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POLYHEDRAL COMPLETENESS OF INTERMEDIATE LOGICS:
THE NERVE CRITERION

SAM ADAM-DAY , NICK BEZHANISHVILI, DAVID GABELAIA , AND VINCENZO MARRA

Abstract. We investigate a recently devised polyhedral semantics for intermediate logics, in which
formulas are interpreted in n-dimensional polyhedra. An intermediate logic is polyhedrally complete if it
is complete with respect to some class of polyhedra. The first main result of this paper is a necessary
and sufficient condition for the polyhedral completeness of a logic. This condition, which we call the
Nerve Criterion, is expressed in terms of Alexandrov’s notion of the nerve of a poset. It affords a purely
combinatorial characterisation of polyhedrally complete logics. Using the Nerve Criterion we show, easily,
that there are continuum many intermediate logics that are not polyhedrally complete but which have the
finite model property. We also provide, at considerable combinatorial labour, a countably infinite class of
logics axiomatised by the Jankov–Fine formulas of ‘starlike trees’ all of which are polyhedrally complete.
The polyhedral completeness theorem for these ‘starlike logics’ is the second main result of this paper.

§1. Introduction. The genesis of many connections between logic and geometry
is rooted in the discovery of topological semantics for intuitionistic and modal logic,
as pioneered by Stone [30], Tsao-Chen [32], Tarski [31], and McKinsey [20]. This
semantics is now well-known. In short, one starts with a topological space X, and
interprets intuitionistic formulas inside the Heyting algebra of open sets of X, and
modal formulas inside the modal algebra of subsets of X with � interpreted as the
topological interior operator. A celebrated result due to Tarski [31] states that this
provides a complete semantics for intuitionistic propositional logic (IPC) on the
one hand, and the modal logic S4 on the other. Moreover, one can even obtain
completeness with respect to certain individual spaces. Specifically, McKinsey and
Tarski showed [21] that for any separable metric space X without isolated points, if
IPC � φ, then φ has a countermodel based on X, and similarly with S4 in place of
IPC. Later, Rasiowa and Sikorski showed that one can do without the assumption
of separability [25].

This result traces out an elegant interplay between topology and logic; however,
it simultaneously establishes limits on the expressive power of this kind of
interpretation. Indeed, examples of separable metric spaces without isolated points
are the n-dimensional Euclidean spaceRn and the Cantor space 2� . What McKinsey
and Tarski’s result shows, then, is that these spaces have the same logic, namely IPC
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POLYHEDRAL COMPLETENESS OF INTERMEDIATE LOGICS 343

(or S4). The upshot is that topological semantics does not allow logic to capture
much of the geometric content of a space.

A natural idea is that, if we want to remedy the situation and allow for the
capture of more information about a space, then we need an algebra finer than
the Heyting algebra of open sets, or the modal algebra of arbitrary subsets with
the interior operator. For example, Aiello, van Benthem, Bezhanishvili, and Gehrke
consider the modal logic of chequered subsets of Rn: finite unions of sets of the
form

∏n
i=1 Ci , where each Ci ⊆ R is convex ([3, 7]; see also [6]). In [13, 15, 16], this

algebra-refinement idea is taken one step further. To be able to capture some of the
geometric content of a space, one may restrict attention to topological spaces and
subsets which are polyhedra (of arbitrary dimension). Indeed, the set Subo(P) of
open subpolyhedra of P is a Heyting algebra under ⊆ (and a similar result holds
in the modal case). This allows for an interpretation of intuitionistic and modal
formulas in Subo(P). The main result of [13] is that more is true. A polyhedral
analogue of Tarski’s theorem holds: these polyhedral semantics are complete for
IPC and S4.Grz. Furthermore, this approach delivers that logic can capture the
dimension of the polyhedron in which it is interpreted, via the bounded depth
formulas bdn [14, Section 2.4]. In particular, the polyhedron P is n-dimensional if,
and only if, P validates bdn+1 and does not validate bdn+2 for n ∈ � [13].

In this paper we make further advances in the study of polyhedral semantics. We
introduce and study polyhedral completeness for intermediate logics. We say that
an intermediate logic L is polyhedrally complete if there is a class C of polyhedra
such that L is the logic of C. It follows from [13] that IPC and the logic BDn of
bounded depth n, for each n, are polyhedrally complete. We construct infinitely many
polyhedrally complete logics, and show that there are continuum many polyhedrally
incomplete ones all of which have the finite model property.

To this end we employ a time-honoured tool from combinatorial and polyhedral
geometry, the nerve of a poset (=partially ordered set). The nerve will be our key
concept relating logic with polyhedral geometry. In detail, the nerve N (F ) of the
poset F is the collection of finite non-empty chains in F ordered by inclusion. As
was already noted in [13], given a polyhedron P, a triangulation of P corresponds to
a validity-preserving map from P onto the poset F of the faces of the triangulation.
Through Esakia duality, in turn, this validity-preserving map corresponds to an
embedding of the Heyting algebra of upsets of F into the Heyting algebra of
open subpolyhedra of P. Nerves are closely related to barycentric subdivisions of
triangulations. Indeed, if a finite poset F is the face poset of some triangulation Σ
of a polyhedron P, then N (F ) corresponds to a barycentric subdivision of Σ.

Applying methods and results from rational polyhedral geometry we present
a proof of our first main result, the Nerve Criterion for polyhedral completeness
(Theorem 4.1): A logic L is complete with respect to some class of polyhedra if and
only if it is the logic of a class of finite posets closed under taking nerves. Thus, we
obtain that the logic of any given polyhedron is the logic of the iterated nerves of
any one of its triangulations. The criterion yields many negative results, showing
in particular that there are continuum-many non-polyhedrally complete logics with
the finite model property (Theorem 5.4).

As to positive results, we consider logics defined using starlike trees—trees which
only branch at the root—as forbidden configurations. Starlike logics are then those
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344 SAM ADAM-DAY ET AL.

defined by the Jankov–Fine formulas of a collection of starlike trees. Exploiting
the Nerve Criterion, and a result by Zakharyaschev [34] that all these logics
have the finite model property, we prove our second main result (Theorem 6.15):
Every starlike logic is polyhedrally complete. This yields a countably infinite class
of polyhedrally complete logics of each finite height and of infinite height. (For
instance, Scott’s well-known logic SL is in this class.) As forbidden configurations,
starlike trees have a natural geometric meaning, expressing connectedness properties
of polyhedral spaces.

The paper is organised as follows. In Section 2, we give the required background
on intermediate logics and polyhedral geometry. Section 3 presents the polyhedral
semantics first defined in [13]. In Section 4, we present and prove the Nerve Criterion
for polyhedral completeness (Theorem 4.1). Making use of this criterion, Section 5
establishes that all stable logics (as defined in [9]) of height at least 2 are polyhedrally
incomplete. Then in Section 6, we define the class of starlike logics, and prove that
each one is polyhedrally complete. The techniques in these two sections are entirely
combinatorial.

Finally, let us briefly comment on further research. One major problem already
mentioned in [13] is to characterise the logic of piecewise-linear manifolds of a
fixed dimension. Here we announce significant progress on this question; the results
will appear in a forthcoming paper. A second relevant goal would be a complete
classification of polyhedrally complete logics. At the time of writing, we do not know
how to attain this goal. One might wonder if our results on starlike logics extend
to arbitrary trees, or even to a wider class of posets. As to the latter, some negative
results are obtained in [1, Corollary 4.12]. For the former, the situation is rather
obscure to us at the time of writing (cf. the discussion on ‘general trees’ in [1, p.
61]). Identifying further classes of polyhedrally complete logics beyond the starlike
ones introduced in this paper would be the next immediate task in the direction of
obtaining a classification of polyhedrally complete logics.1

§2. Preliminaries. In this section we remind the reader of the relational and
algebraic semantics for intermediate logics, and survey the definitions and results
which will play their part in the forthcoming. As a main reference we use [14]. We
assume rather less familiarity with polyhedral geometry, and thus present in more
detail the material we need.

2.1. Posets as Kripke frames. A (Kripke) frame for intuitionistic logic is simply
a poset. We thus use the term ‘frame’ in this paper as a synonym of ‘poset’. The
validity relation � between frames and formulas is defined in the usual way (see,
e.g., [14, Chapter 2]). Given a class of frames C, its logic is

Logic(C) := {φ a formula | ∀F ∈ C : F � φ}.
Conversely, given a logic L, define

Frames(L) := {F a Kripke frame | F � L},
Framesfin(L) := {F a finite Kripke frame | F � L}.

1This paper is partly based on the first-named author’s M.Sc. thesis [1].
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POLYHEDRAL COMPLETENESS OF INTERMEDIATE LOGICS 345

A logic L has the finite model property (fmp) if it is the logic of a class of finite
frames. Equivalently, if L = Logic(Framesfin(L)).

Fix a poset F. For any x ∈ F , its upset, downset, strict upset, and strict downset
are defined, respectively, as follows:

↑ (x) := {y ∈ F | y � x},
↓ (x) := {y ∈ F | y � x},
⇑(x) := {y ∈ F | y > x},
⇓ (x) := {y ∈ F | y < x}.

For any set S ⊆ F , its upset and downset are defined, respectively, as follows:

↑U :=
⋃
x∈U

↑(x),

↓U :=
⋃
x∈U

↓ (x).

A subframe is a subposet. A subframe U ⊆ F is upwards-closed or a generated
subframe if U = ↑U , and it is downwards-closed if ↓U = U . The Alexandrov
topology on F is the set UpF of its upwards-closed subsets. This constitutes a
topology on F. In the sequel, we will freely switch between thinking of F as a poset
and as a topological space. Note that the closed sets in this topology correspond to
downwards-closed sets.

A chain in F is X ⊆ F which as a subposet is linearly ordered. The length of the
chain X is |X |. A chain X ⊆ F is maximal if there is no chain Y ⊆ F such that
X ⊂ Y (i.e., such that X is a proper subset of Y). The height of F is the element of
N ∪ {∞} defined by

height(F ) := sup{|X | – 1 | X ⊆ F is a chain}.

For notational uniformity, say that this value is also the depth of F, depth(F ). For
any x ∈ F , define its height and depth as follows:

height(x) := height(↓ (x)),

depth(x) := depth(↑(x)).

The height of a logic L is the element of N ∪ {∞} given by

height(L) := sup{height(F ) | F ∈ Frames(L)}.

A top element of F is t ∈ F such that depth(t) = 0. For any x, y ∈ F , say that x is an
immediate predecessor of y, and that y is an immediate successor of x, if x < y and
there is no z ∈ F such that x < z < y. Write Succ(x) for the collection of immediate
successors of x.

The poset F is rooted if it has a minimum element, which is called the root, and is
usually denoted by ⊥. Define

Frames⊥(L) := {F ∈ Frames(L) | F is rooted},
Frames⊥,fin(L) := {F ∈ Framesfin(L) | F is rooted}.
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346 SAM ADAM-DAY ET AL.

An antichain in F is a subset Z ⊆ F in which no two elements are comparable.
The width, notation width(F ), of F is the cardinality of the largest antichain in F.

A function f : F → G is a p-morphism if for every x ∈ F we have

f(↑(x)) = ⇑(f(x)).

Equivalently, f should satisfy the following conditions:

∀x, y ∈ F : (x � y ⇒ f(x) � f(y)), (Forth)

∀x ∈ F : ∀z ∈ G : (f(x) � z ⇒ ∃y ∈ F : (x � y ∧ f(y) = z)). (Back)

An up-reduction from F to G is a surjective p-morphism f from an upwards-closed
set U ⊆ F to G. Write f : F ◦→G .

Proposition 2.1. If there is an up-reduction F ◦→G then Logic(F ) ⊆ Logic(G).
In other words, if G � φ then F � φ.

Proof. See [14, Corollary 2.8, p. 30, and Corollary 2.17, p. 32]. �

Corollary 2.2. If C is any collection of frames and L = Logic(C), then

L = Logic(Frames⊥(L)).

Proof. First, L ⊆ Logic(Frames⊥(L)). Conversely, suppose L � φ. Then there
exists F ∈ C such that F � φ, and hence there is x ∈ F such that x � φ (for some
valuation on F), meaning that ↑(x) � φ. Now, ↑(x) is upwards-closed in F, and
hence id↑(x) is an up-reduction F ◦→↑(x). Then by Proposition 2.1, we get that
↑(x) � L, so that ↑(x) ∈ Frames⊥(L). �

2.2. Heyting algebras, topological semantics. A Heyting algebra is a bounded
lattice equipped with a Heyting implication → that satisfies

c � a → b ⇔ c ∧ a � b.

The validity relation � between Heyting algebras and formulas is defined in the
usual way; the notation Logic(–) is extended appropriately. The logic of a Heyting
algebra is exactly the logic of its finitely generated subalgebras. Say that A is locally
finite if for every S ⊆ A finite, the algebra 〈S〉 generated by S is finite. If F is any
poset, the bounded distributive lattice UpF is a Heyting algebra, and:

Proposition 2.3. If F is a poset, Logic(F ) = Logic(UpF ).

Proof. See [14, Corollary 8.5, p. 238]. �

Co-Heyting algebras are the order-duals of Heyting algebras. Specifically, a co-
Heyting algebra is a bounded lattice equipped with a co-Heyting implication ← that
satisfies

a ← b � c ⇔ a � b ∨ c.

For more information on co-Heyting algebras, the reader is referred to [22, Section
1] and [26], where they are called ‘Brouwerian algebras’.
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Given a topological space X, we regard the collection of open sets O(X ) of X as a
Heyting algebra in the standard manner (cf. [14, Proposition 8.31, p. 247]). (Recall
that

U → V = Int(UC ∪ V ),

where Int denotes the topological interior operator, and –C is set-theoretic
complement.) We can thus interpret formulas in topological spaces. Write X � φ
for O(X ) � φ, and extend the remaining notations accordingly.

The topological space X also comes with a co-Heyting algebra, namely its
collection of closed sets C(X ). The co-Heyting implication on C(X ) satisfies

C ← D := Cl(C \D),

where Cl denotes the topological closure operator. If a Heyting algebra A is regarded
as a poset category (A,�), then its opposite category Aop = (A,�) is a co-Heyting
algebra. In the case of the Heyting algebra O(X ) of open sets of X, O(X )op is
isomorphic to the co-Heyting algebra C(X ) of closed subsets of X.

2.3. Jankov–Fine formulas as forbidden configurations. To every finite, rooted
frame Q, we associate a formula �(Q), the Jankov–Fine formula of Q (also called
its Jankov–De Jongh formula). The precise definition of �(Q) is somewhat involved,
but the exact details of this syntactical form are not relevant for our considerations.
What matters to us is its notable semantic property.

Theorem 2.4. For any frame F, we have that F � �(Q) if and only if F does not
up-reduce to Q.

Proof. See [14, Section 9.4, p. 310] for a treatment in which Jankov–Fine
formulas are considered as specific instances of more general ‘canonical formulas’.
An alternative proof can be found in [12, Section 3.3, p. 56], which gives a complete
definition of �(Q). See also [9] for an algebraic version of this result. �

Jankov–Fine formulas formalise the intuition of ‘forbidden configurations’. The
formula �(Q) ‘forbids’ the configuration Q from its frames.

The following consequence of Theorem 2.4 will come in handy later on.

Corollary 2.5. Let L = Logic(C) where C is a class of frames. Then

Frames⊥,fin(L) = {F finite, rooted frame | ∃G ∈ C : G◦→F }.
Proof. First, if F is a finite, rooted frame such that there is G ∈ C and an

up-reduction G◦→F , then by Proposition 2.1 we have that F ∈ Frames⊥,fin(L).
Conversely take F finite and rooted, and assume that there is no G ∈ C with
G◦→F . Then by Theorem 2.4, G � �(F ) for every G ∈ C; whence L � �(F ). By
Theorem 2.4, F � �(F ) implying F � L. This yields F /∈ Frames⊥,fin(L). �

2.4. Intermediate logics. The logic IPC is intuitionistic propositional logic. An
intermediate logic is any consistent logic extending IPC. Classical logic, CPC, is the
largest intermediate logic.

Proposition 2.6. IPC is the logic of the class of all finite frames, i.e., IPC has
the fmp.
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348 SAM ADAM-DAY ET AL.

Proof. See [14, Theorem 2.57, p. 49]. �
For every n ∈ N, let BDn be the logic of all finite frames of height at most n. This

has the following axiomatisation in terms of Jankov–Fine formulas.

Proposition 2.7. BDn is the logic axiomatised by IPC plus the Jankov–Fine
formula of the chain (linear order) on n + 1 elements.

Proof. See [14, Table 9.7, p. 317, and Section 9]. �
Scott’s Logic, SL, is usually axiomatised by the Scott sentence:

SL = IPC + IPC + ((¬¬p → p) → p ∨ ¬p) → ¬p ∨ ¬¬p.
This logic can also be axiomatised using a forbidden configuration, as follows.

Proposition 2.8. SL = IPC + �( ).

Proof. See [14, Table 9.7, p. 317, and Section 9]. �

2.5. Polytopes, polyhedra, and simplices. Polyhedra are certain subsets of finite-
dimensional real affine spaces Rn. An affine combination of x0, ... , xd ∈ Rn is a
point r0x0 + ··· + rdxd , where r0, ... , rd ∈ R are such that r0 + ··· + rd = 1. A convex
combination is an affine combination in which additionally each ri � 0. Given a set
S ⊆ Rn, its convex hull, notation ConvS, is the collection of convex combinations
of its elements. (We stress that each convex combination involves, by definition, a
finite subset of S only.) A subspace S ⊆ Rn is convex if ConvS = S. A polytope is
the convex hull of a finite set. A polyhedron in Rn is a set which can be expressed as
the finite union of polytopes. A subpolyhedron of a polyhedron P in Rn is a subset of
P which is itself a polyhedron. Note that every polyhedron is closed and bounded,
hence compact, in the canonical (Euclidean) topology carried by the real affine
space Rn. All topological notions pertaining to polyhedra in the following refer to
this topology.

A set of points x0, ... , xd is affinely independent if whenever

r0x0 + ··· + rdxd = 0 and r0 + ··· + rd = 0,

we must have that r0, ... , rd = 0. This is equivalent to saying that the vectors

x1 – x0, ... , xd – x0

are linearly independent. A d-simplex is the convex hull � of d + 1 affinely
independent points x0, ... , xd , which we call its vertices. Write � = x0 ···xd ; the
dimension of � is d.

Proposition 2.9. Every simplex determines its vertex set: two simplices coincide if
and only if they share the same vertex set.

Proof. See [19, Proposition 2.3.3, p. 32]. �
A face of � is the convex hull � of some non-empty subset of {x0, ... , xd} (note

that � is then a simplex too). Write � � �, and � ≺ � if � �= �.
Since x0, ... , xd are affinely independent, every point x ∈ � can be expressed

uniquely as a convex combination x = r0x0 + ··· + rdxd with r0, ... , rd � 0 and
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r0 + ··· + rd = 1. Call the tuple (r0, ... , rd ) the barycentric coordinates of x in �.
The barycentre �̂ of � is the special point whose barycentric coordinates are
( 1
d+1 , ... ,

1
d+1 ). The relative interior of � is defined:

Relint � := {r0x0 + ··· + rdxd ∈ � | r0, ... , rd > 0}.
The relative interior of � is ‘� without its boundary’ in the following sense. The
affine subspace spanned by � is the set of all affine combinations of x0, ... , xd . Then
the relative interior of � coincides with the topological interior of � inside this affine
subspace, the latter being equipped with the subspace topology it inherits from Rn.
Note that Cl Relint � = �, the closure being taken in the ambient space Rn.

2.6. Triangulations. A simplicial complex in Rn is a finite set Σ of simplices
satisfying the following conditions.

(a) Σ is ≺-downwards-closed: whenever � ∈ Σ and � ≺ � we have � ∈ Σ.
(b) If �, � ∈ Σ, then � ∩ � is either empty or a common face of � and �.

The support of Σ is the set |Σ| :=
⋃

Σ. Note that by definition this set is automatically
a polyhedron. We say that Σ is a triangulation of the polyhedron |Σ|. The set Σ is a
poset under ≺, called the face poset of the triangulation. A subcomplex of Σ is subset
which is itself a simplicial complex. Note that a subcomplex, as a poset, is precisely
a downwards-closed set. Given � ∈ Σ, its open star is defined:

o(�) :=
⋃

{Relint(�) | � ∈ Σ and � ⊆ �}.

Proposition 2.10. The relative interiors of the simplices in a simplicial complex
Σ partition |Σ|. That is, for every x ∈ |Σ|, there is exactly one � ∈ Σ such that x ∈
Relint �.

Proof. See [19, Proposition 2.3.6, p. 33]. �
In light of Proposition 2.10, for any x ∈ |Σ| let us write �x for the unique � ∈ Σ

such that x ∈ Relint �. The simplex �x is known as the carrier of x.

Proposition 2.11. Let Σ be a simplicial complex, take � ∈ Σ and x ∈ Relint �.
Then no proper face � ≺ � contains x. This means that �x is the inclusion-smallest
simplex containing x.

Proof. See [13, Lemma 3.1]. �
The next result is a basic fact of polyhedral geometry, and is of fundamental

importance in its connection with logic. For Σ a triangulation and S a subset of the
ambient space Rn, define

ΣS := {� ∈ Σ | � ⊆ S}.
This, being a downwards-closed subset of Σ, is a subcomplex of Σ.

Lemma 2.12 (Triangulation Lemma). Any polyhedron admits a triangulation
which simultaneously triangulates each of any fixed finite set of subpolyhedra. That
is, for a collection of polyhedra P,Q1, ... , Qm such that each Qi ⊆ P, there is a
triangulation Σ of P such that ΣQi triangulates Qi for each i.

Proof. See [27, Theorem 2.11 and Addendum 2.12, p. 16]. �
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Figure 1. Examples of elementary stellar subdivisions.

2.7. Stellar and barycentric subdivisions. For Σ and Δ simplicial complexes, Δ is
a subdivision or refinement of Σ, notation Δ � Σ, if |Σ| = |Δ| and every simplex of Δ
is contained in a simplex of Σ.

Lemma 2.13. If Δ � Σ then for every � ∈ Σ we have

� =
⋃

{� ∈ Δ | � ⊆ �}.

Proof. Let S := {� ∈ Δ | � ⊆ �}. Clearly
⋃
S ⊆ �. Conversely, for x ∈ �, let

�x ∈ Δ be such that x ∈ Relint �x . Since Δ refines Σ, there is some � ∈ Σ such that
�x ⊆ �; assume that � is inclusion-minimal with this property. It follows from [28,
Section 3, Lemma 3, p. 121] that Relint �x ⊆ Relint �, meaning thatx ∈ � ∩ Relint �.
By condition (b) in the definition of a simplicial complex, we have that � ∩ � is face
of �. But then by Proposition 2.11, � � �, since otherwise � ∩ � would be a proper
face of � containing x ∈ Relint �. Therefore �x ⊆ � ⊆ � so that x ∈

⋃
S. �

We now introduce a special class of subdivisions, for which the original source
[4] remains a fundamental reference. Let Σ be a simplicial complex, and let c ∈ |Σ|.
The elementary stellar subdivision of Σ at c is the set of simplices Δ obtained from Σ
via the following transformation: Replace each simplex � ∈ Σ that contains c by the
set of all simplices Conv {� ∪ {c}}, where � ranges over all faces of � that do not
contain c. It can then be proved that Δ is again a triangulation, and a subdivision
of Σ. The equality Σ = Δ holds precisely when the chosen c is a vertex of Σ. If Δ
is a subdivision of Σ that is obtained via a finite number of successive elementary
subdivisions of Σ, then Δ is a stellar subdivision of Σ. See Figure 1.

If Δ is obtained from Σ via an elementary stellar subdivision at c ∈ |Σ|, and
c is moreover the barycentre of the vertices of its carrier simplex �c ∈ Σ (see
Proposition 2.10 and the comments following it), then Δ is an elementary barycentric
subdivision of Σ (at the barycentre c).
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POLYHEDRAL COMPLETENESS OF INTERMEDIATE LOGICS 351

Figure 2. Examples of barycentric subdivision. Each simplex in the simplicial
complex is divided at its barycentre, proceeding in decreasing order of dimension.
The bottom right tetrahedron is drawn without filled-in faces to aid clarity.

The barycentric subdivision Sd Σ of Σ is then defined as the refinement of Σ obtained
by successively applying elementary barycentric subdivisions at each simplex of Σ,
proceeding in decreasing order of dimension. It can be proved that Sd Σ does not
depend on the chosen ordering of the simplices of Σ. See the examples in Figure 2. In
the literature, Sd Σ is also often called the first derived subdivision of Σ (cf., e.g., [27]).
We inductively define, for each k ∈ N, the kth derived subdivision of Σ: Σ(0) := Σ; and
Σ(k) = Sd Σ(k–1).

§3. The algebra of open subpolyhedra. With the preliminaries in place, we relate
intuitionistic logic and polyhedra. For further details please see [13].

3.1. Polyhedral semantics. Given a polyhedron P, let SubP denote the set of its
subpolyhedra.

Theorem 3.1. SubP is a co-Heyting algebra, and a subalgebra of C(P).

Proof. See [13, Corollary 3.4]. The proof makes fundamental use of the
Triangulation Lemma. �

By an open subpolyhedron of a polyhedron P in this paper we mean the
complement (in P) of a subpolyhedron of P. Denote by SuboP the collection of
open subpolyhedra in P. Evidently, there is an isomorphism SuboP ∼= (SubP)op,
and Theorem 3.1 yields the following.

Theorem 3.2. For any polyhedron P, SuboP is a Heyting algebra, and a subalgebra
of O(P).

For any formula φ and polyhedron P, say that P � φ if and only if SuboP � φ as
a Heyting algebra. Call an intermediate logic polyhedrally complete if it is the logic
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of some class of polyhedra. In [13], it is shown that IPC is polyhedrally complete,
being the logic of all polyhedra, while BDn is the logic of all polyhedra of dimension
at most n. It is also shown that all polyhedrally complete logics must have the finite
model property (cf. Theorem 3.7).

3.2. Triangulation subalgebras. Let Σ be a triangulation of the polyhedron P.
Then Σ ⊆ SubP. Let Pc(Σ) be the sublattice of SubP generated by Σ.

Lemma 3.3. Pc(Σ) is a co-Heyting subalgebra of SubP.

Proof. See [13, Lemma 3.6]. �

Call any algebra of the form Pc(Σ) a triangulation subalgebra.

Lemma 3.4. Every finitely generated subalgebra of SubP is contained in some
triangulation algebra.

Proof. See [13, Lemma 3.2]. Essentially, this is the content of the Triangulation
Lemma 2.12. �

Turning now to the dual, every triangulation Σ of a polyhedron P gives rise to a
Heyting subalgebra Po(Σ) of SuboP, which we also call a triangulation subalgebra,
generated by the complements of the simplices in Σ.

Corollary 3.5. For any polyhedron P, SuboP is a locally finite Heyting algebra.

Proof. This follows from the dual of Lemma 3.4 and the fact that triangulation
subalgebras are finite. �

The algebra Po(Σ), though not necessarily easy to visualise geometrically, is in
fact precisely the algebra of upsets of the poset Σ.

Lemma 3.6. The map

�↑ : Up Σ → Po(Σ)

U �→
⋃
�∈U

Relint(�)

is an isomorphism of Heyting algebras.

Proof. See [13, Lemma 4.3]. �

As a consequence of the preceding results, we have:

Theorem 3.7. The logic of a polyhedron is the logic of its triangulations.

The following additional facts about triangulation algebras will be useful later on.

Lemma 3.8. (1) Triangulation algebras determine their corresponding triangu-
lations. That is, for any two triangulations Σ and Δ, if Po(Σ) = Po(Δ) then
Σ = Δ.

(2) If Σ and Δ are triangulations which are isomorphic as posets then Po(Σ) ∼=
Po(Δ).

(3) If Δ refines Σ, then Po(Σ) is a subalgebra of Po(Δ).
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Proof. (1) It follows from conditions (a) and (b) on simplicial complexes
that Pc(Σ) consists exactly of the unions of elements of Σ, and similarly
for Δ. Assume Po(Σ) = Po(Δ), so that Pc(Σ) = Pc(Δ), and take � ∈ Σ. Then
� ∈ Pc(Δ), so � =

⋃
S for some S ⊆ Δ, and similarly each � ∈ S is � =

⋃
T�

for some T� ⊆ Σ. Hence

� =
⋃ ⋃
�∈S
T�.

But then by condition (b) on Σ, every � ∈
⋃
�∈S T� must either be equal to �

or be a proper face of �. Since Relint � contains no proper face of �, we must
have � ∈ T� for some � ∈ S. But then � ⊆ � ⊆ �, and so � ∈ Δ. Applying this
argument also in the other direction, we get that Σ = Δ.

(2) This follows from Lemma 3.6.
(3) By Lemma 2.13, every� ∈ Σ is the union of simplices in Δ. Whence Σ ⊆ Pc(Δ).

Therefore, by definition Pc(Σ) ⊆ Pc(Δ). From this it follows that Po(Σ) ⊆
Po(Δ). �

3.3. PL homeomorphisms. Let P ⊆ Rm and Q ⊆ Rn be polyhedra. A continuous
function f : P → Q is piecewise-linear, or is a PL map, if the graph of f is a
polyhedron in the product space Rm × Rn. A PL homeomorphism is a PL map
that is a homeomorphism.

Proposition 3.9. The inverse of a PL homeomorphism is a PL homeomorphism.

Proof. See [27, p. 6]. �

Proposition 3.10. If P and Q are PL homeomorphic then SuboQ and SuboP are
isomorphic Heyting algebras, and Logic(P) = Logic(Q).

Proof. It is obvious that any homeomorphism between P and Q induces an
isomorphism of their open-set lattices by taking inverse images. Since the inverse
image of a subpolyhedron under a PL homeomorphism is again a subpolyhedron
[27, Corollary 2.5, p. 13], and in light of Proposition 3.9, we see that when
the homeomorphism is PL this isomorphism of open-set lattices descends to an
isomorphism of distributive lattices between SuboP and SuboQ. This implies that
SuboP and SuboQ are isomorphic as Heyting algebras, too, because the Heyting
implication is uniquely determined by the underlying lattice structure, and the proof
is complete. �

§4. The Nerve Criterion. Given a poset F, its nerve, N (F ), is the collection of
finite non-empty chains in F ordered by inclusion. The following theorem is the first
main contribution of the paper:

Theorem 4.1 (The Nerve Criterion). A logic is polyhedrally complete if, and only
if, it is the logic of a class of finite posets closed under the nerve operator N .

The utility of the Nerve Criterion is that it transforms logico-geometric questions
into questions about finite posets, to which finite combinatorial methods are
applicable.
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F (F)

Figure 3. An example showing that the Framesfin(SL) is not closed under N , even
though SL is polyhedrally complete.

Remark 4.2. We cannot strengthen the left-to-right direction to the following.
“If a logic L is polyhedrally complete then Framesfin(L) is closed under the nerve
operator N”. By Corollary 6.16 Scott’s Logic SL is polyhedrally complete. However
Framesfin(SL) contains the frame F given in Figure 3. As can be seen there, the nerve

N (F ) does not validate SL, since there is an up-reduction N (F )◦→ . Using the
terminology introduced in Section 6, the problem is that while F is (2 · 1)-connected,
it is not (2 · 1)-diamond-connected.

Achieving a proof of the Nerve Criterion will require considerable work with
rational triangulations and their subdivisions. We next state the key intermediate
result to be obtained. Let A be a triangulation subalgebra of SuboP, for some
polyhedron P. By Lemma 3.8((1)), there is a unique triangulation Σ of P such
that A = Po(Σ). For any k ∈ N, let A(k) := Po(Σ(k)), where Σ(k) is the k-th derived
subdivision of Σ (see Section 2.7).

Theorem 4.3. Let P be a polyhedron, and let A be any triangulation subalgebra of
SuboP. For any finitely generated subalgebra B of SuboP, there is k ∈ N such that B
is isomorphic to a subalgebra of A(k).

Sections 4.1–4.4 will be devoted to proving Theorem 4.3. The proof of the Nerve
Criterion is completed in Section 4.6.

4.1. Rational polyhedra and unimodular triangulations. The geometric intuition
behind Theorem 4.3 is that any triangulation can be approximated from any other
by taking iterated barycentric subdivisions. One difficulty with spelling out such
an intuition is that if we start with a triangulation Σ on vertices with irrational
coordinates, and try to approximate it using the iterated barycentric subdivisions of
a triangulation on vertices with rational coordinates, the approximations can never
quite capture (a refinement of) Σ. The approach taken here is effectively to show that
it suffices to restrict attention to the rational case. In order to make this idea precise,
we need tools on rational triangulations that go beyond the standard polyhedral
topology handbooks, which typically deal with the real case only. For these tools we
mainly use [23] as a background reference.
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A polytope in Rn is rational if it may be written as the convex hull of finitely many
points in Qn ⊆ Rn. A polyhedron in Rn is rational if it may be written as a union of a
finite collection of rational polytopes. A simplicial complex Σ is rational if it consists
of rational simplices. Note that when this is the case, |Σ| is a rational polyhedron.

For any x ∈ Qn ⊆ Rn, there is a unique way to write out x in coordinates as
x = (p1

q1
, ... , pnqn ) such that for each i, we have pi , qi ∈ Z coprime. The denominator

of x is defined:

Den(x) := lcm{q1, ... , qn}.
Thus, Den(x) = 1 if and only if x has integer coordinates. Letting q = Den(x), the
homogeneous correspondent of x is defined to be the integer vector:

x̃ :=
(
qp1

q1
, ... ,

qpn
qn
, q

)
.

A rational d-simplex � = x0 ···xd is unimodular if there is an (n + 1) × (n + 1)
matrix with integer entries whose first d + 1 columns are x̃0, ... , x̃d , and whose
determinant is ±1. This is equivalent to requiring that the set {x̃0, ... , x̃d} can be
completed to a Z-module basis of Zd+1. A simplicial complex is unimodular if each
one of its simplices is unimodular.

4.2. Farey subdivisions.

Proposition 4.4. Given a rational simplex � with vertices x0, ... , xd ∈ Qn ⊆ Rn,
there is a unique m ∈ Qn such that m̃ =

∑d
i=0 x̃i . Moreover, m ∈ Relint �.

Proof. Let Hn+1 ⊆ Rn+1 be the hyperplane specified by

Hn+1 := {(x1, ... , xn+1) ∈ Rn+1 | xn+1 = 1}.
Identify Qn with the set of rational points of Hn+1 via the map (q1, ... , qn) �→
(q1, ... , qn, 1). Under this identification, m̃ lies in the rational cone:{

d∑
i=0

ci x̃i | ci ∈ R, ci � 0

}
.

A routine computation then proves the geometrically evident fact that m is the point
of intersection of the line spanned in Rn+1 by the vector m̃, with the hyperplane
Hn+1; from which the result follows. �

The elementm ∈ Qn in Proposition 4.4 is called the Farey mediant of (the vertices
of) the simplex �. Note that when d = 0, i.e., when � is a vertex of Σ, then m
coincides with the vertex �. Also observe that the Farey mediant and the barycentre
of � are in general distinct, though both lie in Relint �.

We can now define a specific type of stellar subdivision based on Farey mediants
(cf. [23, Section 5.1, p. 55]). Let Σ be a simplicial complex, let � ∈ Σ, and let m be
the Farey mediant of �. The elementary Farey subdivision of Σ at m is the elementary
stellar subdivision of Σ at m. In general, the triangulation Δ is a Farey subdivision
of Σ if it is obtained from the latter via finitely many successive elementary Farey
subdivisions.

At the combinatorial level, Farey and barycentric subdivisions are indiscernible:
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Lemma 4.5. Let Σ,Δ be simplicial complexes with Σ rational, assume that � : Σ → Δ
is an isomorphism of Σ and Δ as posets, let � ∈ Σ, and let m be the Farey mediant
of �. Then the elementary Farey subdivision of Σ at m and the elementary barycentric
subdivision of Δ at the barycentre of �(�) are isomorphic as posets.

Proof. Indeed, at the level of posets, elementary Farey subdivision and
elementary barycentric subdivision are the same operation, as direct inspection
of the definitions confirms. For further details see also [4, Section III]. �

However, going beyond the combinatorial level, the construction of universal
approximations of arbitrary rational polyhedra does require Farey subdivisions
and cannot be done with barycentric ones. This is made precise in the following
fundamental fact of rational polyhedral geometry.

Lemma 4.6 (The De Concini–Procesi Lemma). Let P be a rational polyhedron,
and let Σ be a unimodular triangulation of P. There exists a sequence (Σi)i∈N of
unimodular triangulations of P with Σ0 = Σ such that:

(a) for each i ∈ N, Σi+1 is an elementary Farey subdivision of Σi , and
(b) for any rational polyhedron Q ⊆ P, there is i ∈ N such that Σi triangulates Q.

Proof. See [23, Theorem 5.3, p. 57]. �

4.3. From R to Q. To deploy the power of Lemma 4.6, we need to relate general
polyhedra to rational polyhedra, and general triangulations to unimodular ones.

Lemma 4.7. Let P be a polyhedron, and let Σ be a triangulation of P. There exist
an integer n ∈ N, a rational polyhedron Q ⊆ Rn, and a unimodular triangulation Δ of
Q such that P and Q are PL-homeomorphic via a map that induces an isomorphism of
Σ and Δ as posets.

Proof. This is a standard argument. Fix a bijection 	 from the vertices of Σ to
the standard basis of Rn, where n is the number of vertices in Σ. Take a simplex � =
x0 ···xd in Σ. Note that the points 	(x0), ... , 	(xd ) are affinely independent; let α(�)
be the d-simplex spanned by their convex hull: α(�) := Conv{	(x0), ... , 	(xd )}.
Since the vertices of α(�) are standard basis elements, α(�) is a unimodular simplex
by definition. Let f� : � → α(�) be the linear map determined by f�(xi) = 	(xi)
for each i, and let g� : α(�) → � be its inverse, determined by g�(	(xi)) = xi .

Now, let Q :=
⋃
�∈Σ α(�). For any simplices � � �, the map f� agrees with f�

on �. Hence we may glue these maps together to form a map f : P → Q, i.e.,
f(x) = f�(x), where � is any simplex of Σ containing x. Similarly, we may glue
together the maps g� for � ∈ Σ to form an inverse to f. By definition f is a PL
homeomorphism. Finally, note that Δ := {α(�) | � ∈ Σ} is a triangulation of Q,
and that f induces the poset isomorphism � �→ α(�) between Σ and Δ. �

Lemma 4.8. Let Σ be a unimodular triangulation of the rational polyhedron P,
and suppose Σ′ is a Farey subdivision of Σ. There is a triangulation Δ of P which is
isomorphic as a poset to Σ′, and k ∈ N such that Σ(k) refines Δ.

Proof. The proof works by replacing each elementary Farey subdivision by
an elementary barycentric subdivision. We induct on the number m ∈ N>0 of
elementary Farey subdivisions needed to obtain Σ′ from Σ. If m = 1, let � be the
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simplex of Σ being subdivided at its Farey mediant. Then the first barycentric
subdivision Σ(1) of Σ refines the elementary barycentric subdivision Σ∗ of Σ at the
barycentre of �. By Lemma 4.5, Σ∗ and Σ′ are isomorphic.

For the induction step, suppose m > 1, and write (Σi)mi=0 for the finite
sequence of triangulations connecting Σ = Σ0 to Σ′ = Σm through elementary Farey
subdivisions. By the induction hypothesis, there is k ∈ N such that Σ(k) refines a
triangulation Δ isomorphic to Σm–1; let us fix one such isomorphism �. Let � be
the d-simplex of Σm–1 that must be subdivided through its Farey mediant in order
to obtain Σm. Let further � be the simplex of Δ that corresponds to � through the
isomorphism �. Since the d-simplices are exactly the height-d elements of Δ, we
get that � is a d-simplex. Then Σ(k+1) refines Δ∗, the latter denoting the elementary
barycentric subdivision of Δ at the barycentre of �. But Δ is isomorphic to Σm–1, and
therefore by Lemma 4.5, Δ∗ is isomorphic to Σm. �

Finally, we shall need the non-trivial fact that arbitrary triangulations of a rational
polyhedron realise no more combinatorial types than its rational triangulations; this
is due to Meurig Beynon:

Lemma 4.9 (Beynon’s Lemma). Let P be a rational polyhedron, and let Σ be a
triangulation of P. There exists a rational triangulation of P which is isomorphic as a
poset to Σ.

Proof. This is the main result of [8]. �

4.4. End of proof of Theorem 4.3.

Proof of Theorem 4.3. Let Σ be the triangulation of P such that A = Po(Σ).
Using Lemma 4.7, Lemma 3.8(2), and Proposition 3.10 we may assume without
loss of generality that P is rational and Σ is unimodular. By Lemma 3.4, there is
a triangulation Δ of P such that B is isomorphic to a subalgebra of Po(Δ). By
Beynon’s Lemma 4.9 and Lemma 3.8(2), we may assume that Δ is rational (and
hence each member of B is, too). By the De Concini–Procesi Lemma 4.6, there
is a Farey subdivision Σ′ of Σ that refines Δ. Therefore by Lemma 3.8(3), B is
isomorphic to a subalgebra of Po(Σ′). By Lemma 4.8, there is k ∈ N such that
Σ(k) refines Σ′ up to isomorphism. Hence by Lemma 3.8(3) again, A(k) contains a
subalgebra isomorphic to Po(Σ′), and therefore also a subalgebra isomorphic to B.
This completes the proof. �

4.5. Nerves, subdivisions, and geometric realisations. The reason that Theorem 4.3
is relevant to the Nerve Criterion is the following classical connection between nerves
of posets and derived subdivisions, which is deeply rooted in the work of Pavel S.
Alexandrov.

Proposition 4.10. Let Σ be a simplicial complex, regarded as a poset under
inclusion of faces. Then the barycentric subdivision of Σ is isomorphic as a poset
to the nerve of Σ:

Sd Σ ∼= N (Σ).

Proof. The proof flows readily from the definitions, and is in any case available
from multiple sources (see, e.g., [5, Chapter IV, Section 2.2] [Alexandrov’s own
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textbook treatment], or [19, Proposition 2.5.10, p. 51], or [24, Section 3]). Details
are left to the reader. �

Corollary 4.11. For P a polyhedron and Σ a triangulation of P we have

Logic(P) = Logic(N k(Σ) | k ∈ N).

Proof. Indeed

Logic(P) = Logic(SuboP)

= Logic(A | A finitely generated subalgebra of SuboP)
([14, Chapter 7])

= Logic(Po(Σ(k)) | k ∈ N) (Theorem 4.3)

= Logic(Σ(k) | k ∈ N) (as above)

= Logic(N k(Σ) | k ∈ N). (Proposition 4.10)

�

In order to complete a proof of the Nerve Criterion, we will also need to use
geometric realisations of finite posets via nerves, another classical tool. Let F =
{x1, ... , xm} be a finite poset, and let e1, ... , em be the standard basis vectors of Rm.
The set

∇F := {Conv{ei1 , ... , eik} | {xi1 , ... , xik} ∈ N (F )}

can be proved to be a triangulation by elementary arguments; its underlying
polyhedron |∇F | is the geometric realisation of F. For us, the key fact about
geometric realisations is:

Lemma 4.12. Let F be a finite poset. The map max: N (F ) → F , which sends a
chain to is maximum element, is a p-morphism, and Logic(|∇F |) ⊆ Logic(F ).

Proof. The first statement is easy to verify by direct inspection, and a detailed
proof was already given in [13, p. 389]. For the second statement, observe first that
∇F and N (F ) are isomorphic as posets (under inclusion), by their definitions.
Thus, by Proposition 2.1, the surjective p-morphism ∇F → F yields Logic(∇F ) ⊆
Logic(F ). But Up(∇F ) is a subalgebra of Subo(|∇(F )|) by Lemma 3.6 together with
Lemma 3.3, so that Logic(|∇F |) ⊆ Logic(∇F ) ⊆ Logic(F ), as was to be shown. �

4.6. End of proof of the Nerve Criterion.

Proof of Theorem 4.1, the Nerve Criterion.. Assume that L is the logic of a
class C of polyhedra. For each P ∈ C fix a triangulation ΣP , and let

C∗ := {N k(ΣP) | P ∈ C and k ∈ N}.
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Then

Logic(C∗) =
⋂
P∈C

Logic(N k(ΣP) | k ∈ N)

=
⋂
p∈C

Logic(P) (Corollary 4.11)

= Logic(C) = L.
Conversely, assume that L = Logic(D), where D is a class of finite frames closed
under N . Let

D∗ := {|∇(F )| : F ∈ D},
where |∇(F )| is the geometric realisation of F as in Section 4.5. We will show that
L = Logic(D∗). First suppose that L � φ, so that F � φ for some F ∈ D. Then we
have that |∇(F )| � φ, so that Logic(D∗) � φ. Conversely, suppose that Logic(D∗) �
φ, so that |∇(F )| � φ for some F ∈ D. By definition ∇(F ) is a triangulation of
|∇(F )|, and hence by Corollary 4.11 there is k ∈ N such that ∇(F )(k) � φ. But
∇(F ) ∼= N (F ) by definition, and so by Proposition 4.10 we getN k+1(F ) ∼= ∇(F )(k).
Thus, as D is closed under N , we get that L � φ. �

§5. Polyhedrally incomplete logics. In this section, we apply the Nerve Criterion
to show that every stable logic other than IPC is polyhedrally incomplete. A logic
L is stable if Frames⊥(L) is closed under monotone images. (We point out that the
original definition of [10, Definition 6.6] used Esakia spaces. However, it can be
shown that these definitions are equivalent [18, Theorem 3.3.17].)

Proposition 5.1. The following well-known logics2 are all stable.
(i) The logic of weak excluded middle, KC = IPC + (¬p ∨ ¬¬p).

(ii) Gödel–Dummett logic, LC = IPC + (p → q) ∨ (q → p).
(iii) LCn = LC + BDn.
(iv) The logic of bounded width n, BWn = IPC +

∨n
i=0(pi →

∨
j �=i pj).

(v) The logic of bounded top width n, defined:

BTWn :=
∧

0�i<j�n
¬(¬pi ∧ ¬pj) →

n∨
i=0

(¬pi →
∨
j �=i

¬pj).

(vi) The logic of bounded cardinality n, defined:

BCn := p0 ∨ (p0 → p1) ∨ ((p0 ∧ p1) → p2) ∨ ··· ∨ ((p0 ∧ ··· ∧ pn–1) → pn).
Proof. See [10, Theorem 7.3]. �
In fact:

Theorem 5.2. There are continuum-many stable logics.

Proof. See [10, Theorem 6.13]. �
Theorem 5.3. Every stable logic has the finite model property.

2For more information on these logics see [14, Table 4.1, p. 112].
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Proof. See [10, Theorem 6.8]. �

However, Theorem 5.3 notwithstanding:

Theorem 5.4. If L is a stable logic other than IPC, and Frames(L) contains a
frame of height at least 2, then L is not polyhedrally complete.

Proof. Let L be a polyhedrally complete stable logic of height at least 2. We
show that L = IPC.

By the Nerve Criterion 4.1, there is a class C of finite frames closed under N
such that L = Logic(C). Since Frames(L) contains a frame of height at least 2,
we must have L � BD1. Since L = Logic(C), there is therefore F ∈ C such that
height(F ) � 2. This means there are x0, x1, x2 ∈ F with x0 < x1 < x2. Without loss
of generality, we may assume that x2 is a top element and that x1 is an immediate
predecessor of x2 and x0 an immediate predecessor of x1. Now, by assumption
N k(F ) ∈ C for every k ∈ N. Let us examine the structure of these frames a little.
Note that {x0, x1, x2} is a chain. Let X be a maximal chain in ⇓ (x0). We have the
following relations occurring in N (F ).

X {x0}

X {x0 , x1} X {x0 , x2}

X {x0 , x1 , x2}

Moreover, by assumptions on x0, x1, x2 and X, we have that X ∪ {x0, x1, x2} is a
top element of N (F ), with X ∪ {x0, x1} and X ∪ {x0, x2} immediate predecessors,
and X ∪ {x0} an immediate predecessor of those. So, we may apply this argument
once more, to obtain the following structure sitting at the top of N 2(F ).

Iterating, we see that at the top of N k(F ) we have the following structure.

z

· · ·

· · ·

2k–1 top nodes
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2 3 . 1213 32 . 2 . 1

Figure 4. Some examples of starlike trees.

Let z be the base element of this structure, as indicated. Now, take k ∈ N and
let {t1, ... , tm} be the top nodes of N k(F ) produced by this construction, where
m = 2k–1. By Proposition 2.1, ⇑(z) ∈ Frames⊥(L).

Let now G be an arbitrary poset with up to m elements {y1, ... , ym} (possibly with
duplicates) plus a root ⊥. Define f : ⇑(z) → G as follows.

x �→
{
yi , if x = ti ,
⊥, otherwise.

Then f is monotonic. Since L is stable, this means that G ∈ Frames⊥(L). Thus
(since, by Proposition 2.6 and Corollary 2.2, IPC is the logic of finite rooted frames)
we get that L = IPC. �

§6. Polyhedrally complete logics: starlike completeness. In this section, we use the
Nerve Criterion to establish a class of logics which are polyhedrally complete. This
constitutes the second main result of the paper.

6.1. Starlike trees. A finite poset T is a tree if it has a root ⊥, and every other
x ∈ T \ {⊥} has exactly one immediate predecessor. A branch in T is a maximal
chain. Say that T is a starlike tree if every x ∈ T \ {⊥} has at most one immediate
successor. (The terminology ‘starlike’ comes from graph theory [see [33]].) A starlike
tree is determined by the multiset of its branch heights, which motivates the following
notation.

Let n1, ... , nk,m1, ... , mk ∈ N>0, with n1, ... , nk distinct. Then let us define T =
〈nm1

1 ··· nmkk 〉 as the starlike tree, uniquely determined to within an isomorphism,
with the property that if we remove the root ⊥ we are left with exactly, for each i,mi
chains of length ni . Let 〈�〉 = •, the singleton poset. Call α = nm1

1 ··· nmkk (or �) the
signature of T. We will always assume that n1 > n2 > ··· > nk . See Figure 4 for some
examples of starlike trees together with their signatures. We will sometimes write 10

for �.
The length of a signature α = nm1

1 ··· nmkk is defined as |α| := m1 + ··· +mk . Let
|�| := 0. For j � |α|, the jth height, α(j), is ni , where

m1 + ··· +mi–1 � j < m1 + ··· +mi.

Let α and 	 be signatures. Say that α � 	 if |α| � |	 | and for every j � |α| we
have α(j) � 	(j). Considering the examples in Figure 4, we have the following
relations:
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13 < 3 · 12 < 32 · 2 · 1, 2 < 3 · 12.

Note that if α = nm1
1 ··· nmkk , we have α � 	 if and only if |α| � |	 | and for every

i � k, we have

	(m1 + ··· +mi) � ni .
Proposition 6.1. If α � 	 then there is a p-morphism 〈	〉 → 〈α〉.
Proof. We can realise 〈α〉 as a downwards-closed subset of 〈	〉. The p-morphism

f : 〈α〉 → 〈	〉 is then defined as follows. First, f is the identity on 〈α〉. Second, for
any branch of 〈	〉 which contains a branch of 〈α〉, we let f send any remaining
elements to the maximum of the branch of 〈α〉. Finally, any remaining elements of
〈	〉 are mapped to the maximum element of some fixed branch in 〈α〉. A routine
calculation shows that f is a p-morphism. �

Note that the starlike tree 〈k〉 is the chain on k + 1 elements; we will use this
notation for chains from now on. We will write the signature as k1, to disambiguate
it from k as a number. For k ∈ N>0, the k-fork is the starlike tree 〈1k〉.

6.2. Starlike logics. We are now in a position to define the principal class of logics
that will be investigated in this section. LetS := {α signature | α �= 12}. Take Λ ⊆ S
(possibly infinite). The starlike logic SFL(Λ) based on Λ is the logic axiomatised by
IPC plus �(〈α〉) for each α ∈ Λ. Write SFL(α1, ... , αk) for SFL({α1, ... , αk}).

Remark 6.2. For an explanation as to why the difork 〈12〉 is omitted, see
Proposition 6.22 and the preceding discussion.

Proposition 6.3. SL = SFL(2 · 1). So Scott’s Logic is a starlike logic.

Proof. See [14, Section 9 and Table 9.7, p. 317]. �
Let us examine what SFL(Λ) ‘means’ in terms of its class of frames. The formula

�(〈α〉) turns out to express a kind of connectedness property. We make this precise
using the following definitions.

Let F be a finite poset. A path in F is a sequence p = x0 ···xk of elements of F
such that for each i we have xi < xi+1 or xi > xi+1. Write p : x0 � xk . The path p
is closed if x0 = xk . The poset F is path-connected if between any two points there
is a path.

Lemma 6.4. A poset is path-connected if, and only if, it is connected as a topological
space.

Proof. See [11, Lemma 3.4]. �
A connected component of F is a subposet U ⊆ F which is connected as a

topological subspace and is such that there is no connected V with U ⊂ V .

Lemma 6.5. Let F be a poset.
(1) The connected components of F partition F.
(2) The connected components of F are downwards-closed and upwards-closed.

Proof. These results follow straightforwardly from the fact that by Lemma 6.4
the connected components are exactly the equivalence classes under the relation
‘there is a path from x to y’. �
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Define ConComps(F ) to be the set of connected components of F. The
connectedness type ConType(F ) of F is the signature nm1

1 ··· nmkk such that
ConComps(F ) contains for each i exactly mi sets of height ni – 1, and nothing
else. Let ConType(∅) := �.

Remark 6.6. Note that when F is connected, ConType(F ) = n + 1, where n =
height(F ).

Let α > � be a signature. An α-partition of F is an open partition in which the
number and heights of the connected components are specified byα. In other words,
it is a partition:

F = C1 � ··· � C|α|

into open sets such that Cj has height at least α(j) – 1. For notational uniformity,
say that F has an �-partition if F = ∅. The following lemma is a straightforward
consequence of the definitions.

Lemma 6.7. A finite poset F has an α-partition if and only if α � ConType(F ).

Corollary 6.8. When F is connected, F has an α-partition if and only if α = k1,
where k � height(F ) + 1.3

Let F be a poset and α be a signature. F is α-connected if there is no x ∈ F such
that there is an α-partition of ⇑(x). By Lemma 6.7, this is equivalent to requiring
that α �� ConType(⇑(x)) for each x ∈ F .

We can now express the meaning of �(〈α〉) on frames.

Theorem 6.9. For F a finite poset and α any signature, F � �(〈α〉) if and only if F
is α-connected.

To prove this result, we make use of the following slight strengthening of
Theorem 2.4. Let F and Q be finite posets, and assume that Q has root ⊥. An
up-reduction f : F ◦→Q is pointed with apex x ∈ F if we have dom(f) = ↑(x) and
f–1{⊥} = {x}.

Lemma 6.10. If there is an up-reduction F ◦→Q then there is a pointed up-reduction
F ◦→Q.

Proof. Take f : F ◦→Q, and choose x ∈ f–1{⊥} maximal. Then f|↑(x) is still a
p-morphism, and is moreover a pointed up-reduction F ◦→Q. �

Corollary 6.11. Let F,Q be finite posets, with Q rooted. Then F � �(Q) if and
only if there is no pointed up-reduction F ◦→Q.

Proof of Theorem 6.9. Assume thatF � �(〈α〉). Then by Corollary 6.11 there is
a pointed up-reductionf : F → 〈α〉 with apex x. This means thatf–1[〈α〉 \ {⊥}] =
⇑(x). LetCj be the preimage of the jth branch of 〈α〉 \ {⊥} under f, for each j � |α|.
Since f is a p-morphism, Cj is upwards-closed. Note that the Cj ’s are disjoint and
hence they form an open partition of ⇑(x). Now, since Cj is the preimage of a chain
of length α(j), we can find a chain of the same length insideCj . From this it follows

3Recall that k1 is the signature of length 1 which contains the single value k. The starlike tree 〈k1〉 is
the chain on k + 1 elements.
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that Cj has height at least α(j) – 1. But then (Cj | j � |α|) is an α-partition of
⇑(x), meaning that F is not α-connected.

Conversely, assume that F is not α-connected, so that there is x ∈ F and an α-
partition (Cj | j � k) of⇑(x). For eachCj , we have, by definition, that height(Cj) �
α(j) – 1. Hence by Proposition 2.7 there is a p-morphism fj : Cj → 〈α(j) – 1〉.
Define f : ↑(x) → 〈α〉 as follows:

y �→
{

⊥, if y = x,
fj(y), if y ∈ Cj.

Then f is a p-morphism, so an up-reduction F ◦→〈α〉. �

Remark 6.12. In particular it follows that BDn = IPC + �(〈n + 1〉). This is just
Proposition 2.7 of course.

The last matter to resolve before moving on to consider the completeness of
starlike logics is their number. For this we make use of Higman’s Lemma. A quasi-
well-order is a preorder which is well-founded and has no infinite antichain. Given
a preorder I, let I <� be the set of finite sequences of elements of I ordered by
(x1, ... , xn) � (y1, ... , ym) if and only if there is f : {1, ... n} → {1, ... , m} injective
such that for each k � n we have xk � yf(k).

Lemma 6.13 (Higman’s Lemma [17]). If I is a quasi-well-order then so is I <� .

Proposition 6.14. (1) Every starlike logic is finitely axiomatizable.
(2) There are exactly countably many starlike logics.

Proof. (1) As every starlike logic is axiomatizable by Jankov formulas of
starlike trees, it suffices to show that there is no infinite antichain of starlike
trees with respect to p-morphic reduction. In light of Proposition 6.1, it
therefore suffices to show that there is no infinite antichain of signatures with
respect to the ordering defined on them. Now, we can recast signatures as
(monotonic decreasing) finite sequences of integers. Indeed, the signature
α is determined by the sequence (α(1), ... , α(|α|)). In this way, the set of
signatures is seen to be a suborder of �<� . Now, (�,�) is clearly a quasi-
well-order, and hence by Higman’s Lemma 6.13, so is �<� . Thus there is no
infinite antichain of signatures, as required.

(2) The result follows from (1) as there are only countably many finitely
axiomatizable logics. �

6.3. Starlike completeness. The main theorem to be proved in this section is the
following.

Theorem 6.15. Every starlike logic is polyhedrally complete.

As an immediate consequence, we obtain:

Corollary 6.16. Scott’s Logic is polyhedrally complete.

Remark 6.17. The starlike logic SFL(2 · 1, 13) is particularly important geomet-
rically. In [2], it is shown that this is the logic of all convex polyhedra.
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In order to prove Theorem 6.15, we introduce the following new validity concept
on frames. Let F be a poset and φ be a formula. F nerve-validates φ, notation
F �N φ, if for every k ∈ N we have N k(F ) � φ.

Remark 6.18. Since for every G we have the p-morphism max: N (G) → G (see
Lemma 4.12), by Proposition 2.1 this is equivalent to requiring that N k(F ) � φ for
infinitely many k ∈ N.

Lemma 6.19. A logic L is polyhedrally complete if and only if it has the finite
model property and every rooted finite frame of L is the up-reduction of a poset which
nerve-validates L.

Proof. Assume that L is polyhedrally complete. Then by the Nerve Criterion 4.1
it is the logic of a class C of finite frames which is closed underN , and so has the fmp.
Then by Corollary 2.5, every finite rooted frame F of L is the up-reduction of some
F ′ ∈ C. Since C ⊆ Frames(L) and is closed under N , such an F ′ nerve-validates L.

Conversely, let C be the class of all finite rooted frames which nerve-validate L.
Note that C is closed under N . Further, clearly L ⊆ Logic(C). To see the reverse
inclusion, suppose that L � φ. Since L has the fmp, there is F ∈ Frames⊥,fin(L)
such that F � φ. By assumption, F is the up-reduction of F ′ ∈ C. Then by
Proposition 2.1, F ′ � φ, meaning that Logic(C) � φ. �

Lemma 6.20. Every starlike logic has the finite model property.

Proof. In [34, Corollary 0.11], Zakharyaschev shows that every logic axioma-
tised by the Jankov–Fine formulas of trees has the finite model property. �

Now, as every finitely axiomatizable logic with the finite model property is
decidable we obtain from Proposition 6.14(1) and Lemma 6.20 the following.

Corollary 6.21. Every starlike logic is decidable.

With Lemma 6.20, we can now use Lemma 6.19 to produce a proof of
Theorem 6.15. Given a rooted finite frame F of SFL(Λ), we proceed as follows.

(1) We examine what it means for a frame to nerve-validate �(〈α〉).
(2) We see that it can be assumed that F is graded (a structural property of posets

defined below).
(3) Using this additional structure, we construct a frame F ′ and the p-morphism
F ′ → F , with the property that F ′ �N SFL(Λ).

The reader will have noticed that the difork 〈12〉 is omitted from the definition of
a starlike logic, and consequently from Theorem 6.15. In fact, polyhedral semantics
is quite fond of this tree: when we take it as a forbidden configuration, the resulting
landscape of polyhedrally complete logics is as sparse as possible, as is shown below.

Proposition 6.22. Let L be a polyhedrally complete logic containing SFL(12).
Then L = CPC, the maximum logic.

Proof. Suppose for a contradiction that L is a polyhedrally complete logic
containing SFL(12) other than CPC. By the Nerve Criterion 4.1, L = Logic(C)
where C is a class of finite posets closed under N . Since L �= CPC, there must be
F ∈ C with height(F ) � 1. This means that F has a chain x0 < x1. As in the proof
of Theorem 5.4, we may assume that x1 is a top element of F and that x0 is an
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immediate predecessor of x1. Take X a maximal chain in ⇓ (x0). Then, as in that
proof, we obtain the following structure lying at the top of N (F ).

X {x0}

X {x0 , x1}

X {x1}

Applying the nerve once more, we obtain the following structure at the top ofN 2(F ).

Z

Since C is closed under N , we get that N 2(F ) ∈ Frames(L). But ↑(Z) maps
p-morphically onto 〈12〉, contradicting that L � �(〈12〉). # �

We now proceed with the proof of Theorem 6.15.

6.4. Nerve-validation. While validating �(〈α〉) corresponds to α-connectedness
(as shown in Theorem 6.9), nerve-validating �(〈α〉) corresponds to α-nerve-
connectedness. Let F be a poset and x < y in F. The diamond and strict diamond of
x and y are defined, respectively:

 (x, y) := ↑(x)∩ ↓ (y),

!(x, y) := (x, y) \ {x, y}.

A poset F is α-diamond-connected if there are no x < y in F such that there is
an α-partition of !(x, y). The poset F is α-nerve-connected if it is α-connected and
α-diamond-connected.

With a slight conceptual change,α-connectedness andα-diamond-connectedness
can be harmonised as follows. For any poset F, we take a new element ∞, and let
F̌ := F ∪ {∞}, where∞ lies above every element of F. Then F isα-nerve-connected
if and only if there are no x < y in F̌ for which there is an α-partition of !(x, y).

The following result shows that α-nerve-connectedness is exactly the notion we
want.

Theorem 6.23. Let F be a finite poset and take α ∈ S. Then F �N �(〈α〉) if and
only if F is α-nerve-connected.

Proof. Assume that F is not α-nerve-connected with the aim of showing F �N
�(〈α〉). Choose x < y in F̌ such that !(x, y) has an α-partition. That is, there is
an open partition (Cj | j � |α|) of !(x, y) such that height(Cj) = α(j). Choose a
chain X ⊆ F such that:

(i) x, y ∈ X ∪ {∞}, and
(ii) X ∩ !(x, y) = ∅,
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which is moreover maximal with respect to these requirements. We will show that
⇑(X )N (F ) has anα-partition. Note that by maximality of X, elementsY ∈ ⇑(X )N (F )

are determined by their intersection Y ∩ !(x, y). For j � |α|, let

Ĉj := {Y ∈ ⇑(X )N (F ) | Y ∩ Cj �= ∅}.
Take j, l � |α| distinct. Since both Cj and Cl are upwards- and downwards-closed
in !(x, y), there is no chain Y ∈ ⇑(X )N (F ) such that Y ∩ Cj �= ∅ and Y ∩ Cl �= ∅.
This means that

(1) Ĉj and Ĉl are disjoint.
(2) For any Y ∈ ⇑(X )N (F ) we have Y ∈ Ĉj if and only if Y ∩ !(x, y) ⊆ Cj .

Hence each Ĉj is upwards- and downwards-closed in ⇑(X )N (F ).

Furthermore, since (Cj | j � |α|) covers !(x, y), we get that (Ĉj | j � |α|) covers
⇑(X )N (F ). Finally, any maximal chain in Ĉj is a sequence of chains Y0 ⊂ ··· ⊂ Yl
such that |Yi+1 \ Yi | = 1; this then corresponds to a maximal chain inCj . Therefore

height(Ĉj) = height(Cj).

Ergo (Ĉj | j � |α|) is an α-partition of ⇑(X )N (F ), meaning that N (F ) is
not α-connected. Then, by Theorem 6.9, N (F ) � �(〈α〉), hence by definition
F �N �(〈α〉).

For the converse direction, we will show that if F is α-nerve-connected, then so
is N (F ), which will give the result by induction (note that α-nerve-connectedness
is stronger than α-connectedness, and hence by Theorem 6.9 if N k(F ) is α-nerve-
connected then N k(F ) � �(〈α〉)). So assume that F is α-nerve-connected. We will
first proveα-connectedness. TakeX ∈ N (F ) with the aim of showing that⇑(X )N (F )

has no α-partition.
Firstly, assume that X has more than one ‘gap’; that is, there are distinctw1, w2 ∈

F \ X such that X ∪ {w1} and X ∪ {w2} are still chains, but such that there exists
z ∈ X with w1 < z < w2. Take Y,Z ∈ ⇑(X )N (F ). We will use the two gaps to juggle
elements between the two sets so as to provide a path Y � Z which never touches
X (i.e., lies in ⇑(X )N (F )). For i ∈ {1, 2}, let ui ∈ X∩ ⇓ (wi) be greatest and vi ∈
X ∩ ⇑(wi) be least. See Figure 5 for a representation of the situation. Now, without
loss of generality, we may assume that Y ∩ !(u1, v1) �= ∅ (we may add w1 to Y,
noting that w1 ∈ !(u1, v1)). Similarly, we may assume that Y ∩ !(u2, v2) �= ∅, and
likewise for Z. We then have the following path in ⇑(X )N (F ) (note that some of the
sets along the path may be equal, but in all cases the path is still there):

Y

Y \ (u1 , v1)

(Y \ (u1 , v1))   {w1}

X   {w1}

(Z \ (u1 , v1))   {w 1}

Z \ (u1 , v1)

Z

Here, the gap !(u2, v2) is used to ensure that Y \ !(u1, v1) and Z \ !(u1, v1) are
not equal to X, and the fact that we have v1 � z � u2 ensures that all these sets
are indeed in N (F ). Hence, ⇑(X )N (F ) is path-connected so connected. Therefore,
by Corollary 6.8, it suffices to show that height(⇑(X )N (F )) < height(F ). But this is
immediate from the definition of N .

https://doi.org/10.1017/jsl.2022.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.76


368 SAM ADAM-DAY ET AL.

Figure 5. The set-up when X has more than one gap.

Hence we may assume that X has exactly one gap (when X has no gaps,
⇑(X )N (F ) = ∅). This means that there are x, y ∈ X with x < y such that X ∩
!(x, y) = ∅ and X is maximal outside of !(x, y). As before then, elements
Y ∈ ⇑(X )N (F ) are determined by their intersection Y ∩ !(x, y). Suppose that
⇑(X )N (F ) has an α-partition (Ĉj | j � |α|). For each j � |α|, let

Cj :=
⋃
Ĉj ∩ !(x, y).

Note that
⋃
j�|α| Cj = !(x, y). For each j � |α|, since Ĉj is downwards-closed, we

have that, for z ∈ !(x, y),

z ∈ Cj ⇔ ∃Y ∈ Ĉj : z ∈ Y ⇔ X ∪ {z} ∈ Ĉj .

This means in particular that the Cj ’s are pairwise disjoint. Further, if z ∈ Cj and
w ∈ !(x, y) withw < z, thenX ∪ {w, z} is a chain, and so as Ĉj is upwards-closed,
we have X ∪ {w, z} ∈ Ĉj , meaning that w ∈ Cj ; similarly when w > z. Whence
each Cj is upwards- and downwards-closed. Finally, as above, maximal chains in
Ĉj correspond to maximal chains in Cj of the same length, whence

height(Ĉj) = height(Cj).

But then (Cj | j � |α|) is an α-partition of !(x, y), contradicting the fact that F is
α-nerve-connected. #

This shows that N (F ) isα-connected. What aboutα-diamond-connectedness? In
fact we can show this without using any assumptions on F. Take X,Y ∈ N (F ) with
X ⊂ Y . We will show that !(X,Y )N (F ) has no α-partition. We may assume that
|Y \ X | � 2, otherwise !(X,Y )N (F ) = ∅. Note that this means in particular that
α > 1, since F is α-connected. If |Y \ X | = 2, then !(X,Y )N (F ) is the antichain on
two elements, which, since α �= 12 by assumption, has no α-partition. So assume
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that |Y \ X | � 3; we will show that in fact !(X,Y )N (F ) is connected. Take distinct
Z,W ∈ !(X,Y )N (F ). Choose z ∈ Z \ X and w ∈W \ X . Since |Y \ X | � 3, we
have that X ∪ {z, w} ∈ !(X,Y )N (F ). Hence the following is a path in !(X,Y )N (F ):

Z

X {z}

X {z, w}

X {w}

W

Therefore, !(X,Y )N (F ) is connected. Finally, note that

height(!(X,Y )N (F )) � height(N (F )) = height(F ). �

Remark 6.24. Note that the proof shows an interesting property of the formulas
�(〈α〉): we have F �N �(〈α〉) if and only if N (F ) � �(〈α〉). This is not true in
general. For example, formulas expressing bounded width can take many iterations
of the nerve construction to become falsified.

6.5. Graded posets. The next step is to show that we can put F ∈
Frames⊥,fin(SFL(Λ)) into a special form. The following definition comes from
combinatorics (see, e.g., [29, p. 99]).

Definition 6.25 (Graded poset). A rank function on a poset F is a map � : F → N
such that:

(i) whenever x is minimal in F, we have �(x) = 0,
(ii) whenever y is the immediate successor of x, we have �(y) = �(x) + 1.

If F is non-empty and has a rank function, then it is graded.

The notion of gradedness has a strong visual connection. When a poset is graded,
we can draw it out in well-defined layers such that any element’s immediate successors
lie entirely in the next layer up.

Lemma 6.26. Let F be a finite poset.
(1) F is graded if and only if for every x ∈ F , all maximal chains in ↓ (x) have the

same length.
(2) When F is graded, �(x) = height(x) for every x ∈ F , and height(F ) =

max �[F ].
(3) Rank functions, when they exist, are unique.

Proof. (1) See [29, p. 99]. Assume that F is graded, and take X a maximal
chain in ↓ (x) for some x ∈ F . Let k = �(x). We will show that |X | = k + 1.
Since X is a chain, the ranks of each of its elements are distinct. Since X is
maximal, x ∈ X . Suppose for a contradiction that there is j < k such that
there is nox ∈ X of rank j. We may assume that j is minimal with this property.
We can’t have j = 0, since otherwise X wouldn’t contain any minimal element,
so wouldn’t be a maximal chain. Hence, there is y ∈ X with �(y) = j – 1. Let
z be next in X after y. Then y has an immediate successor w such that w � z.
By definition, �(w) = j, sow /∈ X . ButX ∪ {w} is a chain, contradicting the
maximality of X. # Therefore, |X | = k + 1.
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Conversely, define � : F → N by

x �→ height(x).

Let us check that � is a rank function.
(i) Clearly, when x is minimal, �(x) = 0.

(ii) Suppose for a contradiction that there are x, y ∈ F , with y an immediate
successor of x, such that �(y) �= �(x) + 1. First, by definition, �(y) >
�(x), so we must have �(y) > �(x) + 1. Choose maximal chains X ⊆↓
(x), Y ⊆↓ (y). Note that by assumption

|Y | > |X | + 1.

But now, since y is an immediate successor of x, both X ∪ {y} and Y are
maximal chains in ↓ (y) of different heights. #

(2) This follows from the proof of (1).
(3) This follows from (2). �

Corollary 6.27. (1) Every tree is graded.
(2) For any finite poset F, its nerve N (F ) is graded, with rank function given by
�(X ) = |X | – 1.

Proof. For (2), note that for any X ∈ N (F ) we have height(X ) = |X | – 1. �
What we will show in the proceeding two subsections is that any frame SFL(Λ)

can be assumed to be graded. In other words, we prove the following ‘gradification’
theorem.

Theorem 6.28. Take Λ ⊆ S and let F be a finite rooted poset such that F �
SFL(Λ). Then there is a finite graded rooted poset F ′ and a p-morphism f : F ′ → F
such that F ′ � SFL(Λ).

The proof of the theorem works differently depending on whether we have Scott’s
tree 〈2 · 1〉 present. Theorem 6.29 deals with the case 2 · 1 ∈ Λ, while Theorem 6.33
deals with the case 2 · 1 /∈ Λ.

6.6. Gradification in the presence of Scott’s tree. Let us first consider the
gradification theorem in the case 2 · 1 ∈ Λ.

Theorem 6.29. Let Λ ⊆ S be such that 2 · 1 ∈ Λ. Let F be a finite rooted poset
such that F � SFL(Λ). Then there is a finite graded rooted poset F ′ and a p-morphism
f : F ′ → F such that F ′ � SFL(Λ).

To begin with, the following lemmas show us that this case is not too complicated.

Lemma 6.30. Take Λ ⊆ S such that 2 · 1 ∈ Λ but n /∈ Λ for any n ∈ N.

(1) If there is no k ∈ N>0 such that 1k ∈ Λ, then SFL(Λ) = SFL(2 · 1).
(2) Otherwise, let k ∈ N>0 be minimal such that 1k ∈ Λ. Then SFL(Λ) = SFL(2 ·

1, 1k).

Proof. (1) Take α ∈ Λ. Then by assumption α(1) � 2, and hence, as α �=
n, we have 2 · 1 � α. Then by Proposition 6.1 there is a p-morphism
〈α〉 → 〈2 · 1〉. Hence by the semantic meaning of Jankov–Fine formulas,
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Theorem 2.4, we have that any frame validating �(〈2 · 1〉) will also validate
�(〈α〉). This means that SFL(Λ) ⊆ SFL(2 · 1). The converse direction is
immediate.

(2) Takeα ∈ Λ. Ifα(1) � 2 then by Proposition 6.1 there is a p-morphism 〈α〉 →
〈2 · 1〉. Assume that α(1) �� 2. Since α �= �, we have α(1) = 1, meaning that
α = 1l for some l ∈ N>0. By assumption k � l . But then 1k � α, giving
that there is a p-morphism 〈α〉 → 〈1k〉. It follows that for any α ∈ Λ, 〈α〉
up-reduces to either 〈2 · 1〉 or 〈1k〉. By Theorem 2.4, any frame validating
�(〈2 · 1〉) and �(〈1k〉) will also validate �(〈α〉). This implies that SFL(Λ) ⊆
SFL(2 · 1, 1k). The converse direction is obvious. �

Corollary 6.31. Take Λ ⊆ S such that 2 · 1 ∈ Λ and there is n ∈ N with n ∈ Λ;
assume that n is the minimal such natural number.

(1) If there is no k ∈ N>0 such that 1k ∈ Λ, then SFL(Λ) = SFL(n, 2 · 1).
(2) Otherwise, let k ∈ N>0 be minimal with 1k ∈ Λ. Then SFL(Λ) = SFL(n,

2 · 1, 1k).

Proof. This follows from Lemma 6.30 and the fact that when n1 < n2 every
frame validating �(〈n1〉) also validates �(〈n2〉). �

Using this, the ‘meaning’ of SFL(Λ) can be expressed relatively simply. Note that
this meaning is expressed in terms of the depth of elements x ∈ F . Up until this
point we have mainly been concerned with the height of elements.

Lemma 6.32. Take Λ ⊆ S such that 2 · 1 ∈ Λ, and let F be a finite poset. Let n ∈ N
be minimal such that n ∈ Λ, or ∞ if no such signature is present. Similarly, let k ∈ N>0

be minimal with 1k ∈ Λ, or ∞. Then F � SFL(Λ) if and only if the following three
conditions are satisfied for every x ∈ F .

(i) We have height(F ) < n.
(ii) Whenever depth(x) = 1, we have |⇑(x)| < k.

(iii) Whenever depth(x) > 1, the set ⇑(x) is connected.

Proof. By Corollary 6.31 and the fact that F � �(〈n〉) if and only if height(F ) �
n – 1, it suffices to treat the case n = ∞. Now by Lemma 6.30, SFL(Λ) = SFL(2 ·
1, 1k) when k <∞, and SFL(Λ) = SFL(2 · 1) otherwise.

Assume that F � SFL(Λ).
(ii) In the case k <∞, take x ∈ F with depth(x) = 1. Note that ⇑(x) is an

antichain, so ({y} | y ∈ ⇑(x)) is an open partition of ⇑(x). Since x � �(〈1k〉),
by Lemma 6.7 and Theorem 6.9 we must have |⇑(x)| < k.

(iii) Now take x ∈ F with depth(x) > 1, and suppose for a contradiction that
⇑(x) is disconnected. Then we can partition ⇑(x) into disjoint upwards-closed
sets U,V . Since depth(x) > 1, one of U and V (say U) must have height
at least 1. But then (U,V ) is a (2 · 1)-partition of ⇑(x), contradicting that
F � �(〈2 · 1〉) by Theorem 6.9. #

Conversely, assume that F � SFL(Λ) We will show that one of (ii) and (iii)
is violated. If F � �(〈2 · 1〉), then by Theorem 6.9 there is x ∈ F and a (2 · 1)-
partition (U,V ) of ⇑(x). But then height(U ) � 1, meaning that depth(x) > 1, and
furthermore ⇑(x) is disconnected, violating (iii). So let us assume that k <∞,
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F Tree(F) T0 F �

Figure 6. An example of gradification in the presence of Scott’s tree.

that F � �(〈2 · 1〉) but that F � �(〈1k〉). Again, we get x ∈ F and a 1k-partition
(C1, ... , Ck) of⇑(x). We must have thatheight(C1) = 0, otherwise (C1, C2 ∪ ··· ∪ Ck)
is a (2 · 1)-partition of ⇑(x). Similarly height(Ci) = 0 for every i � k. This means
that depth(x) = 1, and that |⇑(x)| � k, violating (ii). �

Let us turn now to the proof of Theorem 6.29. We first outline the construction
before coming to the full proof.

• We first split F up into its tree unravelling Tree(F ) (defined below).
• We then lengthen branches so that every top element has the same height.
• Lastly, we join top nodes of this tree in order to recover any α-connectedness

that we lost.

See Figure 6 for an example of this process.
Given any finite, rooted poset F, its tree unravelling Tree(F ) is the set of chains X

in F such that X is maximal in ↓ (max(X )), ordered by subset inclusion. Define the
function last : Tree(F ) → F by

X �→ max(X ).

Then Tree(F ) is a tree and last is a p-morphism (see [14, Theorem 2.19, p. 32]).
We make use of the following abbreviations. For any poset F, the set of top

elements (i.e., elements of depth 0) in F is denoted by Top(F ); let Trunk(F ) :=
F \ Top(F ).

Proof of Theorem 6.29. Let n := height(F ). We may assume � /∈ Λ. If 2 ∈ Λ,
then by Remark 6.12, n � 1, so F is already graded. So assume that 2 /∈ Λ.

Start with the tree unravelling T = Tree(F ) of F. Form a new tree T0 by replacing
each top node t ∈ Top(T ) with a chain of new elements t∗(0), ... , t∗(mt), where
mt = n – height(t). The relations between these new elements and the rest of T are
as follows:

t∗(0) < ··· < t∗(mt),

x < t∗(0) ⇔ x < t ∀x ∈ T.
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Note that in T0 all branches have the same length n + 1. Define the p-morphism
g : T0 → T by

x �→
{
x, if x ∈ Trunk(T ),
last(t), if x = t∗(i) for some t ∈ Top(T ) and i � mt.

Form F ′ from T0 by identifying, for top nodes t, s ∈ Top(T ), the elements t∗(mt)
and s∗(ms) whenever last(t) = last(s). That is, let F ′ := T0/W , where

W := {{t∗(mt) | last(t) = u} | u ∈ Top(F )}.
Note that we have a p-morphism f = last ◦ g ◦ qW : F ′ → F . Furthermore, F is

clearly finite and rooted. As to gradedness, take x ∈ F ′ with the aim of showing
that all maximal chains in ↓ (x) are of the same length, utilising Lemma 6.26. If
x ∈ Trunk(F ′), then ↓ (x)F

′
is a linear order. So assume that x ∈ Top(F ′). Then

any maximal chain X in ↓ (x) corresponds to a branch of T0, and therefore has
length n + 1.

Let us now use Lemma 6.32 to verify that our construction preserves α-
connectedness for α ∈ Λ and complete the proof. Let k ∈ N>0 be minimal such that
1k ∈ Λ, or ∞ if no such signature is present. For u ∈ Top(F ) let û be the equivalence
class of those elements t∗(mt) such that last(t) = u. Note that by construction, for
x ∈ Trunk(T ) and u ∈ Top(F ),

x < û ⇔ last(x) < u. ()

We need to check the three conditions of Lemma 6.32.
(i) Note that height(F ′) = height(F ).
(ii) For any x ∈ F ′ with depth(x) = 1, either x ∈ Trunk(T ) or x = t∗(nt – 1)

for some top node t ∈ T . In the former case, the fact that |⇑(x)| � k follows
from () and the fact that |⇑(last(x))F | � k. In the latter case we have ⇑(x) ={
l̂ast(t)

}
.

(iii) Similarly, for any x ∈ F ′ with depth(x) > 1, either x ∈ Trunk(T ) or x =
t∗(r) for some top node t ∈ T and r < nt – 1. In the latter case, ⇑(x) is a chain,
so connected. For the former case, it suffices to show that any two top elements
û, v̂ ∈ ⇑(x) are connected by a path in ⇑(x). Note that depth(last(x))F > 1.
Now, sinceF � �(〈2 · 1〉), by Lemma 6.32 there is a path u � v in ⇑(last(x))F .
We may assume that this path is of form given in Figure 7(a), wherew0, ... , wk
are top nodes in F. Using (), this path then translates into a path û � v̂ as in
Figure 7(b), where yi ∈ last–1{ai} ∩ ⇑(x) for each i. �

6.7. Gradification without Scott’s tree. Now that the situation 2 · 1 ∈ Λ has been
dealt with, let us turn to the case 2 · 1 /∈ Λ.

Theorem 6.33. Let Λ ⊆ S be such that 2 · 1 /∈ Λ. Let F be a finite, rooted poset
such thatF � SFL(Λ). Then there is a finite, graded, rooted posetF ′ and a p-morphism
f : F ′ → F such that F ′ � SFL(Λ).

Unfortunately, the proof of Theorem 6.29 crucially relied on the fact that the
original frame F was (2 · 1)-connected. Consider for instance the frame F given in
Figure 8, which at x is not (2 · 1)-connected. If we apply the construction to F, we
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(a)
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w1
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· · ·

ak
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(b)
w0

y0

w1

y1

· · ·

yk–2
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–1

–1

–1

–1wk
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Figure 7. The form of the paths in ⇑(last(x))F and ⇑(x)F
′
.

x

F

x

Tree(F)

x

T0

x

F �

Figure 8. The technique in the proof of Theorem 6.29 does not work in general.

end up with a frame F ′ in which x sits below two connected components of height
1, that is,4 ConType(⇑(x)F

′
) = 22. Hence F ′ is not 22-connected, while F is. Taking

2 · 1 away from Λ is a double-edged sword however, since it allows for more complex
constructions in F ′.

The following reusable lemma will come in handy a couple of times.

Lemma 6.34. Let f : F ′ → F be a surjective p-morphism between finite posets,
and take x ∈ F ′. Assume that for any y, z ∈ Succ(x) there is a path y � z in ⇑(x)
whenever there is a path f(y) � f(z) in ⇑(f(x)). Then

ConComps(⇑(x)) = {f–1[C ] | C ∈ ConComps(⇑(f(x)))}.

In particular, if height(f–1[C ]) = height(C ) for any C ∈ ConComps(⇑(f(x))) then

ConType(⇑(x)) = ConType(⇑(f(x)).

Proof. Note that, since f is a p-morphism and F and F ′ are finite, {f–1[C ] |
C ∈ ConComps(⇑(f(x)))} is a partition of ⇑(x) into upwards- and downwards-
closed sets. So it suffices to show that f–1[C ] is connected for every C ∈
ConComps(⇑(f(x))). Take y0, z0 ∈ f–1[C ]. Since f–1[C ] is downwards-closed
in ⇑(x), there are y, z ∈ Succ(x) ∩ f–1[C ] such that y � y0 and z � z0. Then
f(y), f(z) ∈ C , so by assumption there is a path f(y) � f(z) in ⇑(f(x)). But
then by assumption there is a path y � z in ⇑(x), which lies in f–1[C ] since the
latter is upwards- and downwards-closed. This yields a path y0 � z0. �

4Recall that ConComps(F ) is the set of connected components of F and that ConType(F ) of F is the
signature nm1

1 ··· nmk
k

such that ConComps(F ) contains for each i exactly mi sets of height ni – 1, and
nothing else.
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F Tree(F) F�

Figure 9. An example of gradification in the absence of Scott’s tree.

a0

c0

b0

a1

c1

b1

a2

c2

b2

a3

Figure 10. The relations between the zigzag points in case l = 3.

Let us turn now to the proof of Theorem 6.33. The construction works in two
steps as follows (see Figure 9 for an example).

• Again, we start by splitting F up into its tree unravelling Tree(F ).
• Then, in order to connect the frame back up again while ensuring that it remains

graded, we construct ‘zigzag roller-coasters’ connecting top nodes of different
heights.

Proof of Theorem 6.33. As in the proof of Theorem 6.29, we may assume that
�, 1, 2 /∈ Λ.

Start with T = Tree(F ). For every two distinct p, q ∈ Top(T ) such that last(p) =
last(q) = t, we will build a ‘roller-coaster’ structure Z(p, q), which will furnish a
bridge between p and q. Every such structure Z(p, q) is independent, so that they
can all be added to T at the same time. First note that by Corollary 6.27, T is graded;
let � : T → N be its rank function.

Now, take distinct p, q ∈ Top(T ) such that last(p) = last(q) = t. Let l := �(q) –
�(p). By swapping p and q, we may assume that l � 0. We need to join p to q with a
path which ascends in grade. We do this using a zigzagging path, which consists of
lower points a0, ... , al , upper points b0, ... , bl–1 and intermediate points c0, ... , cl–1.
The relations between these points are as follows (see Figure 10):

ai < ci < bi , ai+1 < bi .

Consider p ∧ q (i.e., the intersection of p and q, regarded as chains), and
let k := �(p) – �(p ∧ q) – 1. Note that k � 0 since p and q are incomparable.
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p

q

p Λ q

Figure 11. The zigzag path and the ladder structure in place.

Moreover, k � 1 as follows. Suppose for a contradiction that k = 0, so that p is an
immediate successor of p ∧ q. Then last(p) is an immediate successor of last(p ∧ q).
But last(q) = last(p), so we have, as chains,

p = (p ∧ q) ∪ {last(p)} = (p ∧ q) ∪ {last(q)} = q.

contradicting that p and q are distinct. #
To ensure that the new poset F ′ is still graded, we need to dangle some scaffolding

down from the zigzag path to p ∧ q. Below each lower point ai we will dangle a
chain of k + i – 1 points d (i, 1), ... , d (i, k + i – 1). The relations are as follows:

d (i, 1) < d (i, 2) < ··· < d (i, k + i – 1) < ai .

Finally, let Z(p, q) denote the whole structure of the zigzag path plus the dangling
scaffolding. Attach Z(p, q) to T by adding the following relations and closing under
transitivity (see Figure 11):

a0 < p, al < q, ∀i : p ∧ q < d (i, 1).

Let F ′ be the result of adding Z(p, q) to T for every pair p, q, and define the
function f : F ′ → F by

f(x) :=
{

last(x), if x ∈ T,
last(p), if x ∈ Z(p, q) for some p, q,

First, let us see that f is a p-morphism. The (Forth) condition follows from the
fact that last is monotonic, and that:

• if x � y with x ∈ T and y ∈ Z(p, q), then by construction x � p ∧ q, meaning
that f(x) = last(x) � last(p ∧ q) � last(p) = f(y), and

• if x � y with x ∈ Z(p, q) and y ∈ T , then by construction y ∈ {p, q}, so that
f(x) = last(p) = f(y).

The (Back) condition follows from the fact that last is open, and that each Z(p, q)
maps to a top node.
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Second, for any pair p, q, we can extend the rank function � to the new structure
Z(p, q) as follows (as indicated by the heights of the nodes in Figure 11):

�(ai) = �(p) + i – 1,

�(bi) = �(p) + i + 1,

�(ci) = �(p) + i,

�(d (i, j)) = �(p ∧ q) + j.

To see that, thus extended, � is still a rank function, it suffices to check that the
newly ranked Z(p, q) fits into T as a ranked structure. That is, we need to check the
following equations:

�(p) = �(a0) + 1,

�(q) = �(al ) + 1,

�(d (i, 1)) = �(p ∧ q) + 1.

But these follow by definition. In this way we see that F ′ is graded.
Finally, it remains to be shown that F � SFL(Λ). So take x ∈ F . First, whenever

x ∈ Z(p, q) for some p, q, by construction ⇑(x) is α-connected for every signature
other than �, 12, 2 · 1, and k where k � height(F ) + 1. Hence we may assume that
x ∈ T . Let us use Lemma 6.34. Take y, z ∈ Succ(x) such that there is a pathf(y) �
f(z) in ⇑(last(x)), with the aim of finding a path y � z in ⇑(x).

First assume that y ∈ Z(p, q) for some p, q. Then since y ∈ Succ(x) and x ∈ T ,
by construction x = p ∧ q. All of Z(p, q) is connected in ⇑(x), and hence there
is a path y � p. Let p′ ∈ T be the immediate successor of x which lies below
p (this exists since T is a tree). Then we have a path y � p′ in ⇑(x). With
this case thus dealt with, we may now assume that y ∈ T , and similarly that
z ∈ T .

So, we have a path last(y) � last(z). We now proceed in a similar fashion to the
proof of Theorem 6.29. We may assume that the path last(y) � last(z) has the form
in Figure 12(a), where t0, ... , tk are top nodes in F. Let u0 := y and uk := z. For
each i ∈ {1, ... , k – 1}, choose ui ∈ last–1{ai}. For i ∈ {0, ... , k – 1}, take pi , qi ∈
last–1{ti} such that ui � pi and ui+1 � qi . For each such i, since last(pi) = last(qi),
there is a path pi � qi which lies in Z(pi , qi), and hence lies in ⇑(x). Compose all
these paths as in Figure 12 to form a path y � z in ⇑(x) as required.

It now remains to show that ifC ∈ ConComps(⇑(last(x))), thenheight(f–1[C ]) =
height(C ). First, since f is a p-morphism, height(f–1[C ]) � height(C ). Conversely,
let X ⊆ f–1[C ] be a maximal chain. Assume X intersects with some Z(p, q). Then
we can replace the part X ∩ (Z(p, q) ∪ {p, q}) with the unique maximal chain in
⇑(p ∧ q)T containing q (this exists since T is a tree). Then by construction this does
not decrease the length of X nor does it move X outside of f–1[C ] (since the latter
is upwards- and downwards-closed). Therefore, we may assume that X ⊆ T , so X
corresponds to a chain last[X ] of the same length in C.

Therefore, by Lemma 6.34 we get that ConType(⇑(x)) = ConType(⇑(last(x)).
Applying Lemma 6.7, we have that ⇑(x) has an α-partition if and only if ⇑(last(x))
has an α-partition. �
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Figure 12. The form of the paths in ⇑(last(x)) and ⇑(x).

F Tree(F) F �

Figure 13. An example of nervification, using the graded structure of F.

6.8. Nervification. We now find ourselves, having suitably prepared F, in a
position to make use of its additional graded structure. The general method of
the final construction, in which we transform F into a frame which nerve-validates
SFL(Λ), is the same as in Theorems 6.29 and 6.33. We begin with the tree unravelling
Tree(F ), perform some alterations, then rejoin top nodes. A key difference here is
that we won’t rejoin every top node to every other top node whose ‘last’ value is the
same. Instead, we line up all the top nodes mapping to the same element and link
each top node to at most two other top nodes, which we think of as its neighbours.
See Figure 13 for an example of the construction.

Definition 6.35. Let T be a finite tree. Then for each x ∈ T , we have that ↓ (x)
is a chain. For k � height(x), let x(k) be the element of this chain which has height
k. Let x(–k) be the element which has height height(x) – k.

Definition 6.36. For n ∈ N, let Sn := S \ {1k | k < n}.

Theorem 6.37. Take Λ ⊆ S and let F be a finite, graded, rooted poset of height n
such that F � SFL(Λ). Then there is a poset F ′ and a p-morphism f : F ′ → F such
that F ′ � SFL(Λ) and such that F ′ is α-diamond-connected for every α ∈ Sn.
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p(1)
2

p(2)
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p(3)
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a(1, 3) a(1, 2) a(1, 1)

T �+ W(t)

Figure 14. The chevron structure in a case with two branches.

Proof of Theorem 6.37. We may assume that �, 1 /∈ Λ. Further, if 2 ∈ Λ, then
height(F ) = 1, so F is already α-diamond-connected for every α ∈ Sn. Hence we
may assume that 2 /∈ Λ.

Once more, start with T = Tree(F ). Chop off the top nodes: let T ′ := Trunk(T ).
For each t ∈ Top(F ), we will add a new structure W (t), which lies only above
elements of T ′. Let � : F → N be the rank function on F. Note that � ◦ last : T → N
is the rank function on T.

Take t ∈ Top(F ). Enumerate last–1{t} = {p1, ... , pm}. For each i � m – 1, define

ri := pi ∧ pi+1,

li := �(last(ri)),

ki := �(t) – �(last(ri)) – 1.

Note that ki � 1 just as in the proof of Theorem 6.33. Since F is graded and T is a
tree, we have that

|!(ri , pi)T | = |!(ri , pi+1)T | = ki .

In other words, p(li )
i = p(li )

i+1 = ri . We will construct a ‘chevron’ structure which

joins p(–1)
i to p(–1)

i+1 . For each i � m – 1, take new elements a(i, 1), ... , a(i, ki), and
add them to T ′ using the following relations:

a(i, 1) < ··· < a(i, ki), ∀j � ki : p(l+j)
i , p(l+j)

i+1 < a(i, j).

Let W (t) be this new structure (i.e., the chain {a(i, 1) < ··· < a(i, ki)} in place).
See Figures 14 and 15 for examples of this process of adding chevrons.

The process of adding W (t) is independent for each t ∈ Top(F ). Let F ′ be the
result of adding everyW (t) to T ′. Define f : F ′ → F by

f(x) :=
{

last(x), if x ∈ T ′,
t, if x ∈W (t) for some t ∈ Top(F ).
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t

F

p1 p2 p3 t

T T �+ W(t)

Figure 15. The chevron structure in a more complex case involving three branches.

Since we have made sure that each W (t) contains, for each pi ∈ last–1{t}, a node
above p(–1)

i which maps to t, and that all of the new structure maps to a top node, f
is a p-morphism.

Let us see that F ′ � SFL(Λ). Take x ∈ F ′. If x ∈W (t) for some t, then ⇑(x)
is either empty or a chain, hence ⇑(x) � SFL(Λ). So we assume that x ∈ T ′. The
verification is now very similar to that in Theorem 6.33, making use of Lemma 6.34.
Take y, z ∈ Succ(x) such that there is a path f(y) � f(z) in ⇑(last(x)). As in the
proof of Theorem 6.33, by construction ofW (t) we may assume that y, z ∈ T ′. Just
as in that proof, we can construct a path y � z from the path f(y) � f(z), using
the fact that whenever t ∈ ⇑(last(x)) ∩ Top(F ), any w, v ∈ f–1{t} are connected
by a path in ⇑(x)F

′
(this is how we constructed F ′). It is straightforward then

to check that if C ∈ ConComps(⇑(last(x))) we have height(f–1[C ]) = height(C ),
giving that

ConType(⇑(x)) = ConType(⇑(last(x))).

To complete the proof, let us see thatF ′ isα-diamond-connected for everyα ∈ Sn.
Take x, y ∈ F ′ with x < y and consider !(x, y). There are several cases.

(a) Case y ∈ T ′. We have that !(x, y)F
′

= !(x, y)T
′
, which is linearly ordered

since T ′ is a tree; hence it is connected and of height at most n – 2.

Hence y = a(i, j) for a(i, j) ∈W (t) a new element. Let pi , pi+1, ri , li be as above.

(b) Case x ∈W (t). Note that by construction !(x, y) is linearly ordered.
(c) Case x = p(l+e)

i for some e. If we have height(!(x, y)) = 1, then e = i – 1 and
!(x, y) is the antichain on two elements, which is α-connected. Otherwise, by
construction, a(i, j – 1) ∈ !(x, y) which is connected to everything.

(d) Case x = p(l+e)
i+1 for some e. This is symmetric.

(e) Case x = ri . Again, if height(!(x, y))) = 1 then j = 1 and !(x, y) is the
antichain on two elements, otherwise a(i, 1) ∈ !(x, y) which is connected to
everything.

(f) Otherwise, x < ri (since T ′ is a tree). Then ri ∈ !(x, y) which is connected to
everything. �
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6.9. End of Proof of Theorem 6.15. We can now prove our second main result:

Proof of Theorem 6.15. By Lemmas 6.19 and 6.20, we need to show that every
finite, rooted frame of SFL(Λ) is the up-reduction of one which nerve-validates
SFL(Λ); in fact this up-reduction is just a p-morphism. So take such a frame F. We
may assume that F is graded: when we have 2 · 1 ∈ Λ, apply Theorem 6.29, otherwise
apply Theorem 6.33. Then by Theorem 6.37, there is a frame F ′ and a p-morphism
f : F ′ → F such thatF ′ isα-nerve-connected for everyα ∈ Λ (note that by Remark
6.12 we must have Λ ⊆ Sn where n = height(F )). Then, by Theorem 6.23, F ′ nerve-
validates SFL(Λ), which completes the proof. �
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