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We report flow measurements in rotating Rayleigh–Bénard convection in the rotationally
constrained geostrophic regime. We apply stereoscopic particle image velocimetry to
measure the three components of velocity in a horizontal cross-section of a water-filled
cylindrical convection vessel. At a constant, small Ekman number Ek = 5 × 10−8, we
vary the Rayleigh number Ra between 1011 and 4 × 1012 to cover various subregimes
observed in geostrophic convection. We also include one non-rotating experiment. The
scaling of the velocity fluctuations (expressed as the Reynolds number Re) is compared
to theoretical relations expressing balances of viscous–Archimedean–Coriolis (VAC) and
Coriolis–inertial–Archimedean (CIA) forces. Based on our results we cannot decide which
balance is most applicable here; both scaling relations match equally well. A comparison
of the current data with several other literature datasets indicates a convergence towards
diffusion-free scaling of velocity as Ek decreases. However, at lower Ra, the use of
confined domains leads to prominent convection in the wall mode near the sidewall.
Kinetic energy spectra point at an overall flow organisation into a quadrupolar vortex
filling the cross-section. This quadrupolar vortex is a quasi-two-dimensional feature; it
manifests only in energy spectra based on the horizontal velocity components. At larger
Ra, the spectra reveal the development of a scaling range with exponent close to −5/3,
the classical exponent for inertial range scaling in three-dimensional turbulence. The
steeper Re(Ra) scaling at low Ek and development of a scaling range in the energy spectra
are distinct indicators that a fully developed, diffusion-free turbulent bulk flow state is
approached, sketching clear perspectives for further investigation.
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1. Introduction

Buoyant convection and rotational influence through Coriolis acceleration are two
principal features of fluid flows encountered in geophysics and astrophysics. A popular
model system to study buoyant convective flows is Rayleigh–Bénard convection (RBC): a
horizontal layer of fluid sandwiched between two parallel plates where the bottom plate
is at a higher temperature than the top plate. With the inclusion of background rotation
about a vertical axis, the problem of rotating Rayleigh–Bénard convection (RRBC)
encompasses the principal actors, convection and rotation, in a simple, mathematically
well-defined system amenable to experimental, numerical and analytical investigation.
The interplay of convection and rotation is often studied in the RRBC context (Stevens,
Clercx & Lohse 2013a; Kunnen 2021; Ecke & Shishkina 2023), which in itself has so far
presented a wide variety of possible flow states without invoking additional complexities
that may be encountered in geophysical and astrophysical flows such as magnetic fields,
strong non-Oberbeck–Boussinesq effects, spherical geometries, and more (e.g. Jones 2011;
Glatzmaier 2014; Aurnou et al. 2015; Schumacher & Sreenivasan 2020).

A property shared by the majority of geophysical and astrophysical flows is that they
are characterised by large Reynolds numbers (ratio of inertial to viscous forces) and
at the same time small Rossby numbers (ratio of inertial to Coriolis forces). We thus
expect turbulent convective flow with a strong rotational constraint. In recent RRBC
investigations, it was found that rotation-dominated convection – named the geostrophic
regime after the dominant balance between Coriolis force and pressure gradient – displays
an interesting subdivision into various realisable flow phenomenologies, each with specific
scalings of descriptive statistical quantities like the efficiency of convective heat transfer
(e.g. Sprague et al. 2006; Julien et al. 2012b; Ecke & Niemela 2014; Stellmach et al. 2014;
Cheng et al. 2015, 2020; Lu et al. 2021; Madonia et al. 2021), which was reviewed recently
in Kunnen (2021) and Ecke & Shishkina (2023). Starting from onset of convection, with
increasing strength of buoyant forcing, one expects to encounter cellular convection,
convective Taylor columns (CTCs), plumes and geostrophic turbulence (GT), showing
step by step a decreasing rotational constraint (Sprague et al. 2006; Julien et al. 2012b;
Kunnen 2021; Aguirre Guzmán et al. 2022). From our prior heat transfer and temperature
measurements (Cheng et al. 2020), we could identify an additional transitional state,
rotation-influenced turbulence (RIT), that requires further description.

Getting to the geostrophic regime requires dedicated tools: large-scale experimental
set-ups (e.g. Ecke & Niemela 2014; Cheng et al. 2015, 2018, 2020; Hawkins 2020; Lu
et al. 2021; Hawkins et al. 2023), direct numerical simulations (DNS) on fine meshes (e.g.
Stellmach et al. 2014; Aguirre Guzmán et al. 2020) or asymptotically reduced modelling
(e.g. Sprague et al. 2006; Julien et al. 2012b; Maffei et al. 2021). A complicating factor for
experiments in particular is that at the confining sidewall, a prominent mode of convection
is formed, named the wall mode, boundary zonal flow or sidewall circulation (Favier
& Knobloch 2020; de Wit et al. 2020; Zhang et al. 2020; Lu et al. 2021; Zhang, Ecke
& Shishkina 2021; Ecke, Zhang & Shishkina 2022; Wedi et al. 2022). This convection
mode is the first to become unstable to buoyant forcing, before bulk convection (e.g.
Zhang & Liao 2009), and was found unexpectedly to persist deep into the turbulent
regimes (Madonia et al. 2021). This complicates the interpretation of results on global
flow properties (like the efficiency of convective heat transfer) and their comparison to
studies without lateral confinement (i.e. simulations on domains with periodic boundary
conditions).

The difficulty of entering the geostrophic regime, particularly for experiments and DNS,
leaves it scarcely studied with many open questions remaining, particularly considering
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Reynolds number scaling and energy spectra

the statistical description of this turbulent flow from velocity measurements. Here, we
contribute flow measurements from our dedicated experimental setup TROCONVEX
(Cheng et al. 2018, 2020; Madonia et al. 2021). At a constant rotation rate, we choose
different strengths of buoyant forcing to scan the subranges of the geostrophic regime. We
quantify the strength of turbulence in terms of the Reynolds number, and compute kinetic
energy spectra to identify the distribution of energy over the spatial scales.

The remainder of this paper is organised as follows. In § 2, we introduce the
dimensionless input and output parameters of RRBC, and list proposed scaling arguments
for the Reynolds number. Then the experimental methods are explained in § 3. Results on
the measured Reynolds numbers are given in § 4, along with a test of the scaling arguments
and a comparison to literature data. In § 5, we plot and discuss the computed kinetic energy
spectra. We present our conclusions in § 6.

2. Theoretical background

We will first define the dimensionless input and output parameters of RRBC in § 2.1. Then
the effects of rotation on the stability of convective flow are treated in § 2.2. In § 2.3, we
discuss scaling arguments for the Reynolds number proposed in the literature.

2.1. Input and output parameters
Three dimensionless input parameters are required to describe the flow state. The Rayleigh
number Ra expresses the ratio of thermal forcing to dissipation, the Ekman number Ek is
the ratio of viscous to Coriolis forces, and the Prandtl number Pr describes the diffusive
properties of the fluid. These quantities are defined as

Ra = gα ΔT H3

νκ
, Ek = ν

2ΩH2 Pr = ν

κ
, (2.1a–c)

where g is gravitational acceleration, ΔT the applied temperature difference between
the plates and H is their vertical separation, Ω is the rotation rate, and α, ν and κ

are the thermal expansion coefficient, kinematic viscosity and thermal diffusivity of the
fluid, respectively. A related parameter that has been used frequently to give an a priori
indication of the relative importance of buoyant forcing to Coriolis forces (see e.g. Stevens
et al. 2013a; Aurnou, Horn & Julien 2020; Kunnen 2021; Ecke & Shishkina 2023) is the
so-called convective Rossby number

Roc = Uff

2ΩH
= Ek

√
Ra
Pr

, (2.2)

where the free-fall velocity Uff = √
gα ΔT H indicates the maximum flow speed that

could develop in this convection system.
Two prominent output parameters are the Nusselt number Nu and the Reynolds number

Re, which indicate the efficiency of convective heat transfer and momentum transfer,
respectively. The Nusselt number is defined as

Nu = q
qcond

= qH
λΔT

. (2.3)

The total heat flux q (convection and conduction) is normalized by the conductive flux
qcond = λΔT/H, with λ the thermal conductivity of the fluid. In the absence of convection
(a quiescent fluid), q = qcond and Nu = 1; when convection sets in, q > qcond and Nu > 1.
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In our current configuration, with gravity pointing downwards, the total heat flux can be
expressed as

q = λ
κ

〈wT〉 − λ
〈
∂T
∂z

〉
, (2.4)

where z is the vertical coordinate pointing upwards, counter to gravity, and w is the
vertical component of velocity. Angular brackets 〈 · 〉 denote a suitable average, either
a cross-sectional plane average at a certain height z, or a volume average over the flow
domain. The Reynolds number

Re = UH
ν

(2.5)

introduces a characteristic velocity scale U, usually taken to be the root-mean-square
(r.m.s.) velocity. The ultimate goal is to understand how Nu and Re depend on the input
parameters Ra, Pr and Ek. Power-law scaling relations are expected (e.g. Julien et al.
2012a; King, Stellmach & Buffett 2013; Maffei et al. 2021). For non-rotating convection,
the phenomenological theory developed by Grossmann & Lohse (2000, 2001, 2002, 2004)
(see also Ahlers, Grossmann & Lohse 2009; Stevens et al. 2013b) has been very successful
in explaining the Nu(Ra, Pr) and Re(Ra, Pr) relations.

2.2. Stabilisation of convection by rotation
Rotation tends to stabilise convection. For Pr > 0.68 and at asymptotically small Ek → 0,
linear stability theory (Chandrasekhar 1961; Niiler & Bisshopp 1965) predicts the critical
Rayleigh number RaC for onset of convection, and the characteristic horizontal size �C of
convection near onset (half the most unstable wavelength), as

RaC = 8.70 Ek−4/3, �C/H = 2.41 Ek1/3. (2.6a,b)

(The onset of convection for Pr < 0.68 behaves differently (Chandrasekhar 1961; Aurnou
et al. 2018); it is out of scope for the current investigation.) Due to this stabilising effect, it
is insightful to also consider the degree of supercriticality Ra/RaC to get a first impression
of the intensity of convection. These asymptotic formulations are accurate for this work
given the small applied Ek.

2.3. Reynolds number scaling in rotating convection
Several scaling relations for the Reynolds number have been proposed for RRBC flow.
They are based on balancing terms in the governing Navier–Stokes equation for an
incompressible Oberbeck–Boussinesq fluid, which is (e.g. Chandrasekhar 1961)

∂u
∂t

+ (u · ∇)u = −∇p − 2Ω ẑ × u + ν ∇2u + gαT ẑ, ∇ · u = 0. (2.7)

This equation describes the evolution of velocity u as a function of time t, where p is the
reduced pressure (e.g. Greenspan 1968; Kundu & Cohen 2002) and T is temperature; ẑ
is the vertical unit vector pointing upwards, counter to gravity. Centrifugal buoyancy is
excluded here (Horn & Aurnou 2018, 2019). The equation for vorticity ω = ∇ × u is also
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invoked in these scaling arguments:

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u + 2Ω

∂u
∂z

+ ν ∇2ω − gαẑ × ∇T. (2.8)

One proposed scaling relation balances the viscous, buoyancy and Coriolis terms into
the so-called viscous–Archimedean–Coriolis (VAC) balance (Aubert et al. 2001; Gillet &
Jones 2006; King et al. 2013). First, we recall the exact global balance of energy (viscous
dissipation equals buoyant production) that can be found by averaging the energy equation
u· (2.7) over the flow domain (Shraiman & Siggia 1990; Grossmann & Lohse 2000; Ahlers
et al. 2009):

ν〈(∇u)2〉V = gα〈wT〉V = ν3

H4
Ra (Nu − 1)

Pr2 , (2.9)

where 〈 · 〉V denotes a volume average. For modest convection, geostrophy and the
Taylor–Proudman theorem are considered to be broken by viscosity acting on small
horizontal scales. The balance of viscous and Coriolis terms in the vorticity equation
is scaled by recognising that vertical derivatives ∂/∂z scale as 1/H, and horizontal
derivatives ∂/∂x and ∂/∂y scale as 1/�, where � � H is the horizontal scale of convection:

2Ω
∂u
∂z

∼ ν ∇2ω → 2Ω
U
H

∼ ν
U
�3 → �

H
∼

( ν

2ΩH2

)1/3 = Ek1/3. (2.10)

We recover the scaling of the onset length scale �C of (2.6a,b), which is a consequence
of this VAC force balance. Using ∇ ∼ 1/� (i.e. dominated by the horizontal derivatives),
we can scale the first term in (2.9) as νU2/�2, then, using (2.10), rewrite it in terms of the
Reynolds number as

ν
U2

�2 ∼ ν3

H4
Ra (Nu − 1)

Pr2 → ReVAC ∼ Ra1/2 Ek1/3 (Nu − 1)1/2

Pr
. (2.11)

A second proposed scaling is built on a balance of Coriolis–inertial–Archimedean (CIA)
forces (Ingersoll & Pollard 1982; Aubert et al. 2001; Jones 2011; Guervilly, Cardin &
Schaeffer 2019; Aurnou et al. 2020). For a fully turbulent flow, effects of viscosity are
negligible at larger length scales, and Coriolis and inertial forces are balanced in the
vorticity equation

2Ω
∂u
∂z

∼ (u · ∇)ω → 2Ω
U
H

∼ U2

�2 → �

H
∼

(
U

2ΩH

)1/2

= Ro1/2, (2.12)

where the horizontal length scale � now scales as the square root of the Rossby number
Ro = U/(2ΩH) based on the velocity scale U (Guervilly et al. 2019). Then inertia and
buoyancy are balanced in the energy equation

u · ((u · ∇)u) ∼ gαu · (T ẑ) → U3

�
∼ ν3

H4
Ra (Nu − 1)

Pr2 , (2.13)

where (2.9) has been used, invoking a volume average. The final scaling relation,
combining (2.12) and (2.13), can be rewritten in terms of Re as

ReCIA ∼ Ra2/5 Ek1/5 (Nu − 1)2/5

Pr4/5 . (2.14)

What remains to be determined is the dependence of the Nusselt number Nu on the
input parameters. For rotating convection, this relation is far from complete, with a variety
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of subregimes opening up in the geostrophic regime based on recent numerical and
experimental evidence (Sprague et al. 2006; Julien et al. 2012b; Ecke & Niemela 2014;
Cheng et al. 2015, 2018, 2020; Kunnen 2021; Lu et al. 2021). Two theoretical scalings
have been proposed.

The first scaling (Boubnov & Golitsyn 1990; King et al. 2009; King, Stellmach &
Aurnou 2012) is a rotating equivalent of Malkus’s marginal stability argument for the
thermal boundary layer (Malkus 1954): the Rayleigh number Raδ based on the thickness
δ of the thermal boundary layer exceeds its critical value Raδ,C ∼ Ek−4/3

δ with an Ekman
number also based on δ. With the assumption of a temperature drop ΔTδ ∼ ΔT over a
thermal boundary layer that is purely conductive (q ∼ λΔT/δ), King et al. (2009, 2012)
find

Nu ∼
(

Ra
RaC

)3

∼ Ra3 Ek4. (2.15)

This scaling relation was also derived by Boubnov & Golitsyn (1990) based on
measurements of the vertical mean temperature profile.

The second scaling relation is a rotating equivalent of Spiegel’s argument that under
vigorously turbulent conditions, the heat flux q should become independent of the diffusive
fluid properties ν and κ (Spiegel 1971). Stevenson (1979) and Julien et al. (2012a) show
that if rotation is included, the only combination of parameters leading to diffusion-free
total heat flux q is

Nu − 1 ∼ Ra3/2 Ek2

Pr1/2 . (2.16)

Numerical and experimental evidence points towards the asymptotic validity of the latter
scaling (2.16) (Julien et al. 2012a; Stellmach et al. 2014; Bouillaut et al. 2021), although
the presence of no-slip walls (Stellmach et al. 2014; Kunnen et al. 2016; Plumley et al.
2017; Aguirre Guzmán et al. 2021) and the significant heat flux contribution of the wall
mode near sidewalls in confined convection (Favier & Knobloch 2020; de Wit et al. 2020;
Zhang et al. 2020, 2021; Lu et al. 2021; Ecke et al. 2022) preclude observation of the pure
scaling law.

Upon insertion of (2.16) into (2.14), we obtain in dimensionless and dimensional form
that

Re ∼ Ra Ek
Pr

→ U ∼ gα ΔT
2Ω

, (2.17)

i.e. the velocity scale U is now also diffusion-free (Aurnou et al. 2020).

3. Experimental methods

The experimental set-up used for this study is TROCONVEX, a large-scale rotating
convection apparatus designed for the study of the geostrophic regime of convection. The
design considerations with regard to the accessible parameter range for a given set-up
have been discussed in detail in Cheng et al. (2018). Details on the set-up for heat
transfer measurements are given in Cheng et al. (2020). Here, we perform optical flow
measurements using stereoscopic particle image velocimetry (stereo-PIV; Prasad 2000;
Raffel et al. 2007). The arrangement has been explained in Madonia et al. (2021); here,
we repeat the most important parts.

The convection cell is an upright cylinder of height H = 2 m and radius R = 0.195 m
filled with water. Its diameter-to-height aspect ratio is Γ = 2R/H = 0.195. The bottom
plate is made of copper and is heated electrically to be at a controlled temperature Tb.
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ΔT ( ◦C) Ra/1012 Ek × 108 Ra/RaC Reu/103 Rew/103

0.50 0.108 5.00 2.29 3.10 ± 0.21 2.31 ± 0.27
1.00 0.216 5.00 4.57 3.09 ± 0.25 2.18 ± 0.20
2.00 0.432 5.00 9.14 3.88 ± 0.20 2.63 ± 0.31
3.00 0.648 5.00 13.7 5.80 ± 0.80 3.43 ± 0.31
5.00 1.08 5.00 22.9 7.93 ± 0.95 5.60 ± 0.48
10.0 2.16 5.00 45.7 12.88 ± 0.88 8.66 ± 0.46
20.0 4.32 5.00 91.4 17.67 ± 0.92 12.90 ± 1.16
3.00 0.648 ∞ O(108) 10.34 ± 1.61 13.66 ± 2.59

Table 1. Parameter values for the experiments. In all cases, Γ = 0.195 and Pr = 5.2. Output parameters are
the Reynolds numbers Reu and Rew based on horizontal and vertical r.m.s. velocities, respectively. For the
non-rotating experiment (bottom row), the parameter Ra/RaC is not stated explicitly. It is large given that
without rotation RaC is only O(103); quantitative comparison to the rotating cases is not meaningful.

Likewise, the temperature of the copper top plate, equipped with a double-spiral groove
for cooling liquid circulation, is controlled to a temperature Tt by a combination of a
chiller and a thermostated bath. The mean temperature Tm = (Tb + Tt)/2 is kept at a
constant 31 ◦C, so that Pr = 5.2. The convection cell is placed on a rotating table. We apply
constant rotation Ω = 1.93 rad s−1, corresponding to Ek = 5.00 × 10−8. At this Ekman
number, 2R/�C ≈ 22, i.e. the cylinder diameter fits 22 times the characteristic onset length
�C. The temperature difference ΔT = Tb − Tt is changed between experiments to vary
Ra. Additionally, one non-rotating experiment is included for reference. The operating
conditions for the various experiments are summarised in table 1. These conditions are the
same as in Madonia et al. (2021); they also overlap with the heat transfer data from the
same set-up reported in Cheng et al. (2020), at the intermediate Ek value considered in
that paper.

Optical access is facilitated by a custom-made water-filled prism mounted around the
cylinder, significantly reducing refraction on the cylinder wall. It allows for horizontal
crossing of a laser light sheet with thickness approximately 3.5 mm at mid-height z/H =
0.5. The laser pulses at frequencies 7.5 or 15 Hz, depending on the typical flow speeds.
The water is seeded with polyamid particles with nominal diameter 5 μm. Two 5 Mpixel
cameras (Jai SP-500M-CXP2) equipped with Scheimpflug adapters are each placed at a
stereoscopic angle of approximately 45◦ with the vertical, so that stereo-PIV can be applied
(Prasad 2000; Raffel et al. 2007). We can measure the full velocity vectors u = (u, v, w)

in the laser light sheet plane, resulting in a grid of vectors with separation 3.2 mm in both
horizontal directions that fits 122 vectors in the cylinder diameter. Between 3000 and 9000
vector fields are evaluated per experiment, for a measurement duration ranging from 200
to 600 s.

Results are presented in terms of Reynolds numbers. Horizontal and vertical velocities
are treated separately. The Reynolds number Reu is based on the characteristic horizontal
velocity Uh =

√
〈u2〉 + 〈v2〉. Here, 〈 · 〉 denotes either averaging over time and over

circular shells to obtain radial profiles, or averaging over time and over the full
cross-sectional area excluding the wall mode near the sidewall (to be defined more
precisely later on) to get to a single representative value per experiment. In this azimuthal
averaging, we divide the section into 65 concentric circular shells. Each shell represents
a ring of thickness 3 mm, comparable to the resolution of our PIV vector field spacing
(3.2 mm). Similarly, Rew is based on the characteristic velocity scale W =

√
〈w2〉. In all
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Figure 1. Instantaneous velocity snapshots at Ra = 6.48 × 1011: (a) with rotation, Ek = 5.00 × 10−8; (b) no
rotation, Ek = ∞. The arrows display the horizontal velocity components; for clarity, only one-ninth of the total
number of vectors is displayed. The background colour indicates the vertical velocity component. Velocities
are normalised with the viscous velocity ν/H = 3.87 × 10−7 m s−1.

cases, 〈u〉 ≈ 〈v〉 ≈ 〈w〉 ≈ 0. These Reynolds numbers can also be interpreted as the r.m.s.
velocities normalised with the viscous velocity scale Uν = ν/H. Likewise, we consider
the r.m.s. value of the vertical component of vorticity, ωrms

z .
An important consideration that is encountered in rotating convection experiments is the

effect of centrifugal buoyancy (Horn & Aurnou 2018, 2019). We use the Froude number
Fr = Ω2R/g to quantify the ratio of maximal centrifugal to gravitational acceleration.
Since centrifugal acceleration is negligibly small in most geophysical and astrophysical
applications, its effects (as studied in detail by Horn & Aurnou 2018, 2019) should
preferably be kept to a minimum in experiments, i.e. Fr � 1. Here, Fr = 0.074 for all
rotating experiments. Such a Fr value did not lead to significant up/down asymmetry in
our sidewall temperature measurements (Cheng et al. 2020); we expect that centrifugal
buoyancy is negligibly small in these experiments, too.

To give a first impression of the measurement results, we plot two instantaneous velocity
field snapshots at Ra = 6.48 × 1011, with and without rotation, in figure 1. Velocities are
normalised with the viscous velocity scale ν/H, which is 3.87 × 10−7 m s−1 at this mean
temperature. As such, the magnitude of the normalised velocity components in these plots
can be interpreted as displaying the local instantaneous Reynolds number. It is clear that
rotation, present in figure 1(a) but absent in figure 1(b), has a large effect on the overall flow
structuring. Under rotation, the flow tends to organise into structures that are considerably
smaller than the diameter of the cylinder, while without rotation, the global organisation is
as large as the cross-section. We have considered the characteristic size of the flow features
before in Madonia et al. (2021), where we could see that the correlation length for vertical
velocity increases as Ra grows. In the rotating experiments, we can also observe intense
vertical motion near the sidewall due to the convective wall mode (Favier & Knobloch
2020; de Wit et al. 2020; Zhang et al. 2020, 2021; Lu et al. 2021; Ecke et al. 2022). For
roughly half of the circumference, we find upward flow close to the sidewall; the other
half is downward. In the non-rotating experiment (figure 1b), the large-scale circulation is
observed (e.g. Ahlers et al. 2009): a vertical convection roll filling the domain with one
half upward flow and one half downward flow.
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Figure 2. (a) Radial dependence of Reu (dashed lines) and Rew (solid lines) for different Ra. Black crosses
indicate the beginning of the sidewall boundary layer, following 4.1. (b) Radial dependence of ωrms

z for different
Ra, normalised using the viscous time scale τν = H2/ν. The legend entry ‘NR’ refers to the non-rotating
experiment. All the quantities displayed in this figure are shown from only half the cylinder radius onwards for
clarity.

4. Reynolds number results

4.1. Radial profiles
We first consider radial profiles of the Reynolds numbers Reu and Rew, plotted in
figure 2(a). Both quantities show an overall trend of larger values for larger Ra, as expected,
with the exception of the two lowest Ra cases, which are almost identical. The distinction
between an inner and a near-wall outer portion of the domain is clear from both quantities:
both profiles suggest a generally constant value that is largely independent of the radial
position for the bulk part, away from the lateral sidewall, and a change of behaviour close
to this sidewall. There, we see an increase in Rew, a clear indication of the presence of
vigorous convection near the sidewall in the wall mode. The black crosses in figure 2(a)
indicate the approximate thickness of the sidewall boundary layer following the empirical
relation

δwrms/R = a Ra0.15±0.02, (4.1)

based on capturing the radial extent of the near-wall wrms peak; a = (3 ± 1) × 10−3 is
reported by de Wit et al. (2020). Here we use a = 2 × 10−3 as the prefactor and 0.15 as
the exponent for Ra. This definition agrees well with our data as it indicates the extent of
the sidewall layer, in both Rew and Reu. For the former, it is at the base of the near-wall
peak; for the latter, we see the beginning of the decay to zero.

The non-rotating case (black curves in figure 2a) shows three main points of interest.
First, Rew displays an immediate decay to zero close to the sidewall without any previous
increase, contrary to the rotating cases. Second, without rotation, we measure significantly
higher values of both Reu and Rew relative to the rotating case at the same Ra (compare
black and purple curves in figure 2a), a clear indication that the strong influence of rotation
makes the flow less turbulent, suppressing both vertical and horizontal r.m.s. velocities.
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Figure 3. (a) Dependence on Ra of Reynolds numbers based on horizontal (Reu) and vertical (Rew) velocity
components (red, left ordinate) and vertical vorticities ωrms

z (blue, right ordinate). Vorticity is normalised
with the viscous timescale τν = H2/ν. The solid lines represent power-law fits Reu ∼ Ra0.65±0.07, Rew ∼
Ra0.70±0.06 and ωrms

z ∼ Ra0.63±0.05. The dashed black diagonal line indicates the scaling Re ∼ Ra for reference.
(b) Kinetic energy anisotropy A = W2/(U2

h + W2) versus Ra. For isotropy, A = 1
3 (red dashed line). In both

panels, the dotted and dash-dotted lines represent the transitional Ra between CTCs and plumes, and between
GT and RIT, respectively, while open symbols represent the values for the non-rotating case.

Third, the r.m.s. vertical velocity is now considerably more pronounced than the horizontal
component, unlike the rotating cases. We will discuss flow anisotropy later in this paper.

In figure 2(b), we plot ωrms
z normalised using the viscous time scale τν = H2/ν. The

same trends as for Rew are reflected here, with the two cases with lowest Ra being almost
identical, and profiles that increase for higher Ra. Also here, we see higher values for
the non-rotating case compared to its corresponding rotating counterpart, even though the
difference is less than we see for vertical velocities. The non-rotating case also shows a
localised peak close to the sidewall, while the rotating cases have a wider radial region
where the vorticity increases before dropping down at the wall.

All the quantities displayed in figure 2 are shown from half the cylinder radius onwards,
for clarity. The inner part keeps showing a constant behaviour down to approximately 1

10 R,
a circle of approximately 20 mm around the axis of the cylinder, where the scarcity of
velocity vectors prevents meaningful radial binning and azimuthal averaging.

The quantities Reu, Rew and ωrms
z are approximately constant in the inner part of the

cylinder. From the profiles in figure 2, we can extract for every Ra a mean value of that
quantity in the bulk. This bulk average is obtained by excluding the wall zone as defined
by (4.1) as well as excluding a circle of radius 20 mm from the cylinder axis, an area where
the azimuthal averaging does not give trustworthy data, as argued above. In figure 3(a),
we plot these averaged data as a function of Ra, with error bars that represent the standard
deviations of these means. We also give the corresponding flow states as inferred from our
earlier heat transfer measurements (Cheng et al. 2020).

As mentioned before, the two lower Ra cases, both in the CTC regime, show very
similar values. From the plumes regime onwards, all the quantities display a steeper trend
that is reasonably constant between the plumes/GT and RIT states: Reu ∼ Ra0.65±0.07,
Rew ∼ Ra0.70±0.06 and ωrms

z ∼ Ra0.63±0.05. These exponents are notably smaller than the
diffusion-free velocity scaling Re ∼ Ra of (2.17) included in figure 3 with a dashed
black line. At the same time, these exponents are notably larger than the non-rotating
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trend Re ∼ Ra0.44 that has been measured in various experiments and employing
different methods, as summarised by Ahlers et al. (2009). They are even larger than the
‘ultimate’ diffusion-free scaling Re ∼ Ra1/2 for non-rotating convection (Kraichnan 1962;
Spiegel 1971; Grossmann & Lohse 2002). Another clear difference between the current
non-rotating and rotating experiments is that without rotation, the values are higher than
with rotation at the same Ra.

The vorticity scaling ωrms
z ∼ Ra0.63 follows nicely that of horizontal velocity. From this

information, we can infer that the characteristic horizontal length scale � does not change
much with Ra, employing the estimate ωz ∼ Uh/�. This Ra-independent characteristic
scale for rapidly rotating convection is one of the starting points of the asymptotically
reduced equations (e.g. Sprague et al. 2006; Julien et al. 2012b) that describe the flow in
the limit Ek → 0 and that have provided a lot of insights into geostrophic convection.
We have measured correlation length scales before, in Madonia et al. (2021). While
velocity-based correlation lengths grew with increasing Ra, the correlation lengths based
on vertical vorticity (which can be interpreted as the Taylor microscale) were found to be
largely independent of Ra. Taylor length scales independent of Ra have also been observed
in asymptotic plane layer dynamo simulations by Yan & Calkins (2022).

To study the degree of anisotropy in the bulk flow, we plot in figure 3(b) the kinetic
energy anisotropy for each case, defined as

A = W2

U2
h + W2

. (4.2)

It describes the fraction of total kinetic energy found in vertical motions. In the isotropic
case, where the energy is distributed equally among the three components, this value
would be 1

3 . As we see from figure 3(b), the non-rotating case is far away from that value,
while the rotating cases display values very close to the isotropic one, with the possible
exception of the case with Ra = 6.48 × 1011, possibly a point of transition between the
plumes and GT states of the geostrophic regime, for which no transition relation is
currently available. Here, rotation thus suppresses the large anisotropy of non-rotating
convection, ending up in near-isotropy.

4.2. Test of force balance scaling relations
We can use the measured characteristic velocities to test compliance (in terms of Ra
scaling) with the scaling relations (2.11) and (2.14), respectively based on the VAC and
CIA force balances. We graphically test the compliance in figure 4 by plotting Re/ReVAC
and Re/ReCIA. Input on the Nu(Ra) scaling is required. Here, we use our prior heat
transfer results obtained in the same experimental set-up by Cheng et al. (2020), namely,
Nu ∼ Ra0.64 for the plumes/GT range, and Nu ∼ Ra0.52 for the RIT range. It must be
emphasised that these measured relations may be affected by the heat transfer contribution
of the sidewall circulation (de Wit et al. 2020; Zhang et al. 2020; Lu et al. 2021). We also
include the ultimate scaling Nu ∼ Ra3/2 as per (2.16). The VAC scaling test is included for
this diffusion-free relation, too, despite the incompatibility of combining a diffusion-free
Nu scaling with a force balance that includes the viscous force explicitly. The Re scaling
relations (2.11) and (2.14) do not have numerical prefactors. To make these plots, we have
chosen the prefactors such that the points are at the same level on average for ease of
comparison.

For both Reu and Rew, it is observed that either VAC or CIA scaling does a good
job of describing the results, provided that our earlier experimental Nu(Ra) relations
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Figure 4. Test of Re(Ra) scaling with VAC (see (2.11)) and CIA (see (2.14)) force balance arguments, for (a,b)
Reu, and (c,d) Rew. Three different Nu(Ra) relations are invoked: Nu ∼ Ra0.52 (green, for RIT) and Nu ∼ Ra0.64

(red, for plumes/GT) based on our heat transfer measurements in the same set-up (Cheng et al. 2020), and
Nu ∼ Ra3/2 (blue) following (2.16).

are employed. We see that both relations Nu ∼ Ra0.52 and Nu ∼ Ra0.64 lead to comparable
results and are equally valid in the plumes/GT and RIT ranges. Based on these plots and
on the current data, we cannot decide which scaling (VAC or CIA) is most appropriate.
This is in line with the analysis of Hawkins et al. (2023) (also covered in Hawkins 2020),
who similarly reported co-scaling of VAC and CIA relations based on measurements using
laser Doppler velocimetry. We can insert these numbers into the scaling relations (2.11)
and (2.14) for a quantitative comparison. Using Nu ∼ Ra0.64 for the plumes/GT range, we
arrive at the prediction Re ∼ Ra0.82 from VAC scaling, and Re ∼ Ra0.66 from the CIA
balance. When we use Nu ∼ Ra0.52 as obtained for the RIT range, we find Re ∼ Ra0.76 for
VAC, and Re ∼ Ra0.61 for CIA. Our exponents for the velocity scalings from figure 3 are
in this range – perhaps a bit closer to the CIA trend than to the VAC scaling, but certainly
not giving a conclusive answer either. We are probably in a state where both inertial and
viscous forces play a role. The flow is turbulent enough that inertial forces are relevant,
but not yet turbulent enough to reach the diffusion-free scaling Re ∼ Ra of (2.17). Hawkins
et al. (2023) conclude that pure CIA scaling is not observed given that the Nu(Ra) is still
affected by boundary-layer dynamics and thus not diffusion-free yet – a result that we
share (Cheng et al. 2020).

To interpret our data further and compare to previously published results, we collect
several reported datasets for Rew in figure 5. We plot R̃ew = Rew Ek1/3 as a function of
(R̃a − R̃aC)/Pr = (Ra − RaC) Ek4/3/Pr, both inspired and necessitated by the results of
Maffei et al. (2021) from asymptotic model simulations. In their asymptotic equation,
Ek → 0 so Ek itself remains undefined. Furthermore, using this plot convention, they
obtained a good collapse of their data spanning a range of Pr and R̃a; see the plus symbols
in the plot. Their simulation domain is a Cartesian box with periodic boundary conditions
in the horizontal directions and stress-free walls on bottom and top. The other datasets
are from DNS and experiments, where the corresponding Ekman number is colour-coded.
The current results are included with diamonds. The experimental results by Hawkins et al.
(2023) cover a significant range Ra ≈ 108–2 × 1011 and Ek ≈ 10−7–3 × 10−5; they are the
reported RRBC Reynolds number data closest to the current study in terms of Ra and Ek,

962 A36-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

32
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.326


Reynolds number scaling and energy spectra

102

101

100 101

Asymptotic:

Maffei et al. (2021)
Experiments:

Cylinder DNS:

Aguirre Guzmán et al. (2020)
Periodic DNS:

This work

Kunnen et al. (2010)

Hawkins et al. (2023)
Rajaei et al. (2018)

102 103

–3.5

–4.0

–4.5

–5.0

–5.5

–6.0

–6.5

–7.0

–7.5

Re
w
 E

k1
/
3

(Ra – Rac) Ek 4/3/Pr

Pr = 1.0

Pr = 2.0
Pr = 2.5
Pr = 3.0
Pr = 7.0

Pr = 1.5

log10 (Ek)

Figure 5. Comparison of current results for Rew with published results. Plus signs: data from Maffei et al.
(2021), colour coded by Pr, results from asymptotically reduced model simulations on a horizontally periodic
domain. Other symbols colour-coded by Ek (see colour bar). Diamonds: current results. Small filled circles:
experiments of Hawkins et al. (2023). Up triangles: DNS in a cylinder (Kunnen et al. 2010). Down triangles:
experiments of Rajaei et al. (2018). Circles: DNS in a horizontally periodic domain (Aguirre Guzmán et al.
2020).

and are included with dots. Numerical and experimental results corresponding to a smaller
cylindrical convection cell at Ra ≈ 109 and Ek ≈ 3 × 10−6–10−3 taken from Kunnen,
Geurts & Clercx (2010) and Rajaei et al. (2018) are included with up and down triangles.
Finally, the DNS study by Aguirre Guzmán et al. (2020) on a horizontally periodic domain
with no-slip walls on bottom and top at Ra = 5 × 109–1012 and Ek ≈ 10−7 is included
with open circles. From figure 5, we can make several observations.

First, the plateauing at low Ra that we observed in figure 3(a) is also observed in the
data of Hawkins et al. (2023). On the contrary, the simulation results on horizontally
periodic domains (Aguirre Guzmán et al. 2020; Maffei et al. 2021) do not show such a
plateau. The principal distinguishing property is the presence or absence of a sidewall. We
know that the sidewall circulation generates jet-like intrusions from the sidewall region
into the bulk (Favier & Knobloch 2020; Madonia et al. 2021). It is thus plausible that
the observed plateauing of Rew is caused by the dominance of the jets emerging from
the sidewall circulation over the columnar convection in the central region. Note that the
difference between the DNS of Aguirre Guzmán et al. (2020) and the asymptotic model of
Maffei et al. (2021) at low R̃a = Ra Ek4/3 is related to the applied boundary conditions: in
this range, paradoxically, no-slip boundaries lead to higher Nu (and thus also higher Rew)
than stress-free boundaries at otherwise identical parameter values (Schmitz & Tilgner
2010; Stellmach et al. 2014; Kunnen et al. 2016; Plumley et al. 2017). This effect has been
ascribed to the prevalence of Ekman pumping as a source of vertical transport, present for
no-slip plates but absent for stress-free.

Second, the Reynolds number scaling depends sensitively on the magnitudes of Ra and
Ek. The smaller-scale cylinder investigations of Kunnen et al. (2010) and Rajaei et al.
(2018) at moderate Ra ≈ 109 and Ek down to 3 × 10−6 display a significantly shallower
slope than the larger cylinders (larger Ra and smaller Ek) of Hawkins et al. (2023)
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and the current study. There is definitely a different scaling upon entering the geostrophic
regime of rotating convection. In fact, these four studies together display a gradual
transition as a function of both Ra and Ek. A steeper scaling can be seen as Ek is
reduced, while concomitantly increasing Ra to retain turbulent convection, save for the
added complications due to the sidewall circulation.

Third, the smallest-Ek data points (orange and red) display a trend towards convergence
to the asymptotic results for (Ra − RaC) Ek4/3/Pr � 50 and Rew Ek1/3 � 20. Notably,
results of completely different origin (experiments, DNS and asymptotic models;
horizontally periodic domains and confined cylinders) display convergence towards a
common scaling behaviour. Based on this convergence, we expect that the effect of the
wall modes on the Rew scaling is minimal. A linear scaling in figure 5 corresponds
directly to the relation expressed in (2.17) where the velocity scale becomes independent
of both diffusive parameters and domain-specific parameters, such as its height H.
The convergence is not yet fully achieved; extra data points at even smaller Ek values
are required to corroborate this, but tough to realise experimentally or numerically.
Such investigations may also allow us to investigate further the possible convergence
between the curves coming from asymptotically reduced simulations, full Navier–Stokes
simulations and experiments. We note that the asymptotic simulations of Maffei et al.

(2021) in fact result in stronger-than-linear scaling R̃ew ∼ R̃a1.2 (at Pr = 1), which shows
additionally that the existence of true diffusion-free flow behaviour remains an open
question.

5. Energy spectra

To compute the energy spectra, we employ two-dimensional fast Fourier transforms
of the velocity field, after padding the vector fields with zeros up to 512 grid
points per dimension to avoid artefacts due to implied periodicity in the Fourier
transform (Randall 2008). The two-dimensional data are averaged over circular shells
to obtain one representative curve independent of azimuthal angle. Since adjacent
velocity vectors are Δx = 3.2 mm apart, the smallest wavenumber after zero padding
is kL = 2π/L = 2π/(512 Δx) ≈ 3.83 m−1, and the maximum relevant k value (Nyquist
wavenumber) is k2Δx = 2π/(2 Δx) ≈ 982 m−1. All the k values are integer multiples of
kL. Nevertheless, the smallest physically relevant k is determined by the diameter D of the
cylinder; that would be given by kD = 2π/D ≈ 16.1 m−1, but since all the wavenumbers
are integer multiples of kL, our first relevant value is kmin ≈ 19.2 m−1 – in dimensionless
form, kminH ≈ 38.4.

The maximum relevant k requires more consideration. Previous literature (Foucaut,
Carlier & Stanislas 2004; Savelsberg 2006) has shown that the window averaging applied
in PIV measurements acts as a low-pass filter in Fourier space with a cut-off wavenumber
that depends on the size of the measurement window X (in our case, X = 2 Δx = 6.4 mm).
The PIV filtering amounts to a multiplication in Fourier space of the real signal with a
squared cardinal sine function

sinc2(kX/2) =
(

sin kX/2
kX/2

)2

. (5.1)

We can then correct for this filtering, with corrected energy spectra becoming

Ecorr = Emeas

sinc2(kX/2)
, (5.2)
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Figure 6. Kinetic energy spectra E(k) plotted as functions of normalised wavenumber kH, including total
kinetic energy (Etot) as well as the contributions from horizontal (Ehor) and vertical (Ever) velocity components.
Reference power-law slopes k−5/3 and k−3 are also included. Graphs (e–h) are also plotted in compensated form
k5/3 E(k).

where Emeas is the uncorrected spectrum determined directly from the PIV data, and Ecorr

is the corrected spectrum. However, given that sinc2(kX/2) → 0 as kX/2 → π, direct
application of (5.2) may cause practical difficulties: measurement noise will be severely
amplified when approaching the zero of the denominator. To deal with this, we employ the
rule of thumb proposed by Foucaut et al. (2004) to cut off the spectra at a maximum kmax =
2.8/X. At this k value, the filter function is sinc2(kmaxX/2) ≈ 0.5, i.e. the spectrum is cut
off at the wavenumber kmax where PIV filtering reduces the measured spectral amplitude
by 50 %. In our case, kmaxH = 874.

In figure 6, we show the energy spectra of our seven RRBC cases as well as the
non-rotating case. We plot the total energy spectrum (Etot) together with the respective
contributions from the horizontal (Ehor) and vertical (Ever) velocity components.
Wavenumbers are normalised using the cell height H.

The rotating cases show common features. In all of them, Etot exhibits a peak at
kH ≈ 70, which corresponds to the physical wavelength L ≈ 0.18 m ≈ D/2. This peak
is related to the ordering into a quadrupolar vortex state that we reported before (Madonia
et al. 2021), which in hindsight was also found in the mean flow fields of de Wit et al.
(2020). Ecke et al. (2022) also show this flow organisation in their figure 2(c). Jets pointing
radially inwards are observed at the positions where upward and downward flowing
parts of the sidewall circulation meet, resulting in a four-quadrant organisation with two
cyclonic and two anticyclonic vortices. The formation of these jets is a nonlinear feature
of the sidewall circulation absent from its linear description (Herrmann & Busse 1993;
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Liao, Zhang & Chang 2006; Zhang & Liao 2009). The dependence on the geometrical
aspect ratio Γ is an open question; we do anticipate changes for wider cylinders where
more than one azimuthal wavelength can fit into the circumference. Here, with one
azimuthal wavelength, we see an organisation into a quadrupolar vortex where each pole
has characteristic size L ≈ D/2. These structures are most energetic, but at the same time
they are quasi-two-dimensional: there is no signature of them in the spectra Ever based on
vertical velocity.

The shape of the remaining part of each spectrum is strongly dependent on the vertical
energy contribution. As Ra increases, the peak in Ever goes towards smaller k (larger length
scales), a feature that we have observed before (Madonia et al. 2021) from calculations
of the characteristic horizontal correlation length scale based on vertical velocity. We
interpret this as the scale at which buoyancy is most prominently adding energy into the
turbulent motion. In the language of the classical theory of three-dimensional turbulence
(e.g. Frisch 1995; Pope 2000), this scale can be considered the forcing scale. The
dissipation scale (i.e. the Kolmogorov scale) remains approximately constant, leading to
increased scale separation between forcing and dissipation as Ra becomes larger. From
the maximum of Ever towards larger k values, we see the gradual development of a
spectral scaling range close to E(k) ∼ k−5/3, the predicted scaling for the inertial range
of three-dimensional turbulence (Frisch 1995; Pope 2000). This scaling range is most
prominent in the Etot curves and at larger Ra. We also plot the spectra of figures 6(e–h) in
a compensated form k5/3E(k) to show the quality and extent of the k−5/3 scaling range:
the scaling range is not well developed in figure 6(e) at Ra = 1.08 × 1012, but it is present
prominently in figures 6( f –h), the two rotating convection experiments at larger Ra and
the non-rotating case at Ra = 6.48 × 1011. Figures 6(a–d) are not shown in compensated
form as no scaling range develops there.

The sum of horizontal and vertical contributions is reflected clearly in the total spectra
Etot, with the peak due to the quadrupolar vortex dominating at smaller k, and a broad
shoulder due to the peak contribution of Ever that shifts as a function of Ra.

The horizontal spectra, in fact, also show a different scaling trend, from the approximate
location of the peak of Ever to smaller wavenumbers ending on the maximum of Ehor,
which resembles the E(k) ∼ k−3 scaling. This k−3 scaling could be a sign of a (non-local)
inverse cascade (Smith & Waleffe 1999; Lindborg 2007; Julien et al. 2012b; Aguirre
Guzmán et al. 2020), although this scaling range is short and certainly cannot be
considered as a proof. We are investigating the energy transfer among scales in more detail.

The non-rotating RBC case, instead, shows a very different situation. The peak of
the overall spectrum is at kmin, and it is due dominantly to the contribution of Ever. It
is a sign of the presence of the large-scale circulation of non-rotating convection (e.g.
Ahlers et al. 2009): a domain-filling vertical convection roll with one half of the domain
displaying upward flow and the other half downward. We have observed it in the current
measurements (Madonia et al. 2021; Madonia 2022). This structure corresponds to a
wavelength of approximately the diameter of the cylinder, that in wavenumber space is
translated to kmin. Here, we also observe a rather extensive scaling range nicely matching
the theoretical prediction k−5/3.

6. Conclusion

We present flow statistics that result from the stereo-PIV measurements of rotating
Rayleigh–Bénard convection in the geostrophic regime. We analyse radial profiles of the
root-mean-square values of horizontal and vertical velocity as well as vertical vorticity.
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Near the sidewall, the radial extent of the sidewall circulation can be distinguished clearly.
We see that for both velocities and vorticities, higher Ra corresponds to larger values of
these quantities, and at the same Ra, the non-rotating case exhibits larger magnitudes than
the corresponding rotating one.

Within the bulk region, for the flow states from plumes to rotation-influenced turbulence
(RIT), the Reynolds number scalings follow a trend that lies in the range of both CIA and
VAC scaling predictions, perhaps being numerically closer to the former, but otherwise
no decisive distinction can be made. The vorticity scaling follows the same trend as the
horizontal velocity, indicating that the characteristic horizontal scale remains constant
(e.g. Sprague et al. 2006; Julien et al. 2012b; Madonia et al. 2021). We also find that energy
is distributed nearly isotropically, in contrast to non-rotating Rayleigh–Bénard convection
where the vertical velocity component is strongly preferred.

The Reynolds number results compared to previously published results reveal that there
is an overall steepening trend towards ‘ultimate’ diffusion-free scaling (Aurnou et al. 2020)
of the velocity fluctuations as the Ekman number is reduced, but we do not reach it yet.
However, there are indications of convergence in scaling for results coming from different
methods (experiments, direct numerical simulations and asymptotically reduced models)
and different geometries (confined cylinders and horizontally periodic computational
domains). At lower Ra, there are complications due to the use of a confined geometry,
as it promotes the presence of a wall mode that affects the bulk flow statistics.

Spectra of kinetic energy provide further evidence for the formation of a prominent
quadrupolar vortex structure (Madonia et al. 2021). This feature is remarkably
two-dimensional, as it is reflected only in spectra of horizontal velocity. In the spectra of
vertical velocity, we observe a broad peak that we associate with the dominant length scale
for energy injection. With increasing Ra, the peak shifts towards smaller wavenumbers
(larger length scales; Madonia et al. 2021). For larger wavenumbers, we observe the
development of a scaling range with a classical −5/3 slope for three-dimensional
turbulence (Frisch 1995; Pope 2000). This inertial range scaling is most prominent for
the non-rotating case.

These results provide valuable input on the turbulence scaling of flows in the geostrophic
regime, a property that has been scarcely investigated up to now. There is clear perspective
in the observed convergence of results from significantly different domains and employing
different methods. At the same time, to reach true convergence, even more extreme
parameter values than those used here are likely required, which is a major challenge
for both experiments and direct numerical simulations. Additionally, the influence of the
strong convection mode near the sidewall, the sidewall circulation, should be explored
further to ensure proper interpretation of experimental and numerical results from confined
domains.
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