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Abstract

The aim of this paper is to provide the conditions necessary to reduce the complexity
of state filtering for finite stochastic systems (FSSs). A concept of lumpability for FSSs
is introduced. In this paper we assert that the unnormalised filter for a lumped FSS has
linear dynamics. Two sufficient conditions for such a lumpability property to hold are
discussed. We show that the first condition is also necessary for the lumped FSS to have
linear dynamics. Next, we prove that the second condition allows the filter of the original
FSS to be obtained directly from the filter for the lumped FSS. Finally, we generalise an
earlier published result for the approximation of a general FSS by a lumpable FSS.
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1. Introduction

In this paper we deal with a class of homogeneous Markov chains (MCs) {(Y;, X;)};en With
finite state space Y x X and whose transition probabilities satisfy

P{(Yi11, Xi41) = (3, %) | (X1, YD)} =P{(Yy41, Xip1) = (v, %) | Xi}
= Dy(X;, x). (1

Such a Markov model is called a finite stochastic system (FSS) in [1], [15], and [18], and is
parameterised by the family of matrices (Dy, y € Y). A direct consequence of (1) is that
{X:}sen 1s a Markov chain with transition probabilities

P(Xi,x) :=P{X;y1 =x | X;} =) Dy(X;,x). )
yey

Asaresult, 3,y Dy is a stochastic matrix.
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Note that any discrete-time Markovian arrival process {( Ny, X;)}:en (see [3]) defines an FSS
setting Y; := Ny — N,_ for t+ > 1. Using Bayes’ formula, we have from (1) the following
general factorisation property:

Dy(Xi,x) =P{Xip1 =x | X} P{Yip1 =y | Xog1 = x, Xi} 3

Thus, the ‘output process’ {¥;};cn may be thought of as generated by transitions of the Markov
chain {X,};en. Here {(Y;, X;)}sen is called a hidden Markov chain (HMC) when the proba-
bilities P{Y;+1 = y | X;4+1 = x, X;} in (3) do not depend on X; and the time 7. If, for any ¢,
the conditional distribution of Y; 41 given X;;+1 = x is denoted by G (x, -), this means that the
transition probabilities (1) have the following special factorisation property:

Dy( Xy, x) =P{X; 11 =x | X}P(Yi11 =y | X111 =x) = P(X;, x)G(x, y). “)

Note that, in general, the distribution of Yy given Xg is assumed to be G (X, -). It is well
known that, for an FSS {(Y;, X;)};en, the process {(¥;, (X;, X;_1))}sren—{0} forms an HMC
with state space Y x {(i, j) € X x X | P(i, j) > 0}. In this sense, assumptions (1) and (4) on
{(Y;, X1)}sen are equivalent. However, only FSSs are considered in this paper for the following
reasons. First, the factorisation property (3) or (4) introduces no simplification in addressing
the lumping and filtering problems. Moreover, the transformation of results on HMCs into
results on FSSs involves some notational and technical difficulties which are unhelpful to the
reader. In contrast, any result on an FSS can be applied to an HMC by replacing, everywhere,
Dy(X;, x) by P(X;, x)G(x, y). Second, conceptual difficulties arise when you try to discuss
some Markovian models widely used in stochastic modelling in the framework of HMCs [6].

For the rest of this paper, {(¥;, X;)};en will denote an FSS. In this context, {Y;};en and
{X:}ien are called the observed process and the state process, respectively. The aim of this
paper is to provide a complexity reduction of the filtering for FSSs. More precisely, consider
the a posteriori probabilities

m(x) =P{X;=x|Y,...,Yp} forallx € X andr € N. (®)]

Let r; denote the probability distribution (77;(x))yex on X. Here {m;};cN is called the (state)
filter process associated with {(Y;, X;)};en. We know that the filter process is the solution of
the nonlinear recursive equation (see, e.g. [13])

ZX()GX Tty (XO)DYH.I (-an -x)
xeX Zxoex 71 (x0) Dy, (x0, X) ’

Try1(x) = 5 (6)

where Dy, is defined in a natural way. Another standard way of filtering is to use the
unnormalised filter {p; };eny = {(p:(x, Y3, ..., Y0))xex}reN, Where, forevery t € Nand x € X,
pi(x, -) is the positive measure on Y'*! defined by

0i(X, Vs ) :=P{X, =x, Y, =y, ..., Y=y} forall (y;,...,y) € Y. ()
We denote, for short, p;(x, Yz, ..., Yo) by p;(x). The conditional probability (5) is obtained

from )

Pr(X
(X)) = =———. ®)

' ZZEX pi(z)
The unnormalised filter has the main advantage of being the solution of the linear recursive
equation
prr1(x) = Y pi(x0) Dy, (x0, X). ©)
xoex
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We are interested in computing the filter associated with the function {g(X;)};cn of the Markov
chain {X;};en, where card(g(X)) < card(X), that is,

i (w) =Plg(X)=w | Y, ..., Yo} forallw e g(X).

We introduce the unnormalised filter {6;};en = {(0r(w, Y7, ..., Y0))weg(x)}ren associated
with the lumped process {g(X;)}sen, thatis, o;(w, yz, ..., yo) is defined, as in (7), by

pr(w, yr, ..., y0) :=Plg(X;) =w, Y = y,..., Yo = yo}. (10)
Using the same convention as in (8), we have

Pr(w)

T (w) = —Zzeg(X) ﬁt(Z).

The problem here is that {(¥;, g(X;))};en is not an FSS in general, so we cannot use a linear
recursive equation as in (9) for the computation of the unnormalised filter {0, };en of {g(X;) }sen-
The purpose of this paper is to propose conditions under which {p; };cn could be derived using
card(g(X))-dimensional matrix computations. A direct way is to look for conditions under
which {(Y;, g(X;))}sen is an FSS, so that the filter {7t;};cy and the unnormalised filter {o; };en
satisfy a recursive equation as in (6) and, respectively, (9). A related problem was discussed
in [21] for HMCs. In [21], a concept of strong lumpability for HMCs was defined. In that
paper a general procedure for testing lumpability and deriving the associated lumped states was
described. The present paper briefly discusses lumpability for FSSs using a somewhat more
explicit relationship between lumpability of MCs and FSSs. Recalling that the focus is on the
dynamics of the filter of lumped FSSs, the main contributions of the paper are as follows.

1. The lumped filter {p; };cn has linear dynamics irrespective of the probability distribution
of (Yp, Xp) if and only if the FSS is strongly lumpable with respect to the function g.

2. A new condition is introduced for the unnormalised filter to have linear dynamics for
some specific probability distributions of (Yy, X¢). Furthermore, this condition asserts
that the filter {r;};cry can be computed directly from the lumped filter {7; };en.

In Section 2 we revisit the basic results on lumpability of Markov chains in order to discuss
the lumpability of FSSs in Section 3. The fact that the lumped filter {o; };cny has linear dynamics
if and only if the FSS is strongly lumpable is proven in Theorem 2. This new condition requiring
{1 }ren to have linear dynamics for a specific probability distribution of (¥, Xo) is introduced
in Subsection 3.2, where we also show that, when this property is true, the filter {m; };cn for the
original FSS can be computed directly from the lumped filter {7;};cny. In Section 4 we discuss
the problem of approximating an MC or an FSS by a strongly lumpable one, and propose
algorithms for computing such approximations.

2. Lumpable Markov chains

Let {Z;};en be a homogeneous Markov chain with state space Z = {1, ..., N}. Consider
a function f from Z into f(Z) = {1,...,n} with n < N. Such a map is called a lumping
map. For notational convenience, f is assumed to be nondecreasing. This function defines
a partition Z;, i = 1,...,n, of Z, where Z; := f’l({i}). The number of states in the
subset Z; is denoted by N;. We define the lumping matrix associated with this partition as the

https://doi.org/10.1239/jap/1222441821 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1222441821

Lumpability and filtering of stochastic systems 653

N x n matrix L, where L(j,i) = 1 when j € Z; and O elsewhere. Next, we introduce the
n x N matrix U,

1 -1
U:=L"L)y'LT = diag(ﬁ> LT. (11)
1

The ith row of U is an N-dimensional probability vector which has precisely N; nonzero
elements, each with identical value 1/N;. Let Q be the N x N transition matrix of {Z;};cN.
Let 0 and 1 denote a matrix or vector in which each entry is equal to 0 or 1, respectively, with
their dimensions being defined by the context. Any vector is a row vector. In particular, the
linear space ker(L) is defined by the set of vectors v € RY such that vL = 0. We will denote
by I the k x k identity matrix.

The Markov chain {Z;};cn is said to be lumpable with respect to the function f and a
specified initial distribution of Zg if { f (Z;)};en is a homogeneous Markov chain. The Markov
chain is said to be strongly lumpable with respect to f if it is lumpable with respect to f for
every probability distribution of Z.

Lemma 1. The following statements are equivalent for {Z,;};cN to be strongly lumpable.
(a) Forallwi, wy € f(2),
P(f(Zi+1) = =)= - =)=
D =wr | Zi=2)=P{Zpe [T | Zi=ay= ) Qi 2)

wef~Hw)

is independent of z1 € f~Y(wy); this conditional probability defines the transition
probability from wi to wy for the Markov chain { f (Z;)};en.

(b) The transition matrix Q has the following block structure:
On - Qu

o0=1 : B
in to an

where Q;; is an N; X N; matrix which satisfies Q;; 17T = qij 17 for some nonnegative
constant q;j. The matrix Q := (qij)i, j=1,...,n IS stochastic.

(c) OL=LUQL.
(d) ker(L)Q C ker(L).
(e) ker(L) C ker(QL).

f) Lee VT = {vlT, ey v;}, where the v; are the right singular vectors 0fLT. We have

By 312> (12)

Vov' =
¢ <0 B>

where Byj € R,

In this case, { f (Z:)}ien is a Markov chain with transition matrix Q =UQL.

Conditions (d) and (f) were proved in [21] for n = 2. Condition (d) for any n > 2 was
derived in [10] from a very general criterion for a function of a Markov chain to be a Markov
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chain. That condition (f) for strong lumpability is valid for any n > 2 is proved in Appendix A.
The other criteria are reviewed from [10, Theorem 10].

Now we introduce another criterion for { f (Z;)};en to be Markovian for some probability
distribution of Zy. It was stated in [12] for finite state spaces and generalised in [16] for general
state spaces.

Definition 1. (//0].) Let L be the lumping matrix associated with lumping map f. A stochastic
matrix @ is called an R-P matrix if there exist an n x N stochastic matrix A such that

AL=1, and AQ = AQLA.

The following lemma states a known result on the lumpability of a Markov chain whose
transition matrix is an R-P matrix. In this case, note that the Markov property of { f(Z;)};en
depends on the probability distribution of Zy. This is a so-called weak lumpability condition
[12].

Lemma 2. Let {Z;};eN be a Markov chain with an R-P transition matrix Q. Then the process
{f(Z)}ien is a Markov chain when the probability of Zy is any convex combination of the n
rows of matrix A. Moreover, its transition matrix is given by Q = A QL.

When an MC has an R-P transition matrix with A defined as in (11), it is said to be exactly
lumpable [4]. See [10] for further properties of Markov chains with an R-P transition matrix.

Lumpability of MCs has been found to be relevant in various areas (see, e.g. [2], [9],
[14], and [20]). This is especially true in performance evaluation, where various modelling
formalisms (e.g. stochastic automata networks, Petri nets, and algebra processes) have been
developed for model simplification. Every model specified by these formalisms has an under-
lying (continuous-time) MC, but, in general, with a very large state space. Thus, one objective
is to avoid having to generate such a Markov graph. Therefore, the focus is on equivalence
relations between basic objects of the formalism and on the development of efficient algorithms
to aggregate equivalence classes. It is well known that some concepts of equivalence relations
are directly connected to lumpability of the underlying MC (see, e.g. [7] and [11] for strong
lumpability and [19] for the R-P condition, and the references therein). But, in some sense, the
lumpability of an MC is only used through the fundamental results given in [12] (statements
(a)—(c) of Lemma 1 or Lemma 2). In this way, the main contribution to the theory of lumpability
of MCs is an efficient algorithm to find the optimal (strong) lumping map associated with an MC
[5]. It will be clear from the next section that lumpability concepts for FSSs are directly related
to lumpability for the bivariate MC. Thus, we do not contribute here to the theory of lumpability
through new criteria, but we recall some equivalent forms which are not well known. The aim
of the paper is to investigate the connection between lumpability and the dynamics of filters for
FSSs.

3. Lumpable finite stochastic systems and filtering

In the special case of an HMC, Spreij [17] discussed the conditions under which the observed
process {Y;};en is a Markov chain. The state process was assumed to be irreducible. This
problem was solved in [10] under no particular assumption. The basic idea was to interpret the
process {Y;};en as the function f(Y;, X;) = Y; of the Markov chain {(Y;, X;)};en and to use
the criteria for lumpability of Markov chains. A similar idea, though not explicitly stated, was
used in [21] to discuss the problem that we are interested in. Indeed, we are concerned here
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with the function f (Y;, X;) = (Y7, g(X;)) of the Markov chain {(Y;, X;)}:;en, Where g is some
lumping map for the Markov chain {X;};cN.

Definition 2. An FSS {(Y;, X;)};en is said to be lumpable with respect to the lumping map g
from X into g(X) if {(Yz, g(X¢))}ren is an FSS for some probability distribution of (Y, Xo).
An FSS {(Y;, Xt)}sen is said to be strongly lumpable with respect to g if it is lumpable with
respect to g for every probability distribution of (¥y, Xo).

When an FSS is lumpable, note that both of the following conditions are satisfied: (i)
{(Y;, X1)}sen is lumpable with respect to the function f(y, x) = (v, g(x)) from ¥ x X into
Y x g(X) and (ii) the Markov chain {(Y;, g(X;))}sen is lumpable with respect to the function
f(y,x) =x from Y x g(X) into g(X) (the lumpability property above is relative to the same
probability distribution of (Yy, Xo)). However, the converse is not correct because the second
condition only asserts that the conditional probabilities

Plg(Xiy1) =wig1 | Yy = yr, g(Xy) = wy}

are independent of y;.
For the rest of this paper, {(¥;, X;)};en denotes an FSS with finite state space Y x X =
{1,..., M} x{1,..., N}and g denotes a lumping map from X into g(X) = {1, ..., n}. Recall

that the transition matrix P of the Markov chain {X;};cy is given by Zyey D, (see (2)).

3.1. Strong lumpability for FSSs
Let us introduce our main result on the strong lumpability of FSSs.

Theorem 1. Let L be the lumping N x n matrix associated with g. The FSS {(Y;, X;)}teN
is strongly lumpable with respect to g if and only if any of the following conditions are
satisfied.

(a) Foreveryy € Y and all wy, wy € g(X),
PV =y sy =w2 | X, =x}= ) DyGxm)  (13)
x2€g™ ! (w)
is independent of x; € g~ (wy).
(b) Foreachy € Y, the N x N matrix Dy has the following block structure:
En(y) - Ewn()
p,=| : ] (14)
Enl(y) Enn(y)

where E;j(y) is an N; x N; matrix which satisfies

E;jo)1" =d;j(n17 (15)

A

for some nonnegatAive constant d;j(y). The matrices Dy = (d;j(y))i, j=1,.n, ¥ € Y,
are such that Zy D, is a stochastic matrix.

(c) Foreveryy € %Y,
D,L =LUD,L, (16)

where U := (LTL)"'L7.

https://doi.org/10.1239/jap/1222441821 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1222441821

656 J.LEDOUX ET AL.

(d) Foreveryy € Y, ker(L)D, C ker(L).
(e) Foreveryy € Y, ker(L) C ker(D,L).

) Set VI := {vlT, cee v;}, where the v; are the right singular vectors of L. Then we
have, forany y € Y,
B, R,
T _ Y ¥
VD,V = ( 0 Zy) ,

where the By are nonnegative.

Moreover, {(Yy, g(X;))}sen is an FSS with characteristic matrices (ﬁy, y € Y) given by

D, :=UD,L with U:=(L"L)"'L". (17)

Proof. The main step is to verify that the FSS {(Y;, X;)};en is strongly lumpable if and only
if it is strongly lumpable as a Markov chain. The direct statement is obvious from the definition
of an FSS. Now, assume that the Markov chain {(Y;, X;)};en is strongly lumpable. From the
first statement of Lemma 1, this is equivalent to the statement that, for every y € Y, and all
wi, wa € g(X),

PlYi1 =y, e Xip) = w2 | ¥y = yo, Xi = x1} (18)

is independent of x; € g_l(wl). Since {(¥;, X;)};en 1s an FSS, the probabilities above are
independent of yg. Therefore, {(Y;, g(X;))}sen is an FSS for any probability distribution of
(Yo, Xo) and {(Y;, X;)}sen is strongly lumpable as an FSS.

Next, the equivalence of statements (a)—(f) is deduced from the six equivalent conditions of
Lemma 1 for the Markov chain {(¥;, X;)};en to be strongly lumpable (see Appendix B).

Comment 1. In this paper we do not discuss the continuous-time counterpart of FSSs. But,
time discretisation by the standard uniformisation technique will provide the corresponding
lumpability results for continuous-time FSSs. In this context, the entries of matrix Dy for
an FSS must be interpreted as transition rates between states of the bivariate MC defining an
FSS. Then, entries of matrix Dy are very similar to the labels of the derivation graph for a
component in a performance evaluation process algebra (PEPA) model, this graph being the
basis of generating the underlying continuous-time MC. In this framework, relation (13) may
be thought of as the basic equality to define the concept of strong equivalence for PEPA. Note
that such a relation is considered as a definition and it is shown that strong equivalence for
PEPA implies strong lumpability of the underlying MC. In this way, this corresponds to the fact
that Theorem 1(a) (or, basically, Theorem 1(b)) implies that the FSS is strongly lumpable with
respect to g. We refer the reader to [7] and [11] for details and connections to other stochastic
process algebras.

Comment 2. When {(Y;, X;)};en is an HMC, we know from (4) that
D, = P diag(G(-, y))
and the probability distribution of (Yy, X¢) is given by
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where B is the probability distribution of Xg. In general, the requirement that {(¥;, g(X;))};en
is a Markov chain for every distribution of Xo is weaker than the Markov property of
{(Y:, g(X1))}sen for every probability distribution of (Y, Xo).

Comment 3. In contrast to the Markov chain case, the ‘off-diagonal’ condition,

(C) forevery y € Y and all w; # wr € g(X), the probability szegfl(wz) Dy(x1, x2) is
independent of x| € g~ (wy),

does not assert that the FSS is strongly lumpable (see Example 1, below). The definition in
[21, p. 2301] for an HMC to be (strongly) lumpable must be replaced by Theorem 1(a).

The main result of this subsection states that the strong lumpability condition provides the
only way of ensuring that the unnormalised lumped filter {0, };cn has linear dynamics.

Theorem 2. Let {(Y;, X;)}:en be an FSS with characteristic matrices (Dy, y € Y). Consider
the lumping map g with N x n matrix L, and let {p;};en be the associated unnormalised lumped
filter. Then the following statements are equivalent.

(a) For any probability distribution of (Yo, Xo), {0+ }:en has the linear dynamics
pr+1 = piDy,,, forallt >0 (19)

or some family of n X n nonnegative matrices IA) s € Y, such that ﬁ s a
y g y y yey y
stochastic matrix.

(b) {(Yz, X¢)}ren is a strongly lumpable FSS with respect to g.
(©) {(Y:, X¢)}ten is a strongly lumpable Markov chain with respect to g.

As a result, under any of the equivalent conditions of Theorem 1, the filter {7, };cN associated
with the lumped process {g(Xt)}ien is given by

]fi _ ﬁf
AT
where the unnormalised filter {p;};eN satisfies (19) with ﬁ\ =UDyL, ycy.
Proof. The equivalence of statements (b) and (c) has been checked in the proof of Theorem 1.

It is immediate from Theorem 1 that statement (b) implies statement (a). Indeed, if any of the
four condiEions in Theorem 1 is satisfied then {(Y;, g(X;))};en is an FSS with characteristic
matrices (Dy, y € Y) whatever the probability distribution of (Yo, X¢). Thus, the unnormalised
filter satisfies a linear equation of the type (9), that is (19). A direct calculation may give some
insight into this fact. Let {p;};ery be the unnormalised filter associated with the Markov chain
{(Yr, Xp)}ten. It follows, from (7) and (10), that {p; };cn and {6, };cn are always related by

p: = p L forallt > 0. (20)
Then we can write, for every r > 0,

Pr+1 = pr+1L

= p;Dy, L from (9)

= pLUDy, L from (16)

= pUDy, L from (20)

= p Dy, from (17).
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It remains to prove that statement (a) implies statement (b). This involves checking that
statement (a) implies that, for any probability distribution of (Yy, X¢), the unnormalised filter
{p:}:en satisfies the set of linear equations

p(Dy, L — LDy, ,)=0 forallz>0. Q1)
Indeed, we know from the algebraic manipulation above that, for any ¢ > 0,

ﬁl-‘r] = ptDYH_lLa

and it follows from condition (19) that

ﬁl+1 = ﬁth,_H = szbYH_]-

Combining the two representations of g;1, we obtain (21).
Now we can write

o= D Livomsol0:
YoeY

where ay;, = (P{Yo = yo, Xo = x0})xyex and 1y, is the indicator function. If we consider any
probability distribution for (Yg, Xo), it is clear that

span(ay,, Yo € ¥) = RV,
It follows from (21) that
a(Dy,L —LDy)=0 foralle € RY

or, for all y; € Y,
Dy L—-LDy, =0.

Also, for any y; € Y, the equality D, L = LD,, implies that UD, L = ULD,, = D,,.
Then {(Y;, X;)}sen is a strongly lumpable FSS with respect to g from Theorem 1.

Example 1. Let us consider the following HMC (see (4)) with N = 3, M = 2, the lumping
map g(1) =1, g(2) = g(3) = 2, and the matrices
1 0
) , L=]|0 1
0 1

D| = P diag(G(-,1)) and D, = P diag(G(-,2))

W= | D= W=
—
D= N —
WA nl—
DB h|—

Bl | 2= =

This gives an FSS with characteristic matrices

as follows:

Sls

D,

00| = OOl | dn|—

1
1
1
8
1
8

RIS
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and we have

PL = , D L= , D)L =

o0l— 0ol — | 45]—

1
1
1
8
1
8

1
2
3
a
3
a

Then statement (a) is met and {(Y;, g(X;))};>0 is an FSS with characteristic matrices

R & R
8 120

Now, we deduce from Theorem 2 that the filters can be computed from observations (Yy, ..., ¥;)
as follows (see also (16)): for any probability vector a on X,

00— =
Wl LD

o = adiag(G(-, Yo)) Dy, - - - Dy,,
pr = oL = adiag(G(-, Yo))LDy, - - - Dy, = oDy, - - - Dy,,
a diag(G(-, Yo)) Dy, - - - Dy, poDy, - -- Dy,

= - s and T, = =~ A _—-
o diag(G (-, Y0)) Dy, - -- Dy, 17 "7 oDy, Dy1T

Tty

In fact, Theorem 2 asserts that the previous equalities hold for the FSS with characteristic
matrices (D1, D) deduced from this HMC, and are valid for every probability distribution of
(Yo, Xo) (see related Comment 2).

Now replace matrix G in the previous model by

o

Py=1,g(X)=2 ¥ =1, g(X) =2 ¥p=2 Xo=1} = L&
and P{Y2 =1, g(X2) =2 | Yl =2, g(XZ) =2, Y() =2, X() = l} = %7

D= N —

W W—
v

ENIOSIENTEH

A direct calculation gives

so that {(Y;, g(X;))}sen is not an FSS (and not an HMC as well). Note that {g(X;)};en is an
MC for every probability distribution of X from Lemma 1 (see the form of matrix P L above).
Finally, it is easily checked that

1 113
4 4 36
DL = 1 , D)L = 1113
8 8 24
1 1119
8 8 36

Therefore, condition (C) in Comment 3 is satisfied, although the FSS is not lumpable.

3.2. Rogers—Pitman’s condition for FSSs

In this subsection we deal with a criterion which will be deduced from Rogers—Pitman’s
criterion for the lumpability of MCs. In order to ease the exposition, {(Y;, X;)};eny Wwill be
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thought of as a univariate Markov chain {Z;};en with state space Z := {1, ..., NM} using a
lexicographic ordering of the elements of Y x X:

Zz=(y—1)N+X — (YtaXt):(ywx)’ xeX,ye%.

When {(Y;, X;)}sen is an FSS, its NM x N M transition matrix has the form

D, D, --- Dy
o=|: - | 22)
D, D, --- Dy
or in a compact form
Q=13 ® IN)(D1--- Dy). (23)

using the Kronecker product ‘®’ of matrices. The probability distribution of Z is the N M vector
o obtained by listing the components of the M x N matrix (P{Yy = yo, Xo = x0})ysey, xoex
using the lexicographic ordering. Next, the process {(Y;, g(X;))}:en is associated with the
function { f(Z;)};en of {Z;}:en, Where f is defined by

f(O—DN4+x)=@ —-Dn+gx) forally e Yandx e X.

Then the corresponding lumping M N x Mn matrix is

L= f’ R B (24)
PR |
0 - 0 L,

where 0 € RV*" and L ¢ 1s the lumping N x n matrix associated with g. In a compact form,
Ly=1IyQ®L,.
It is clear that {(Y;, g(X¢))}:en is @ Markov chain (an FSS) for

(P{Yo = yo, Xo = x0})ypey, xoex

if and only if { f (Z;)};<n is a Markov chain (an FSS) with « as the probability distribution of Z.
Now, we state a condition for {(Y;, X;)};en to be an FSS for specific probability distributions
of (Yo, Xo).

Theorem 3. Let Ay be a stochastic n x N matrix such that
ALy = I, (25)
Let us introduce the subset P of probability distributions v on Y x X such that

Ag(w’x) l.fg(x)zwv

v(y, x) =
(. x) 0 otherwise.

We denote the set of convex combinations of elements of $ by conv(P).
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If we have
AgDy = A;DyL,A, foreveryyc¥y (26)

then {(Yy, g(X¢)}ten is an FSS for every probability distribution of (Yo, Xo) in conv(P). Its
characteristic matrices (Dy, y € Y) are given by

Dy :=A(D,L, forallyeY. (27)

Proof. The first step consists in checking that condition (26) asserts that the process
{(Y:, g(X1))}ren is an MC for every probability distribution of (Yp, X¢) in conv(#). Using
the univariate framework proposed in the beginning of this subsection, we must check that the
process { f(Z;)};en satisfies Definition 1. Let us introduce the stochastic Mn x M N block
diagonal matrix

Ar=IyQA,. (28)

Observe that A ¢ Ly = I, from relation (25). Each row of the matrix A s corresponds to a
unique probability distribution in the set J. Next, using a block decomposition of each of the
matrices, it is easily seen, from (23), (24), and (28), that

AgDy AgDy --- AgDy
ArQ = : : :
AgDy AgDy --- AgDy
and
AgDiLy AgDyLg --- AgDyL,
AyQLy = : : :
AgDiLy, AgDyLg --- AgDyL,

Therefore, Ay Q@ = Ay QL y Ay if and only if we have, for every y € Y,
A;Dy=A,DyLcA,.

This last equality is just (26). From Lemma 2 we deduce that { f (Z;)};cn is an MC for every
probability distribution of Zy which is a convex combination of the rows of A ¢. Its transition
matrix @ has the form

D, D, --- Dy
0:=ArQLr=|: aE
]jl f)z o [)M
where ﬁy := AgD, L. Thus, from the structure of the matrix Q, it is clear that { f (Z;)};en
is an FSS (see, e.g. (22)).

Comment 4. When A, = (L;L g)_lLT, condition (26) in Theorem 3 reads as follows: for
every y € Y and all wy, wy € g(X),

> Dy(xix)

x1eg~H(wr)

is independent of x, € g’1 (wy). This relation is the exact lumpability condition discussed in
[4] and corresponds to backward simulation (see [19] and the references therein). This appears
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as a ‘dual condition’ of that reported in Theorem 1 (see (13)). The duality between strong
lumpability and Rogers—Pitman’s condition is made explicit in the context of Markov chains
in [10, Paragraph 2.2.4].

The next result shows the interest in Rogers—Pitman’s condition for filtering an FSS.

Theorem 4. Using the same notation as in Theorem 3, let {(Y;, X;)}ren be an FSS with
characteristic matrices (Dy, y € Y). Then the following two statements are equivalent.

(a) Foranyy € Y,
AgDy, =A,DyL,A,. (29)

(b) For any probability distribution of (Yo, Xo) in conv(P), for any t > 0,
i1 =pDy,, and p=pA, (30)

for some family of n x n matrices (ﬁy, y € Y) such that Zy ﬁy is stochastic.

Proof. First we prove that statement (a) implies statement (b). The expressions for py and
0o in connection with our choice of probability distribution of (Yp, Xo) in conv() can be
written from (7), (20), and (25) as

po=Y_ liremyoityAg and po=poLg =Y liy=yp)oty, (31
Y€Y €Y

with
oy, € R} and Z ay,l' =1 forally) € Y.
Yo€Y

The leftmost equalityAin (30) follows from the fact that {(¥;, g(X¢))}sen is an FSS with
characteristic matrices (Dy, y € Y) for every distribution of (Yy, X¢) in conv($). Proof of
the rightmost equality is by induction on ¢. For ¢ = 0, the relation is deduced from (31):

p0= Y liremypittyAg = (Z 1{Yo=yo}°lyo>Ag = poAs.
YoEY V€Y

Assume that p, = p; Ag. Then,

pr+1 = p: Dy,
= ﬁngDYtJrl

= fDy,., A, from (27) and (29)

= pH—lAga

from the leftmost equality in (30).
Conversely, assume that statement (b) holds. Then, from relations (30), for every t € N,

Pr+1 = p: Dy, = ﬁzAgDY,H and o141 = ﬁt+lAg = ﬁtDY,+1Ag-
In combining the two representations of p;11 for any € N we obtain

ﬁl(AgDYH—] - bYH—IAg) =0
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or, forally € Y,
pi(AgDy, — DyAg) =0.

In particular, we have, for r = 0,

po(AgDy — DyAy) =0 forally € Y. (32)
Now we write, from (31),

o= 1vymyo)®%0;
YoeY
where oy, € R} and }° ay,1T = 1. Now, it is clear that span(ety,, yo € %) = R". Then we
deduce from (32) that
a(AgDyLy — DyAy) =0 forally € Yandalla € R",
so that
AgDyL, = DyA, forally € Y.

Next, for any y € ¥, the equality A;D, = Dy A, implies that A;DyLy = DyAgL, = D,
Then statement (a) is met.
Example 2. Let us illustrate the results by an example. We consider the same lumping map as
in Example 1 for the FSS with characteristic matrices (D1, D»):

L
2

S
g-

§|u- ool— | Al—
s [SETIE RVIEN

15

Since D1(2, 1) # D1(3, 1), the FSS is not strongly lumpable from Theorem 1. Note that the
transition matrix of the Markov chain {X;};en,

P=D + D, =

W= W= | &=
W= W= | K|—

1
2
1
3
1
3

is strongly lumpable from Lemma 1. We introduce the following matrix A,:

1 0 0
we=lo 1Y)

Note that P is also an R-P matrix for matrix A, from Lemma 2.

Next we obtain
1 2
10 A. . 5
l)’ D, = AgDng=< l)'
3 3

It is easily checked that A ¢eDi = D Ag for i = 1,2, so that {(¥;, g(X;))}sen is an FSS
with characteristic matrices (D 1, D2) for every probability distribution of (Y, X¢) of the form
aA, = a(1)(1,0,0) + (1 — a(l))(O, o 2) where « is any stochastic vector on g(X). For
any sequence of observations (Yp, ..., Y;), the filters are given from Theorem 3 as follows. For
every stochastic two-dimensional vector «,

Dy :=A,D L, = (

A= =
Q= =

,5[ = O(ﬁyo s lA)yt and Pr = ﬁ;Ag = al)YO s lA)ytAg = OtAgDYO s DY

e
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4. Approximation by strongly lumpable models

In [21] a procedure was derived that yielded a two-lumpable approximation to a given MC,
that is, an approximation of a given MC by a strongly lumpable MC with two lumps (n = 2).
By extension, two-lumpable approximations to HMCs were obtained. If this procedure is
recursively repeated on each of the two lumpings until no more lumpings are possible then the
approximate n-lumpable HMC will be determined and the filters for the approximate states
computed. However, as the number of lumpings, n, approaches the number of states, N, in the
original HMC, the question arises as to the benefits of determining any more lumpings. Also,
there is no obvious procedure to obtain an optimal approximation when the lumping mapping
is unknown. Note that, for large state spaces, a crucial question is how to search for a lumping
map. But this point is beyond the scope of the present paper. We mention in passing that there
is an algorithm with O (k log N) time complexity (where k is the number of nonzero transition
probabilities) that computes the optimal lumping map for any MC [5] (which is optimal in
terms of the reduction of the state space complexity). However, it remains unknown as to how
to find a best lumping in some approximate sense when the MC is not lumpable.

In Subsection 4.1 we generalise the problem presented in [21] for MCs for n > 2, i.e. we
assume that we have knowledge of the lumping map g for the process, and wish to determine
the closest approximation (in the Frobenius norm sense) of the transition probability matrix
on the assumed lumping. The results are generalised to FSSs using a process outlined in
Subsection 4.2.

4.1. Approximation of MCs

Let
Tnv(L) = {W € RVN: ker(L)W C ker(L)}.

Then ¥ € Ty (L) if and only if

B B

_vT (Bu 12

v=vT (% 5. (33)
where Bj| € R"™*" By € RP*N—1) B,y ¢ RIN-mx(N-n) yT _ [vlT, e, v;,], and the v;s
are the right singular vectors of LT, arranged such that ker(L) = span{v,1, ..., vy}. It can

be seen directly from (33) that Ty (L) has dimension N 2 _ n(N — n). Note that we do not
restrict elements of T (L) to be stochastic or even nonnegative matrices. The proof of this
result follows in the same way as in the proof of Lemma 1 given in Appendix A.

Lemma 3. The orthogonal projection onto the subspace Ty (L) of RN *N is given by

M(Q)=0Q—Iy—® 0P, where &=V (10 g) V. (34)

Proof. Let @ € RV*N_ Then we seek a matrix W € Ty (L) which minimises || Q@ — ¥/|[.
Let B=VW¥VT andC =V QVT. We know that B has the form of the block matrix in (33).

Partition C commensurately with B, then, clearly, |Q — V|| = ||C — B]|| is minimised by
taking
_ T [(Cn Cn2
V=V ( 0 sz) V.

It is simple to verify that indeed ¥ has the form (34).
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If Q is a stochastic matrix then, in general, IT( Q) will not be. In order to obtain a stochastic
matrix corresponding to the transition probability matrix of a strongly lumpable MC, we employ
the method of alternating convex projections [23]. Apart from the above subspace constraint,
we also need to force nonnegativity of the elements of the approximant and the property that the
row sums are unity. We do this by successively applying the following two projection operators
to II(Q). Let us consider the subset of R¥*" consisting of nonnegative matrices. It can be
shown that the (convex) projection IT (M) of any M € R¥*" onto this subset is

M@, j) iftM@,j) =0,
0 otherwise.

e (M), j) = {

Now consider the affine subspace of R¥*¥ consisting of matrices with all row sums unity. It

can be shown that the (affine) projection of M € R¥*" onto this subspace is given by
mm)=M(1 11 + L (35)
1 = NT N N
The algorithm proposed in [21] consists of repeatedly applying each of the three projection
operators above to the given matrix @ until convergence is noted. Itis known that the algorithm
will converge to a stochastic matrix being the transition probability matrix of a strongly lumpable
Markov chain, although the optimality of the approximation has not been demonstrated.

Let us illustrate how the procedure works using two examples. The firstis didactic, whilst the
second illustrates the convergence behaviour of the algorithm in a more realistic case. Finally,
we compare the filtering performance for the aggregated states of the optimal filter, and the
filter obtained from a lumpable approximation, to the model.

Example 3. Consider an MC with N = 3 states, which we wish to lump into n = 2 groups
under the lumping matrix

L =

S O =
—_— O

We start with a matrix Q¢ which is constructed by randomly perturbing the transition probability
matrix Q of an MC lumpable under L (with appropriate renormalisation),

W= W= | Nl—
W= W= | =
W= W= | =

The initial iterate is determined by adding a random matrix with independent and identically
distributed entries uniform on [—0.1, 0.1] and renormalising, giving

0.5471 0.2292 0.2237
Qo= 103012 0.4434 0.2554
0.3117 0.3390 0.349

The algorithm terminates after one iteration, giving the approximate transition matrix

0.5471 0.2292 0.2237
01 =0.3064 0.4408 0.2528 |,
0.3064 0.3416 0.3520
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FIGURE 1: Histogram of the number of iterations of the convex projection algorithm for N = 100 and
n=2.

corresponding to the transition matrix of an MC lumpable under L. Note, however, that the
algorithm does not recover Q. Note that || @1 — Q@ = 0.1525 and || @1 — Q|| = 0.091, so
indeed the solution is closer to the initial iterate than to Q.

The next example has N = 100 and n = 2. The sizes of the groups were N; = 40 and
Ny = 60. We ran 1000 independent realisations with random initial transition matrices. The
number of iterations until the relative error between successive iterates dropped to 10™8 was
determined, and a histogram of the results is shown in Figure 1. These results show, and are
supported by other experiments, that the algorithm converges in only a few steps, even for
relatively large problems.

4.2. Approximation of FSSs

An FSS is characterised by a finite set (Dy, y € Y) of substochastic matrices. The
above approximation procedure can also be applied to FSSs with one modification. The
lumpability and nonnegativity constraints can be applied to each D, independently, however,
the stochasticity constraint needs to be applied to the N x N M matrix (Dy Dy --- Dy). An
appropriate modification of (35) is easily deduced.

Whilst a full study of the performance of the approximate filtering scheme deduced from
the above procedure in specific applications is beyond the scope of this paper, we provide the
following simple example for the purpose of illustrating the potential utility of the technique.

Example 4. Let the state space be X = {1,..., N} for some integer N > 1, and let the
observation space be Y = {1, ..., N?}. We define the observations according to

Vi =[NXi—1 — D+ X: + Vi,

where V; is an independent and identically distributed sequence of zero-mean normal random
variables with variance o 2 and [-] denotes taking the integer part, with appropriate consideration
for the boundaries. Thus, Y; is a lexicographic ordering of (X;_1, X;) with a disturbance
increasing with increasing o> owing to the V;. Therefore, the conditional probability distri-
bution of Y; given (X;—_1, X;) is specified. The state transition probabilities were randomly
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FIGURE 2: Performance of the optimal (solid line) and approximate (dashed line) filters.

chosen and the model remained fixed over all experiments. The state aggregation was the two
subsets {1,..., Ni}and {N; +1,..., N} forsome 1 < N; < N.

To compare the performance of the optimal filter for the aggregated states to the filter
derived from the approximate two-lumpable approximation, we generated 10 000 independent
realisations of the above FSS, each of length 100 samples. We chose N = 5 and N = 2.
Figure 2 shows the state estimation error probability for each case, as o> varies. As expected,
the performance of both filters degrades with increasing o2, the approximate filter performs
well and remains surprisingly robust.

5. Conclusions

In this paper we have generalised the strong lumpability results for the HMCs of [21] in a
number of significant ways. We have established the theory for the strong lumpability of FSSs,
which include HMC:s as a special case. A (weak) lumpability condition based on [12] and [16]
was introduced and discussed for FSSs. The main results concerned the linear dynamics of the
lumped FSS. First, a necessary and sufficient condition for the dynamics of the lumped process
to be linear was established. Second, using the (weak) lumpability condition, the filter for the
FSS was derived directly from the filter for the lumped FSS (and the lumpability condition
was shown to be necessary for this specific derivation to hold). Finally, an algorithm for the
approximation of an arbitrary FSS by a strongly lumpable FSS was proposed.

Appendix A. Proof that Lemma 1(d)—(f) are equivalent for any n > 2
We assume that the right singular vectors of L are ordered so that
ker(L) = span{v,+1,..., Un}.

The (i, j)thelementof the matrix V QV "isv; Qv . Leti € {n+1,..., N}andj € {1,...,n},
and consider v; Q@ € ker(L)Q C ker(L) (by Lemma 1(d)). Thus, v; @ L vj, since the right
singular vectors are orthogonal [8, Theorem 2.5.2]. Hence, the lower left-hand blockof V Q VT,
as shown in (12), is 0 as claimed. Now the range of LT is spanned by the rows of L, and these
are precisely the usual unit orthonormal basis. Thus, there is an ordering of the v;, consistent

https://doi.org/10.1239/jap/1222441821 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1222441821

668 J.LEDOUX ET AL.

with the above ordering such that the matrix of left singular vectors of L is the identity matrix
of size n. Thus, we can write the singular value decomposition [8] LT = SV, where S =[S, 0]
and Sy is an n x n diagonal matrix with strictly positive entries. Let VT = [VT VZT] where
Vl—r is of size N x n. Consider
LILTL)y™2=vTsT(ssT)~1/2

=V Sisisn~'?

== VIT.
The matrix on the left is nonnegative, so is VlT. Therefore, in (12), the matrix B;; = V| Q VlT
is nonnegative (since @ has nonnegative entries).

Now let x € ker(L) Q. Then there are scalars &, +1, ..., @y such that
N
X = Z aiv; Q
i=n+1
Let j € {1, ..., n}, and consider
N
T T
xXv; = Z oa,-v,-ij =0,
i=n+1

by Lemma 1(f). Thus, x L span{vi,...,v,} = ker(L)', so x € ker(L), establishing
Lemma 1(d).

Appendix B. Direct proof that Theorem 1(a)—(f) are equivalent

First, we know that the conditional probability in (18) is independent of yy. It follows from
(1) that they are equal to

PYipi =y, gXis) =w2 | Yi=yo, Xr=xi}= Y Dy (x1,x2).

xa€g™(wa)

This is exactly what is required in (a). Statement (a) can be reformulated in matrix form as
follows: for every y; € Y, .
Dy, L=LD,, (36)

where lA)y1 is a nonnegative n x n matrix and Dy, (wy, w) is the common value of the
probabilities in (13). Then, using UL = I,,, we obtain (16). By expressing the matrix equality
(36) element by element and using (1), statement (a) is obtained. Therefore, statements (a) and
(c) are equivalent.

Next assume that (c) holds. Let x € ker(L). Then it follows from (16) that

xD,L =xLUD,L =0.

Therefore, x Dy € ker(L) and statement (d) is satisfied.

If (d) holds then, for any x € ker(L), we have x Dy € ker(L), thatis, x Dy L = 0. Therefore,
x € Dyker(L) and (e) is valid. Next, statement (e), i.e. ker(L) < ker(Dy L) implies that there
exists an n x n matrix D such that D,L = LD (see, e.g. [22]). If we multiply from the left
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the previous relation by U, we obtain (16) and statement (c) is satisfied. Thus, statements (c),
(d), and (e) are equivalent.

Note that (14) and (15) in statement (b) are just a rewriting of (13), which gives insight into the
structure of the matrix D, required for having strong lumpability. That Zy ey Z'j’-zl e j(y) =1
foreachk =1, ..., n follows from the fact that Zy D, is a stochastic matrix.

Finally, the equivalence of statements (d) and (f) can be deduced as in Appendix A for the
MC case.
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