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The objective of this three-part work is to formulate and rigorously analyse a number of
reduced mathematical models that are nevertheless capable of describing the hydrology
at the scale of a river basin (i.e. catchment). Coupled surface and subsurface flows
are considered. In this third part, we focus on the development of analytical solutions
and scaling laws for a benchmark catchment model that models the river flow (runoff)
generated during a single rainfall. We demonstrate that for catchments characterised by
a shallow impenetrable bedrock, the shallow-water approximation allows a reduction
of the governing formulation to a coupled system of one-dimensional time-dependent
equations for the surface and subsurface flows. Asymptotic analysis is used to derive
semi-analytical solutions for the model. We provide simple asymptotic scaling laws
describing the peak flow formation, and demonstrate its accuracy through a comparison
with the two-dimensional model developed in Part 2. These scaling laws can be used as an
analytical benchmark for assessing the validity of other physical, conceptual or statistical
models of catchments.

Key words: river dynamics, shallow water flows

1. Introduction

In this third and final part of our work, we leverage the parametric study (Part 1:
Morawiecki & Trinh 2024a) and two-dimensional (2-D) benchmark models (Part 2:
Morawiecki & Trinh 2024b) to perform an in-depth asymptotic analysis of a coupled
surface–subsurface model of a catchment. We specifically focus on flow within an aquifer
characterised by a thin porous layer. The system begins in a steady state, for a constant
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Figure 1. (a) Studied hillslope geometry; initially groundwater and surface water are in steady state for
precipitation rate r0, and therefore river inflow (per unit length) is Q(0) = r0Lx. The simulated rise of river
inflow caused by a constant rainfall r > r0 is presented in (b). Note the characteristic fast rise of the river
inflow to Qcrit at t ∈ [0, tcrit].

precipitation r0, which is characterised by an initial seepage zone. Our objective is to
understand the response of the catchment, when subjected to intense rainfall r > r0.

One of the main conclusions from the numerical simulations in Part 2 is that in early
time, the river inflow rapidly increases as a result of the rainfall accumulating over the
initial seepage zone. It eventually reaches a critical flow, followed by a much slower rise
in the river inflow caused by the expansion of the seepage zone (see figure 1). One of the
primary results we derive in this work, is an analytical solution for both early and late
times, including a simple analytical formula for the critical flow:

Qcrit = KsSxLz︸ ︷︷ ︸
groundwater flow

+ rLx

(
1 − KsSxLz

r0Lx

)
︸ ︷︷ ︸

overland flow

. (1.1)

This formula consists of a contribution from the groundwater flow, and a contribution
from the overland flow formed over the seepage zone. The parameters Lx, Lz and Sx relate
to geometrical features of the hillslope, Ks corresponds to the soil hydraulic conductivity,
whereas r0 and r represent the initial and simulated rainfall intensity, respectively.

We argue that such analytical scaling laws are valuable, both as a tool to diagnose
the correctness of other, more complex rainfall-runoff models, and also as a measure for
characterising a catchment’s propensity to flooding.

The introduction of Part 1 covers the general subject of hydrology and parameter
estimation, whereas the introduction of Part 2 covers computational rainfall-runoff models.
We begin by discussing the content of this current paper, focusing on asymptotics and
scaling laws, in the context of the existing literature.

1.1. On the importance of analytical benchmarks results
Catchment hydrology is one of many areas of engineering where numerical approaches
tend to dominate over analytical ones. Due to the complex multiscale nature of hydrology,
limited data availability and high computational cost, formulating and solving the correct
equations can be enormously challenging (Grayson, Moore & McMahon 1992). Instead of
the physical models based on the fundamental laws of hydrodynamics, simpler models
such as conceptual and statistical models are often used instead (Moore et al. 2007).
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Asymptotic analysis of catchment models. Part 3

They are usually developed following a trial-and-error approach to fit available real-world
data. However, these models do not provide any guarantee of model performance when
applied to situations that may be underrepresented or missing in the training datasets
(Parkin et al. 1996; Bathurst et al. 2004; Beven 2018).

To better understand the theoretical limits of different classes of catchment models,
it is crucial to have a solid understanding of the different processes characterising the
physical models. This goal can be achieved by developing numerical benchmark scenarios,
as done by, e.g. Sulis et al. (2010) and Maxwell et al. (2014), and using them to compare
predictions of different models. One perspective is that, in order to ensure consistency
between the models over a wide range of input parameters, models should predict the same
scaling laws for key features. For example, if one model predicts that the peak river flow,
Q, is proportional to the catchment area, A, so Q ∝ A, whereas another model predicts
that Q ∝ √

A, then regardless of the fitting of these models, they cannot give consistent
predictions over the entire range of A values. For example, the second model fitted to a
training dataset dominated with measurements conducted in large catchments would tend
to overestimate flow in the case of small, often ungauged, catchments.

The above perspective may seem oversimplistic. However, we argue that despite many
statistical works demonstrating such scaling laws (cf. Cunnane 1987; Kjeldsen, Jones &
Bayliss 2008) the comparison of asymptotic scaling laws between different catchment
models is not a commonly used approach in the modern hydrology (although see Vieira
(1983) for a comparison of Saint Venant approximations, and Cook, Knight & Wooding
(2009) for comparison of Richards and Boussinesq-based models).

The emphasis of our work, here, on deriving of such analytical scaling laws for flow
prediction in the case of coupled surface–subsurface flows in catchments. Not only do
these scaling laws provide clear guidance on the key dependencies of model parameters,
but their analysis often illuminates further model simplifications.

Next, we provide a brief overview of the existing analytical theory, highlighting the lack
of research on fully coupled surface–subsurface systems.

1.2. On analytical solutions in catchment hydrology
The typical governing equations used in physical catchment models include Richards
equation for the subsurface flow (or the Boussinesq equation for the unconfined
groundwater flow) and the Saint Venant equations for the overland and channel flows (see,
e.g. the review by Shaw et al. 2010). These equations and their simplifications have been
well-studied using analytical methods, although largely in an uncoupled manner. One of
the equations studied is the Boussinesq equation, which is commonly used to determine
the shape of the groundwater table. In this paper by Boussinesq equation we refer to the
Boussinesq equation used to describe unconfined groundwater flow (see, e.g. Hálek &
Švec 2011, chap. 2; Troch et al. 2013), in order to distinguish it from other equations
and approximations known by the same name. In some cases, analytical solutions for
this equation can be derived. Examples include for example steady-state groundwater
flow and evolution in one-dimensional (1-D) hillslopes (Polibarinova-Kochina & Wiest
1962; Troch et al. 2013). Similarly, analytical solutions have been developed for the 1-D
Richards equation to describe water transfer through the unsaturated soil under constant
and time-varying infiltration (Warrick, Lomen & Islas 1990).

For the case of overland flow over a hillslope, analytical solutions have been found
for a kinematic approximation of the Saint Venant equations, as done, e.g. by Parlange,
Rose & Sander (1981) and Tao, Wang & Lin (2018). These analytical solutions and their
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approximations are important as they provide benchmark models for testing numerical
schemes (e.g. benchmarks by MacDonald et al. (1995) for the overland flow and by
Tracy (2006) for the subsurface flow), and can be used to develop less computationally
demanding modelling approaches such as TOPMODEL by Kirkby & Beven (1979).
However, no analytical solutions have been found so far coupled systems that include
governing equations describing both subsurface/groundwater and surface flow. Despite
the importance of these models in catchment hydrology, the study of these models has
been restricted to numerical solutions only (Maxwell et al. 2014).

1.3. On the shallow-water approximation for subsurface flow
Previously, in Part 2, we introduced deep-aquifer scenario to describe a catchment
with a deep aquifer, and shallow-aquifer scenario to describe a catchment where the
subsurface flow is predominantly transferred through a thin porous layer near the surface.
Mathematically, shallow-aquifer scenario is the limiting case of deep-aquifer scenario in
which the aquifer depth is much smaller than the catchment width, Lz � Lx. We showed
that in both cases, under standard initial conditions, the full three-dimensional (3-D)
catchment model can be reduced to a simpler 2-D hillslope model. We shall begin with this
2-D assumption as the basis in this paper. We then demonstrate that in the shallow-water
scenario, under certain assumptions, the 2-D model can be further reduced to a 1-D model.

The reduction of the 2-D subsurface flow into a 1-D model is not a new concept. The
simplification is based on the Dupuit–Forchheimer approximation by Dupuit (1863) and
Forchheimer (1914), which states that the groundwater flow is predominantly horizontal,
and that the total flow scales proportionally with the saturated aquifer thickness.
Boussinesq (1877) used this assumption to develop a 1-D model for the groundwater
height; this is now known as the Boussinesq equation for groundwater flow (see,
e.g. Bartlett & Porporato 2018), or the Dupuit–Boussinesq equation (see, e.g. Guérin,
Devauchelle & Lajeunesse 2014). As we show later, it can be derived from the 2-D
Richards model under the aforementioned assumption that Lz � Lx. The accuracy of this
approximation is studied in detail by Paniconi et al. (2003) and Cook et al. (2009).

The Boussinesq equation is commonly used in groundwater modelling, and a wide
class of analytical and approximate solutions has been developed. Notable examples are
reviewed by Wooding & Chapman (1966), Anderson & Brooks (1996), Troch, Paniconi &
Emiel van Loon (2003) and Bartlett & Porporato (2018). These studies, however, concern
only groundwater flow, and do not involve the coupling with the overland flow, which is
an essential component of a standard physical catchment model.

Here, we extend these studies by including the effect of overland flow in the Boussinesq
equation. Our main result in this paper is the derivation and analysis of the following 1-D
dimensionless coupled surface/subsurface model:

∂H
∂t

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (x)−1
[

∂

∂x

(
σH

∂H
∂x

+ H
)

+ ρ0r(x, t)
]

if H ≤ 1,

∂

∂x

(
σ

∂H
∂x

+ μ (H − 1)k
)

+ ρ0r(x, t) if H > 1,

(1.2)

where f (x), σ , μ and ρ0 are dimensionless parameters explained in detail in § 2, and
H(x, t) is the total height of groundwater and surface water, which depends on the distance
from the channel x and time t. Values H ≤ 1 represent unsaturated soil without surface
water, and H > 1 represent saturated soil with surface water. The main difference from
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Asymptotic analysis of catchment models. Part 3

the classical Boussinesq equation is the second case in the above equation with H > 1, in
which we include an additional term representing the overland flow.

We use the above 1-D coupled surface–subsurface model to develop analytical solutions
for the river flow formed by rainfall of a constant intensity (however, the result can
be generalised for time-dependent rainfall). Our methodology takes advantage of the
negligibly small size of the diffusion terms in most of the seepage zone, which allows
us to use the method of characteristics for the study of wave propagation. This approach
is similar to previous kinematic treatments of the Saint Venant equations (Henderson &
Wooding 1964; Woolhiser & Liggett 1967), but for our problem, the size of the seepage
zone increases as a result of rising groundwater, which introduces a secondary dynamics.

The analytical approximations we develop in this work are possible due to a few
governing assumptions; they are supported by the analysis of the typical values of
catchment parameters described in Part 1 (Morawiecki & Trinh 2024a). The main
approximations are: (i) the typical rainfall duration is much shorter than the characteristic
timescale of groundwater flow; (ii) the typical timescale of surface flow is much shorter
than that of subsurface flow; and (iii) the mean precipitation rate is larger than the maximal
groundwater flow passing through the saturated zone.

We start by introducing the above 1-D model in § 2, with its typical dynamics discussed
in § 3. For a scenario of single intensive rainfall described in § 4, we find an approximated
analytical form of the initial steady state in § 5, followed by a short-time asymptotic
analysis in § 6. The accuracy of the developed analytical approximations is assessed in § 7.
In § 8, we highlight key hydrograph features predicted by this analytical solution, followed
by conclusions in § 9 and further discussion in § 10.

2. Formulation of the 1-D coupled model

In this section, we introduce a 1-D model describing the horizontal groundwater and
overland flow along the hillslope, firstly in a dimensional and then in a dimensionless
form. Its formal mathematical derivation from the 2-D benchmark model introduced in
our previous paper is presented in Appendix B: here we focus on presenting the general
structure of the model instead.

2.1. Dimensional model
Let us consider a 2-D hillslope of length Lx with a uniform terrain slope Sx, uniform
thickness of the porous layer Lz, uniform saturated soil hydraulic conductivity Ks and an
impenetrable bedrock beneath the hillslope. As shown in the (x, z)-plane in figure 2, we
denote the thickness of the saturated zone as Hg(x, t) and the height of the surface water
as hs(x, t).

We shall assume that overland flow can only occur when the soil becomes fully
saturated. The overland flow generated by exceeding the soil infiltration capacity (Kirkby
2019) is not considered. Under this assumption, the heights Hg and hs can be combined to
form a single dependent variable,

H(x, t) = Hg(x, t) + hs(x, t), (2.1)

defined as the total height of groundwater and surface water. We now review the governing
equations for H, for which the details are presented in Appendix B.
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Figure 2. Hillslope geometry used to formulate a 1-D surface–subsurface model.

2.1.1. Groundwater flow
The standard approach to model shallow-water aquifers uses the Dupuit–Forchheimer
assumption, which states that groundwater flows horizontally with the pressure head
following a hydrostatic profile. Under this approximation, the groundwater flow is given
by

Qg = KsH
∂H
∂x

+ KsHSx. (2.2)

When the soil is not fully saturated, and hence H < Lz, the evolution of the groundwater
depth is given by the continuity equation, resulting in a standard form of the Boussinesq
equation (Troch et al. 2013) for an unconfined aquifer:

f (x, t)
∂Hg

∂t
= ∂

∂x
Qg + r = ∂

∂x

(
KsHg

∂Hg

∂x
+ KsHgSx

)
+ r(x, t), (2.3)

where r(x, t) denotes the groundwater recharge, and f (x, t) is a drainable porosity. In this
paper, we assumed that the recharge is equal to the precipitation.

The drainable porosity function is more subtle; as introduced in Appendix C, it is
formally defined as the rate of change of groundwater volume, V , given a change in
the groundwater level, H, i.e. f = dV/dH. Note that f depends on the soil saturation
above the groundwater table. For example, higher soil saturation implies that less water
is required to raise the groundwater by a given volume and, hence, f is lower. Recall that
the soil saturation, θ , is computed as a function of the pressure head, hg, as given by
the Mualem–van Genuchten model (C3). In theory, computing f would involve coupling
equation (2.3) with a model for hg(x, z, t).

In the literature (e.g. Troch et al. 2003), f is often assumed to be a parameter with a
value specific to the soil type at a given location. In practice, however, f can change over
time. For example, during a rainfall, a characteristic wetting front forms, which slowly
propagates from the surface towards the groundwater table (Caputo & Stepanyants 2008).
In order for this table to rise, the rainwater must first infiltrate through the unsaturated
zone. This causes f to significantly change over time.

In this paper, we approximate f (x, t) by a time-independent mean drainable porosity
fmean(x). Although the model results will not duplicate the full time-dependent behaviour
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observed in Part 2, the mean value, fmean(x), is chosen such that solutions correctly capture
the key time when the groundwater reaches the land surface. We show later that the
resultant model reproduces the hydrograph during a single precipitation event (see figure 9
later).

In Appendix C, we justify the choice of

f (x, t) ≈ fmean(x) ≡ vH(x)
D(x)

, (2.4)

where vH(x) is the initial drainable volume per unit area at a given location, and D(x) =
Lz − H(x) is the depth of the groundwater below the land surface. In other words, the
drainable porosity is given by the fraction of the soil volume that can be filled with water.
Henceforth, we take the mean approximation (2.4) as the definition of f . Further discussion
of the drainable porosity function is provided in Appendix C, where we provide formulae
for its implementation.

2.1.2. Coupling with the overland flow
Now let us consider the case where the soil is fully saturated, for which Hg = Lz, which
implies H > Lz. In this case, as derived in Appendix B, the surface depth hs evolves
according to the following continuity equation:

∂hs

∂t
= ∂

∂x
(Qg + Qs) + r = ∂

∂x

(
KsLz

∂hs

∂x
+

√
Sx

ns
hk

s

)
+ r(x, t). (2.5)

In the above equation, we have used Manning’s equation to represent the overland flow:

Qs =
√

Sf

ns
hk

s ∼
√

Sx

ns
hk

s , (2.6)

where k = 5/3 and ns is the Manning roughness coefficient, which depends on the
hillslope surface type and is determined empirically. We use the kinematic approximation
(Sf ∼ Sx), where the friction slope Sf is only dependent on the elevation gradient Sx.
Alternatively, we could also consider the diffusive approximation Sf ∼ Sx + ∂hs/∂x;
however, we limit this study to the kinematic approximation only for simplicity.

Furthermore, we note that apart from the constant gravitationally-induced groundwater
flow, the pressure difference caused by the gradient of surface water height may affect
the groundwater flow. Typically, the size of the overland flow is negligibly small
compared with the thickness of the porous layer. However, as we discuss in § 5, this
approximation fails at the propagating seepage front, which requires us to include the
(∂/∂x)(KsLz(∂hs/∂x)) diffusion term.

Now, we can combine (2.3) and (2.5) into a single equation for H:

∂H
∂t

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (x)−1
[

∂

∂x

(
KsH

∂H
∂x

+ KsHSx

)
+ r

]
if H ≤ Lz,

∂

∂x

[
KsLz

∂H
∂x

+
√

Sx

ns
(H − Lz)

k
]

+ r if H > Lz.

(2.7)

We assume a no-flow boundary condition at the catchment boundary (x = Lx). At the
location of the river (x = 0), we assume that the river table is located at the same level as
the overland water height (or at the surface if no overland flow is present). Therefore, at
x = 0 we set Hg = Lz and a (flat) free-surface condition for the overland flow, ∂hs/∂x = 0.
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In addition, in this work, we study the time evolution of the above system assuming that it
is initially in equilibrium for a given mean rainfall r0 < r, and then subjected to a rainfall r
for t > 0. Therefore, for the initial condition, we take the steady-state of equation of (2.7)
for a given mean rainfall r0. The boundary and initial conditions are summarised shortly
in § 2.3.

2.1.3. Channel flow
As was discussed in § 3.3 of Part 2, the total groundwater and overland flow that is
reaching the riverbank form a channel flow. This flow can be described by 1-D Saint
Venant equations. However, in this study, our focus is on studying the properties of river
inflow from the hillslope, not the subsequent channel flow. Therefore, for the purpose of
this study, we assume that the river height is constant, limited to the depth of the channel.
Analysing how the river inflow propagates thought the channel (or the entire drainage
network) and how the drying of the channel affects the surface and subsurface flows can
be interesting extensions of this study.

2.2. Non-dimensional model
The above model can be non-dimensionalised by taking x = Lxx′, t = T0t′, H = LzH′
and r = r0r′. Here, T0 = Lx/(KsSx) is a characteristic timescale of the groundwater flow,
chosen to balance the temporal term and the ∂x(KsHSx) term.

Once non-dimensionalised, our governing equations (2.7) become (after dropping
primes)

∂H
∂t

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (x)−1
[

∂

∂x

(
σH

∂H
∂x

+ H
)

+ ρ0r(x, t)
]

if H ≤ 1,

∂

∂x

(
σ

∂H
∂x

+ μ(H − 1)k
)

+ ρ0r(x, t) if H > 1,

(2.8a)

and the dimensionless parameters σ , μ and ρ0 are introduced shortly in § 2.3. In this work,
we assume that the rainfall is constant and uniform, i.e. r(x, t) = r = constant, except for
the initial jump from r0 to r > r0. However, we shall discuss in § 10 that our methodology
can be applied in the case of time-dependent rainfall.

In combination with the governing equations (2.8a), we have to specify the
dimensionless boundary conditions. First, at x = 0, we need to consider two situations.
First, if a seepage zone exists for the initial r0, we set a free flow boundary condition,

Hx(0, t) = 0. (2.8b)

However, as we shall demonstrate in § 3.1, if r0 is low enough, initially the seepage does
not exist. Then we assume that H(x, t) representing groundwater is reaching the surface at
x = 0, i.e.:

H(0, t) = 1. (2.8c)

During a rainfall (r > r0), the groundwater gradient at x = 0, which is initially negative,
increases as the groundwater rises. The seepage starts to grow, when the when it becomes
positive, which is when boundary condition (2.8c) is replaced with (2.8b).
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At the right-hand edge, by the definition of a catchment, there is zero flow:

Q(1, t) = 0, (2.8d)

where the dimensionless total flow, Q, is defined as

Q(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

H + σH
∂H
∂x

if H ≤ 1,

1 + σ
∂H
∂x

+ μ(H − 1)k if H > 1.

(2.9)

For the initial condition, H(x, t = 0) = H0(x), we take a steady state of (2.8a) for r = 1:

0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂

∂x

(
σH0

∂H0

∂x
+ H0

)
+ ρ0 if H0 ≤ 1,

∂

∂x

(
σ

∂H0

∂x
+ μ (H0 − 1)k

)
+ ρ0 if H0 > 1.

(2.10)

In this paper, we refer to this model (2.8) as the 1-D model.

2.3. The non-dimensional parameters
In the first case of (2.8), we have introduced two key dimensionless parameters, defined as

σ = Lz

LxSx
= thickness of the porous layer

elevation drop along the hillslope
, (2.11a)

ρ0 = r0Lx

LzSxKs
= precipitation flux

maximum groundwater flux
. (2.11b)

Note that σ → ∞ as the hillslope becomes increasingly flat. The parameter ρ0 represents
the ratio of the total precipitation rate (given by rLx in m2 s−1) to the maximum possible
groundwater flow for fully saturated soil (given by LzSxKs in m2 s−1). Introduction of
the maximum groundwater discharge is a classic concept in hydrology, see, e.g. Horton
(1936).

In the second case of (2.8), we have introduced an additional dimensionless parameter:

μ = Lk−1
z

KsS
1/2
x ns

. (2.12)

We argue later in § 6.2 that the characteristic size of the overland flow scales as Ls =
μ−1/kLz. Following that section, we introduce a key dimensionless parameter to describe
the dynamics in the seepage zone, namely the Péclet number:

Pe = μ1/k

σ
=

√
Sx

ns
Lk

s

KsLz
Ls

Lx

= convective overland flow
diffusive effect of the groundwater flow

. (2.13)

In order to interpret Pe, we note that the numerator represents the second term on the
right-hand side of (2.7) for H > Lz, representing convective effects. The denominator
represents the size of the first term on the right-hand side of (2.7) for H > Lz, representing
diffusive effects.

Based on median values of physical parameters used in the above equations provided
in table 1, we have σ ≈ 10−2, ρ0 ≈ 1.5, μ ≈ 107 and Pe ≈ 105. Consequently, our work
primarily focuses on the limits of μ, Pe → ∞, where convection dominates diffusion.
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Parameter Symbol Mean value Unit

Catchment width Lx 616 m
Catchment depth Lz 1 m
Hydraulic conductivity Ks 10−4 m s−1

Mean precipitation rate r0 2.95 × 10−8 m s−1

Peak precipitation rate r 2.36 × 10−7 m s−1

Hillslope gradient Sx 0.075 —
Manning’s roughness coefficient ns 0.051 s m−1/3

Table 1. Typical values of physical parameters characterising UK catchments extracted in Part 1 of this paper
(Morawiecki & Trinh 2024a).

3. Numerical methodology and typical dynamics

Recall that the solutions are essentially characterised by the overland and groundwater
heights, and a quadruplet of parameters:

H = H(x, t; σ, μ, ρ0, r), (3.1)

as well as the constant k = 5/3 appearing in Manning’s formula. These solutions are
found by solving the partial differential equation (PDE) (2.8a) subject to the boundary
conditions (2.8b)–(2.8d). In the typical configuration, the flow transitions from overland
(H > 1) to groundwater (H ≤ 1) at a contact point x = a(t), which is determined as part
of the solution.

The model in (2.8a) was implemented in Matlab using the ode15s solver to find its
steady state and pdepe to solve the time-dependent problem. We divide the spatial and
temporal domain as follows:

xi = i
Nx

and tj = j
Nt

tmax, i, j = 1, 2, 3, . . . , (3.2)

where we typically use Nx = 200 and Nt = 300. We check whether increasing mesh size
and time resolution does not significantly affect the obtained solution, and if it does, we
refine the mesh. The codes used to generate figures in this work are available in a GitHub
repository (Morawiecki 2022). All numerical results in this paper were obtained for the
values presented in table 1, unless stated otherwise.

3.1. Typical results for ρ0 < 1 and ρ0 > 1
The existence of the seepage zone in the initial steady state depends on whether the value
of ρ0, defined in (2.11b), is higher or lower than 1, and each case exhibits a different
transient behaviour. Typical solutions obtained in these two cases are shown in figure 3.

First, consider figure 3(a,b). In the case of ρ0 > 1, we already have a seepage zone in
the initial state. In a short timescale, the height of the surface water increases quickly
until reaching a seemingly quasi-static state. Afterwards, the flow continues to increase as
a result of the saturation front propagating uphill, but this process is characterised by a
much longer timescale and a slower rate of flow rise. The difference between the short-
and long-time behaviour can also be seen in the produced hydrograph in figure 4. It shows
the dependence between the total river inflow, defined as the total flow (2.9) evaluated at
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Figure 3. Schematic presenting early- and late-time dynamics for a catchment with and without an initial
seepage zone (corresponding to ρ0 > 1 and ρ0 ≤ 1 respectively). In (a), (b) and (c) a seepage zone is observed,
and therefore a separate graph is presented to illustrate the evolution of the surface water depth (note that the
vertical axis is multiplied by the scaling factor μ1/k ≈ 3260).
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Figure 4. Schematic representation of the hydrograph obtained for a catchment with and without an initial
seepage zone (corresponding to ρ0 > 1 and ρ0 ≤ 1, respectively). Points represent times for which the profiles
are shown in figure 3, whereas letters A–D refer to corresponding phases from that figure.

the river bank (x = 0),

Q(t) = Q(x = 0, t). (3.3)

In the presented hydrograph, we have marked the initial fast transition as (A) and the
subsequent slow transition as (B).

For ρ0 < 1, we do not observe an initial seepage zone, i.e. H(x, t = 0) < 1 for all x. For
some time the groundwater table is rising, increasing groundwater flow reaching the river,
until the groundwater depth gradient at x = 0 becomes 0. Then the seepage zone starts to
slowly form and propagate away from the channel, increasing the overland flow reaching
the river.

However, in practice, in the case of real-world catchments characterised by a thin porous
layer (which is a base assumption behind the presented 1-D model), the groundwater flow
rate is highly limited. Therefore, in such catchments, we expect the ρ0 > 1 case to be
more prevalent, which is additionally confirmed by low base flow index (BFI) values
characterising low-productive catchments. (BFI describes the ratio between the base flow
and total flow in the given catchment. High values refer to catchments dominated by the
groundwater flow, whereas low values refer to catchments with a significant overland flow
component.) Therefore, in this paper, we focus on discussing the mathematical properties
of each phase presented in figure 4 only in the case of ρ0 > 1.

In general, the solution for the PDE model (2.8a) can only be found numerically.
However, by taking advantage of the typical sizes of dimensionless parameters, the model
can be further simplified. Figure 5 shows the effect of dimensionless parameters, ρ, ρ0,
σ and μ on the model’s solution. The graphs in the left column show how the initial
steady state H0(x) depends on the value of each parameter, whereas the graphs on the
right present the effect of each parameter on the hydrograph Q(x = 0, t). The conclusions
from this numerical experiment are as follows.

(i) Parameter ρ0 (typical value 2), which following (2.11b) characterises the mean
precipitation rate in terms of the groundwater flow, has a significant effect on
the initial steady state. As discussed in detail previously, ρ0 < 1 corresponds to a
hillslope with no initial seepage zone, and is characterised by different dynamics
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Figure 5. Effect of dimensionless parameters shown for the initial steady state H0(x) versus x (insets left
column) and for the hydrograph Q(t) versus t (insets right column). Inset (a) shows changing ρ0; inset (b)
shows changing ρ; inset (c) shows changing σ ; and inset (d) shows changing μ. In the case of (a), (c) and (d),
solid lines represent solutions for ρ0 = 1.5 (scenario with an initial seepage zone), and dashed lines represent
solutions for ρ0 = 0.6 (scenario without an initial seepage zone). The surface water (H > 0) is magnified 1000
times.
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than the ρ0 > 1 case, in which we observe a fast rise of flow in the early time. In
most of this paper, we consider only the latter case.

(ii) Parameter ρ (typical value ≈20), which characterises the simulated precipitation
rate in terms of the groundwater flow, does not affect the initial steady state, but it
does affect how quickly the flow is rising. Higher ρ values lead to both a higher
flow over the seepage zone and a faster growth of this zone. Values of ρ can vary
significantly depending on the rainfall event considered.

(iii) Parameter σ (typical value 10−2), which following (2.11a) characterises the
thickness of porous layer compared with the elevation drop along the hillslope, has
a significant effect only on the solution outside the seepage zone. In the case of the
seepage zone, the term including σ is negligibly small compared with the μ term.
However, it affects the speed at which the seepage zone is growing. Note that as
σ → 0, the initial groundwater shape becomes a linear function (with a possible
small boundary layer at its left border). Even though this limit is not critical in our
analysis, it may allow us to approximate the initial groundwater shape without the
need to solve the governing equations numerically.

(iv) Parameter μ (typical value 106), which following (2.12) characterises the overland
flux, does not have a significant effect on the groundwater table outside the seepage
zone, but it has a major effect on the height of the surface water within the seepage
zone. Higher μ values correspond to lower surface water height, which in the limit
μ → ∞ becomes negligible compared with the variation of the groundwater depth.
In addition, in this limit, the seepage zone size reaches a limiting value, a0 = 1 −
1/ρ0 (see § 5). This limit is strongly supported by real-world data (typical value of
μ for UK catchments is of the order of 106 based on the typical parameter values
estimated in Part 1 of this study), and it allows us to derive the formula for a typical
hydrograph.

4. The formulation of an asymptotic model for intense rain

In the previous section, we presented numerical simulations of the full PDE system (2.8)
and showed that under certain parameter choices, the resulting hydrographs could be
approximately classified into two behaviours as shown in figure 3. In particular, when the
system is initiated with an initial seepage zone, i.e. ρ0 > 1, then in response to an intense
rainfall with r > 1, the river inflow rapidly increases over time. It is important to note
that the duration of a standard intensive rainfall is much shorter compared with the typical
timescale of the groundwater flow (i.e. typical travel time along the hillslope), which is
approximately

T0 = Lx

KsSx
≈ 1000 days. (4.1)

Our focus is to develop the short-time asymptotics to better understand this crucial
response. Ultimately, we aim to derive an analytical solution for the river inflow, Q(x =
0, t). Based on the physical constraints, we are primarily interested in the following
asymptotic limits:

small-time : t � 1,

convection-dominated flow in the seepage zone : Pe  1,

intense rainfall : ρ = rρ0  1.

⎫⎪⎬
⎪⎭ (4.2)
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Asymptotic analysis of catchment models. Part 3

To begin, let us reformulate the governing system in terms of a boundary value problem.
We assume that there exists a single contact line located at x = a(t) where H(a(t), t) = 1.
This configuration is illustrated in figure 2. From (2.8a), the evolution of these surfaces is
governed by

∂H
∂t

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂

∂x

(
σ

∂H
∂x

+ μ(H − 1)k
)

+ ρ for x ∈ [0, a(t)], (4.3a)

f (x)−1
[

∂

∂x

(
σH

∂H
∂x

+ H
)

+ ρ

]
for x ∈ [a(t), 1]. (4.3b)

Here, we have introduced ρ = ρ0r. Thus, we have a set of two time-dependent equations
for H that are second-order in space, along with an additional contact-line position a(t).
Consequently, we require five boundary conditions in addition to the initial condition. Two
boundary conditions are needed at x = 0, 1, and three matching conditions are required at
the interface, x = a(t). In total, these conditions are

∂xH(0, t) = 0, ∂xH(1, t) = −σ−1, (4.4a,b)

H(a−, t) = 1, H(a+, t) = 1, ∂xH(a−, t) = ∂xH(a+, t), (4.4c–e)

where a± corresponds to the right/left limits as x → a.
The first two boundary conditions are obtained from (2.8b) and (2.8d). The next two

boundary conditions arise from defining a as the point where the groundwater table
reaches the surface (i.e. where H = 1). The last interface condition is a consequence of
the continuity of flow given by (2.9). Note that a kinematic condition can be derived for
the front position. Applying the chain rule to H(a(t), t) = 1, we have

∂H
∂t

+ ∂H
∂x

da
dt

= 0 at x = a(t). (4.5)

Following (2.10), we set the initial condition given by the steady state of (4.3a)–(4.3b) for
r = 1, which we denote as H0(x; ρ0). Thus, H0 satisfies

0 =
{

(σH0H′
0 + H0)

′ + ρ0 for x > a(t = 0),

(σH′
0 + μ(H0 − 1)k)′ + ρ0 for x ≤ a(t = 0),

(4.6)

where primes (′) denote differentiation with respect to x. Here, a(t = 0) can be regarded
as an eigenvalue and determined from this initial condition.

In the next two sections, we use this model to derive an asymptotic solution for the
hydrograph Q(t). Our approach involves three main steps.

(i) First, in § 5, we study the initial state H(x, 0) = H0(x; r = 1), which is assumed
to be the steady-state response to the rain input r = 1. This is a complicated
coupled overland–groundwater problem, but we are able to develop analytical
approximations in the limit of μ → ∞ or equivalently Pe → ∞.

(ii) Next, in § 6.1, we study the small-time response of the groundwater configuration
and the propagation of the seepage zone relative to this initial steady state. At the
time t = 0, the rainfall is set to r > 1, which causes the groundwater to rise and the
seepage zone to shift. Analytical approximations can be developed for the case of
Pe → ∞ and for large rainfalls, r → ∞.

(iii) Finally, in § 6.2, we develop an analytical approach for predicting the evolution of
the overland flow, which leverages our analysis of the seepage zone propagation
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obtained in step (ii). This turns out to be a wave propagation study using the method
of characteristics.

5. Asymptotic analysis of the initial condition, H0, with Pe → ∞
In our model, we assume that the system begins at the configuration that corresponds to
the particular steady-state solution forced by the ‘typical’ rainfall, ρ0.

By integrating (4.6) and applying the upstream boundary condition q(1) = 0, we obtain

ρ0(1 − x) =
{

H0 + σH0H′
0 for x > a, (5.1a)

1 + σH′
0 + μ(H0 − 1)k for x ≤ a. (5.1b)

The fact that the limit μ → ∞ involves the Péclet number, defined as Pe = μ1/k/σ
via (2.13), is not entirely obvious. Note that as μ → ∞, the dominant balance in the
overland equation for x ≤ a indicates that H0 ∼ 1 in this limit. We rescale x = aX and
H0 = μ−1/kg(X), obtaining, for X ∈ [0, 1],

Pe−1

a
∂g
∂X

+ gk = ρ0(1 − aX) − 1, (5.2)

g′(0) = 0 and g(1) = 0. (5.3)

In the limit Pe → ∞, we note that naively, the diffusion term in (5.2) tends to zero.
Then, since g(1) = 0, we can approximate ρ(1 − a) ∼ 1, which gives the front position as
a ∼ 1 − 1/ρ0. However, note that in this limit, the leading (outer) solution is given by g ∼
[ρ0(1 − aX) − 1]1/k and, hence, exhibits an infinite gradient as X → 1. Consequently, it is
not obvious that the diffusion term can be neglected a priori as Pe → ∞. The gradient of
the solution exhibits a boundary layer and thus requires a matched asymptotics approach.

In Appendix D, we show that the contact line, x = a, and the gradient at the front can
be expanded into an asymptotic expansion. In terms of the original H0, this is

a ∼ a0 + a1Pe−β and H′
0(a) ∼

[
−ρ0a1

σ

]
Pe−β, (5.4)

where β = k/(2k − 1) and the leading-order contact position is indeed

a0 = 1 − 1
ρ0

. (5.5)

Note that increasing the rainfall rate, ρ0 → ∞, sends a → 1, and overland water saturates
the entire hillslope. In contrast, the limit ρ0 → 1+ reduces the seepage zone size to zero,
as anticipated in § 3. The correction factor of a1 in (5.4) can be calculated as an eigenvalue
via the solution of a boundary-value problem (cf. (D9a)). Finally, note that as Pe−1 → 0,
the gradient at the transition between overland and groundwater flows, H′

0(a) → 0.
As we show in § 6.1, in order to find the speed of the seepage zone growth, we need to

find the initial depth of the groundwater outside the seepage zone first. We can find this
initial depth by solving (5.1a), which can be rearranged as

σ
dH0

dx
= ρ0(1 − x)

H0(x)
− 1 for x ∈ [a0, 1], (5.6)

with a boundary condition H0(a0) = 1. This first-order nonlinear ordinary differential
equation (ODE) does not have an explicit analytical solution; it can either be solved
numerically, or we can investigate its shape in different limits.
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Figure 6. Comparison of groundwater depth given by (5.6) (full numerical solution) with the matched
asymptotic approximation given by (5.7).

5.1. Analytical solution as σ → 0
One quite useful limit is to consider σ → 0, corresponding to the infinitely thin porous
layer limit. In Appendix E, we derive the outer asymptotic expansion for H0 in terms of σ ,
(E2), its inner expansion around x = 0 (E4), and finally match them to form the following
composite approximation for H0(x):

H0(x) = ρ0(1 − x + σ − σ e−(x−a0)/σ ), for x ∈ [a0, 1]. (5.7)

As shown in figure 6, this asymptotic solution provides a good approximation of the
groundwater shape both for small σ values and, surprisingly, also for large σ values. In the
latter case, H0 becomes a quadratic function,

1 − H0 ∼ ρ0

2σ
(x − a0)

2, (5.8)

which is also a limiting behaviour of our matched asymptotic solution (5.7) as x → a0.

6. Short-time asymptotics

This section relates to the asymptotic limits of t → 0, μ → ∞ and ρ = ρ0r → ∞ in (4.2).

6.1. Groundwater rise and propagation of the seepage zone
Having derived certain analytical properties of the steady-state configuration, H0(x; ρ0)
(used as an initial condition), we can now study the short-time behaviour of the system
as the rain input is set to ρ. As argued at the start of § 4, this is a good approximation,
when the rainfall duration is much shorter than the characteristic time of the groundwater
transfer to the channel.
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Figure 7. (a) Comparison of the numerical solution of the groundwater shape (solid lines) with the outer
solution developed in Appendix F (dashed lines) at different times t. The corresponding size of the seepage zone
is presented in (b). A small region is magnified to highlight differences between the presented approximations.
The lines are not smooth due to the h(x) interpolation error.

As shown in Appendix F, the outer solution outside the seepage zone (4.3b) can be
expanded into a regular series expansion in powers of time t:

Houter(x, t) ∼ H0(x; ρ0) +
[
ρ − ρ0

f (x)

]
t + O(t2). (6.1)

This approximation assumes that x − a(t) = O(1). The approximation (6.1) thus indicates
that the groundwater rises in a fashion proportional to time and the difference between
current and prior rain input; it correctly describes the shape of the groundwater except for a
thin boundary layer at x = a(t) of thickness of O(

√
t/(ρ − ρ0)) (see figure 7a). Therefore,

for intense rainfall, ρ  1, we can neglect the effect of this boundary layer.
We may use the outer groundwater approximation, (6.1), in order to predict the motion

of the contact line, x = a(t). Setting Houter = 1 gives, in implicit form,

t ∼ f (x = a(t))
ρ − ρ0

(1 − H0(x = a(t))) ≡ T (x = a(t)). (6.2)

In order to calculate the above, we must solve two first-order ODEs: (5.6) for the height,
H0(x), and (C2) for the head, hg(ẑ), itself used in the calculation of f (x). Alternatively, one
can use the analytical approximations for H0(x) given by (5.7), and f (x) given by (C6) or
(C7). Figure 7(b) compares these approximations with the location of the saturation front
computed from a full numerical solution of the 1-D model. As we observe based on the
difference between the full numerical solution and leading-order approximation (LOA),
neglecting the boundary layer around a(t) introduces a small error when estimating the
seepage zone size. Replacing the ODEs with analytical approximations for f (x) and H0(x)
in (6.2) also introduces an error, but it is significantly smaller.

6.2. Evolution of the overland flow
Now, knowing how the seepage zone propagates, we can develop a time-dependent
solution for the overland flow. Our goal is to extract how the overland flow into the river,
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Qs(x = 0, t), evolves in time, taking into account the effects of increased rainfall and the
seepage zone growth.

6.2.1. Problem reduction under Pe → ∞ limit
The equation for overland flow is given by (4.3a) with the initial condition satisfying steady
state (5.1b). We rescale according to

η = μ1/k(H − 1) and T = μ1/kt. (6.3)

Here, η = η(x, T) is the rescaled surface water height hs = H − 1. Then (4.3a) can be
written as

∂η

∂T
− kηk−1 ∂η

∂x
− Pe−1 ∂2η

∂x2 = ρ, (6.4)

and (5.1b), which provides the initial condition, H0, is

1 + ηk − Pe−1 dη

dx
= ρ0(1 − x), (6.5)

where, as before, Pe−1 = σ/μ1/k. Following (4.3a) and (4.3c) the boundaries conditions
are

∂xη(0, t) = 0, η(a(t), t) = 0. (6.6a,b)

Note that the characteristic time it takes the overland flow to reach the channel
(μ−1/kT0 ≈ 0.1 day) is much shorter than the characteristic time describing the
groundwater flow (T0 ≈ 1000 days), and has a similar order of magnitude as a typical
rainfall duration. As a result, a short-time approximation is not satisfactory to describe
flow variation during a single rainfall event.

The solution for general times can be obtained by considering the Pe → ∞ limit,
similarly as we did when analysing the steady state. This limit allows us to neglect the
diffusion term everywhere except for a negligibly thin boundary layer around x = a.

In the limit Pe → ∞, we expand η = η0 + Pe−1η1 + · · · , and (6.4) becomes a
first-order hyperbolic PDE:

∂η0

∂T
− [kηk−1

0 ]
∂η0

∂x
= ρ, x ≥ 0. (6.7a)

For 0 ≤ x ≤ a(t), there is an initial condition given by

η0(x, 0) = ρ
1/k
0 (a0 − x)1/k, (6.7b)

where we have used the fact shown in Appendix D that a0 = 1 − 1/ρ0 (cf. (5.5)). The
above initial condition is defined along the entire initial seepage zone, x ∈ [0, a0]. Note
that neglecting the diffusion term results in a kinematic wave equation, for which the
downstream boundary condition (6.6a) is no longer required.

6.2.2. Implicit solution using methods of characteristics
The system (6.7) can be solved using the method of characteristics (Lagrange–Charpit
equations). The solution is given by characteristic curves (T, x, η0), now parameterised by
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Figure 8. Characteristic curves given by (6.9) for parameters listed in table 1. Dark blue lines represent
curves originating from the initial seepage zone, and light green lines represent curves originating from the
propagating front of the seepage zone.

(s, τ ), where τ is the characteristic curve parameter, and s parameterises the initial data.
The characteristic equations are

dT
dτ

= 1,
dx
dτ

= −kηk−1
0 ,

dη0

dτ
= ρ. (6.8a)

The initial conditions are specified along τ = 0 according to two types of characteristics.
One set of characteristics emerges from T = 0, at the location of the initial water shape,
H0(x), valid for x ∈ [0, a(t)]. Another set of characteristics emerges from the propagating
front, x = a(t), representing the groundwater reaching the surface and, hence, initiating
surface flow.

Parameterising the initial data by x = s, we have

(T(s, 0), x(s, 0), η0(s, 0)) =
{

(0, s, H0(s)), s ∈ [0, a(t)],

(μ1/kT (s), s, 0), s ∈ [a(t), ∞).
(6.8b)

The first condition will use the initial surface height, H0(s) = ρ
1/k
0 (a0 − s)1/k given by

(6.7b). The second condition is essentially specified along the moving front, (T, x, η0) =
(T, a(t), 1), but we have written it in terms of the s-independent variable, and the rescaled
function T in (6.2). In summary, the characteristic solution can be obtained via direct
integration of (6.8), giving

T(s, τ ) = T(s, 0) + τ,

x(s, τ ) = x(s, 0) − ρ−1[η0(s, 0) + ρτ ]k + ρ−1[η0(s, 0)]k,
η0(s, τ ) = η0(s, 0) + ρτ.

⎫⎪⎬
⎪⎭ (6.9)

We show an example of the characteristics and characteristic projections in figure 8.
Once the solution is determined, a key quantity of interest is the surface water height at

x = 0, as it determines the overland flow reaching the river. We denote this critical point
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Asymptotic analysis of catchment models. Part 3

along the characteristics as (T, η0) = (T∗, η∗). By setting x(s, τ ) = 0 in the characteristic
equations (6.9) and eliminating τ from the second equation, we obtain(

T∗
η∗
)

=
⎛
⎝T(s, 0) + 1

ρ
(η∗ − η0(s, 0))

(ρx(s, 0) + (η0(s, 0))k)1/k

⎞
⎠ . (6.10)

We need to consider two cases separately: characteristics starting from the initial seepage
zone and characteristics emerging from the propagating seepage front. Each case is given
by the different initial conditions, as specified in (6.8b).

In the first case, by substituting the first initial condition from (6.8b) into (6.10), we
obtain (

T∗
η∗
)

=
⎛
⎝ 1

ρ
(η∗ − ρ

1/k
0 (a − s)1/k)

(ρs + ρ0(a − s))1/k

⎞
⎠ . (6.11)

By finding s from (6.12a) and substituting into (6.12b) we can express T∗ as a function of
η∗:

T∗(η∗) = 1
ρ

[
η∗ −

(
ρ0

ρ − ρ0

)1/k

(ρa0 − (η∗)k)1/k

]
. (6.12)

This equation is satisfied for η∗ ∈ [(ρ0a0)
1/k, (ρa0)

1/k]. The lower limit corresponds to the
initial height, and the upper limit corresponds to the height reached by the characteristic
curve starting at x0 = a0. At the upper limit, the characteristic curve reaches the river
(x = 0) at what we refer to as the critical time:

Tcrit = 1
ρ

(ρa0)
1/k. (6.13)

This critical saturation event is associated with the critical characteristic curve highlighted
in figure 8.

For those characteristics starting from the propagating seepage front, x = a(t), we
substitute the second initial condition from (6.8b) into (6.10):(

T∗
η∗
)

=
⎛
⎝μ1/kT (s) + 1

ρ
η∗

(ρs)1/k

⎞
⎠ . (6.14)

By eliminating s, we can express T∗ as a function of η∗:

T∗(η∗) = μ1/kT
(

1
ρ

(η∗)k
)

+ 1
ρ

η∗. (6.15)

By combining (6.12) and (6.15), we can find the height of the surface water, at the river,
x = 0, value for all times T ≥ 0. This is done by solving the implicit equation:

T∗(η∗) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

η∗

ρ
− 1

ρ

(
ρ0

ρ − ρ0

)1/k

(ρa0 − (η∗)k)1/k, for η∗ ≤ (ρa0)
1/k,

η∗

ρ
+ μ1/kT

(
1
ρ

(η∗)k
)

, for η∗ > (ρa0)
1/k.

(6.16)

Alternatively, we can express the height of the surface water η∗ in terms of the overland
component of river inflow, which is represented by the last term in (2.9), Q∗

s = (η∗)k.

982 A30-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
33

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1033


P. Morawiecki and P.H. Trinh

This leads to the equation:

t∗(Q∗
s ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
ρ

(Q∗
s )

1/k − 1
ρ

(
ρ0

ρ − ρ0

)1/k

(ρa0 − Q∗
s )

1/k, for Q∗
s ≤ ρa0,

1
ρ

(Q∗
s )

1/k + μ1/kT
(

Q∗
s

ρ

)
, for Q∗

s > ρa0.

(6.17)

Equation (6.17) represents one of the major results of this work, since it provides an
implicit expression for the shape of the hydrograph Q∗

s (t
∗).

6.2.3. Approximating the hydrograph in an explicit form
We can obtain an approximated explicit form for the Q∗

s (t) function for Q∗
s > ρa0. In the

limit μ → ∞ (equivalent to Pe → ∞), we may expand around the value of Q∗
s at tcrit in

(6.13), and write

Q∗
s (t

∗) ∼ ρa(μ−1/k(t∗ − tcrit)) for t∗ ≥ tcrit, (6.18a)

where we have used a(t) = T −1(t) from (6.2) to describe the propagation of the wetting
front in time. Following approximation (5.7) and (C7), it can be written explicitly as

a(t) = a0︸︷︷︸
term1

+ s(t)︸︷︷︸
term2

+ σ [1 + W0(−e−1−s(t)/σ )]︸ ︷︷ ︸
term3

, (6.18b)

where

s(t) = At1/(n+1) with A = 1
ρ0

[
n + 1

m
ρ − ρ0

θs − θr

(
1 − r0

Ks

)−n

α−n

]1/(n+1)

. (6.18c)

Here, W0(·) is the Lambert W function, and α, θs, θr, n and m are soil properties used in
the Mualem–van Genuchten model (see § C.2).

The first term in (6.18b) corresponds to the flow over the initial seepage zone. The
second and third terms represents the growth of flow after reaching the critical point.
The third term, in the case of σ � 1, quickly grows from 0 asymptotically reaching σ

as t → ∞, whereas the second term is responsible for further growth of the river flow.
Therefore, for thin hillslopes (σ � 1), the growth of river flow after passing the critical
point scales proportionally to the ρA factor.

In the next section, we summarise all approximations derived in this section, and
validate them by comparing with each other and full numerical solutions of 1-D and 2-D
benchmark models.

7. A numerical comparison between different approximations

7.1. Numerical set-up
In Part 2 (Morawiecki & Trinh 2024b), we performed a numerical verification of the
assumption of reducing the 3-D benchmark model to a 2-D model. We also conducted
a detailed sensitivity analysis, highlighting the dependencies of model parameters on the
resultant peak flows. Here, we continue this analysis by comparing the hydrographs and
peak flows between the five different approximations derived and discussed in this paper.
The approximations are summarised in table 2 in order from the most complex to the
simplest.
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Approximation Equations/notes

2-D surface–subsurface model Richards/Saint Venant equations along a 2-D hillslope, as
discussed in Part 2 of this paper.

1-D surface–subsurface model The 1-D Boussinesq system (2.8), which assumes a thin
porous layer limit, Lz � Lx.

Characteristics (numerically implicit) Solution given by (6.17), where the H0(x) and f (x) functions
are found numerically using 1-D ODEs (5.6) and (C2).
Assumes scenario ρ0 > 1, early time t � 1, intense rainfall
ρ  1 and Pe  1.

Characteristics (analytically implicit) Solution given by (6.17), where the functions H0(x) and f (x)
are approximated as (5.7) and (C6). In addition, it assumes that
σ  1, H0 � 1.

Characteristics (analytically explicit) Solution given by (6.18), tcrit < t � 1 (in addition to the
assumptions listed before).

Critical flow Flow estimated as Qcrit = ρa0 + ρ0(1 − a0), equal to the river
inflow reached at t = tcrit (further discussion in § 8).

Table 2. Summary of the approximations developed in this work.

Parameter Default value Parameter range

Ks (m s−1) 1 × 10−5 10−6 − 10−4

Lx (m) 6.16 × 102 102 − 103

Lz (m) 6.84 × 102 101 − 103

Sx (–) 7.5 × 10−2 10−2 − 10−1

r (m s−1) 2.36 × 10−7 3 × 10−8 − 3 × 10−6

r0 (m s−1) 2.95 × 10−8 10−9 − 10−7

ns (m s−1/3) 5.1 × 10−2 10−2 − 10−1

Parameter Value

Ly (m) 18 000
w (m) 5

hout (m) 0.3
θs (–) 0.488
θr (–) 0
n (–) 1.19

Table 3. Default values and ranges of parameters used to perform the sensitivity analysis. The part on the
right presents parameters not varied during the sensitivity analysis.

Similar to the methodology presented in Parts 1 and 2, we assess the performance of
the above models in two ways. First, we compare the hydrograph obtained using each
model for standard values of parameters characterising UK catchments, as listed in table 3.
Second, we run a sensitivity analysis by varying seven model parameters, one at a time,
while keeping the others at their default values, and measuring the peak flow in the river
after an intensive rainfall. In both numerical experiments, we consider a uniform rainfall
over a duration of 24 h.

7.2. Comparing the hydrographs
A comparison of the hydrographs obtained under the different approximations is presented
in figure 9. First, we note that the 1-D models formulated in this paper produce similar
hydrographs to the 2-D model from the previous part of our work. However, the 1-D
models slightly underestimate the flow, and the solutions are not smooth around the critical
point separating early-time and last-time growth.

Second, all approximated solutions of the 1-D model produce consistent results for
t ≤ tcrit (except for the explicit solution, which is valid only for t > tcrit). The results
are also similar for t > tcrit, but inaccuracies related to different approximations start

982 A30-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
33

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1033


P. Morawiecki and P.H. Trinh

6 12 18 240

0.2

0.4

0.6

0.8

1.0

1.2
(×10–4)

Time, t (h)

R
iv

er
 in

flo
w

, Q
(m

2  
s–1

)

2-D PDE model
1-D PDE model
Numerical implicit solution
Analytic implicit solution
Analytic explicit solution

Groundwater flow, KsSxLz

Initial flow, r0LxC
ri

tic
al

 ti
m

e,
 t c

ri
t Critical flow, Qcrit

Figure 9. Hydrograph computed using approximations listed in table 2 for default values of parameters given
in table 3. The graph area around the critical point is magnified. Numerical instability are observed for the 1-D
model, caused by the finite discretisation of space, which does not allow capturing the exact location of the
seepage, and by instabilities related to the governing equation for the seepage zone (2.8a), characterised by a
very small diffusive term.

to become noticeable. For example, the implicit solution closely follows the 1-D model
solution, but with the flow slightly shifted towards the higher values. This deviation is
caused by neglecting the boundary layer characterising the groundwater shape around
the critical point. As discussed in Appendix F, this inaccuracy decreases as ρ increases.
Replacing numerical solutions for f (x) and H0(x) with their analytical approximations
seems to have a negligible effect on the model for typical sizes of catchment parameters.

Similarly, using approximation (6.18) for the explicit solution leads to the
underestimation of the groundwater rise rate, which slows down the growth of flow for
higher t values. In addition, the flow around t = tcrit is slightly overestimated as a result
of neglecting the variation of the (Q∗

s )
1/k term appearing in the implicit solution (6.17).

Despite these small inaccuracies, the explicit solution still seems to produce excellent
qualitative and quantitative agreement. Moreover, due to its simple form, the explicit form
allows us to directly understand the effect of various catchment properties on the expected
peak flows.

7.3. Sensitivity analysis
We chose seven physical parameters for the sensitivity analysis: catchment width Lx,
aquifer depth Lz, elevation gradient along the hillslope Sx, hydraulic conductivity Ks,
precipitations rates r and r0 and Manning’s constant ns. We varied each parameter within
the range of its typical values presented in table 3, while keeping the other parameters
constant. In each case, we simulated the model’s response to a 24-hour-long rainfall event
(as shown in figure 9), and then measured the peak river inflow Q(x = 0, t) reached at the
end of this period. The results of the sensitivity analysis are presented in figure 10.

We note that the dimensionless parameter determining the existence of the initial
seepage zone is given by ρ0 = rLx/(KsLzSx). Therefore, as the dimensional parameters
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Figure 10. Sensitivity analysis results showing the dependence between the peak flow reached after 24 h
of intensive rainfall and seven different model parameters. The predictions conducted using four models of
varying complexity are presented. The dashed region represents the parameter range, for which there is no
initial seepage zone (ρ0 < 1).

are varied, the initial condition may not involve an initial seepage zone if ρ0 < 1. The
parameter ranges for which that happens are marked by a dashed region in figure 10. We
observe that as long as there is an initial seepage zone, the analytical approximations of
the hydrograph are largely accurate over the range of tested parameters.

As expected, the (total) peak flows reached are higher than the maximum levels set by
the critical saturation flow, given by (8.2), since the latter only describes the flow reached
during the early-time phase. Nevertheless, for most parameter values, the critical flow
curve provides a good approximation of the peak flows. In Part 2 of our work, based
purely on the 3-D and 2-D simulations, we arrived at the same conclusion.

The cases where the critical flow value highly underestimates the peak flow are around
ρ0 = 1. In these cases, either the seepage zone does not initially exist but the soil is almost
fully saturated near the river (ρ0 slightly lower than 1), or it exists but is very small (ρ0
slightly larger). In both cases, rainfall causes the seepage zone to grow significantly relative
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to its initial size; however, this growth is not captured by the time-independent estimate
(8.2).

8. Summary of the key hydrograph features

In figure 9 in the previous section, we showed a typical shape of a hydrograph given by the
1-D model. Here, we summarise the main features of the hydrograph and its importance
in benchmarking.

As discussed before, two different phases are visible: phase 1, an early-time fast rise
caused by water accumulating over an initial seepage zone; and Phase 2, a late-time slow
rise caused by a growing seepage zone. The analytical approximation presented in § 6.2.3
shows that the growth of the overland flow in the second phase can be approximated as
Qs(t) ≈ ρa(t), i.e. it corresponds to the total precipitation rate over the seepage zone a(t)
slowly growing in time t. Together with the groundwater flow Qg = 1, they give a total
river inflow Q(t) = 1 + ρa(t), which in dimensional units is

Q(t) = KsSxLz + rLxa(t) = r0Lx(1 − a0) + rLxa(t), (8.1)

where a0 = 1 − KsSxLz/rLx is the size of the initial seepage zone.
Following § 6.2, the transition from the first to the second phase corresponds to the

moment when the characteristic curve starting from the furthermost point of the initial
seepage zone reaches the river (x = 0). This observation allowed us to estimate the
dimensionless critical flow, which in dimensional units correspond to (8.1) with a(t) = a0:

Qcrit = KsSxLz︸ ︷︷ ︸
groundwater flow

+ rLx

(
1 − KsSxLz

r0Lx

)
︸ ︷︷ ︸

overland flow

. (8.2)

It is reached at the critical time tcrit given by (6.13), which in dimensional units is

tcrit = Lz

r

[
S1/2

x Ksn

Lk−1
z

(
Lxr

KsSxLz
− r

r0

)]1/k

. (8.3)

Following the above event, further growth (8.1) is slow, which is a result of the difference
of μ1/k ≈ 104 factor between the characteristic timescale of overland flow (responsible for
Phase 1) and groundwater flow (responsible for Phase 2). Therefore, Qcrit may be a good
approximation of the flow even long after the critical time.

We highlight a few additional features of our 1-D benchmark model.

(i) When the groundwater component of Qcrit (8.2) is much smaller than the overland
component (e.g. during intensive rainfalls), the critical flow reached during extreme
rainfalls can be approximated by

Qcrit ≈ rLx

(
1 − KsSxLz

r0Lx

)
. (8.4)

Since the consecutive river flow rise is slow, the above estimate can be used as an
approximation of the peak flow reached, assuming that the rainfall is long enough to
reach the critical time, tcrit.

(ii) Under this approximation, the critical point can be represented as a function of three
parameters: rainfall intensity, catchment area (since the flow scales proportionally to
both the hillslope width Lx and catchment length Ly), and the KsSxLz/(r0Lx) factor,
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which is equal to the fraction of groundwater flow KsSxLz to the mean total flow r0Lx.
This last parameter can be related to what is often referred to as the BFI (Gustard,
Bullock & Dixon 1992, Section 3.1.2).

(iii) There are some similarities between this expression and other models used in
hydrology. Equation (8.4) is a special case of the so-called rational method, which
assumes that river flow is proportional to area and precipitation rate (see Bedient
et al. 2008, chapter 1.5). The proportionality constant (runoff coefficient) here is
identified as 1 − BFI.

The BFI appears in many statistical methods used in flood estimation, which,
unlike our physically-based approach, are based on applying statistical methods
such as linear regression to the available catchment data. A notable example is
the Flood Estimation Handbook (FEH) flood estimation method by Kjeldsen et al.
(2008). It assumes that the median of the annual maximum flow (QMED) scales
as QMED ∝ 0.0460BFIHOST2

, where BFIHOST is a soil-based BFI estimator. Note
that, similarly to (8.4), the predicted flow decreases with the BFI, but in a nonlinear
fashion. Interestingly, other catchment descriptors used in the FEH method include
the catchment’s area and precipitation, which, like BFI, are also related to the
maximum annual flow through nonlinear functions, selected to fit the available data.

Even though our 1-D benchmark model is based on a series of simplifying assumptions
(e.g. a thin porous layer and pre-existing seepage zone), which are often not satisfied
in real-world catchments, its predictions seem to be reasonable in comparison with
data-based catchment models. The connection between our simple scaling laws, shown
above and derived analytically from a physical model, and statistical models such as the
aforementioned FEH method, which are formulated in a completely different fashion, is
intriguing. These results will be presented in a forthcoming work by the present authors,
and can also be found in Morawiecki (2023).

9. Conclusions

The primary aim of our work has been to develop and analyse a rigorous benchmark
scenario for coupled surface–subsurface flows in a typical catchment. We have achieved
this goal by first characterising the typical parameter scales according to the available data
on UK catchments (Part 1), formulating and computing the 3-D model and its reduction
(Part 2) and finally applying methods in asymptotic analysis to a reduced model valid for
catchments dominated by overland dynamics (Part 3).

In this last work, our analysis yields valuable scaling laws for the peak flows (see
§ 8), which precisely quantify the separation of timescales observed in the hydrographs
following an intense period of rain (see a distinct early- and late-time behaviour in
figure 9). In particular, we find that the early-time behaviour is governed by rainfall
accumulation over a pre-existing seepage zone, followed by a slower flow rise in late time.
This latter stage is limited by the speed with which the rising groundwater increases the
size of the seepage zone.

All approximations are in good agreement with hydrographs produced by the more
complete 1-D and 2-D models, and allow accurate prediction of river peak flows over a
wide range of catchment parameters (as long as the underlying assumptions are satisfied).
However, different regimes not captured by our model could be studied, including
for example behaviour of catchments with no initial seepage (ρ0 < 1), and late-time
catchment behaviour in case of long continuous rainfalls (t = O(1)).
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10. Discussion

Our investigations in these three parts have been limited to fairly elementary scenarios and
geometries. However, our final results involving the derivation of analytical/asymptotic
scaling laws with a clear underlying structure may serve as a valuable benchmark for
other hillslope or catchment models. Currently, we observed that the benchmarking of
coupled surface–subsurface catchment models has been limited to quantitative numerical
comparisons, either with real-world observations or with the numerical output of other
schemes (e.g. Maxwell et al. 2014). Although such studies allow practitioners to evaluate
the given model’s performance in specific conditions, they do not necessarily allow one to
draw general conclusions about each model’s limit of applicability. As a result, we have no
guarantee that a given model will still perform well if applied in situations not captured in
the training or validation data as demonstrated in many studies (e.g. Klemeš 1986; Beven
2019).

10.1. Applications of the benchmark to model intercomparisons
Deriving asymptotic estimates for the hydrograph, as done in this work, opens another
possibility: models can be compared at a more fundamental level. For instance, we
can check if the flows produced by various models scale with the different catchment
properties in the expected fashion (and under the conditions we have specified). Detecting
situations or limits where the predictions diverge can allow us to better understand the
limitations of different models and shed light on how these models can be extended beyond
their current limit of applicability. This idea is explored in our two forthcoming works
(Morawiecki & Trinh 2023a,b).

As a particular example, statistical models used for flood estimation (such as the FEH
method, briefly discussed at the end of § 8) require the selection of empirical catchment
descriptors for use in regression formulae to predict flood response (Kjeldsen et al. 2008).
In a forthcoming paper (Morawiecki & Trinh 2023b,c), we show that the expression (8.4)
can be used to derive a simple expression for predicting peak monthly and annual river
flows. This prediction turns out to be highly accurate when applied to real-world data. We
then use this result to discuss the limitations of the existing statistical model from the FEH.

Similarly, we can compare the analytical solutions developed within the physical
benchmark model with the flow hydrographs generated via conceptual rainfall-runoff
models (see the model overview by Peel & McMahon 2020). Although these models
use continuous-time rainfall data to generate hydrographs, they are typically not based
on the same fluid dynamical models of surface and subsurface flows. Consequently, they
can be characterised by different scaling laws than the ones found in this paper. In our
forthcoming work (Morawiecki & Trinh 2023a), we demonstrate this discrepancy by
studying two models. The first is a probability-distributed model (PDM) used by, e.g. the
Environment Agency National Flood Forecasting System (Moore 2007). The second is the
grid-to-grid model by Bell et al. (2007), used by the UK Centre for Ecology and Hydrology
to provide real-time flow predictions in the UK. In both cases, our simple benchmark
scenario allows the identification of key differences between physical and aforementioned
conceptual models.

10.2. Extensions and generalisations of the benchmark scenario
Another important line of inquiry is the generalisation of the analysis we have presented
to situations that are more representative. Such extensions can involve the analysis of
non-uniform rainfall, varying initial conditions to study the response to extended periods

982 A30-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
33

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1033


Asymptotic analysis of catchment models. Part 3

of drought, or catchments response to sudden drawdown or outlet water level. These
asymptotic regimes have already been studied using the Boussinesq approximation (see,
e.g. Parlange et al. 2001; Mizumura 2002). However, our coupled surface–subsurface
approach could allow us to better understand the potential role of the seepage dynamics.
Then, analytical approximations of the drying process could be used to assess the
assumptions of the conceptual rainfall-runoff models, especially since dry periods are
sometimes used for a preliminary parameter calibration (Lamb 1999). Finally, we highlight
the importance of multiporosity regions in hydrological modelling; these lead to effects
such as a preferential flow (Beven & Germann 2013). We provide further details on
potential extensions of this study in Morawiecki (2023, chapter 9).

Lastly, it would be interesting to obtain experimental validation of the studied regimes.
There have been quite a few lab- and field-scale experimental studies, in which a constant
rainfall was artificially generated. However, many of them (e.g. Pauwels & Uijlenhoet
2018) focus on systems limited to the groundwater flow only. There are some experimental
studies in which rainfall we observed to yield seepage growth, e.g. Abdul & Gillham
(1989), Kollet et al. (2017) and Scudeler et al. (2017). However, in these experiments, the
soil was initially dry, i.e. there was no initial seepage, so they correspond only to the ρ0 = 0
case. It would be interesting to conduct controlled experiments with more realistic settings,
i.e. with an already developed groundwater table, and compare the resultant hydrograph
with our model predictions.
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Appendix A. List of symbols

For ease of reference, we provide a list of symbols in table 4.

Appendix B. Relation between the 1-D Boussinesq equation and the 2-D Richards
equation

In this appendix, we provide additional details on the derivation of the 1-D model
presented in this paper, in connection with the physical models presented in Part 2. We
shall explain how the governing equations (2.3) and (2.5) relate to the 2-D Richards
equation given in (5.9a) from Part 2 (Morawiecki & Trinh 2024b). Some parts of the
following are classical, and relate to the derivation of the Boussinesq equation (cf. Bear &
Verruijt 1987 for details); our new contribution is to consider the influence of the overland
flow in the seepage zone on the Boussinesq equation and to couple this latter equation with
its standard formulation for the remaining part of the domain.

In this study, we assume that hillslope flow is predominantly 2-D in the xz cross-section;
this reduction from three dimensions to two dimensions is discussed in detail in Part 2.
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Group Symbol Description

Coordinates x Spatial coordinate along the hillslope
t Time

Variables Hg Groundwater depth
hs Surface water depth
H Total depth (Hg + hs)
H0 Initial value of total depth
Qg Groundwater flux
Qs Overland flux

Catchment Lz Thickness of the porous layer
properties Sx Slope along the hillslope

r Rainfall intensity
Ks Hydraulic conductivity
f Mean drainable porosity (typically a function of x)

θs, θr Saturated and residual water content
α, n, m Mualem–van Genuchten model parameters

T0 Characteristic timescale of groundwater flow
ns Manning roughness coefficient
k Exponent form the Manning’s law (typically k = 5/3)

Dimensionless σ Porous layer thickness to elevation drop ratio
constants μ Overland to groundwater flux ratio

ρ Precipitation rate to groundwater flux ratio
ρ0 Mean precipitation rate to groundwater flux ratio

ρ Difference between ρ and ρ0
Pe Péclet number for the overland flow
a Saturated fraction of the hillslope
a0 Leading-order approximation of a for Pe → ∞

Characteristic T Rescaled time for the overland flow model
curves η Rescaled surface water height for the overland flow model

τ Characteristic curve parameter
s Parameter describing initial data

T∗, η∗, Q∗
s Value of time, surface water height and surface flow, when the

characteristic curve reaches x = 0
tcrit Critical time
Qcrit Critical flow

Simulation Nx Spatial mesh resolution
parameters Nt Number of time steps

Table 4. List of symbols

In addition, we consider the small aspect ratio limit, Lz � Lx and, hence, βzx = Lz/Lx →
0. In the groundwater region, following (5.9a) from Part 2, the leading-order flow then
satisfies

dθ

dh

∣∣∣∣
h=h′

g

∂h′
g

∂t
= ∂

∂ ẑ

[
Kr(h′

g)

(
∂h′

g

∂ ẑ
+ 1

)]
, 0 < ẑ < 1, (B1)

with ẑ = 0 corresponding to the bottom of the aquifer and ẑ = 1 corresponding to the
top surface. Note that for ẑ < H, the Richards equation becomes much simpler, since for
saturated soil we have dθ/dh = 0 and Kr(h) = 1. Solving (B1) and imposing the no-flow
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(A) unsaturated case

(B) saturated case

Lz

x x + �x x x + �x

H > Lz

H < Lz

qz

qz

qx(x)
qx(x + �x)

qx(x)
qx(x + �x)

Figure 11. Control volume (A) outside the seepage zone and (B) inside the seepage zone. One-way arrows
represent flow in and out of the control volumes.

boundary condition at the bottom of the aquifer ẑ = 0, we obtain

h′
g(x̂, ẑ, t) = H′(x̂, t) − ẑ, 0 < ẑ < H′(x̂, t), (B2)

which corresponds to a hydrostatic vertical profile of pressure. Note that based on the
above solution, for regions of completely saturated soil, the 2-D function h′

g(x̂, ẑ, t) can
be replaced by the 1-D indicator, H′(x̂, t). The curve ẑ = H′(x̂, t) ∈ (0, 1] corresponds to
the groundwater table, which separates between saturated (where h′

g > 0) and unsaturated
(where h′

g < 0) regions, if both coexist.
We assume that the system is configured as shown in figure 11. Thus, it is divided into

a region B (fully saturated case), where 0 ≤ x̂ ≤ a(t) and the ground is entirely saturated,
with H = 1. Similarly, we have region A (unsaturated case) for x̂ > a(t), where H < 1 and
there is an unsaturated column where H < ẑ < 1.

For ease of interpretation, we shall return, for the next few subsections, to dimensional
quantities (related to the governing equation (2.7)). In addition, it is more convenient to use
Richards equation expressed in the Cartesian coordinates (x, z). In this coordinate system,
(B2) becomes

hg(x, z, t) = Sxx + H(x, t) − z, for x ∈ [0, Lx], z ∈ [0, Lz], (B3)

where Lzẑ = z − Sxx, H = LzH′ and hg = Lzh′
g. Following Darcy’s law, we have q =

Ks∇(hg + z). After substituting (B3), we obtain the leading term of horizontal flow:

qx = −Ks
∂

∂x
(hg + z) = −Ks

(
Sx + ∂H

∂x

)
. (B4)

Note that the above point flux is independent of z. Multiplying by H, we thus see that the
total (unsigned) flow along the hillslope is then given by

Qg = H|qx| = KsH
∂H
∂x

+ KsHSx. (B5)

Next, we consider the unsaturated part of the hillslope (region A) and the seepage zone
(region B) separately since the latter requires adding an overland flow component.
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B.1. Region A: governing equation outside the seepage zone, H < 1
Let us consider region A, where there is a layer of unsaturated soil. Recall that the pressure
hg is zero at the free surface of the groundwater, where z = Sxx + Hg(x, t). This allows us
to set the integration constant H appearing in (B3) to H(x, t) = Hg(x, t).

We consider the control volume, V , within the column horizontally bounded by [x, x +

x], as shown in figure 11. By conservation and the divergence theorem, it is argued that
the total flux integral around the boundary, ∂V , is zero and, hence,

0 =
∮

∂V
∇(h + z) · n dl

= −H(x)qx(x) + H(x + 
x)qx(x + 
x) +
∫ x+
x

x
qz

∣∣∣∣
z=Sxx+H(x)

dx. (B6)

Richards equation in the fully saturated groundwater region reduces to ∇ · q = Ks∇2(h +
z) = 0 (as discussed following (B1)). Thus, in the 
x → 0 limit, we can approximate the
vertical flux at the top of the saturated zone as

qtop
z = qz|z=Sxx+H(x) = − ∂

∂x
(Hqx) = Ks

∂

∂x

(
HSx + H

∂H
∂x

)
, (B7)

where we have used the expression for qx derived in (B4).
Now, let us consider the unsaturated zone above the groundwater table (dashed region

in figure 11). The inflow from the top boundary is r(t), and the outflow to groundwater is
qtop

z . If during a rainfall the inflow is greater than the outflow, the total volume of water in
the soil column per surface area,

V =
∫ Lz

0
θ(h(z, t)) dz, (B8)

increases, eventually leading to a rise of the groundwater table H over time.
In order to find the exact rate of change of H(x, t), one should solve (B1) and find H(x, t)

for which hg(x, z = H(x, t), t) = 0. Using the chain rule, we have

∂

∂t
hg(z = H(x, t), t) = ∂hg(x, z, t)

∂z

∣∣∣∣
z=H(x,t)

∂H(x, t)
∂t

+ ∂hg

∂t

∣∣∣∣
z=H(x,t)

= 0, (B9)

from which the groundwater growth rate is

∂H(x, t)
∂t

= −
(

∂hg(x, z, t)
∂z

)−1 ∂hg

∂t

∣∣∣∣∣
z=H(x,t)

. (B10)

However, rather than solving Richards equation in the unsaturated zone, a standard
time-dependent Boussinesq-based approach to groundwater modelling is based on
introducing a drainable porosity defined as

f ≡ dV
dH

. (B11)

In essence, the drainable porosity describes, for a given change in the height H, the
corresponding change in the subsurface water volume V (B8). It is often assumed that the
drainable porosity f is a constant parameter characterising a given soil. However, as we
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argue in Appendix C, this assumption is not consistent with the Richards-based approach,
in which the growth of the volume V does not have to immediately lead to a rise in the
groundwater volume. Therefore, in the same appendix, we introduce a mean drainable
porosity f (x), which does not fully represent the dynamics governed by the Richards
equation but still allows us to exactly reproduce the time when the groundwater reaches
the surface in the Richards-based approach.

Since the volume of subsurface water changes as a result of precipitation r(x, t) and
inflow/outflow qtop

z , we have

f (x)
∂H
∂t

= dV
dt

= qtop
z + r(x, t). (B12)

Substituting (B7) into the above expression gives us the governing equation for H:

f (x)
∂H
∂t

= Ks
∂

∂x

(
HSx + H

∂H
∂x

)
+ r(x, t). (B13)

This equation is equivalent to (2.3) under the additional assumptions that infiltration is
equal to precipitation: as in Part 2, we ignore the effects of evapotranspiration and, in
addition, we assume that no overland flow is generated unless the soil becomes fully
saturated (i.e. rainfall never exceeds soil infiltration capacity, r(x, t) ≤ Ks).

B.2. Region B: governing equation for seepage zone H ≥ 1
In the case of the seepage zone, the groundwater height is fixed at Hg = Lz. However, we
need to determine the additional surface water height, hs(x, t), which is given by solving
the Saint Venant equation (see (3.3) from Part 2):

∂hs

∂t
= ∂

∂x
[Qs(hs)] + r(x, t) − I(x, t), (B14)

where the surface flow, Qs(hs), is given by the Manning’s equation (2.6), and I is the
infiltration rate, equal to the negated vertical flow, −qz, at ground level.

To determine the vertical flow, qz, we perform a similar conservation argument as in
Appendix B.1. First, at the interface between the subsurface and surface flows, we set
continuity of pressure and flow. The first condition allows us to specify the pressure head,
hg, at the surface:

hg(x, z, t) = hs(x, t) at z = Sxx + Lz. (B15)

Consequently, we set the integration constant H, appearing in (B3), to H(x, t) = Lz +
hs(x, t). Substituting it into (B4), we obtain

qx = −Ks

(
Sx + ∂hs

∂x

)
for 0 < z < Lz. (B16)

Now, let us consider the control volume of groundwater contained in the vertical column
[x, x + 
x], as illustrated in figure 11 in region B. In this case, we have Hg = Lz, and the
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mass balance equation (B7) yields

qz|z=Sxx+Lz = −Lz
∂qx

∂x
= ∂

∂x

(
KsLzSx + KsLz

∂hs

∂x

)
= ∂

∂x

(
KsLz

∂hs

∂x

)
, (B17)

after substituting the expression (B16) for the groundwater flow, qx. Thus, we have the
required expression for the infiltration rate:

I(x, t) = −qz|z=Sxx+Lz = − ∂

∂x

(
KsLz

∂hs

∂x

)
. (B18)

Note that the infiltration is positive if surface water infiltrates into the soil or negative if
groundwater emerges to the surface.

By substituting Qs from (2.6) and infiltration I from (B18) into (B14), we obtain

∂hs

∂t
= ∂

∂x

(
KsLz

∂hs

∂x
+

√
Sx

ns
hk

s

)
+ r(x, t). (B19)

Note that in the seepage zone, H = Hg + hs, where Hg = Lz is constant. Hence, this
equation is equivalent to the governing equation (2.5). Thus, we have derived both cases
of the governing equation (2.7), forming the basis of this work.

Appendix C. Mean drainable porosity function, f (x)

C.1. On the mean drainable porosity
In Appendix B, we defined the drainable porosity f as the volumetric change in the
subsurface volume for a given change in the groundwater height, dV/dH. However, this
approach is not fully consistent with the solution for the Richards equation for subsurface
flow.

Typically, in scenarios where the precipitation increases to a constant value r > 1, a
characteristic wetting front is observed. This front can be seen in figure 8(d) in Part 2,
and its propagation is discussed in detail by Caputo & Stepanyants (2008). The front
moves downward towards the groundwater table, changing soil saturation and eventually
leading to the rise of the groundwater table. This behaviour is not captured by a standard
time-dependent Boussinesq equation or our 1-D model.

However, our analysis in §§ 6.1 and 6.2 shows that the most important mechanism by
which groundwater contributes to the peak flow generation is by extending the seepage
zone. Moreover, in Appendix F, we show that horizontal groundwater flow is negligibly
slow and does not affect the speed at which the groundwater is rising over a short timescale
characterising a typical rainfall. This means that the groundwater becomes saturated when
rainwater fills the available drainable volume vh, i.e. after time t = vh/r. The same time
is predicted by the 1-D model by setting an x-dependent mean drainable porosity f (x),
defined as

f (x) = vH(x)
D(x)

, (C1)

where D(x) is the thickness of the unsaturated soil layer. The above choice of mean
drainable porosity is the one that we use throughout this work.

To summarise, even though setting a time-independent porosity and constant
groundwater recharge does not capture the delay required for the wetting front to reach the
groundwater, it allows for the correct prediction of the soil critical time and the resultant
peak flows observed in this work. In this model, note that H(x, t) does not represent
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Asymptotic analysis of catchment models. Part 3

the exact thickness of the saturated zone that forms groundwater but corresponds to the
amount of water absorbed by the soil, even if it has not yet reached the saturated zone.
However, this difference in interpretation does not seem to affect the main results obtained
in this paper. Formulating this complex system in terms of a 1-D partial differential
equation facilitates the analysis and computation.

C.2. Computation of mean drainable porosity
Here, we formally derive an expression for the mean porosity given the 1-D model
parameters for the considered benchmark scenario. First, following the Richards equation,
we find the pressure head hg profile above the groundwater table and use it to evaluate the
drainable volume for a column of soil of height D(x) above the groundwater table.

We note that in the considered case of βzx = Lz/Lx � 1, the leading solution of the
2-D Richards equation involves only vertical flow along the ẑ axis, as given by (B1). In the
scenario considered in this paper, we assume that the system is initially in a steady state for
a constant rainfall r0. Under these assumptions, we integrate the time-independent version
of (B1) to form a first-order nonlinear ODE for the pressure head hg(ẑ):

Kr(hg)

(
dhg

dẑ
+ 1

)
= r0

Ks
, (C2)

where the constant of integration on the right-hand side has been chosen to match the
dimensionless infiltration r0/Ks, passing through the surface. Let us consider a column of
the soil above a groundwater table, and we take hg|ẑ=0 = 0. Given the pressure head, we
can find the saturation θ(hg(ẑ)) following the Mualem–van Genuchten model:

θ(hg) =
⎧⎨
⎩θr + θs − θr

(1 + (αhg)n)m hg < 0,

θs hg ≥ 0,

(C3)

where θs and θr are the saturated and residual water content, whereas α, n and m = 1 − 1/n
are other Mualem–van Genuchten parameters characterising a given soil. We can use (C3)
to compute the drainable volume and resulting mean drainable porosity (C1):

f (x) = vH(x)
D(x)

= 1
D(x)

∫ D(x)

0
[θs − θ(hg(ẑ))] dẑ. (C4)

Solving (C2) and then numerically integrating (C4) allows us to calculate f .

C.3. Analytical approximations of mean drainable porosity
As an alternative to the integral expression above, let us develop an approximation for vH ,
based on the assumption that the groundwater table is located near the land surface. Since
for h → 0, Kr(h) → 1, the leading-order solution for (C2) around ẑ = 0 satisfies

hg(ẑ) ∼
(

r0

Ks
− 1

)
ẑ. (C5)

Then, integrating (C4) with the Mualem–van Genuchten model (C3) gives

f1(x) = (θs − θr)

[
2F1

(
m,

1
n
; 1 + 1

n
;
(

−a
(

r0

Ks
− 1

)
D(x)

)n)
− 1

]
, (C6)
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Figure 12. (a) Initial vertical profile of the pressure head hg and corresponding saturation θ in a column
of soil. (b) Dependence of mean porosity f = vh/D on the depth of the groundwater below the surface. As
shown, approximations (C5)–(C7) accurately describe soil properties close to the groundwater table. We used
Mualem–van Genuchten parameter values from the previous part of our work, i.e. α = 3.367 m−1, θs = 0.388,
θR = 0.115 and n = 1.282.

where 2F1 is a hypergeometric function. One can also find the leading-order approximation
of (C6) for D � 1, which yields

f2(x) = m
n + 1

(θs − θr)

[
−
(

r0

Ks
− 1

)
αD(x)

]n

. (C7)

However, the approximation (C6) is more accurate. Functions (C6) and (C7) are compared
with the full numerical solution in figure 12.

Appendix D. Derivation of steady-state overland flow for μ → ∞
The steady state for the seepage zone is given by (5.1b):

1 + σ
∂h0

∂x
+ μhk

0 = ρ0(1 − x), (D1)

where we used h0(x) = H(0) − 1 to represent the surface water height.
As we have noted previously, our regime of interest is where μ is large. It is convenient to

rescale via x = aX, where a was defined as the size of the seepage zone, so that the domain
is fixed in X ∈ [0, 1]. In the limit μ → ∞, we anticipate from dominant balance that the
overland flow is small, h0 → 0, and hence we rescale h0 = μ−1/kg(X) in order to balance
the third term with the right-hand side of (D1). With the boundary conditions (4.3a,c), this
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rescaling gives

Pe−1

a
∂g
∂X

+ gk = ρ0(1 − aX) − 1, (D2a)

g′(0) = 0 and g(1) = 0. (D2b)

In (D2a), for convenience, we have defined the small parameter

Pe−1 = σ

μ1/k � 1, (D3)

which, according to table 1, is approximately Pe−1 ≈ 10−5. As we show, the asymptotic
analysis as Pe−1 → 0 involves the analysis of an outer solution, where 0 ≤ X < 1, and an
inner solution with a boundary layer, where X → 1.

In the outer region, we expand the solution and contact line as

g(X) = g0(X) + Pe−1g1(X) + · · · and a = a0 + Pe−γ a1 + · · · , (D4)

where γ > 0 and is to be determined later. Then we develop the following leading-order
approximation of the outer surface water height via (D2a),

g(X) ∼ g0(X) = [ρ0(1 − a0X) − 1]1/k. (D5)

The above outer expansion exhibits an infinite gradient, possibly before the contact line
is reached, at the point X = (1 − ρ−1

0 )/a0. However, we show in the following that a0 is
such that this point corresponds to X = 1.

In order to develop the solution within the boundary layer, we consider rescaling

g(X) = Pe−βĜ(X̂) and X = 1 − Pe−αX̂, (D6)

with α, β and γ from (D4) to be determined. Applying these transformations to (D2a)
gives

Pe−(1+β−α)

[
− 1

a0

∂Ĝ

∂X̂

]
+ Pe−kβ [Ĝk]

= [ρ0(1 − a0) − 1] + Pe−α[ρ0a0X̂] − Pe−γ [ρ0a1] + o(Pe−α). (D7)

The balance of Pe terms is achieved for 1 + β − α = kβ = α = γ , which corresponds
to α = γ = k/(2k − 1) and β = 1/(2k − 1). Equation (D7) for the leading O(1) term
is ρ0(1 − a0) − 1 = 0, and hence this approximation gives us an estimate for the
leading-order contact line position,

a ∼ a0 = 1 − 1
ρ0

. (D8)

Indeed, this equation confirms that the leading-order outer solution, (D5), predicts an
infinite gradient as X → 1. In order to derive an approximation for the gradient of the
surface water height near the contact line, we must proceed to the next order in the inner
region.
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Figure 13. (a) The size of the seepage zone relative to its first-order approximation a − a0. (b) The gradient of
H at this point. The results were obtained by solving (D1). The fitted power law is consistent with the theoretical
exponent γ = 5/7.

Equation (D7) at O(Pe−k/(2k−1)) yields

− 1
a0

∂Ĝ

∂X̂
+ Ĝk = ρ0a0X̂ − ρ0a1, (D9a)

along with the two boundary conditions:

Ĝ(0) = 0 and Ĝ(X̂ → ∞) ∼ (ρ0 − 1)1/kX̂1/k. (D9b)

The second boundary condition above corresponds to the inner limit of the outer solution
(D5). The above first-order ODE, together with the two boundary conditions, forms a
boundary value problem with eigenvalue a1. It cannot be solved analytically. In any case, if
desired, the above problem can be computed numerically, and it would yield the correction
to the contact line, a1 = a1(ρ0).

Note finally that the gradient of h0 at x = a can now be estimated directly from (D1).
Since h0(a) = 0, we have, using the expansion (D4),

∂h0

∂x

∣∣∣∣
x=a

= ρ0(1 − a) − 1
σ

∼ ρ0(1 − a0) − 1 − ρ0a1Pe−γ

σ
= −ρ0a1

σ
Pe−γ . (D10)

For Manning’s law, k = 5/3, so γ = k/(2k − 1) = 5/7. Hence, we expect the gradient
to be dh0/dx = O(Pe−5/7) while the contact line position equally satisfies a − a0 =
O(Pe−5/7). These two scaling laws are confirmed by solving the boundary value problem
given by (D2a) numerically and transforming it back to the original variables (see
figure 13).

Appendix E. Derivation of the initial groundwater table for σ → 0

Here, we find the leading-order solution for the ODE (5.6) under the limit ε = σ → 0:

ε
dH0

dx
= ρ0(1 − x)

H0(x)
− 1, for x ∈ [a0, 1], (E1)
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Asymptotic analysis of catchment models. Part 3

with a boundary condition H0(a0) = 1, and where a(t) ∼ a0 is the leading-order contact
line position as Pe → ∞. Expanding H0 in powers of ε, we obtain the approximation:

H0(x) = ρ0(1 − x) + ρ0ε + O(ε2). (E2)

This solution does not satisfy the boundary condition at x = a0. For x → a0, we develop
an inner expansion by re-scaling x = a0 + εX and H0(x) = g(X). The ODE now becomes

dg
dX

= ρ0(1 − a0 − εX)

g(X)
− 1, for X > 0, (E3)

with g(0) = 1. Solving now to the first two orders, we have

g(X) = 1 + ερ0(1 − e−X − X) + O(ε2), (E4)

where we have used a0 = 1 − 1/ρ0 from (5.5).
The composite solution is obtained by adding the outer and inner asymptotic expansions

from (E2) and (E4), respectively, and subtracting their common part. The final result, to
two orders of accuracy, is the following approximation:

H0(x) = ρ0(1 − x + ε − ε e−(x−a0)/ε) + O(ε2). (E5)

After replacing ε with σ , we obtain the solution (5.7) stated in the main text.

Appendix F. Derivation of the time-dependent groundwater solution for t → 0 and
ρ → ∞
We provide additional details for the early-time analysis of § 6.1, particularly in connection
with the boundary-layer asymptotics. Consider (4.3b) outside the seepage zone (H < 1):

f (x)
∂H
∂t

= ∂

∂x

(
σH

∂H
∂x

+ H
)

+ ρ. (F1)

As noted in §6.1, we consider the initial condition, H(x, t = 0) = H0(x; ρ0), to be
the steady-state response of the system to a precipitation rate, ρ0. That is, the initial
groundwater solution satisfies (5.6):

(σH0H′
0 + H0)

′ + ρ0 = 0, (F2)

subject to the boundary conditions (4.3b,d) in § 5, i.e.

H(x = a(t)) = 1 and
(

σH
∂H
∂x

+ H
)∣∣∣∣

x=1
= 0. (F3)

Let us consider the short-time behaviour of the time-dependent equation. Let t = εt′,
H(x, t) = H0(x) + εH′(x, t), where ε � 1. Then, (F1) becomes

f (x)
∂H′

∂t′
= ρ − ρ0 + ε

∂

∂x

(
σH0

∂H′

∂x
+ σH′ ∂H0

∂x
+ H′

)
+ O(ε2). (F4)

Therefore, the first two leading terms of the small-time groundwater solution are

H(x, t) = H0(x; ρ0) +
[


ρ

f (x)

]
t + O(t2), as t → 0 with x > a(t), (F5)

where 
ρ ≡ ρ − ρ0. Thus, we see that (F5) predicts that the groundwater height increases
linearly with time by an amount proportional to the sudden impulse of rain (or, rather, its
difference 
ρ).
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Figure 14. Difference between the location of the seepage front obtained by solving PDE (2.8a) and obtained
using the leading-term outer solution (F5) for rainfalls with three different precipitation rates.

However, the above asymptotic solution assumes that x − a(t) = O(1), and indeed it
fails to account for the fact that H = 1 when x = a(t). We must consider it to be an
outer solution, valid away from x = a(t). A comparison between the outer approximation
(F5) and the full solution is shown in figure 7(a). In the case of the fully coupled
surface–subsurface flow, the solution of the PDE diverges from the outer solution (F5)
within a small boundary layer around the seepage front.

The size of the boundary layer tends to zero as ρ → ∞. This is tested as follows. First,
we compute the full PDE model (2.8a) and find the place where H(xnumeric) = 1. Then,
we estimate the boundary layer thickness by finding the difference between xnumeric and
xapprox = 1 − 1/ρ, which is the leading-order (outer) approximation of a(t). As figure 14
demonstrates, it depends both on time t and precipitation represented by ρ.

The above is confirmed via a dominant balance. Let x = a + δx′. Then (F4) becomes

f (x)
∂H′

∂t′
= ρ − ρ0 + ε

δ2
∂

∂x′

(
σH0

∂H′

∂x′ + σH′ ∂H0

∂x′ + δH′
)

+ O(ε2). (F6)

The diffusion terms become significant and balance the precipitation ρ when ε/δ2 ∼

ρ. Then the thickness of the boundary layer is on the order of δ = ε1/2
ρ−1/2, i.e. it
increases proportionally to t1/2 and 
ρ−1/2. These trends are confirmed in figure 14.

Appendix G. Derivation of the explicit solution for Q(t)

In this appendix, we show that the implicit solution (6.16) for late time (i.e. for Q∗
s > ρa0),

t∗(Q∗
s ) = 1

ρ
(Q∗

s )
1/k + μ1/kT

(
Q∗

s

ρ

)
, (G1)

can be written in an explicit form given by (6.18a–c), as long as the increase of flow after
the critical time is negligibly small compared with the critical flow value Qcrit = ρa0.
This assumption is motivated by the observation that the dynamics of the flow increase
after reaching critical flow slows down significantly.
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Let us consider the flow Q∗
s near its critical value, Q∗

s = ρa0 + εQ′, and consider the
asymptotic limit ε → 0. Then (G1) becomes

t∗ = 1
ρ

(ρa0 + εQ′)1/k + μ1/kT (Q∗
s ). (G2)

Therefore, we have

t∗ = 1
ρ

(ρa0)
1/k

︸ ︷︷ ︸
tcrit

+μ1/kT (Q∗
s ) + O(ε). (G3)

By neglecting the O(ε) term, we get

t∗ − tcrit = μ1/kT (Q∗
s ), (G4)

which allows us to obtain an explicit equation for Q∗
s :

Q∗
s = T −1(μ−1/k(t∗ − tcrit)). (G5)

Now we need to find an inverse function for t = T (a(t)), i.e. a function that provides
the location of the seepage front for a given time. Function T is defined by (6.2) as

T (x = a(t)) ∼ f (x = a(t))
ρ − ρ0

(1 − H0(x = a(t))). (G6)

We use the approximation of f (x) given by (C7), and the approximation of H(x) given by
(5.7),

f (x) = CD(x)n, where C = m
n + 1

(θs − θr)

[
−
(

r0

Ks
− 1

)
α

]n

, (G7a)

D(x) = 1 − H(x) = 1 − ρ0(1 − x + σ − σ e−(x−a0)/σ ). (G7b)

By substituting (G7a) to (G6) we obtain

T (x = a(t)) = 1
ρ − ρ0

CD(x = a(t))n+1. (G8)

Now, we solve this equation for D(x = a(t)):

[C−1(ρ − ρ0)T (x = a(t))]1/(n+1) = D(x = a(t)). (G9)

After substituting (G7b) we get

ρs(t) = Aρt1/(n+1) = 1 − ρ0(1 − x + σ − σ e−(x−a0)/σ ), (G10)

where we introduced A = [C−1(ρ − ρ0)]1/(n+1) and t = T (x = a(t)) to shorten the
notation. The solution of this equation for x is

x = a(t) = s(t) + σ + 1 − 1
ρ0︸ ︷︷ ︸

a0

+ σW0(−e−1−s(t)/σ ), (G11)

where W0(·) is the Lambert W function. Therefore, the solution can be written as

a(t) = a0︸︷︷︸
term1

+ s(t)︸︷︷︸
term2

+ σ [1 + W0(−e−1−s(t)/σ )]︸ ︷︷ ︸
term3

. (G12)

This concludes the derivation of the explicit solution (6.18). The accuracy of this
approximation is demonstrated in figure 9.
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