibility effect might be significant. The Mach number (Ma = V0/Vsound,
where Vsound represents the speed of sound) is often used to quantify the compressibility
effect. Considering that our simulation system is filled with nitrogen like an atmospheric
environment, Vsound is approximately equal to 340 m s−1, so Ma ranges from 0.07
to 1.76. For Ma > 1.2, the droplet falls in a supersonic regime, indicating a possible
strong compressibility effect. However, neither the experiments by Galliker et al. (2012)
nor simulations from previous studies at the nanoscale (Li et al. 2017; Wang et al.
2021b) report significant compressibility effects. This occurrence can be attributable to
the rarefaction effect that counteracts the compressibility effect. The Knudsen number
(Kn = L/D0, where L is the mean free path of gas molecules) signifies the strength of
rarefaction effects. Based on the kinetic theory of gases, L is computed as kBT/(21/2πd2p)
and is 64.5 nm, where the molecular diameter d is 0.38 nm for nitrogen and gas pressure
p is 100 kPa. As a result, Kn is obtained as 0.28. This Kn value indicates that the gas
environment is in the transitional flow regime, where rarefaction effects are pronounced
(Gad-el-Hak 1999).

In the context of a moving solid particle within a gas environment, several studies (Zarin
1970; Loth 2008) have specifically examined the drag experienced by the particle across
various gas environments and a broad spectrum of relative velocities between particles
and gas environments. The particle Reynolds number, defined as Rep = ρgD0V0/μg =
(πγh/2)1/2Ma/Kn, where γ h is the specific heat ratio, ρg is the gas density and μg
is the gas viscosity, is used to evaluate the relative strengths of compressibility and
rarefaction effects. With the help of experimental data and direct simulation Monte Carlo
method results, Zarin (1970) and Loth (2008) reported a nexus point of compressibility
and rarefaction effects at a specific particle Reynolds number of Rep = 45. At Rep = 45,
regardless of the values of Ma and Kn, the drag of a spherical particle remains constant.
Furthermore, when Rep < 45, Ma is relatively small compared with Kn, so the rarefaction
effect is dominant, thereby supporting the incompressibility of the gas. This is confirmed
by the agreement between the drag data for Rep < 45 and the drag predicted by the
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incompressible theories by Loth (2008). Therefore, Rep < 45 can be a criterion indicating
that compressibility effects will not take place and the gas still satisfies the incompressible
assumption.

This criterion is applicable to droplet impacts because of the following reasons. The
impact of droplets can be divided into two processes: the preimpact flight process
and the impact process itself. In the preimpact flight process, droplets do not undergo
significant deformation, remaining spherical throughout, which validates the applicability
of the Rep < 45 criterion for determining no compressibility effect. In the impact
process, although strong deformation of the droplet occurs, suggesting that the criterion
might not be directly applicable, the rapid deceleration reduces the velocity of droplets
below the threshold that could induce compressibility effects. Based on this reason,
if compressibility effects do not occur during the flight process, they would not take
place in the entire impact process either. Thus, the Rep < 45 criterion is considered
effective for determining the absence of compressibility effects in droplet impacts and
for confirming the incompressibility of the gas. The following aspect interprets the
underlying mechanism of the rarefaction effect counteracting the compressibility effect
(Loth et al. 2021). The compressibility effect tends to increase the pressure on the fore
side of the particle, thereby increasing drag; however, the rarefaction effect can induce
the velocity gradient on the surface, i.e. slip, therefore decreasing drag (Loth et al. 2021).
Therefore, when the rarefaction effect is dominant, the possible compressibility effect can
be effectively counteracted and make the gas still satisfy the incompressible assumption.
In the nitrogen gas environment at 100 kPa, simulated in this work, with ρg = 1.14 kg m−3

and μg = 17.8 μPa s, even at the maximum velocity V0 = 600 m s−1 in our study, Rep
is only 8.9, considerably below the threshold of 45. Consequently, this confirms the
dominance of the rarefaction effect and the gas is incompressible in our simulations.

3. Results and discussion

3.1. Evidence of the existence of scale effects
This section uses βmax as the key parameter to demonstrate the presence of
scale-dependent viscous dissipation mechanisms. An established understanding is that
spreading droplets on smooth surfaces is governed by dimensionless groups, including
We, Oh and θ . According to this concept, if scale effects are absent and the values of all
dominant dimensionless groups remain constant, βmax should be identical at all scales.
Therefore, scale effects are tested by directly comparing βmax values at different scales
while maintaining the same We, Oh and θ .

In MDPD simulations, the value of Oh is 0.21 for MDPD droplets with D0 = 20 (DPD
units). To maintain a consistent Oh of 0.21, the high-viscosity liquid (glycerol–water
mixtures with 85 % glycerol concentration) at the macroscale and the extremely
low-viscosity liquid (mW liquid, with a viscosity of just one-third that of water)
at the nanoscale are chosen. Additionally, the surface wettability is also fixed at
approximately 164°. Figure 2 shows the βmax versus We curves at different scales, with
the macroscale data from the experimental study by Abolghasemibizaki et al. (2019) and
the nanoscale data from this work using MD simulations (detailed method refer to Wang
et al. (2022b)). As We < 30, the maximum spreading factors at different scales show
negligible divergence. However, as We exceeds 30, deviation among the βmax values at
different scales grows with increasing We, contradicting the traditional scale-independent
behaviour. Consequently, this disparity confirms the presence of scale effects between
different scales.
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 Macroscale Oh = 0.21

 Microscale Oh = 0.21

 Nanoscale Oh = 0.21

βmax

We
Figure 2. Comparison of βmax for impacting droplets at the macroscale (Abolghasemibizaki et al. 2019), the

microscale and the nanoscale on superhydrophobic surfaces with θ = 163°, 164° and 165°, respectively.

3.2. Understanding viscous dissipation mechanisms at different scales
This section focuses on analysing the velocity contours of impacting droplets to decipher
the viscous dissipation mechanism at the microscale. With an understanding at the
microscale, the viscous dissipation mechanisms of the macroscale and the nanoscale could
be revisited, and the whole picture of the viscous dissipation mechanism can be unveiled.

The velocity contours for an impacting droplet with a diameter of 230 nm on a surface
with θ = 147° at We = 235.6 is shown in figure 3(a–c). The left-hand sides of the figures
illustrate the contours of Vz, while the right-hand sides display those of Vr. The velocity
profile near the solid wall at r = 7.3 in figure 3(a) is also highlighted in figure 3(d) to
exhibit near-wall velocity gradients. A few observations are noticeable. First, the velocity
gradients in the region highlighted by the blue square resemble those in the boundary
layer seen in macroscale scenarios, i.e. dVr/dz is dominant. The difference is that the
velocity at the liquid–solid interface is non-zero at the microscale against the validity
of the no-slip boundary condition. This occurrence results in a weaker boundary-layer
viscous dissipation than at the macroscale. Second, the spreading rims still occur during
spreading, and Vr peaks at the entrance of spreading rims, as shown in the region marked
by the green square in figure 3(a–c). When entering the rims, Vr rapidly decreases, offering
a substantial gradient of dVr/dr, indicative of rim geometric head loss. Third, within the
bulk droplet, the velocity gradients are also violent but differ markedly from those in
the boundary layer. Unlike dVr/dz observed in the boundary layer, dVr/dr and dVz/dz
dominate the bulk droplet. Such a feature of velocity distribution is named extensional
flow, whose viscous dissipation is mainly attributable to the deformation of droplets.
Consequently, the viscous dissipation mechanism at the microscale is governed by three
types of viscous dissipation: boundary-layer viscous dissipation due to shear flow near
solid surfaces (Edis,boundary); rim head loss at the entrance of spreading rims (Edis,rim); and
bulk viscous dissipation caused by extensional flow from droplet deformation (Edis,bulk).
This mechanism has also been further corroborated by additional observations from
MDPD simulations in broad ranges of We and θ at the microscale.

Previous studies have examined the viscous dissipation mechanisms at both the
macroscale and nanoscale. However, due to the distinct characteristics of velocity gradients
at these scales, they have traditionally been considered opposites (Li et al. 2015; Wang
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Figure 3. (a–c) Velocity contours of microscale droplets impacting surfaces with θ = 147° at We = 235.6.
(d–f ) Velocity profiles near solid walls at the microscale, the macroscale and the nanoscale, respectively.

et al. 2020a). In this study, the viscous dissipation mechanism at the microscale has
been uncovered, offering a valuable link that bridges the gap between the two extreme
scales. This discovery presents a unique opportunity to explore how the viscous dissipation
mechanism transitions from the macroscale to the nanoscale. To this end, the viscous
dissipation mechanisms at the macroscale and the nanoscale are revisited below.

At the macroscale, only two types of dissipation, Edis,boundary and Edis,rim, have been
reported (Wildeman et al. 2016), while Edis,bulk is negligible, to our best knowledge.
The no-slip condition is applicable to the boundary layer, as shown in figure 3(e). The
model incorporating only Edis,boundary and Edis,rim accurately predicts βmax for low Oh
droplets at the macroscale; however, the model would overestimate βmax for high Oh,
with more pronounced overestimation on βmax with increasing Oh (Wildeman et al.
2016). This observation suggests that deformation-induced Edis,bulk is significant at high
Oh. In fact, the droplet-deformation-induced dissipation commonly participates in the
natural and industrial processes. For instance, the freely decaying oscillations of levitated
droplets serve as evidence of this mechanism. In such processes, both Edis,boundary and
Edis,rim are absent due to the lack of solid surfaces and rim formation, leaving only
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deformation-induced Edis,bulk as the dominating dissipation mechanism. Furthermore, as
Oh increases, the damping of oscillations in levitated droplets is significantly enhanced
(Kremer, Kilzer & Petermann 2018), supporting the strong positive correlation between
Edis,bulk and Oh. Therefore, all three types of viscous dissipation coexist for the impact of
macroscale droplets.

At the nanoscale, a consensus has emerged in recent studies acknowledging that
velocity gradients are notably intense throughout entire nanodroplets, and that the viscous
dissipation caused by spreading rims is relatively insignificant (Li et al. 2015, 2017).
Given the minimal scale of nanodroplets, some studies posited that impacting nanodroplets
entirely fall in the boundary layer during impact (Li et al. 2017; Wang et al. 2020a),
suggesting that boundary-layer dissipation is the primary mechanism (Li et al. 2017;
Wang et al. 2020a). However, this viewpoint is worth discussing. The dominant velocity
gradient within the boundary layer is typically dVr/dz. Contrary to this, velocity contours
from Li et al. (2015) and Wang et al. (2019) indicate that gradients dVr/dr and dVz/dz
are violent throughout nanodroplets, contradicting the expected velocity characteristics of
the boundary layer. Secondly, as the droplet scale decreases, the slip effect continuously
enhances, diminishing the strength of boundary-layer dissipation. The slip effect has been
observed at the microscale, as illustrated in figure 3(a–d), and it is more pronounced at the
nanoscale, as figure 3( f ) shows, suggesting a further weak influence of boundary-layer
dissipation. Therefore, it is improbable that the boundary layer alone governs viscous
dissipation at the nanoscale. The observed velocity gradients dVr/dr and dVz/dz align
more closely with deformation-induced gradients in the bulk droplet, indicating that
deformation-induced dissipation might be the predominant mechanism at the nanoscale.
This occurrence can be attributed to the naturally high Oh at the nanoscale. Moreover,
although previous studies have not focused on viscous dissipation due to rims at the
nanoscale, Wang et al. (2023) showed that the rims do form during nanoscale impacts,
particularly at high We. The formation of these rims likely results in a sharp reduction
in radial velocity (Vr) at the entrance of rims, generating Edis,rim. For the boundary-layer
dissipation, although the slip effect is strongly enhanced and almost no boundary-layer
gradients are present in velocity contours at the nanoscale, indicating an almost negligible
intensity of Edis,boundary compared with other dissipation, it still exists owing to the
presence of the solid walls. Therefore, the three types of viscous dissipation (Edis,boundary,
Edis,rim and Edis,bulk) also contribute to the impact at the nanoscale as well.

According to the above discussion, a comprehensive understanding of the viscous
dissipation mechanisms across different scales can be articulated. The decreased scale of
droplets would increase Oh, highlighting the significance of Edis,bulk at both the nanoscale
and microscale. Moreover, Edis,bulk would also become increasingly important as the
viscosity of liquid increases. Therefore, to accommodate a broad range of Oh, Edis,bulk
must be considered throughout the whole scale. Additionally, the presence of walls,
which generate shear flow, ensures that boundary-layer dissipation (Edis,boundary) occurs
at all scales. The critical difference is that the slip effect becomes progressively more
pronounced as the droplet scale decreases, so the strength of Edis,boundary continuously
weakens. Lastly, spreading rims are a consistent observation in impacts across all scales
when We is sufficiently high, approximately 30, as Wildeman et al. (2016) noted. Thus,
the rim geometric head loss, Edis,rim, also plays a crucial role throughout the scale.

3.3. Modelling the maximum spreading factor throughout the whole scale
Revealing the viscous dissipation mechanism is crucial for comprehending the impact
dynamics of droplets; however, directly testing it is exceptionally intractable. The
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maximum spreading factor serves as an extensively concerned feature parameter, and
modelling this factor requires a profound understanding of viscous dissipation mechanism,
making it a valuable bridge for inspecting this mechanism within the scientific community
focused on droplet impact. This section will establish a model of βmax to thoroughly check
the full-scale viscous dissipation mechanism thoroughly. Moreover, this model is also
expected to predict a full spectrum of βmax, covering droplet scales from the macroscale
to the nanoscale.

The model of βmax is established using the energy conservation equation, i.e. (1.1).
Based on the spherical shape of a droplet before impacts, Ek,0 and Es,0 can be expressed
as

Ek,0 = 1
12πρD3

0V2
0 , (3.1)

Es,0 = γπD2
0. (3.2)

Assuming the cylindrical shape of the droplet at the maximum spreading state (Ukiwe &
Kwok 2005), the surface energy at this state could be obtained as

Es,m = πD2
0γ

[
1
4
β2

max(1 − cos θ) + 2
3βmax

]
, (3.3)

where the first term, πD2
0γ βmax

2(1 − cos θ)/4, represents the surface energy of the upper
and lower surfaces of spreading films, and the second term, 2πD2

0γ /(3βmax), stands for
the surface energy of the periphery surface of spreading films. These terms are named
Es,m1 and Es,m2, respectively, for discussion later.

The viscous dissipation during spreading is contributed by three terms, i.e. Edis,boundary,
Edis,bulk and Edis,rim. As a result, the viscous dissipation during spreading can be expressed
as

Edis = Edis,boundary + Edis,bulk + Edis,rim. (3.4)

The expressions of Edis,boundary and Edis,bulk can be obtained by the integration of the
dissipation functions of the shear flow (φs) and the extensional flow (φe), respectively,
expressed as

Edis,boundary =
∫ tsp

0

∫
Ωboundary

φs dΩ dt, (3.5)

Edis,bulk =
∫ tsp

0

∫
Ωbulk

φe dΩ dt, (3.6)

where Ωbulk is the volume occupied by the extensional flow, which approximates the
volume of an entire droplet, and Ωboundary ∼ D2

maxδ is the volume of the boundary layer.
The general dissipation function is

φ = μ

(
∂vi

∂xj
+ ∂vj

∂xi

)
∂vi

∂xj
. (3.7)

Considering Vθ = 0, (3.7) can be simplified to

φ = 2μ

[(
∂Vr

∂r

)2

+
(

Vr

r

)2

+
(

∂Vz

∂z

)2

+ 1
2

(
∂Vr

∂z
+ ∂Vz

∂r

)2
]

. (3.8)

At the macroscale, the no-slip condition holds so that φs can be simplified to ∼μ(V0/δ)2,
as recognised by previous studies (Pasandideh-Fard et al. 1996; Ukiwe & Kwok 2005;
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Wildeman et al. 2016). However, when the droplet diameter decreases from the macroscale
to the nanoscale, the slip effect takes place and is continuously enhanced. To obtain
the whole-scale expression of Edis,boundary, according to figure 3(d), the slip effect is
incorporated to revise the φs to

φs ∼ μ

(
V0

δ + λ
)2

=

⎛
⎜⎝ 1

1 + λ
δ

⎞
⎟⎠

2

× μ

(
V0

δ

)2

= Cslipμ

(
V0

δ

)2

, (3.9)

where λ is the average slip length, and Cslip is the slip factor to describe the slip effect
with its value ranging from 0 (λ→ ∞, free-slip) to 1 (λ= 0, no-slip). Integrating (3.5),
the expression of boundary-layer dissipation is

Edis,boundary ∼ Cslipμ

(
V0

δ

)2

(β2
maxD2

0δ)tsp. (3.10)

According to Wildeman et al. (2016), tsp = (D0/V0)(βmax − 1). This expression has been
validated by impacts on both free-slip and no-slip surfaces, so it is expected to be
universal throughout the scale. The thickness of the boundary layer is estimated by
δ/D0 ∼ [tsp/(Re D0/V0)]1/2 (Eggers et al. 2010; Wildeman et al. 2016). Substituting them
in (3.10), the whole-scale expression of Edis,boundary is obtained as

Edis,boundary = 0.6Cslip
β2

max(βmax − 1)1/2

Re1/2 Ek,0, (3.11)

where the prefactor of 0.6 is determined by Wildeman et al. (2016) by data at the
macroscale.

The velocity distribution in the bulk droplet meets the extensional flow, expressed as
(Wang et al. 2020b, 2024)

Vr = r
R

Vbulk,

Vz = −2z
R

Vbulk,

⎫⎪⎬
⎪⎭ (3.12)

where Vbulk is an equivalent velocity characterising the strength of extensional flow.
Substituting (3.12) in (3.8), the dissipation function for the extensional flow is obtained
as

φe = 48μ
V2

bulk

β2D2
0
. (3.13)

Subsequently, substituting (3.13) in (3.6) and integrating (3.6) with respect to space, the
bulk dissipation is transformed into

Edis,bulk = 8πμD0V2
bulk

∫ tsp

0

1
β2(t)

dt. (3.14)

To ensure consistent estimations of Edis,boundary and Edis,bulk, tsp for calculating Edis,bulk is
also tsp = (βmax − 1)D0/V0. Here, the integration of time can be replaced by the integration
of spreading factor, i.e. dt = (D0/V0) dβ, expressed as

Edis,bulk = 8πμD2
0C2

bulkV0

∫ βmax

1

1
β2 dβ = 8πμD2

0C2
bulkV0

(
1 − 1

βmax

)
, (3.15)

where Cbulk = Vbulk/V0.
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For the rim dissipation, Wildeman et al. (2016) found that it almost always consumes
half of the initial kinetic energy when We > 30, expressed as

Edis,rim = 0.5Ek,0. (3.16)

This expression has been verified for impacting droplets on both free-slip and no-slip
surfaces, so it is expected to be valid throughout the whole scale.

Substituting (3.1)–(3.3), (3.11), (3.15) and (3.16) in (1.1) and normalised by the initial
surface energy, the model of βmax is finally obtained, expressed as

1
12

We + 1 =
[

1
4
β2

max(1 − cos θ) + 2
3βmax

]
+ 1

20
CslipWe3/4Oh1/2β2

max(βmax − 1)1/2

+ 8C2
bulkWe1/2Oh

(
1 − 1

βmax

)
+ 1

24
We. (3.17)

On the left-hand side of this equation, the first and second terms stand for the initial kinetic
energy and initial surface energy, respectively; on the right-hand side, the four terms
represent the surface energy at the maximum spreading state, boundary-layer dissipation,
bulk dissipation and rim dissipation, respectively.

Here, an analysis is presented to demonstrate how the proposed model can effectively
predict the dynamics of impacting droplets across various scales, taking water, a
representative low-viscosity liquid, as an example. Water droplets exhibit an extremely
low Ohnesorge number at the macroscale, approximately O(10−3). Consequently, Edis,bulk,
which is proportional to Oh, becomes negligible compared with Edis,boundary, which is
proportional to Oh1/2. However, as droplet diameter decreases, reaching the microscale or
the nanoscale, the value of Oh for water droplets approaches O(1). This shift results in the
values of Oh and Oh1/2 becoming comparable, making Edis,bulk and Edis,boundary similarly
significant. This observation elucidates why, as the diameter of low-viscosity droplets
reduces from the macroscale to the nanoscale, viscous dissipation becomes increasingly
essential, extending from the boundary layer to the entire droplet. Furthermore, this model
accounts for the change in boundary-layer dissipation across scales. As droplet diameters
decrease from the macroscale to the nanoscale, Cslip decreases due to increased slip length.
This change leads to a spontaneous reduction in boundary-layer dissipation. This trend is
observable in figure 2, where βmax increases with decreasing scale when We, Oh and θ are
held constant. Thus, the model provides a comprehensive perspective on how the dynamics
of impacting droplets evolves with scales.

The proposed model has two independent parameters, Cbulk and Cslip, which govern
the strength of Edis,bulk and Edis,boundary, respectively. Given their independence, these
parameters cannot be determined simultaneously by data fitting. Here, Cbulk, associated
with the dissipation caused by droplet deformation, is expected to remain constant across
all scales. Conversely, Cslip is influenced by the slip effect and thus varies depending on the
scale of droplets. Specifically, Cslip approaches zero at the nanoscale and equals one at the
macroscale. To determine these parameters, Cbulk should be first established by fitting data
from either the nanoscale (Cslip = 0) or macroscale (Cslip = 1). Once Cbulk is determined,
Cslip can be treated as an independent parameter.

This study has collected 16 series of data, including a diverse range of scales: five series
at the macroscale from experiments (Series 1–5) (Stow & Hadfield 1981; Clanet et al.
2004; Antonini, Amirfazli & Marengo 2012; Abolghasemibizaki et al. 2019; Du, Zhang
& Min 2021b); seven series at the microscale from our MDPD simulations (Series 6–12);
and four series at the nanoscale from MD simulations (Series 13–16) (Wang et al. 2020a;
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Figure 4. (a,b) Fitting Cbulk by the data of impacting nanodroplets with Oh = 0.35 on superhydrophobic
surfaces with θ = 148° (Wang et al. 2022b) and of impacting macroscale droplets with Oh = 0.56 on
superhydrophobic surfaces with θ = 120° (Du, Zhang & Min 2021b). (c) Fitting Cslip by the data of impacting
microscale droplets with Oh = 0.21 on hydrophobic surfaces with θ = 125°. (d) The relationship between Cslip
and D0 for water at We = 300 and θ = 125°.

2022b; Zhang et al. 2014). Detailed information about these data series (Series 1–16) is
available in supplementary material (table S2). In parameter determination, only one series
of data from each scale is utilised to obtain Cbulk and Cslip. In contrast, the remaining data
series are employed to validate the robustness and applicability of the proposed model.

Based on the above analysis, one series of nanoscale data (Series 14) is first employed to
determine Cbulk by setting Cslip to 0. Subsequently, one series of macroscale data (Series 4)
is used to validate the universality of the obtained Cbulk, fixing Cslip at 1. As figure 4(a)
illustrates, with Cbulk = 0.4 and Cslip = 0, the proposed model successfully predicts βmax
at the nanoscale. To convince us that Cbulk = 0.4 reasonably describes the velocity fields of
impacting droplets, the velocity fields captured by simulations for the cases at We = 30.6,
45.7 and 73.9 in data Series 14 are used to validate it directly. Satisfactory agreement
between the fitted Cbulk and the values of Cbulk by measuring the velocity fields is found
(see supplementary material for details), directly proving this fitted result, Cbulk = 0.4. It
is important to note that the significance of Edis,bulk is only pronounced for high Oh at the
macroscale. Therefore, for the macroscale validation, βmax data of high-viscosity droplets
(Series 4) from Du et al. (2021b) are chosen. As depicted in figure 4(b), the proposed
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model, with Cbulk = 0.4 and Cslip = 1, also aligns satisfactorily with the βmax data at the
macroscale. This occurrence effectively demonstrates that Cbulk remains constant across
the scales. Furthermore, the model proposed by Wildeman et al. (2016) is also included
for comparison in figure 4(b). For droplets with high Oh at the macroscale, our model,
which accounts for deformation-induced bulk dissipation, exhibits significantly improved
accuracy. This comparison preliminarily validates the effectiveness and accuracy of our
proposed model in capturing the dynamics of droplet impacts across various scales.

Since Cslip varies with droplet scale, it cannot be straightforwardly determined through
simple data fitting. In addition to the traditional dimensionless group (We, Re and
θ ) dominating the impact dynamics, the slip length also becomes a key parameter
when considering dynamics across scales, which can be non-dimensionalised by D0.
Therefore, Cslip should be Cslip = fslip(We, Re, λ/D0, θ ). Considering the estimation of
δ ∼ D0[(βmax − 1)/(Re)]1/2 previously used in the derivation of (3.11), the key ratio, λ/δ,
can be expressed as

λ

δ
∼ λRe1/2

D0(βmax − 1)1/2 . (3.18)

Incorporating this scaling relationship into Cslip = (1 + λ/δ)−2, with a dimensionless
prefactor c, yields Cslip as

Cslip =
(

1 + cλRe1/2

D0(βmax − 1)1/2

)−2

. (3.19)

The parameters, Re and λ/D0, are explicitly considered; while the dependence of We and
θ is implicitly included in βmax. Here, λ is a material property, depending on the liquid
involved and the substrate. In MDPD simulations, the liquid is fixed and only the contact
angle is altered for the substrate. According to McBride & Law (2009), λ is not sensitive
to the wettability of molecularly smooth hydrophobic surfaces. Therefore, λ= 4.6 nm
measured from MDPD simulations, as shown in figure 3(d), is available for all MDPD
cases in this study. When other liquids are considered or the property of substrates changes
significantly, λ should be remeasured to obtain the correct one corresponding to the impact
condition.

The dimensionless prefactor, c, is determined by fitting MDPD data. As shown in
figure 4(c), for MDPD data of 230 nm water droplets (Series 8), fixing λ= 4.6 nm and
using c = 4, the proposed model can align well with the data. Figure 4(d) shows the
relationship between Cslip and D0 at fixed We = 300, θ = 125° and λ= 4.6 nm for water.
It is worth restating that the current literature has shown that Cslip = 0 for D0 < 10 nm
(Li et al. 2015; Wang et al. 2020b; Xie et al. 2020) and Cslip = 1 for D0 > 40 μm
(Wildeman et al. 2016). The predicted relationship of Cslip intriguingly approaches zero at
the nanoscale and one at the macroscale, preliminarily validating the expression of Cslip.

3.4. Validation of the βmax model
In this section, the established model of βmax will be validated by data from the macroscale
(Series 1–3 and 5), microscale (Series 6, 7 and 9–12) and nanoscale (Series 13, 15
and 16). For microscale data, Cslip is calculated by λ= 4.6 nm as mentioned above.
Nonetheless, the lack of λ for macroscale and nanoscale data is an obstacle to validating
the model. Fortunately, the orders of magnitude for D0 are O(1 mm) at the macroscale
and O(10 nm) at the nanoscale; therefore, Cslip = 1 and Cslip = 0 are reasonably used for
respective scale data according to the literature (Li et al. 2015; Wildeman et al. 2016;
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Figure 5. (a) Validating the proposed model and the model of Wildeman et al. (2016) by macroscale data of
βmax in wide ranges of We from 8 to 6815, Oh from 0.002 to 1.05 and θ from 90° to 163°. The data are marked
by blue (Antonini, Amirfazli & Marengo 2012), green (Stow & Hadfield 1981), red (Abolghasemibizaki et al.
2019) and orange (Clanet et al. 2004) points, respectively. (b) The proportion of the surface energy of the
periphery surface (Es,m2) to the one of the upper and lower surfaces (Es,m1) and (c) the proportion of the bulk
dissipation (Edis,bulk) to the boundary-layer one (Edis,boundary).

Wang et al. 2020b; Xie et al. 2020). In addition, the widely recognised model of βmax
(Wildeman et al. 2016) that considers two kinds of viscous dissipation (Edis,boundary and
Edis,rim) has been examined at the macroscale and is also tested by these series of data
to present how the added or modified energy terms in the proposed model affect the
prediction results.

Here, the two models are tested first by four series of data at the macroscale,
as shown in figure 5(a), with Series 1, millimetre-sized water droplets (Oh = 0.002)
impacting superhydrophobic surfaces (Antonini et al. 2012); Series 2, millimetre-sized
water droplets (Oh = 0.003) impacting weakly hydrophobic surfaces (Stow & Hadfield
1981); Series 3, millimetre-sized glycerol−water droplets (Oh = 0.21) impacting
superhydrophobic surfaces (Abolghasemibizaki et al. 2019); Series 5, millimetre-sized
silicone oil droplets (Oh = 1.05) (Clanet et al. 2004) impacting weakly hydrophobic
surfaces. Based on these data series, extensive parametric ranges are covered, i.e.
8 ≤ We ≤ 6815, 0.002 ≤ Oh ≤ 1.05, 90° ≤ θ ≤ 163°.

For low-viscosity droplets (Series 1–2), both the proposed model and the model by
Wildeman et al. (2016) demonstrate equally high prediction accuracy when We exceeds
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100. This similarity in accuracy is attributed to the fact that the added energy terms in the
current model (Edis,bulk and Es,m2) are relatively insignificant compared with the existing
terms (Edis,boundary and Es,m1). This inference is supported by the energy proportions
(Edis,bulk/Edis,boundary and Es,m2/Es,m1) extracted from the present model, as depicted
in figure 5(b,c). However, as We drops below 100, the dynamics accordingly changes:
the spreading film at the maximum spreading state becomes thicker, and the maximum
spreading factor (βmax) is reduced. Consequently, Es,m2 becomes a non-negligible factor
compared with Es,m1. In this lower We range, the present model, which includes Es,m2,
delivers a more accurate prediction of βmax than the model of Wildeman et al. (2016). This
enhanced accuracy in lower We scenarios underscores the importance of incorporating
comprehensive energy terms to fully capture the dynamics of droplet spreading.

For high-viscosity droplets (Series 3), both the present model and the model by
Wildeman et al. (2016) struggle to align with the data when We < 30. The current model
tends to underestimate βmax in this range, which can be attributed to the difficulty in
forming spreading rims at these Weber numbers. This limitation is also evident in the
model of Wildeman et al. (2016); however, their model tends to overestimate βmax because
it does not consider Edis,bulk and Edis,m2. As We exceeds 30, the present model, which
considers all forms of viscous dissipation, aligns satisfactorily with the data in both Series
3 and 4. This comprehensive approach is particularly crucial for high-viscosity droplets at
the macroscale, where the effect of Edis,bulk becomes significant. This aspect of viscous
dissipation is not included in the model by Wildeman et al., leading to their model showing
a substantial overestimation of βmax in these scenarios. Therefore, including Edis,bulk in
the present model provides a more accurate representation of the spreading dynamics for
high-viscosity droplets.

At the microscale, six data series (Series 6, 7 and 9–12) are employed to evaluate both
the present model and the model by Wildeman et al. (2016). The first five series encompass
a wide range of We from 3 to 930 and θ from 86° to 174° for droplets with a diameter of
D0 = 230 nm. The last series covers We from 50 to 1000, with θ = 125° and D0 = 1.15 μm.
As depicted in figure 6(a,b), the model of Wildeman et al. (2016) fails to predict the
results in the first five series. For We < 90, it overestimates βmax due to the non-negligible
contribution of Es,m2 compared with Es,m1 in this low We range. More importantly, their
model does not account for the increasing importance of Edis,bulk at the microscale,
attributable to higher Oh due to reduced droplet scales. As We > 90, the model conversely
underestimates βmax, indicating an overestimation of boundary-layer dissipation due to
the slip effect as they fixed Cslip = 1. The present model, however, incorporates not only
Edis,bulk and Es,m2 but also across-scale boundary-layer dissipation. Figure 6(a,b) shows
that the present model aligns satisfactorily with MDPD simulation results. Further analysis
of Edis,bulk/Edis,boundary and Es,m2/Es,m1 extracted from the present model, as shown in
figure 6(c,d), reveals that at low We, Es,m2 and Edis,bulk are more significant than Es,m1
and Edis,boundary. This observation supports the idea that the overestimation of the model
of Wildeman et al. (2016) is the lack of these terms at low Weber numbers. At high Weber
numbers, Es,m2 and Edis,bulk become negligible, affirming the dominance of Es,m1 and
Edis,boundary and verifying the underestimation of βmax by the model Wildeman et al.
(2016) due to overestimated no-slip boundary-layer dissipation. To further validate the
proposed expression for Cslip and the present model, Series 12 with larger D0 = 1.15 μm
at θ = 125° is also included in the comparison, as shown in figure 6(e). As anticipated, the
model shows satisfactory agreement with simulation data, underscoring the universality
and reliability of the expression of Cslip.

Eventually, the two models are tested by three series of nanoscale data, with Series
13, mW nanodroplets (Oh = 0.35) impacting hydrophobic surfaces (Wang et al. 2020a,b);
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Figure 6. (a) Validating the proposed model and the model of Wildeman et al. (2016) by the MDPD data on
(a) weak hydrophobic surfaces with θ from 100° to 109° and on (b) highly hydrophobic surfaces with θ from
138° to 174°. (c) The proportion of the surface energy of the periphery surface (Es,m2) to the one of the upper
and lower surfaces (Es,m1) and (d) the proportion of the bulk dissipation (Edis,bulk) to the boundary-layer one
(Edis,boundary). (e) Validating the models by a larger water droplet with D0 = 1.15 μm at θ = 125°.

Series 15, mW nanodroplets (Oh = 0.35) impacting superhydrophobic surfaces; Series 16,
Ar nanodroplets (Oh = 0.48) impacting superhydrophobic surfaces (Zhang et al. 2014).
These data series span a wide range of We, Oh and θ . The enhanced slip effect at the
nanoscale significantly reduces the boundary-layer viscous dissipation, rendering it almost
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Figure 7. (a) Validating the proposed model and the model of Wildeman et al. (2016) by the data of βmax for
impacting droplets at the nanoscale in wide ranges of We, Oh and θ from 1 to 290, from 0.35 to 0.48 and from
125° to 180°, respectively (Wang et al. 2020a, 2022b; Zhang et al. 2014). (b) The proportion of the surface
energy of the periphery surface (Es,m2) to the one of the upper and lower surfaces (Es,m1).

negligible. Additionally, the increased Oh at this scale makes Edis,bulk more significant.
Similar to observations at the microscale, the model Wildeman et al. (2016) tends to
overestimate βmax in the low We range but underestimates it in the high We range, as shown
in figure 7(a). In contrast, the proposed model effectively accounts for these changes,
accurately capturing the boundary-layer viscous dissipation at the nanoscale. As shown
in figure 7(a), the proposed model successfully predicts the data across these nanoscale
series. In addition, the energy proportion Es,m2/Es,m1 is extracted from the proposed model
(figure 7b). This ratio reinforces the reasoning behind the inaccuracy of the model of
Wildeman et al. (2016) to predict βmax at the nanoscale, emphasising the importance
of incorporating Edis,bulk and including slip effect for Edis,boundary to achieve accurate
predictions in droplet impact dynamics.

4. Caveats and future directions

This section comments on the three forms of viscous dissipation, including Edis,bulk,
Edis,boundary and Edis,rim, for an impacting droplet at different scales. The current analysis
confirms that Edis,bulk dominates across the scales, as supported by the extensive testing
previously discussed. Similarly, Edis,boundary is also essential throughout the whole scale.
Regarding Edis,rim, proposed as 0.5Ek,0 by Wildeman et al. (2016) and adopted in this
study, it is only effective when We exceeds 30. Below this threshold, spreading rims are
difficult to form, eliminating the corresponding geometric head loss. This criterion for
Edis,rim has been validated within the tested Oh range from 0.002 to 1.05. However, at a
higher Oh of 1.54, no rim is observed even with We of 105, according to snapshots reported
by Wang et al. (2019). Consequently, the proposed model significantly underestimates
βmax over a wide We range from 15 to 105 when Edis,rim is included (figure 8). Removing
Edis,rim from the model yields accurate predictions of βmax for droplets with extremely
high Oh, proving the possible disappearance of Edis,rim in these conditions. Therefore,
future research should also explore the criterion for Edis,rim about not only We but also Oh,
especially for droplets with extremely large Oh.
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Figure 8. Validating the proposed model by the MD data of βmax by viscous impacting nanodroplets at
Oh = 1.54 (Wang et al. 2019).

5. Conclusions

The impact dynamics of droplets at both the macroscale and the nanoscale have been
extensively studied, revealing distinct behaviours at these extreme scales. Previous studies
have attributed these differences to scale effects, suggesting that the droplet scale change
dramatically alters the viscous dissipation mechanism. However, the underlying nature of
how this mechanism evolves from the macroscale to the nanoscale has yet to be discovered.
This study uses the MDPD simulation method to investigate impacting droplets on
solid surfaces at the microscale. The aim is to bridge the gap between macroscale and
nanoscale dynamics, shedding light on the continuous transition of the viscous dissipation
mechanism across all scales.

From the velocity distribution extracted by MDPD simulations, three distinct forms of
viscous dissipation are identified during spreading: bulk dissipation (Edis,bulk) induced
by droplet deformation; boundary-layer dissipation (Edis,boundary) caused by shear flow
near solid surfaces; rim dissipation (Edis,rim) due to geometric head loss at the entrance of
spreading rims. Subsequently, based on this insight, the viscous dissipation mechanisms at
the macroscale and the nanoscale are revisited, and these three kinds of viscous dissipation
are found to exist throughout the whole scale. Specifically, Edis,bulk is strongly influenced
by Oh, with its significant increasing as decreasing droplet scale. The term Edis,boundary
is sensitive to slip effects that become more pronounced with reducing scale, leading to a
reduction in this form of dissipation. The term Edis,rim depends solely on rim formation
and maintains consistent strength across scales, provided that spreading rims are formed.

Based on this comprehensive understanding of viscous dissipation mechanisms
throughout scales, a βmax model that incorporates all these forms of dissipation is
established. This model, validated with data spanning a wide range of We, Oh and θ ,
from the macroscale (millimetre-sized droplets), microscale (D0 = 230 nm and 1.15 μm)
and nanoscale (nanometre-sized droplets), demonstrates robust predictive power for βmax.
Consequently, this work validates the full-scale viscous dissipation mechanism and
provides a vital link in understanding the continuum of droplet impact behaviours from
the macroscale to the nanoscale.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.911.
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