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We compare the Euclidean operator norm of a random matrix with the Euclidean norm of

its rows and columns. In the first part of this paper, we show that if A is a random matrix

with i.i.d. zero mean entries, then E‖A‖h 6 Kh(Emaxi ‖ai•‖h + Emaxj ‖a•j‖h), where K is

a constant which does not depend on the dimensions or distribution of A (h, however, does

depend on the dimensions). In the second part we drop the assumption that the entries

of A are i.i.d. We therefore consider the Euclidean operator norm of a random matrix, A,

obtained from a (non-random) matrix by randomizing the signs of the matrix’s entries.

We show that in this case, the best inequality possible (up to a multiplicative constant) is

E‖A‖h 6 (c log1/4 min {m, n})h(Emaxi ‖ai•‖h + Emaxj ‖a•j‖h) (m, n the dimensions of the

matrix and c a constant independent of m, n).

1. Introduction

We consider here the Euclidean operator norm (denoted by ‖ · ‖) of a matrix whose

entries are independent random variables. This norm appears, for example, in different

applications of linear algebra to data collected from measurements where the random

matrix is the measurement error matrix and its norm is used to determine the significance

of these errors (see the introduction to [5] and the papers cited there). In many other

applications, it is rather ‖A‖2 = ‖AAt‖ and not the norm of the matrix which is of primary

interest. Such is the case in multivariate statistics where AAt is the covariance matrix and

its norm is used in principle component analysis. Therefore, in this paper, we deal with

‖A‖h where h is at least 1. This question and other similar questions have been previously

investigated by several authors. In 1980, Geman [4] proved the following limit theorem

for the norm of random matrices.

Theorem. Suppose {vij} i = 1, 2, . . . , j = 1, 2, . . . are i.i.d. random variables with Ev11 = 0

and E|v11|n 6 nαn for all n > 2 and some α. Let σ2 = Ev2
11 and Vpn = {vij}16i6p;16j6n.

If pn is a sequence of integers such that limn→∞ pn
n

= y for some 0 < y < ∞ then

limn→∞ 1
n
‖VpnnV t

pnn
‖ = (1 + y1/2)2 σ2 a.s.

(For later versions of this theorem with slightly more relaxed conditions, see [8, p. 165]).
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While in this paper we deal only with matrices with independent entries, it is worth

mentioning that similar results were obtained by Füredi and Komlós [3] for symmetric

random matrices (the entries on the diagonal and above it being independent random

variables and the entries below the diagonal defined so as to make the matrix symmetric).

Here the independent random variables were not required to be identically distributed,

but only to be bounded from above by a common bound, have common expectation

and variance for the off-diagonal entries and common expectation for the entries on the

diagonal.

A completely different type of theorem related to this problem is Chevet’s inequality

([1], [2] and [6, Theorem 3.20]), which concerns tensor products of Gaussian measures. As

a special case of this theorem we get that, if {gi}16i is a sequence of i.i.d. N(0, 1) random

variables and G = (gij)16i6m;16j6n a matrix of i.i.d. N(0, 1) random variables, then

max {E‖(g1, . . . , gn)‖, E‖(g1, . . . , gm)‖} 6 E‖G‖ 6 E‖(g1, . . . , gn)‖+ E‖(g1, . . . , gm)‖,
where all the norms are Euclidean.

Chevet’s inequality and the limit theorems cited above are similar in that they both

state that the Euclidean operator norm of a matrix is, on average, not much larger than

the Euclidean norm of a row or column in the matrix (the larger of the two, depending on

the dimensions of the matrix). In view of this, we may be tempted to hypothesize that an

inequality of the form E‖A‖ 6 K(E‖a1•‖+E‖a•1‖) should hold for every random matrix

A with i.i.d., zero mean, random entries (a1• and a•1 being the first row and column of

the matrix) with a constant K which does not depend on the dimensions or distribution

of A. The following example shows that such an inequality cannot hold.

Example. Let An = (a(n)
ij )16i,j6n be a sequence of random matrices with i.i.d. random

entries such that P {a(n)
ij = +1} = P {a(n)

ij = −1} = 1
2n

and P {a(n)
ij = 0} = 1 − 1

n
. For every

n, E‖a(n)
•j ‖ = E‖a(n)

i• ‖ 6
√
E‖a(n)

i• ‖2 = 1 but E‖An‖ > Emax16i6n ‖a(n)
i• ‖ and, as ‖a(n)

i• ‖2

are approximately Poisson(1), E‖An‖ is at least of order
√

log n/ log log n. Therefore, an

inequality of the form E‖A‖ 6 K(E‖a1•‖+ E‖a•1‖) cannot hold.

In this example, the desired inequality could not hold because of the failure of the

inequality Emaxi ‖ai•‖ 6 C · E‖a1•‖ to hold with a constant C independent of the

distribution and dimensions of the matrix A (as implied by the limit theorems, such an

inequality does hold for a sufficiently large matrix, the size of which depends on the

distribution of the matrix entries). It turns out that the inequality that does hold with a

common constant for all random matrices A with i.i.d. zero mean entries is the inequality

E‖A‖h 6 Kh(Emaxi ‖ai•‖h + Emaxj ‖a•j‖h). This is the main theorem of the first part

of this paper. We will prove the theorem under the condition that the matrix entries are

symmetric random variables (i.e., X and −X have the same distribution). The zero mean

case is then an easy corollary of the theorem (Corollary 2.2 below).

Theorem 1.1. There exists a constant K such that, for any n, m any h 6 2 log max{m, n}
and any m× n random matrix A = (aij) where aij are i.i.d. symmetric random variables, the
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following inequality holds:

max

{
E max

16i6m
‖ai•‖h, E max

16j6n
‖a•j‖h

}
6 E‖A‖h

6 K

(
E max

16i6m
‖ai•‖h + E max

16i6n
‖a•j‖h

)
.

If any of the expectations appearing in the inequality is ∞, the inequality holds in the

sense that the other side of the inequality is also ∞.

There are two factors which make the expected matrix norm small in Theorem 1.1: the

first is the symmetry of the random variables and the second is the independence and

identical distribution of the entries. Clearly, dropping the assumption that the entries are

symmetric (or zero mean) random variables brings us back to the worst possible case for

constant matrices (the matrix of identical constant entries). The symmetry of the random

variables, however, is sufficient to ensure a smaller ratio between the expected operator

norm of the matrix and the expectation of the maximum row or column norm, but this

ratio is not as small as the ratio in Theorem 1.1. In the second part of this paper we show

that if A is a random matrix obtained from a (non-random) matrix by randomizing the

signs of the matrix entries, then the best inequality possible (up to a multiplicative constant)

is E‖A‖h 6 (c log1/4 min {m, n})h(Emaxi ‖ai•‖h + Emaxj ‖a•j‖h) (m, n the dimensions of

the matrix, c a constant independent of m, n and h as in Theorem 1.1).

2. The expected norm of a matrix with i.i.d. entries

Our main aim in this section is to prove Theorem 1.1. In addition to the Euclidean norm

(denoted by ‖ · ‖) we define the norm

|||A ||| = max
16i6m

16j6n

{‖ai•‖, ‖a•j‖}

for an m× n matrix A, where ai• is the ith row of the matrix and a•j its jth column.

To prove Theorem 1.1 we will need the following theorem.

Theorem 2.1. There exists a constant K such that, for any m, n, for any h 6 2 log max {m, n}
and for any m× n matrix A,

Eσ,ε

∥∥∥∥ Sσ,ε(A)

||| Sσ,ε(A) |||
∥∥∥∥h 6 Kh,

where σ = (σ1, . . . , σm) is a vector of independent random permutations, each uniformly

distributed over Sn, ε = (εij), 1 6 i 6 m, 1 6 j 6 n a matrix of i.i.d. random variables such

that for every i, j P {εij = +1} = P {εij = −1} = 1
2

and Sσ,ε(A) = (εij · ai,σi(j))i,j .

Given Theorem 2.1, the proof of Theorem 1.1 is simple.

Proof of Theorem 1.1. Similarly to Sσ,ε(A), define Sσt,ε(A) = (εij · aσj (i),j)i,j where each σj
is uniformly distributed over Sm.
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Because the aij are i.i.d. symmetric random variables, A, Sσ,ε(A) and Sσt,ε(A) have the

same distribution. Denoting the rows of Sσ,ε(A) by ãi• and the columns of Sσt,ε(A) by ã•j
we have

E‖A‖h = E|||A |||h
∥∥∥∥ A

|||A |||
∥∥∥∥h 6 E max

16i6m
‖ai•‖h

∥∥∥∥ A

|||A |||
∥∥∥∥h + E max

16j6n
‖a•j‖h

∥∥∥∥ A

|||A |||
∥∥∥∥h

= E max
16i6m

‖ãi•‖h
∥∥∥∥ Sσ,ε(A)

||| Sσ,ε(A) |||
∥∥∥∥h + E max

16j6n
‖ã•j‖h

∥∥∥∥ Sσt,ε(A)

||| Sσt,ε(A) |||
∥∥∥∥h .

Because sign changes and permutations of vector entries do not change the Euclidean

norm of a vector, max ‖ãi•‖h remains constant and equal to max ‖ai•‖h while averaging

over σ and ε (and similarly for max ‖ã•j‖h). Therefore we get

E‖A‖h 6 EA max
16i6m

‖ai•‖hEσEε
∥∥∥∥ Sσ,ε(A)

||| Sσ,ε(A) |||
∥∥∥∥h

+EA max
16j6n

‖a•j‖hEσtEε
∥∥∥∥ Sσt,ε(A)

||| Sσt,ε(A) |||
∥∥∥∥h

6 K · E max
16i6m

‖ai•‖h +K · E max
16j6n

‖a•j‖h

Theorem 2.1 is used to justify the last inequality.

The left inequality of the theorem is trivial.

In Theorem 1.1 it is possible to replace the condition that all entries are symmetric

random variables by the condition that all entries are zero mean random variables. This

follows as a corollary from Theorem 1.1.

Corollary 2.2. There exists a constant K such that, for any n, m for any h 6 2 log max

{m, n} and any m×n random matrix A = (aij), where aij are i.i.d. zero mean random variables,

the following inequality holds:

max

{
E max

16i6m
‖ai•‖h, E max

16j6n
‖a•j‖h

}
6 E‖A‖h

6 (2K)h
(
E max

16i6m
‖ai•‖h + E max

16i6n
‖a•j‖h

)
.

Proof. Let A = (aij) be a matrix as in the conditions of the corollary and let B = (bij)

be an i.i.d. copy of A. Let ε = (εij), 1 6 i 6 m, 1 6 j 6 n be a matrix of i.i.d. random

variable such that, for every i, j, P {εij = +1} = P {εij = −1} = 1
2
.

As A and B are i.i.d., ε ◦ (A − B) and A − B have the same distribution (◦ being the

Hadamard, i.e., entry by entry, product for matrices). Therefore, by convexity, 2hE‖ε◦A‖h =

2h−1E‖ε◦A‖h + 2h−1E‖ε◦B‖h > E‖ε◦ (A−B)‖h = E‖A−B‖h. In addition, using Ebij = 0
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in the last equality:

EB‖A− B‖ = EB sup
{x∈Rm,y∈Rn:‖x‖=1,‖y‖=1}

∑
i,j

aij xi yj −
∑
i,j

bij xi yj



> sup
{x∈Rm,y∈Rn:‖x‖=1,‖y‖=1}

EB

∑
i,j

aij xi yj −
∑
i,j

bij xi yj

 = ‖A‖.

Putting the last two inequalities together we get E‖A‖h 6 EA(EB‖A− B‖)h 6 EAEB‖A−
B‖h 6 2hE‖ε ◦ A‖h.

The corollary now follows by applying Theorem 1.1 to the matrix ε ◦ A.

We now prove Theorem 2.1 (the lemmas used in this proof will be proved at the end of

this section).

Proof of Theorem 2.1. Define Sσ,ε,µ(A) = (εij · aµ(i),σi(j))i,j where σ and ε are as in the

definition of Sσ,ε(A) and µ is a random permutation uniformly distributed over Sm. As

changing the order of the rows does not affect the Euclidean norm or the ||| · ||| norm of

a matrix, it is equivalent to show that

Eσ,ε,µ

∥∥∥∥ Sσ,ε,µ(A)

||| Sσ,ε,µ(A) |||
∥∥∥∥h 6 Kh.

In addition, as we can freely transpose the matrix, it is enough to prove the theorem for

h 6 2 log n.

Let k = dlog ne and denote

B = (bij)i,j = B(A) =
Sσ,ε,µ(A)

||| Sσ,ε,µ(A) ||| and P = (pij) = (b2
ij).

Notice that P is a (random) doubly sub-stochastic matrix (i.e., all entries are nonnegative

and the sum of entries in any row or column is never larger than 1). Then,

E

∥∥∥∥ Sσ,ε,µ(A)

||| Sσ,ε,µ(A) |||
∥∥∥∥h = E‖B‖h 6 (E‖B‖2k)h/2k 6 (E tr(BtB)k)h/2k

=

 ∑
16i1 ,...,ik6m

∑
16j1 ,...,jk6n

EµEσEεbi1j1 bi1j2 bi2j2 . . . bikjk bikj1

h/2k . (2.1)

Because sign changes of the matrix entries do not change the norm ||| · ||| of a matrix, we

have, with Sσ(A) = (ai,σi(j))i,j ,

bij = εij
aµ(i),σi(j)

||| Sσ(A) |||
and therefore Eεbi1j1 bi1j2 bi2j2 . . . bikjk bikj1 = 0 whenever there exists an entry bij which

appears in the product an odd number of times. It suffices therefore to deal with products

in which every bij appears an even number of times.
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Let G(U,V ) be the complete bipartite graph over the vertex sets U and V where

|U| = m and |V | = n. We associate every edge eij = (ui, vj)(ui ∈ U, vj ∈ V ) in the graph G

with the i, jth entry in the matrix B and assign to it the weight p(eij) = pij according to

the matrix P defined above.

Every product bi1j1 bi1j2 bi2j2 . . . bikjk bikj1 is thus associated with a walk on the graph G

that begins and ends at vj1 .

Let γ = (x1(γ), . . . , x2k(γ)) be a walk of length 2k on the graph G (where x1(γ), . . . , x2k

(γ) are the edges and v0(γ), v1(γ), . . . , v2k(γ) the vertices of the walk). In addition, let

γ(i) = (x1(γ), . . . , xi(γ)) be the prefix of length i of the walk γ.

As we are interested only in those walks which pass through every edge an even number

of times, we can, instead of calculating products of bijs, calculate products of pijs where

the weight pij appears in the product only every second pass of the walk through the

edge eij . Therefore we shall distinguish between ‘odd’ and ‘even’ passes of a walk through

an edge. We say that xi(γ) is an odd step in γ if the edge traversed by this step has been

traversed in total an odd number of times in γ(i). We similarly define an even step. Taking

the product of the weights of the odd steps

πi(γ) =
∏

{16j6i : xj (γ) is an odd step}
p(xj(γ))

we have that, for the walks which interest us, Ebi1j1 bi1j2 bi2j2 . . . bikjk bikj1 = Eπ2k(γ).

Step 1. For every walk γ, we define the odd/even step sequence of the walk as T (γ) =

(t1(γ), . . . , t2k(γ)) where ti(γ) = +1 if xi(γ) is an odd step and ti(γ) = −1 otherwise. Clearly∑i
j=1 tj(γ) > 0 for every i and

∑2k
j=1 tj(γ) = 0. Denote the set of all ±1 sequences of length

2k for which the first condition holds by T and the subset of sequences for which both

conditions hold by T0. We begin by fixing a starting point (v0 ∈ V ) and an odd/even step

sequence (T ∈ T0) for the walk. Denote all the walks with the given starting point and

odd/even step sequence by Γv0
(T ) = {γ : v0(γ) = v0, T (γ) = T }. As there are n vertices to

choose the starting point from and it is well known (see, for example, [7], exercise 1.33)

that the number of elements in T0 is

1

k + 1

(
2k

k

)
,

the number of different subsets Γv0
(T ) is at most

n

k + 1

(
2k

k

)
6 n 22kk−1.

Step 2. We say that an edge is in an ‘odd state’ (‘even state’) in γ(i) if the last step in γ(i)

which traversed it was an odd (even) step. Let Oi(γ) be the graph whose edges are the edges

in an ‘odd state’ in γ(i). Denote by Mi(γ) the degree (maximal number of edges incident

with a single vertex) of the graph Oi(γ). For i1 6 i2 denote Mi1 ,i2 (γ) = maxi16j6i2 Mi(γ).

Having fixed v0 ∈ V and T ∈ T0 we now partition the set of walks γ in Γv0
(T ) into

subsets according to the maximal value of Mi(γ) attained along the walk (i.e., M1,2k(γ))

and the first step at which this value is attained. As 1 6 M1,2k(γ) 6 k and this value is

first attained on an odd step, there are at most k2 subsets in this partition.
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Step 3. We now fix a set in the above partition (i.e., all the walks in Γv0
(T ) for which

M1,2k(γ) = λ and the maximum is first attained on the ith step). Instead of directly finding

an upper bound for the sum of products π2k(γ) for these walks we shall find an upper

bound for products of the form Πx∈Oi(γ) p(x). These products have the advantage that

every edge appears in them at most once. The following lemma allows us to make this

transition.

Lemma 2.3. For any 1 6 λ and 1 6 i 6 r,∑
{γ(r):γ∈Γv0

(T ),M1,i−1(γ)<λ,Mi(γ)=λ,Mi+1,r(γ)6λ}
πr(γ) 6 λλi(T )+µi+1,r(T )

∑
H∈Hi,λ(T ,v0)

∏
x∈H

p(x),

where λi(T ) is the number of odd steps in γ(i), µi1 ,i2 (T ) the number of even steps from step

i1 to step i2 (inclusive) and Hi,λ(T , v0) = {Oi(γ) : γ ∈ Γv0
(T ),M1,i−1(γ) < λ,Mi(γ) = λ} (the

‘odd edge graphs’ of the given walks).

Setting r = 2k, this lemma gives an upper bound of∑
{γ∈Γv0

(T ):M1,2k(γ)=λ, the maximum is first attained at step i}
π2k(γ) 6 λ2k

∑
H∈Hi,λ(T ,v0)

∏
x∈H

p(x)

for the walks in the subset we have been considering.

Step 4. The upper bound in the previous step contains a summation over the set Hi,λ.

The next lemma gives an upper bound for the number of graphs in this set (in fact, a

somewhat larger set: {Oi(γ) : Mi(γ) = λ}).

Lemma 2.4. For every v0 ∈ V ,T ∈ T, 1 6 λ, d 6 r 6 n,

|{H ∈ Hλ(T , v0) : |V (H) ∩U| = d, |H | = r}| 6 2b
r
2 cedd−1/2mdnr−d

λ−2
2 e−d+1,

where Hλ(T , v0) = {Oi(γ) : γ ∈ Γv0
(T ),Mi(γ) = λ, 1 6 i 6 2k} and V (H) is the set of

vertices incident with at least one edge in H .

Step 5. After we have found a bound for the number of graphs in the sum, it remains

to bound the expressions EΠx∈H p(x). Here for the first time we make use of the row and

column permutations. The next lemma gives the desired upper bound.

Lemma 2.5. Let H be a subgraph of G(U,V ) and let r be the number of edges in H and

d the number of vertices in U incident with at least one edge in H; then,

EµEσ
∏
x∈H

p(x) 6

(
1

n

)r
min

{
1,
( n
m

)d}
.

We now substitute the bounds from Steps 4 and 5 into the inequality of Step 3. Notice

that while the bound in Step 3 increases with λ, the bound in Step 4 decreases with λ.

Comparing the corresponding elements in the bounds, a simple calculation shows that

λ2kn−d
λ−2

2 e 6 k2(4e−1/2)2k.
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Using this last inequality and the fact that r and d above are at most k, we get∑
{γ∈Γv0

(T ) :M1,2k(γ)=λ, the maximum is first attained at step i}
π2k(γ) 6 k22k/2eknk2(4e−1/2)2k.

This bound is true for any of the n 22k k subsets of walks produced by the first two steps

of the proof. Therefore we conclude that

E‖B‖2k 6 n 22kkk22k/2eknk2(4e−1/2)2k 6 k5(2 · 21/44)2kn2 6 (8 · 21/4e2)2k.

For any h 6 2k we get the desired inequality: E‖B‖h 6 (8 · 21/4e2)h.

Proofs of the lemmas

Proof of Lemma 2.3. The proof is by induction on the steps of the walk. This is divided

into two parts: the steps up to the step at which the maximal Mi(γ) is first attained, and

the steps from this point on.

For the steps of the first group we prove the following claim.

Claim. For any v0 ∈ U ∪ V , T ∈ T, v ∈ U ∪ V ,H ⊆ E(G), i > 1, λ > 1,∑
{γ(i) : γ∈Γv0

(T ),Oi(γ)=H,vi(γ)=v,M1,i(γ)6λ}
πi(γ) 6 λλi(T )−1

∏
x∈H

p(x) (2.2)

(Πx∈H p(x) is defined to be 1 if H is empty).

Proof. Without loss of generality we assume v0 ∈ V . The proof is by induction on i. It is

easy to verify that the lemma holds for i = 1. We now assume the lemma holds for i− 1

and prove it for i.

Without loss of generality we assume that v ∈ V . Also, in what follows all walks are in

Γv0
(T ).

If ti = −1, xi(γ) is an even step and therefore πi−1(γ) = πi(γ) and λi(T ) = λi−1(T ).

Therefore, by the induction hypothesis and because
∑
{y=(u,v):u∈U,y 6∈H} p(y) 6 1, we get∑

{γ(i) :Oi(γ)=H,vi(γ)=v,M1,i(γ)6λ}
πi(γ)

=
∑

{y=(u,v) : u∈U,y 6∈H}

∑
{γ(i−1) :Oi−1(γ)=H∪{y},vi−1(γ)=u,M1,i−1(γ)6λ}

πi−1(γ)

6
∑

{y=(u,v) : u∈U,y 6∈H}
λλi−1(T )−1 p(y)

∏
x∈H

p(x) = λλi(T )−1
∏
x∈H

p(x)

× ∑
{y=(u,v) : u∈U,y 6∈H}

p(y) 6 λλi(T )−1
∏
x∈H

p(x).

If ti = +1, denote by E(H, v) the set of edges in H incident with v. We may assume that

|E(H, v)| 6 λ. Therefore, using the induction hypothesis, we have∑
{γ(i) :Oi(γ)=H,vi(γ)=v,M1,i(γ)6λ}

πi(γ)
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=
∑

(u,v)=y∈E(H,v)

∑
{γ(i−1) :Oi−1(γ)=H\ {y},vi−1(γ)=u,M1,i−1(γ)6λ}

πi−1(γ)p(y)

6
∑

(u,v)=y∈E(H,v)

λλi−1(T )−1p(y)
∏

x∈H\ {y}
p(x) = |E(H, v)|λλi−1(T )−1

×∏
x∈H

p(x) 6 λλi(T )−1
∏
x∈H

p(x).

We now use the above claim to prove the lemma for i = r.

We have to sum inequality (2.2) over all H ∈ Hi,λ(T , v0) and over all vertices

Vi,λ(H) = {v : ∃γ ∈ Γv0
(T )H = Oi(γ), vi(γ) = v,M1,i−1(γ) < λ,Mi(γ) = λ},

which are the vertices that may be reached on the ith step by a walk which generates H

in Hi,λ(T , v0). Because M1,i−1(γ) < λ but Mi(γ) = λ, Oi(γ) contains at most two vertices

incident with λ edges δ (these are the two vertices incident with the last edge added). As i

determines the side of the graph which the walk reaches in the ith step, given i and Oi(γ)

there are at most λ vertices in Vi,λ(H). Therefore, summing over inequality (2.2),∑
{γ(i) : γ∈Γv0

(T ),M1,i−1(γ)<λ,Mi(γ)=λ}
πi(γ)

=
∑

H∈Hi,λ(T ,v0)

∑
v∈Vi,λ(H)

∑
{γ(i) : γ∈Γv0

(T ),Oi(γ)=H,vi(γ)=v,M1,i(γ)6λ}
πi(γ)

6
∑

H∈Hi,λ(T ,v0)

|Vi,λ(H)| · λλi(T )−1
∏
x∈H

p(x) 6
∑

H∈Hi,λ(T ,v0)

λλi(T )
∏
x∈H

p(x),

which proves the lemma for i = r.

To complete the proof of the lemma, we proceed by induction on r. The proof is very

similar to the proof of the claim above, only now it is the even steps that add an extra λ

factor to the bound. We omit the details of the calculation.

The next two lemmas characterize the structure of the graphs in the sets Hi,λ and enable

us to calculate an upper bound (in Lemma 2.4) for the number of graphs in these sets.

Lemma 2.6. For any walk γ on the graph G and for any i, Oi(γ) =
⋃h
j=1 Cj ∪ L where

(a) C1, . . . , Ch, L are edgewise disjoint,

(b) every Cj is a cycle,

(c) L is a path (perhaps a cycle) which begins at v0(γ) and ends at vi(γ).

Proof. First, if L is a trail (possibly closed) containing cycles, we can write L as an

edgewise disjoint union L =
⋃
C̃j ∪ L̃ where C̃j are cycles and L̃ is a path (possibly a

cycle) which begins and ends at the same vertices as L.

It is therefore sufficient to prove the lemma without the requirement that L be a path.
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For i = 1 the lemma is trivial. We now proceed by induction from i− 1 to i: Oi−1(γ) =⋃h
j=1 Cj ∪ L.

We write L = (v0, . . . , vr), where v0 = v0(γ) and vr = vi−1(γ). If ti = +1, xi(γ) =

(vr, vi(γ)) 6∈ Oi−1(γ) and therefore L̃ = (v0, . . . , vr, vi(γ)) is a trail that begins at v0(γ) and

ends at vi(γ). Obviously, Oi(γ) =
⋃h
j=1 Cj ∪ L is an edgewise disjoint union.

If ti = −1 the edge being removed may be either part of the path L or of one of the

cycles. If xi(γ) ∈ L then what remains of L after the edge is removed is the desired path (the

cycles remain unchanged). If xi(γ) ∈ Cj0 then Cj0 = (ṽ0, . . . , ṽs) with ṽ0 = ṽs = vi−1 (γ) = vr
and ṽs−1 = vi(γ). We can then take L̃ = (v0, . . . , vr−1, ṽ0, . . . , ṽs−1) and

Oi(γ) =

h⋃
j=1

j 6=j0

Cj ∪ L̃

is the required decomposition.

Lemma 2.7. For any walk γ on the graph G and for any i, if λ = degOi(γ)(v) then Oi(γ)

contains at least d λ−2
2
e cycles that pass through v.

Proof. There exist λ edges e1, . . . , eλ ∈ Oi(γ) incident with the vertex v. By Lemma 4,

Oi(γ) =
⋃h
j=1 Cj ∪ L. The lemma follows directly from this decomposition and the obser-

vation that each Cj contains 0 or 2 of these edges while L contains at most 1 or 2 of

these edges (depending on the total number of edges).

Proof of Lemma 2.4. As M(H) = λ, there exists a vertex v such that degH (v) = λ. By

Lemma 2.6 and Lemma 2.7,

H =

d λ−2
2 e⋃

j=1

Cj

h⋃
j=1

C̃j ∪ L

where Cj are cycles passing through v, C̃j are cycles and L is a path, beginning at v0. Let

sj , s̃j , s be the number of edges in Cj, C̃j , L (respectively).

(a) Because

d λ−2
2 e∑

j=1

sj +

h∑
j=1

s̃j + s = |H | = r,

and because the sjs and s̃js are even numbers (as the lengths of cycles on a bipartite

graph), there are at most sb r2 c ways to choose h and s1, . . . , sd λ−2
2 e, s̃1, . . . , s̃h, s (the partial

sums s1, s1 + s2, . . ., s1, . . . , sd λ−2
2 e, s̃1 + · · · + s̃h, which uniquely determine the sequence,

are a subset of the b r
2
c positive even numbers which are no larger than r).

(b) There are (m
d

) ways to choose the d vertices in U that are incident with the graph H .

(c) Given h, s1, . . . , sd λ−2
2 e, s̃1, . . . , s̃h, s and the d vertices in V (H) ∩ U, there are at most

2ddnr−d λ−2
2 e−d+1 ways to choose H .

We distinguish between the case in which v (the vertex common to the cycles Cj) is in
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U and the case in which v is in V . We will show that in each of these two cases there are

at most ddnr−d λ−2
2 e−d+1 ways to choose the graph H . Assume we have already selected the

side of the graph (U or V ) from which the vertex v is chosen. To choose H , we choose the

vertices of the cycles and the path. Every cycle Cj passes through v, and we may assume

it starts at v. Therefore we choose the vertex v once, and then for every cycle Cj have to

choose sj − 1 more vertices. In order to choose the cycle C̃j we have to choose s̃j vertices,

and in order to choose the path L we have to choose s vertices (because the starting point

of the path is given). In total we have to choose a sequence of

1 +

d λ−2
2 e∑

j=1

(sj − 1) +

h∑
j=1

s̃j + s = r −
⌈
λ− 2

2

⌉
+ 1

vertices. We can assume the cycles C̃j begin in U and therefore, as the starting point of

the cycles Cj is v and the starting point of L is given, the side of the graph from which

each vertex in the sequence is chosen in predetermined. This means that there are at most

n ways to choose each vertex (d cannot be larger than n). In addition there are at least d

vertices which have to be chosen from side U (as |V (H)∩U| = d and by assumption v0 is

from side V ). This gives the bound ddnr−d λ−2
2 e−d+1. To conclude the proof we multiply the

bounds calculated in (a), (b) and (c) and use Stirling’s inequality ( d
e
)d
√

2πd 6 d!, which

implies
(
m
d

)
dd 6 1

2
mdedd−1/2.

The next lemma is the basic inequality that underlies Lemma 2.5.

Lemma 2.8. Let (α1, . . . , αn) be a vector such that αi > 0 for all i.

Let X = (X1, . . . , Xn) = (ασ(1), . . . , ασ(n)) be a random vector where σ is a random permu-

tation uniformly distributed over Sn. Then, for any I ⊆ {1, . . . , n} and j 6∈ I ,

E
∏
i∈I
Xi 6

∏
i∈I
EXi =

(
1

n

n∑
i=1

αi

)|I |
.

Proof. We first show that EXj

∏
i∈I Xi 6 EXj · E∏i∈I Xi.

For I ⊆ {1, . . . , n} denote αI = Πi∈I αi. Fix i and j.

(αi − αj)
∑

i6∈I,|I |=k
j 6∈J,|J|=k

(αI − αJ) = (αi − αj)
∑

i,j 6∈K,|K|=k
(αK − αK) + (αi − αj)

× ∑
i,j 6∈K,|K|=k−1

(αK∪{j} − αK∪{i})

= 2αiαj
∑

i,j 6∈K,|K|=k−1

αK − α2
i

∑
i,j 6∈K,|K|=k−1

αK − α2
j

∑
i,j 6∈K,|K|=k−1

αK

= −(αi − αj)2
∑

i,j 6∈K,|K|=k−1

αK 6 0.
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Let Y be an i.i.d. copy of X. It follows from the above inequality that

0 > EX,Y

∏
j∈I

Xi −
∏
i∈I
Yi

 (Xj − Yj),

and therefore

0 > EXj

∏
i∈I
Xi + EYj

∏
i∈I
Yi − EYj

∏
i∈I
Xi − EXj

∏
i∈I
Yi = 2EXj

∏
i∈I
Xi − 2EXj · E

∏
i∈I
Xi.

This shows that EXjΠi∈IXi 6 EXj ·EΠi∈IXi. The lemma is proved by repeatedly applying

this inequality.

Proof of Lemma 2.5. Let

a2 = max

‖ai•‖
2,

1

n

∑
l6i6m

l6j6n

a2
i,j

.

For every point in the sample space we have ||| Sσ,ε,µ(A) |||2 > a2. Therefore, using Lemma 2.8

for the second inequality and ∑
16j6n a

2
µ(i),j

a2
6 1

for the last inequality,

EµEσ
∏
x∈H

p(x) 6 EµEσ
∏

(i,j)∈H

a2
µ(i),σi(j)

a2
= Eµ

∏
i

Eσi

∏
(i,j)∈H

a2
µ(i),σi(j)

a2

6 Eµ
∏

16i6m

(
1

n

∑
16j6n a

2
µ(i),j

a2

)|{j : (i,j)∈H}|

6

(
1

n

)r
Eµ

∏
{i : ∃j(i,j)∈H}

(∑
16j6n a

2
µ(i),j

a2

)
.

If m 6 n then, because ∑
16j6n a

2
µ(i),j

a2
6 1,

this proves the lemma. Otherwise, we use Lemma 2.8 again, together with the definition

of a2, which implies that
m∑
i=1

∑n
j=1 a

2
ij

a2
6 n,

and get

Eµ
∏

{i : ∃j(i,j)∈H}

(∑
16j6n a

2
µ(i),j

a2

)
6

(
1

m

m∑
i=1

∑n
j=1 a

2
ij

a2

)|{i : ∃j(i,j)∈H}|
6
( n
m

)d
,

which completes the proof.
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3. The expected norm of a matrix of entries with random signs

Let Mm,n be the set of real m× n martices. Define

C(m, n, h) =

(
sup
A∈Mm,n

E‖ε ◦ A‖h
|||A |||h

)1/h

,

where ◦ is the Hadamard product for matrices (A◦B = (aijbij)) and ε = (εij)1 6 i 6 m, 1 6
j 6 n is a matrix of i.i.d. random variables such that, for every i, j, P {εij = +1} = P {εij =

−1} = 1
2
. We will show that C(m, n, h) ∼ log1/4 min {m, n} (for h 6 2 log max {m, n}).

First we prove an upper bound for C(m, n, h).

Theorem 3.1. There exists a constant c such that for every m, n and h 6 2 log max

{m, n}, C(m, n, h) 6 c(log min {m, n})1/4.

Proof. We may assume, without loss of generality, that n 6 m and prove that C(m, n, h)

6 c(log n)1/4.

Let A ∈ Mm,n. We begin by defining B, P , G(U,V ), γ and Oi(γ) as in the proof of

Theorem 2.1, only now we do not average over permutations, that is,

B =
ε ◦ A
||| ε ◦ A ||| =

ε ◦ A
|||A ||| .

We also let k = dlog ne and begin with the inequality

E‖B‖h 6
 ∑

16i1 ,...,ik6n

∑
16j1 ,...,jk6m

Eεbi1j1 bi1j2 bi2j2 . . . bikjk bikj1

h/2k

.

The entries of the matrix B are constant up to a sign and their signs are independent,

each with equal probability for +1 and −1. Therefore (again as in the previous proof)

Eεbi1j1 bi1j2 bi2j2 . . . bikjk bikj1 = 0 whenever some entry bij appears an odd number of times.

We are therefore interested only in walks on the graph G which traverse every edge an

even number of times. Unless otherwise specified, all walks in the sequel will be such

walks.

Basically, as in the proof of Theorem 2.1, we want to replace the above products with

products of pijs on the odd steps. It is then easy to see that the odd steps add nothing

to the sum while every even step adds at most a factor of k to the total sum. To prove

the theorem, however, we can allow an extra k factor only for every two even steps. It is

again easy to see that two consecutive even steps do not contribute together more than a

factor of k. The problem is that even steps do not always come in pairs. The main idea

of the proof is to slightly redistribute the pijs so that steps on which these weights are not

counted appear consecutively in pairs.

Step 1. Let γ be a walk of length 2k on the graph G that traverses every edge an even

number of times. We give every step in γ a code in the following manner.

(a) We mark a step with a ‘+’ if it is an ‘odd’ step and otherwise with a ‘−’.

(b) In addition, we mark a ‘−’ step with an ‘r’ if between this step and the previous step
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which passes through the same edge (and is necessarily a ‘+’ step) there are only ‘−’

steps. We mark all other ‘−’ steps with an ‘*’.

(c) In addition to the previous marks, we also mark each step with either ‘p’ or ‘1’ as

follows.

First, we mark all ‘+’ steps with a ‘p’ and all ‘−’ steps with a ‘1’. Now we go

consecutively over the steps of the walk from first to last. Assume we reached the ith

step, and that this step is currently marked by (+, p). If this step is separated from

the next ‘+’ step by an odd number of ‘−’ steps, we change the ith step to (+, 1). In

this case we mark the step in which we first return to the same edge with a ‘p’. (Such

a step exists, as the walk passes through every edge an even number of times. Up to

now this step was marked either (−, r, 1) or (−, ∗, 1) and will now be marked (−, r, p)
or (−, ∗, p).) Note that this change may have an effect on changes that will be made

further on along the sequence. In any other case we do not change the way the steps

are marked.

Three properties hold.

(1) These changes do not change the total number of steps marked by ‘p’ and the total

number of steps marked by ‘1’. Therefore at the end of the process we have k edges

of each type.

(2) The changes associated with the ith step do not change the number of steps from

among the immediately following ‘−’ steps (i.e., up to the next ‘+’ step) which are

marked by (−, *, 1). This is because if the first return to the edge of the ith step is in

one of these steps, this step must be marked by (−, r, 1) (and after the change by (−,

r, p)).

(3) For every edge in the graph, exactly half the steps in the walk which pass through

it are marked by ‘p’ and the other half are marked by ‘1’ (in total always an even

number of steps).

In this way we have assigned each walk γ a sequence of length 2k with elements taken

from the set {+}×{p, 1}∪{−}×{r, ∗}×{p, 1}, with an equal number of +s and −s in each

sequence and an equal number of ps and 1s in each sequence. The possible number of

such sequences is no more than ( 2k
k

)( 2k
k

)2k and therefore bounded from above by (4
√

2)2k .

Denote by T the set of all such possible sequences (only sequences which are produced

by some walk γ are considered here).

For a given walk γ, denote

πi(γ) =
∏

16j6i

tj (γ)=‘p′

p(xj(γ))

where tj(γ) is the code with which the jth step of the walk is marked (we will always

write only that part of the code which is of interest to us). By Remark 3 above, we have

bi1j1 bi1j2 bi2j2 . . . bikjk bikj1 = π2k(γ) for every product in which every entry appears an even

number of times.

For T ∈ T and v0 ∈ V denote Γv0
(T ) = {γ : v0(γ) = v0, T (γ) = T }. We will show that,

https://doi.org/10.1017/S096354830000420X Published online by Cambridge University Press

https://doi.org/10.1017/S096354830000420X


The Expected Norm of Random Matrices 163

for every T ∈ T and v0 ∈ V , ∑
γ∈Γv0

(T )

π2k(γ) 6 k
k/2. (3.1)

Hence the theorem follows directly:

E‖B‖h 6
∑
v0∈V

∑
T∈T

∑
γ∈Γv0

(T )

π2k(γ)

h/2k

6
(
n(4
√

2)2kkk/2
)h/2k

6 (
√
e 4
√

2k1/4)h 6 (c(log n)1/4)h.

Step 2. It remains to prove (3.1). Fix v0 ∈ V and T ∈ T. We will call a sequence of

steps i1, i1 + 1, . . . , i2 a ‘− block’ (or simply a ‘block’) if all the steps i1 through i2 are ‘−’

steps and this block is maximal (that is, not contained in any larger block of ‘−’ steps).

If, in addition, the i1 − 1 step is marked by (+, 1), we will call i1 − 1, i1, i1 + 1, . . . , i2 an

‘extended block’. Otherwise, by definition, the extended block is the same as the block.

By the construction of the sequence T , every extended block contains an even number of

steps marked by ‘1’ but not by ‘r’ (possibly zero such steps). We divide these steps into

pairs (in the obvious way, by their order in the sequence). In what follows we will simply

refer to each such pair as a ‘pair’. A step which appears between the first step and second

step of the same pair will be said to be ‘inside’ the pair (this does not include the steps of

the pair itself).

Let 1 = i1 < i2 < · · · < iλ = 2k be the sequence of all steps in T which are not a first

step in a pair or a step appearing ‘inside’ a pair. In other words, the steps appearing in

the sequence are of one of the following types.

(a) A step which is not part of any extended block. This is possible if and only if this is

a (+, p) step.

(b) A (−, *, p) step which does not appear inside a pair.

(c) A (−, r) step (either (−, r, p) or (−, r, 1)) which does not appear inside a pair.

(d) A second step in a pair (this must be a (−, *, 1) step).

We will show that, for every step in the sequence 1 = i1 < i2 < · · · < iλ = 2k,∑
{γ(ij ) : γ∈Γv0

(T )}
πij (γ) 6 k

λij (T )
, (3.2)

where λij (T ) is the number of pairs up to the ijth step. Because every step in a pair is

marked by a ‘1’, λiλ(T ) = λ2k(T ) 6 k
2
. Therefore, for j = λ, (3.1) follows from (3.2).

Step 3. To complete the proof we prove (3.2) by induction on the sequence 1 = i1 < i2 <

· · · < iλ = 2k.

The first step in T must be a (+, p) step. Therefore, as the weight matrix P is doubly

sub-stochastic, it is easy to see that (3.2) holds for i1 = 1.

We now proceed by induction on j and prove (3.2) for ij , as follows.

(1) Step ij is of type (a) or (b).

Because this step does not appear inside a pair and cannot be a first or second step in a
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pair, ij−1 = ij − 1. The ij step is a ‘p’ step, and therefore, by the induction hypothesis:∑
{γ(ij ) : γ∈Γv0

(T )}
πij (γ) 6

∑
{γ(ij−1) : γ∈Γv0

(T )}
πij−1

(γ)
∑
v∈Vij

p((vij−1
(γ), v))

6
∑

{γ(ij−1) : γ∈Γv0(T )}
πij−1

(γ) 6 kλij−1
(T ) = k

λij (T )
,

where Vij = U or V .

(2) Step ij is of type (c).

As in the previous cases, ij−1 = ij − 1. The step is a (−, r) step and therefore γ(ij) is

uniquely determined by γ(ij−1). It follows directly from the induction hypothesis that∑
{γ(ij ) : γ∈Γv0

(T )}
πij (γ) 6

∑
{γ(ij−1) : γ∈Γv0

(T )}
πij−1

(γ) 6 kλij−1
(T ) = k

λij (T )
.

(3) Step ij is of type (d).

The step ij is the second step in a pair. The first step in the same pair is ij−1 + 1. The

step ij must be a (−, *, 1) step while the step ij−1 + 1 may be either a (−, *, 1) step or a

(+, 1) step. Between the step ij−1 + 1 and the step ij only (−, *, p), (−, r, p) and (−, r, 1)

steps may appear. The step ij must traverse one of the edges in the graph Oij−1
(γ). This is

true because the only ‘+’ step possible between the step ij−1 + 1 and the step ij is ij−1 + 1

itself (which may possibly be a (+, 1) step at the beginning of an extended block) but if

the step ij passes the same edge as the step ij−1 + 1, it must be marked by an ‘r’, and such

steps cannot be part of a pair. Therefore, given γ(ij−1) there are at most k choices for the

step ij (the number of edges in Oij−1
(γ) cannot exceed k).

Let us assume first that all the steps ij−1 + 2, . . . , ij − 1 (possibly zero such steps) are of

type ‘p’:

∑
{γ(ij ) : γ∈Γv0

(T )}
πij (γ) 6

∑
{γ(ij ) : γ∈Γv0

(T )}
πij−1

(γ)

ij−1∏
λ=ij−1+2

p((vλ−1(γ), vλ(γ)))

6
∑

{γ(ij−1) : γ∈Γv0
(T )}
πij−1

(γ)
∑

(vij−1 ,vij )∈Oij−1
(γ)

∑
vij−2∈Vij−2

p((vij−2, vij−1)) · · ·

× ∑
vij−1+1∈Vij−1+1

p((vij−1+1, vij−1+2))

6
∑

{γ(ij−1):γ∈Γv0
(T )}
πij−1

(γ)
∑

(vij−1 ,vij )∈O1j−1
(γ)

1 6 k
∑

{γ(ij−1):γ∈Γv0
(T )}
πij−1

(γ) 6 k · kλij−1
(T ) = k

λij (T )
.

The only possible case in which not all of the steps ij−1 +2, . . . , ij−1 are of type ‘p’ is when

one of these steps is a (−, r, 1) step. In this case, the first step in the pair (the step ij−1 + 1)

cannot be a (+, 1) step (because then the ‘r’ step must be a (−, r, p) step. Therefore, the

‘r’ step is uniquely determined by γ(ij−1). Assume this ‘r’ step is step number i′, then the

vertices vi′−1(γ) and vi′(γ) are uniquely determined by γ(ij−1) and therefore we may repeat
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the above calculation only replacing the expression∑
vi′−1∈Vi′−1

p((vi′−1, vi′)),

which appears in the original product, by 1. The result of the calculation remains valid

after this change and therefore (3.2) holds in this last case too.

This completes the proof of (3.2) and of the whole theorem.

We now show that this upper bound is best possible (up to a multiplicative constant). For

any n 6 m,C(n, n, h) 6 C(n, m, h). In addition, as |||A ||| is constant, C(n, n, 1) 6 C(n, n, h).

Therefore it is enough to prove the following theorem.

Theorem 3.2. For every 0 < δ < 1 there exists N such that for every N < n there exists

an n× n matrix such that Eε‖ε ◦ A‖ > δ(log n)1/4|||A |||.

Proof. Let k = b√log nc and λ = b n
k
c. We define A to be the block matrix

A =



A1

A2 0

.

.

0 .

Aλ


,

where every Ah is a k × k matrix of identical entries all equal to k−1/2. Denote by εh the

sub-matrix of ε which corresponds to Ah.

The probability that all the entries in εh are +1 is 2−k2

, and therefore

P (‖εh ◦ Ah‖ =
√
k) > 2−k2

.

Then,

E‖ε ◦ A‖ = Emax
h
‖εh ◦ Ah‖ >

√
kP {max

h
‖εh ◦ Ah‖ >

√
k}

=
√
k
(

1− P {‖ε1 ◦ A1‖ <
√
k}b nk c

)
>
√
k
(

1− (1− 2−k2

)b
n
k
c
)

>

√
b√log nc

(
1− (1− 2− log n)

n√
log n
−1
)

=

√
b√log nc =

(
1− (1− n− log 2)

n√
log n
−1
)
.

Fix 0 < δ < 1 and let ν be such that
√
δ < 1− e−ν .

For a sufficiently large n, n1−log 2 > (ν + 1)
√

log n, from which it follows that

n√
log n

− 1 =
n−√log n√

log n
> νnlog 2
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and therefore

(1− n− log 2)
n√
log n
−1
< e−ν .

Substituting this inequality together with
√b√log nc > √δ(log n)1/4 into the previous

inequality, we get that E‖ε ◦ A‖ > √δ(1− e−ν)(log n)1/4 > δ(log n)1/4.

This, together with the fact that |||A ||| = 1, completes the proof.
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