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Abstract

Mixed norm inequalities for directional operators are closely related to the boundedness problems of
several important operators in harmonic analysis. In this paper we prove weighted inequalities for some
one-dimensional one-sided maximal functions. Then by applying these results, we establish mixed norm
inequalities for directional maximal operators which are defined from these one-dimensional maximal
functions. We also estimate the constants in these inequalities.
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1. Introduction

Let Σn−1 be the unit sphere in Rn and Ω be a given function over Rn × Σn−1. In [2]
Calderón and Zygmund considered homogeneous singular integrals with variable
kernel defined by

TΩ f (x) = p.v.
∫
Rn

Ω(x, y′)|y|−n f (x − y) dy,

where y′ = y/|y|. If Ω is odd in its second variable, then TΩ can be represented as

TΩ f (x) =
1
2

∫
Σn−1

Ω(x, θ)Hθ f (x) dθ.

Here Hθ is the directional Hilbert transform defined by

Hθ f (x) = p.v.
∫
R

f (x − tθ)t−1 dt, x ∈ Rn.

The boundedness of TΩ on Lp(Rn), 1 < p <∞, can be obtained if (
∫

Σn−1 Ω(x, θ)r∗ dθ)1/r∗

is bounded as a function of x, where 1 ≤ r ≤∞ and 1/r + 1/r∗ = 1, and if the mixed
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norm inequality(∫
Rn

(∫
Σn−1
|S θ f (x)|r dθ

)q/r

dx
)1/q

≤C
(∫
Rn
| f (x)|p dx

)1/p

(1.1)

holds for S θ = Hθ and q = p; see [2, 3]. Here we let S θ to be a directional operator
defined from some one-dimensional operator. Consider the Riesz potentials

Iα,Ω f (x) =

∫
Rn

Ω(x, y′)|y|α−n f (x − y) dy, 0 < α < n.

We can write

Iα,Ω f (x) =
1
2

∫
Σn−1

Ω(x, θ)Iα,θ f (x) dθ,

where Iα,θ f (x) =
∫
R

f (x − tθ)|t|α−1 dt is the directional Riesz potential. The bounded-
ness of Iα,Ω from Lp(Rn) to Lq(Rn) is closely related to (1.1) for S θ = Iα,θ; see [10, 11].
The study of some types of maximal functions and maximal singular integrals rely
on (1.1) for S θ = Mθ, where

Mθ f (x) = sup
h>0

1
h

∫ h

0
| f (x − tθ)| dt;

see [6, 7, 10–12]. Several similar results can also be found in [1, 4, 5, 8, 9], and the
references therein.

In this paper we extend Mθ to a more general formM−φ,θ and investigate the mixed
norm inequality(∫

Rn

(∫
Σn−1

Ω(x, θ)M−φ,θ f (x)r dθ
)q/r

dx
)1/q

≤CΩ

(∫
Rn
| f (x)|p dx

)1/p

(1.2)

for 1 ≤ r ≤ q ≤ p <∞, where Ω is a nonnegative function onRn × Σn−1. The directional
maximal operator M−φ,θ is defined as follows. Let φ be a nonnegative measurable
function defined on D = {(z, t) ∈ R2 : t < z}. For any measurable function f on R, we
define the one-sided maximal function as

M−φ f (z) := sup
s<z

1∫ z

s
φ(z, t) dt

∫ z

s
φ(z, t)| f (t)| dt, z ∈ R. (1.3)

Let θ ∈ Σn−1, Lθ = {aθ : a ∈ R}, and let L⊥θ be the orthogonal complement of Lθ in Rn.
For any x ∈ Rn, there exists a unique x1 ∈ R and x̄ ∈ L⊥θ such that x = x1θ + x̄. For any
measurable function f on Rn, we define the directional maximal functionM−φ,θ f from
M−φ f by

M−φ,θ f (x) := sup
h>0

1∫ h

0
φ(x1, x1 − y) dy

∫ h

0
φ(x1, x1 − y)| f (x − yθ)| dy, x ∈ Rn.
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If φ ≡ 1, thenM−φ,θ = Mθ. Using Hölder’s inequality, we see that the boundedness of
operators of the form

TΩ f (x) =

∫
Σn−1

Ω(x, θ)M−φ,θ f (x) dθ

from Lp(Rn) to Lq(Rn) is closely related to (1.2). The purpose of this paper is to
establish (1.2) for 1 ≤ r ≤ q ≤ p <∞. Based on the idea given in [9, Section 4.3], we
show that (1.2) can be obtained by norm inequalities for M−φ . In general, we consider
the weighted inequality(∫

R

M−φ f (z)qu(z) dz
)1/q

≤Cφ

(∫
R

| f (z)|pv(z) dz
)1/p

, (1.4)

where 1 < p, q <∞, u and v are weights, and the constant Cφ is independent of f . Here
a weight is a locally integrable function which is positive almost everywhere on R. We
prove (1.4) under some increasing conditions on φ and also give the estimates of Cφ.
Then the particular case p = q and u = v ≡ 1 of (1.4) is applied to obtain (1.2). We also
establish the estimates of CΩ.

Throughout this paper, we assume that all functions are measurable on their
domains. For 0 < z <∞, we define z∗ by 1/z + 1/z∗ = 1. We also take 00 =∞0 = 1
and∞/∞ = 0/0 = 0 · ∞ = 0.

2. Main results

We first show that (1.2) can be obtained by (1.4). The method of the proof is based
on the idea given in [9, Section 4.3].

T 2.1. Let 1 ≤ r ≤ q ≤ p <∞. Let Ω be a nonnegative function on Rn × Σn−1.
Suppose that there exist 1 ≤ β ≤ q/r, 0 ≤ m ≤ β∗, and a positive function w on Σn−1

such that

U(β, m) :=
(∫

Σn−1

(∫
Rn

A(x, θ)p/(p−q) dx
)rβ(p−q)/pq

w(θ)1−β dθ
)1/rβ

<∞, (2.1)

where

A(x, θ) = Ω(x, θ)(1−m/β∗)q/r
(∫

Σn−1
Ω(x, τ)mw(τ) dτ

)q/rβ∗

.

If (1.4) holds for p = q and u = v ≡ 1 with constant Cφ, then we obtain (1.2) with

CΩ ≤CφU(β, m). (2.2)

P  T 2.1. Since∫
Σn−1

Ω(x, θ)M−φ,θ f (x)r dθ

=

∫
Σn−1

Ω(x, θ)1−m/β∗+m/β∗Mφ,θ f (x)rw(θ)1/β∗−1/β∗ dθ

≤ ωm(x)1/β∗
(∫

Σn−1
Ω(x, θ)(1−m/β∗)βM−φ,θ f (x)βrw(θ)1−β dθ

)1/β

,
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where ωm(x) =
∫

Σn−1 Ω(x, τ)mw(τ) dτ, by Minkowski’s integral inequality(∫
Rn

(∫
Σn−1 Ω(x, θ)M−φ,θ f (x)r dθ

)q/r

dx
)1/q

≤

(∫
Rn

(∫
Σn−1 Ω(x, θ)(1−m/β∗)βM−φ,θ f (x)βrw(θ)1−β dθ

)q/rβ

ωm(x)q/rβ∗ dx
)1/q

≤

(∫
Σn−1

(∫
Rn M

−
φ,θ f (x)qA(x, θ) dx

)rβ/q

w(θ)1−β dθ
)1/rβ

,

(2.3)

where A(x, θ) = Ω(x, θ)(1−m/β∗)q/rωm(x)q/rβ∗ . We have∫
Rn
M−φ,θ f (x)qA(x, θ) dx ≤

(∫
Rn
M−φ,θ f (x)p dx

)q/p(∫
Rn

A(x, θ)p/(p−q) dx
)(p−q)/p

.

(2.4)

If (1.4) holds for p = q and u = v ≡ 1 with constant Cφ, then∫
Rn
M−φ,θ f (x)p dx =

∫
L⊥θ

∫
R

M−φ,θ f (x1θ + x̄)p dx1 dx̄

=

∫
L⊥θ

∫
R

M−φ ( f (·θ + x̄))(x1)p dx1 dx̄

≤Cp
φ

∫
L⊥θ

∫
R

| f (x1θ + x̄)|p dx1 dx̄ = Cp
φ

∫
Rn
| f (x)|p dx.

(2.5)

Putting (2.3)–(2.5) together yields (1.2) and (2.2). �

In the case p = q, the item (
∫
Rn A(x, θ)p/(p−q) dx)rβ(p−q)/pq in (2.1) is understood to

be (supx∈Rn A(x, θ))rβ/q. If β = 1, then (2.1) can be reduced to

U(1, m) =

(∫
Σn−1

(∫
Rn

Ω(x, θ)pq/(pr−qr) dx
)r(p−q)/pq

dθ
)1/r

<∞.

If β = q/r, then 0 ≤ m ≤ (q/r)∗ and (2.1) can be reduced to

U(q/r, m) =

(∫
Σn−1

(∫
Rn

A(x, θ)p/(p−q) dx
)(p−q)/p

w(θ)1−q/r dθ
)1/q

<∞,

where

A(x, θ) = Ω(x, θ)m+(1−m)q/r
(∫

Σn−1
Ω(x, τ)mw(τ) dτ

)q/r−1

.

On the other hand, if Ω is independent of x, then we simply write Ω(x, θ) = Ω(θ). In
the case p = q, U(β, m) in (2.1) is reduced to

U(β, m) =

(∫
Σn−1

Ω(θ)mw(θ) dθ
)1/rβ∗(∫

Σn−1
Ω(θ)(1−m/β∗)βw(θ)1−β dθ

)1/rβ

.
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If we choose β = p/r, then there are three particular cases:

U(p/r, 0) =

(∫
Σn−1

w(θ) dθ
)1/r−1/p(∫

Σn−1
Ω(θ)p/rw(θ)1−p/r dθ

)1/p

U(p/r, (p/r)∗) =

(∫
Σn−1

Ω(θ)p/(p−r)w(θ) dθ
)1/r−1/p(∫

Σn−1
w(θ)1−p/r dθ

)1/p

U(p/r, 1) =

(∫
Σn−1

Ω(θ)w(θ) dθ
)1/r−1/p(∫

Σn−1
Ω(θ)w(θ)1−p/r dθ

)1/p

.

The following theorem can be proved by a similar proof to that given in [13,
Lemma 21.75 and Theorem 21.76].

T 2.2. Let 1 < p <∞. Suppose that σ is a locally integrable function which is
positive almost everywhere on R. Let M−σ be defined as in (1.3) with φ(z, t) replaced
by σ(t). Then for any nonnegative f on R,(∫

R

M−σ f (z)pσ(z) dz
)1/p

≤ p∗
(∫
R

| f (z)|pσ(z) dz
)1/p

.

In the following we establish (1.4) under some increasing conditions on φ. Suppose
that 1 < p, q <∞, u and v are weights, and σ = gp∗v1−p∗ . Then for 0 ≤ ε ≤min{1, p/q}
we define

Uε
φ(z) = sup

s<z

1∫ z

s
φ(z, t) dt

∫ z

s
φ(z, t)

σ

g
(t)

(∫ z

t
σ(y) dy

)(ε−1)/p

dt, (2.6)

Uε
φ =

(∫
R

Uε
φ(z)pq/(p−εq)u(z)p/(p−εq)σ(z)εq/(εq−p) dz

)(p−εq)/pq

.

In the case p ≤ q and ε = p/q, it is understood that

Uε
φ = sup

z∈R
Uε
φ(z)(u(z)/σ(z))1/q.

T 2.3. Let 1 < p, q <∞. Suppose that φ = gψ, where g is a function positive
almost everywhere on R, ψ is a nonnegative function defined on D, and ψ(z, ·) is
increasing and left continuous for each z ∈ R. Suppose that u and v are weights such
that σ = gp∗v1−p∗ is locally integrable. Then (1.4) holds with

Cφ ≤ inf
0≤ε≤min{1,p/q}

( 1
p∗

+
ε

p

)
(p∗)εUε

φ. (2.7)

P. It suffices to prove (1.4) for nonnegative f . Let a < z. Let Λψ(z,·) be the
Lebesgue–Stieltjes measure on (−∞, z) generated by ψ(z, ·) defined by Λψ(z,·)([a, b)) =

ψ(z, b) − ψ(z, a) for [a, b) ⊂ (−∞, z). Then ψ(z, t) = ψ(z, a) +
∫

[a,t)
dΛψ(z,·) for all a <

t < z. Let h = (g/v)1−p∗ f . By Fubini’s theorem we see that, for any nonnegative f ,∫ z

a
φ(z, t) f (t) dt = ψ(z, a)

∫ z

a
σ(t)h(t) dt +

∫
[a,z)

(∫ z

s
σ(t)h(t) dt

)
dΛψ(z,·). (2.8)
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Let M−σ be defined as in (1.3) with φ(z, t) replaced by σ(t). Then∫ z

s
σ(t)h(t) dt ≤

(∫ z

s
σ(t) dt

)
M−σh(z)

for a ≤ s < z. On the other hand, by Hölder’s inequality,∫ z

s
σ(t)h(t) dt ≤

(∫ z

s
σ(t) dt

)1/p∗(∫
R

h(t)pσ(t) dt
)1/p

.

Therefore, for any 0 ≤ ε ≤min{1, p/q},∫ z

s
σ(t)h(t) dt ≤

(∫ z

s
σ(t) dt

)1/p∗+ε/p

M−σh(z)ε
(∫
R

h(t)pσ(t) dt
)(1−ε)/p

(2.9)

for a ≤ s < z. By (2.8)–(2.9),∫ z

a
φ(z, t) f (t) dt ≤ Ψ(z)M−σh(z)ε

(∫
R

h(t)pσ(t) dt
)(1−ε)/p

,

where

Ψ(z) = ψ(z, a)
(∫ z

a
σ(t) dt

)1/p∗+ε/p

+

∫
[a,z)

(∫ z

s
σ(t) dt

)1/p∗+ε/p

dΛψ(z,·).

If ψ(z, ·) is bounded on (−∞, z), then, using integration by parts,

Ψ(z) =

( 1
p∗

+
ε

p

) ∫ z

a
ψ(z, s)σ(s)

(∫ z

s
σ(t) dt

)(ε−1)/p

ds.

This implies that∫ z

a
φ(z, t) f (t) dt ≤

( 1
p∗

+
ε

p

)
M−σh(z)ε

(∫
R

h(t)pσ(t) dt
)(1−ε)/p

×

∫ z

a
ψ(z, s)σ(s)

(∫ z

s
σ(t) dt

)(ε−1)/p

ds.
(2.10)

This inequality still holds when ψ(z, ·) is not bounded on (−∞, z) since we can replace
ψ by ψm in (2.10), where {ψm(z, ·)} is an increasing sequence of bounded increasing
and left continuous functions such that ψm(z, ·)→ ψ(z, ·) as m→∞, and then by letting
m→∞ and applying the monotone convergence theorem. Therefore

M−φ f (z) ≤
( 1

p∗
+
ε

p

)
Uε
φ(z)M−σh(z)ε

(∫
R

h(t)pσ(t) dt
)(1−ε)/p

.

Now (∫
R

M−φ f (z)qu(z) dz
)1/q

≤

( 1
p∗

+
ε

p

)(∫
R

M−σh(z)qεUε
φ(z)qu(z) dz

)1/q(∫
R

h(z)pσ(z) dz
)(1−ε)/p

.
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By Hölder’s inequality,∫
R

M−σh(z)qεUε
φ(z)qu(z) dz ≤ (Uε

φ)q
(∫
R

M−σh(z)pσ(z) dz
)qε/p

≤ (p∗)qε(Uε
φ)q

(∫
R

h(z)pσ(z) dz
)qε/p

.

This implies (1.4) with Cφ ≤ (1/p∗ + ε/p)(p∗)εUε
φ. This estimate holds for arbitrary

0 ≤ ε ≤min{1, p/q} and therefore (2.7) is obtained. �

If we choose ε = 0, then (2.7) can be reduced to

Cφ ≤
1
p∗

(∫
R

U0
φ(z)qu(z) dz

)1/q

,

where U0
φ(z) is given in (2.6) with ε = 0. In the case q < p, if we choose ε = 1, then

U1
φ(z) = M−φ (σ/g)(z) and (2.7) can be reduced to

Cφ ≤ p∗
(∫
R

M−φ (σ/g)(z)pq/(p−q)u(z)p/(p−q)σ(z)q/(q−p) dz
)(p−q)/pq

.

In the case p ≤ q, if we choose ε = p/q, then the estimate in (2.7) is reduced to

Cφ ≤

( 1
p∗

+
1
q

)
(p∗)p/q sup

z∈R
U p/q
φ (z)

( u(z)
σ(z)

)1/q

, (2.11)

where U p/q
φ (z) is given in (2.6) with ε = p/q. In particular, if p = q and u = v,

then (2.11) is reduced to

Cφ ≤ p∗ sup
z∈R

M−φ (σ/g)(z)(g(z)/σ(z)).

If g/v is increasing, then M−φ (σ/g)(z) ≤ σ(z)/g(z) and so Cφ ≤ p∗.

C 2.4. Let 1 < p <∞. Suppose that φ = gψ, where g is a locally integrable
function which is positive almost everywhere on R, ψ is a nonnegative function defined
on D, and ψ(z, ·) is increasing and left continuous for each z ∈ R. Suppose that v is a
weight such that g/v is increasing. Then(∫

R

M−φ f (z)pv(z) dz
)1/p

≤ p∗
(∫
R

| f (z)|pv(z) dz
)1/p

.

The following corollary can be obtained by Theorem 2.1 and Corollary 2.4 with
v ≡ 1.

C 2.5. Let 1 ≤ r ≤ q ≤ p <∞. Let Ω, β, m, and w be given as in Theorem 2.1.
Suppose that φ = gψ, where g and ψ are as given in Corollary 2.4, and g is increasing.
Then (1.2) holds with

CΩ ≤ p∗U(β, m),

where U(β, m) is defined in (2.1).
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