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ITERATED LIMITS OF LATTICES 

CRAIG PLATT 

1. In t roduc t ion . In this paper the results of [5] are extended to classes of 
lattices. We assume familiarity with [5], but we recall for convenience the prin­
cipal definitions and notations. If ^ is a category and if 3 = ( / ; {A {} ; {<p/} ) is a 
direct [resp., inverse] limit system in ^ , then lim_>(3, &) [resp., lim^S, ^ ) ] is 
the direct [resp., inverse] limit of 3 (determined only up to isomorphism in *&). 
If 3 is an inverse limit system of sets or universal algebras, let liiri<_ 3 denote the 
canonical construction of inverse limit described for example in [1, Chapter 3]. 

Definition 1. Let H be a class of objects from a category ^ . 
(1) L_>(H, ^ ) is the class of all objects of the form lim_>(3, cif) where 3 is a 

direct limit system in ^ with objects from H. 
(2) For ordinals a we define Lj*(H, *&) inductively as follows: 

L^°(H, *&) is the class of all objects in ^ isomorphic to objects in 
H; L^iHtV) =L+(LS(H, <#),&); if a is a limit ordinal, then 
Ls(H, V) = U {LJ(H, V):p < a}. 

(3) Let oo be any element which is not an ordinal. Then we define 
L_,-rank(#, ^ ) to be the smallest ordinal a such that L^a(H, <£) = L_f+1(H, <£) 
if such an a exists ; otherwise, L^-rank(iJ, c€) = oo. 

(4) Replacing direct limits by inverse limits we similarly define L^(H, *$), 
L^(H, &), and L_-rank(#, £?). 

Let On denote the class of all ordinals and let On*: = On W {oo}. (M) 
denotes the set-theoretic axiom denying the existence of arbitrarily large 
measurable cardinals. Let^âf denote the category of lattices and lattice homo-
morphisms. 

The principal result of the paper is the following. 

THEOREM 1. Let a, /3 Ç On. Then there exists a class H of lattices such that 

Z ^ - r a n k ( # , i 0 = a 

and 

L«_-rank(ff,if) = 0 

Furthermore, if (M) is assumed, the above holds also for a, 0 £ On*. 

Let us outline briefly the proof in [5]. We constructed certain categories of 
sets, 5^a/3, which contained subclasses having the desired ranks. Then we 
described certain full embeddings of categories (the ''acceptable" embeddings) 
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which preserve the required ranks. Finally, we constructed such embeddings of 
¥*<*$ into various categories of algebras. 

The natural approach to Theorem 1, then, would be to attempt to construct 
acceptable embeddings of 5̂ «/3 into^Sf. This, however, is impossible because of 
the fact that every constant mapping between two lattices is a homomorphism. 
In ¥*<*&, the only morphism from an object to itself is the identity, so there are 
no full embeddings of J^a/? intoJ^f. Instead, we will construct acceptable em­
beddings of Sfap into the category ££* of bounded lattices and bound-
preserving homomorphisms. These will have the additional property that ranks 
are preserved by the inclusion functor fromJ^f* tooSf. The precise nature of 
these embeddings is described in § 2 and their relevant properties established. 
In § 3 the embeddings are constructed under the assumption of existence of 
certain classes of lattices. In § 4 these classes of lattices are constructed. 

2. We begin with some observations concerning the results in [5], namely 
that Theorem 4.5 holds under weakened hypotheses. First we modify the 
definitions. Recall that the category $fa$ is the disjoint union of categories 
Jf for y < 1 + a and J f for y < 1 + /3. 

Definition 2. (a) Let y Ç On and let G:<fly~* - > y be a functor. G is called 
J? ^-acceptable if and only if the following hold : 

(i) for every morphism cplX —•» Y in Jr
7"\ G(X) C G(Y) and G(<p) is the 

inclusion map ; 
(ii) if 3f is a collection of sets i n ^ / 7 directed by inclusion then G(\J £ï) = 

U \G(X):X e $}. 
(b) Let H:J? y^ - > y b e a functor. Then H is called ^y -acceptable if and 

only if the following hold : 
(i) if <p'.X —> F is a morphism in^/V~, then G{ Y) CI G{X) and G(<p) is a set 

retraction (i.e., x Ç G( Y) implies G(<p)(x) = x) ; 
(ii) if Qf is a collection of sets i n ^ 7 directed by inclusion, then H(\J3)) = 

U {H(X):X e 9\\ 
(iii) if 3 = ( / ; {Xt) ; {<£>/}) is an inverse limit system in ^\*", then the 

system H(§) = (I; {H(Xt)} ; {Hfaf)}) has the terminal property; i.e. for 
every z Ç lim^ H(%), there exists i0 £ / such that z{i) = z(i0) for all i è io-

(c) An embedding F\J? y~* —>J>f [resp., F\<fl y*~ —»Jf ], where J ^ is a concrete 
category, i s ^ ^-acceptable [resp.,^^-acceptable] if and only if UoF is, where 
U:Jf->y is the forgetful functor for J f . 

Now observe that in [5], the conclusions of Lemmas 4.1 and 4.3 hold under 
the weaker hypotheses that F\^\~* be <X7~*-acceptable and F\fî j ~ be ^/V"-
acceptable respectively. The proofs in each case are exactly the same. Thus, we 
have the following strengthening of Theorem 4.5 of [5]. 

THEOREM 2. Let a, P £ On*, jf a category of algebras, and F:£fap —>J^ a full 
embedding such that for each y < 1 + a, F\fly~* is ^ ^-acceptable, and for each 

https://doi.org/10.4153/CJM-1974-125-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-125-3


ITERATED LIMITS OF LATTICES 1303 

7 < 1 + #, F\f f is </ f-acceptable. Then there is a set K of objects of Ctf such 
that 

Z^-rank(i£,jf) = a, 

and 

L^-v<mk(K,X) = p. 

Let J2?B denote the category of bounded lattices with bounds 0 and 1 being 
values of nullary operations. Letoèf* be the image of oêfB under the forgetful 
functor intOeâ?. Thus^êf* is the category of all lattices having bounds, with all 
bound-preserving homomorphisms between them. 

Since oafs is an equational category it follows that i n ^ * direct and inverse 
limits are isomorphic to the canonical constructions. That is, if 8 is a direct or 
inverse limit system inJz?*, then lim(8,<if*) = lim(3,«if) (where lim is lim^ 
or lim^, respectively). 

Definition 3. A direct [resp., inverse] limit system ê = (I; {L*} ; {<£>/}) is 
called trivial if and only if for every i G / there exists some j ^ i such that 
cp/ [resp., <pt

j] is constant. 

LEMMA 1. Let $be a direct [resp., inverse] limit system of lattices. If 3 is trivial, 
then lim_>(3,«if) [resp., lim<_(6,0Sf)] is a one-element lattice. 

Proof. For direct limits, suppose u £ Lt and v G Lj. Choose k G / with 
i ^ k,j ^ k. There exists / ^ k such that (p* is constant. Then ipfiu) = 
<Pik(<Pk(u)) = (pik(<Pkj(v)) = <Pi3(v)' Hence, u and v represent the same element of 
the direct limit (considered as a quotient of the disjoint union of the L t). Thus 
the direct limit has only one element. 

For inverse limits, let x, y G linv 3. For any i G I, choose j G I,j^ i such 
that <pij is constant. Then x(i) = (Pij(x(j)) = Çij(y(j)) = y(i). Thus x = y, so 
linv 3 has only one element. 

Definition 4. A class K of bounded lattices is called strongly bounded if and 
only if whenever Li, L2 G K and <p:Li —>L2 is a non-constant homomorphism, 
then <p is bound-preserving. 

LEMMA 2. Le£ K be a strongly bounded class of lattices and H QK. Let E be the 
class of all one-element lattices. Then L^{H,J£) = L^(H,J^*) \J E, and 
L<_(H}^) =L^H,&*)UE. 

Proof. By the remark preceding Definition 3 plus the fact that all constant 
maps are homomorphisms in J£, it is clear that L_+(H,J£*)\J E C L^(HyJ£). 
Now suppose $ = (7; {Ui} ; {<?/} ) is a direct limit system in H. If 3 is trivial, 
then lim^ 3 G E by Lemma 1. If 8 is not trivial, then there is some i0 G / such 
that for every j ^ i0, <Pjio is non-constant. Then if k ^ j ^ i0, *>*' is non-
constant (for otherwise <pk

iQ = <PjiQ0(pk
j would be constant). Since K is strongly 

bounded it follows that <pk* is a morphism in Jzf * for every k ^ j ^ i0. Letting g' 

https://doi.org/10.4153/CJM-1974-125-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-125-3


1304 CRAIG PLATT 

denote the direct limit system in J$f* obtained from $ by restriction to 
{j:j ^ *„}, we have l i m ^ i f ) = lim^($',i?*) 6 L^(H,&*). 

The proof for inverse limits is similar. 

By transfinite induction we obtain the following 

COROLLARY 1. Let K be a strongly bounded class of lattices which is closed 
under formation of direct [resp., inverse] limits in J£*. Then for any H QK and any 
a € O n * , I / ( f f , i f ) = LS(H,&*) U E [resp.,Lj*(H,if) = L«_«(2?fif*) \ J £ ] . 

COROLLARY 2. If K is a strongly bounded class of lattices closed under formation 
of direct [resp., inverse] limits in££* and if KC\E = 0, then for any H C if, 
L_-rank(i7,if*) = L_-rank(iI U £ , i f ) [resp., L ^ - r a n k ^ i f * ) = L_-rank 
( H U £ , i f ) ] . 

Combining these results with Theorem 2 we obtain the following. 

THEOREM 3. Le/ a, £ £ On* and to F:5^ap —>if * &e a/w// embedding such that 
(i) /or eacA 7 < 1 + a J&£ restriction F\$\~* is ^ y~^-acceptable ; 

(ii) for each y < I -\- fi the restriction F\fj~ is J>'-acceptable ; 
(iii) the image of F is a strongly bounded class of lattices containing no one-

element lattices. 
Then there exists a class H in the image of F such that L ^ - r a n k ^ \J E, JSf ) = a 

and L<_-rank(# \J E,<£) = /3. 

3. We begin this section with a number of notations and definitions. For a 
bounded Lattice L, let 0(L) and 1(L) denote the least and greatest elements, 
respectively, of L. The set L-\0(L), l(L){ is called the interior of L, denoted 
int(L). 

Definition 5. (a) Let L be a bounded lattice and let Li, L2 be two sublattices 
of L which are bounded. L is called the vertical sum of L\ and L2, written 
L = Li + L2, if and only if 

(i) 0(L) = 0(Li), l(Li) = 0(Z2), 1(L2) = 1(L); and 
(ii) L = LiU U. 
(b) Let L be a bounded lattice and for each i Ç i" let Lt be a sublattice of L 

which is bounded. L is called the horizontal sum of the lattices {Lt:i £ / } , 
written Z, = ®{Lt:i G ^ } , if and only if 

(i) for each * 6 / , 0(L<) = 0(L) and l(Lt) = 1(L) ; 
(ii) if i ^ j then int(Z,<) H int(Ly) = 0 ; and 

(iii) L = U {Li:* € / } . 
In case / = {1, 2} we will also write L = Li ® L2. 

Note that for any pair of bounded lattices Li, L2 there is a lattice L uniquely 
determined up to isomorphism such that L = L\ + L2 ' where L\ = L\ and 
L2 = L2. Thus, given Li, L2 Ç jSf *, Li + L2 will refer to any such lattice, unless 
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otherwise specified. Similar remarks apply to the notations © {Lt : i G /} and 
Li © L2. Examples of these constructions are given in Figure 1. 

U L2 Li + L2 

FIGURE 1. Sums of lattices. 

Li © L2 

Definition 6. A lattice L is called v-simple [resp., h-simple] if and only if for 
every pair of lattices L\, L2 G «Sf * and every non-constant homomorphism 
<p:L —»L\ + L2 [resp., <p\L —>Li©L2], either the image of L under <p is 
contained in L\ or in L2. 

Let y Ç On. We next recall some of the structure of the categories ^.y"* and 
fî f. There is a set of s e t s ^ 7 whose elements are the objects of ^ y~* and of 
<flf~. There is a set Ny such that the sets in f y are all subsets of Ny X o>. 
(In the notation of [5], Ny is U {Jôy:ô < y}.) If c Ç iV7, X G </ 7 , then 
<c, 0) £ X, and if <c, n) £ X, n ^ m, then <c, m) £ X. If X , F g / T then 
there is a morphism p'.X —> F in^/V* if and only if X C F, and in this case <p 
is the inclusion map. There is a morphism <p'.X —•» F in <X7*~ if and only if 
F Ç I , and in this case <p is the map ^(X, F) defined by 

^ , F ) ( ( c , W ) ) = { ^ M ) i f < C ' W > 6 
0) if (c, n) g 

for all (c,n) £ X. Without loss of generality, we assume the sets Ny, N& are 
disjoint for y ?± b. 

Let a, 13 £ On* be fixed throughout the remainder of this section. We assume 
now the existence of a class 3) of bounded lattices with the following proper­
ties: 

(i) Ql is discrete in «if * ; that is, if Lu L2 (z & and <p:Li —>L2 is an ££*-
morphism, then Li = L2 and <p is the identity map. 

(ii) 3 is strongly bounded. 
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(iii) Each lattice in Q is ^-simple and /^-simple. 
(iv) There is a 1-1 mapping 

/ : U (Ny X co) U U (Ny X co X 3) -> ^ . 

Under this assumption we will construct an embedding F satisfying the 
hypotheses of Theorem 3. In § 4 ŵ e will describe the construction of such a 
class 2iï. 

First, let 7 < 1 + a. We will define Fy\J y> -»«£?*. If X Ç J yy let 

(1) F7(Z) = ®{f(a):aeX}. 

More precisely, we assume (possibly after changing the underlying sets of 
some lattices in @) that the lattices f(a) for a £ Ny X co all have the same 
least and greatest elements, and their interiors are pairwise disjoint. Then 
U {f(a):a G X} clearly becomes a lattice Fy(X) which satisfies (1). If 
<P'.X -> F i s a morphism i n , / / , then I Ç F, so Fy{X) C F 7 (F) . Let F 7 0 ) 
be the inclusion map. Clearly Fy is a functor f r o m ^ / toJêf*. The sublattices 
/(a) for all a £ X will be called the constituents of Fy{X). 

Next let 7 < 1 + j8. We will construct a functor Gy\J f —>.£f*. For each 
c 6 Ny we construct the lattice R(c, co) pictured in Figure 2. Precisely, i?(c, co) 
consists of the disjoint union of the lattices/(c, w, i), w G w, i f 3 and a single 
additional point k(c) with the following identifications of extreme points for 
each n £ co : 

the least element of f(c, n,l) and if n > 0 the greatest element of f(c, n — 1,1) 
are identified with the least element of /(c, w, 0) ; the greatest element of 
f(c, n, 2) and if n > 0 the least element of f(c, n — 1, 2) are identified with 
the greatest element of f(c, n, 0). 

The ordering is defined to be the smallest partial order satisfying the above 
conditions, containing the orderings on each of the lattices f(c, n, i), n Ç co, 
i 6 3, and for which k(c) is less than every element of f(c, n, 2) and greater than 
every element of f(c, n, 1), for every n 6 co. Again we assume that the under­
lying sets of the lattices in Qf are so modified that for each n Ç co and i Ç 3, 
/(c, n, i) is actually a sublattice of R(c, co). 

Now if n (E co, define i£(c, w) CI j£(cf co) as follows: 

R(c, n) = fe(c) yj U {/(c, m, 0) \m £ co, w ^ w} 
W U {int(f(c, m, i ) ) : i ë j l , 2 } , w Ç co,w ^ wj. 

Then R(c, n), considered as a partially ordered subset of R(c, co) is a lattice, 
but not a sublattice of R(c, co). Namely, the least element of f(c, nf 2) and the 
greatest element of /(c, w, 1) are now replaced by fe(c). i?(£, 2) is pictured in 
Figure 3. 

Definition 7. Let X £ Jr
7 and c G -Af7. Define 

nr y \ = iR(c> w ) i f ^ w> ^ z b u t <c» n + 1> € X, 
W , A; ^ w ) . f ^ ^ ç x for a n ^ ç ^ 
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f(c, 2, 1) 

f(c, 1, 1) 

f(c, 0, 1) 

f(c, n, 2) 

k(c) 

f(c, n, 1) 

FIGURE 2. i?(c, co) 

Finally, we define 

G7(X) = ®{Q(c,X):c G iV7}. 

Again, we assume that Q(c, X) is a sublattice of G7(X) for each c Ç iV7, and 
that for X, F g ^ 7 , G7(X) and G7( F) have the same extreme elements. 

If (c, n) Ç X and i 6 3, then/(c, n, i) is called a constituent of G7(X). If P 
is a constituent of G7(X), there is a unique embedding of P into Gy(X) whose 
restriction to int(P) is the inclusion. Its image in G7(X) will be denoted by Px 

and the embedding will be loosely referred to as the inclusion of P into G7(X). 
Observe that if X, F Ç Jy and X Ç F, then G7(X) Ç G7( F). 

Definition 8. If X, F 6 < / 7 and F Ç X, define G7(^(X, F)) as follows: if 
z G G7(X) 

n (uir TAW \ (z if z £ Gy(Y) 
G7(*(X, « ) « « \k{c) îf 2 € G7(F) andz 6 Ç(^,X). 
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2) - 0(/(*, 2, 2)) 

1) - 1(/(C, 2, 1)) 

/(*, 0, 1) 

FIGURE 3. R(c, 2) 

Then Gy(if/(X, Y)) is an <J$f *-morphism from Gy(X) to G7( Y) and clearly 
Gy\<fl *f~ —>oSf* is a functor. Next we examine the structure of Gy(X) more 
closely. 

Definition 9. Let Y G On, X Ç , / 7 , (c, w) 6 X. Let 2£(e, w, X) be the follow­
ing subset of Q(c, X) : 

K(c,n,X) = {k(c)} VJ (J \f(c,m,i)r\Gy(X):i e 3, m 6 «, m è »}. 

For example, 2£(c, 2, X) is pictured in Figure 4 for the case where Q(c, X) = 
R(c,a). 

We list in a lemma several immediate observations concerning K(c, n, X). 
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^K(c,2,X) 

f(c, 0, 1) 
FIGURE 4. K(c, 2, X) 

LEMMA 3. Let X Ç J y, c £ Ny. 

(1) For each n Ç co, 2T(c, w, X) w a sublattice of Q(c, X). 
(2) X ( c , n , X ) = | / ( c f » , l ) x + 2î:(c>» + l , - Y ) + / ( c f n f 2 ) J © / ( c f » f 0 ) x . 
(3) U {X(c , rc ,X) :w Ç co} = (?(<;, X ) . 
(4) H {#(<;, rc,X):rc G co} = {*(*)} . 

LEMMA 4. Le/ 7 < 1 + OL [resp., 7 < 1 + 0], I Ç </ 7 , P f ^ , aw<Z fe/ 
(f'.P—+ Fy(X) [resp., <p:P—*Gy(X)] be a non-constant lattice homomorphism. 
Then P is a constituent of Fy(X) [resp., Gy(X)] and <p is the inclusion map. 

Proof. For Fy(X) the result is immediate since P is ^-simple and Q is 
strongly bounded and ££*-discrete. 

For Gy(X)y first observe that since P is /^-simple, the image of P under cp is 
contained in Q(c, X) for some c Ç Ny. Using (3) and (4) of Lemma 3, let n be 
the largest natural number such that the image of P is contained in K(c, n, X). 
By (2) of Lemma 3 and since P is z>-simple and /^-simple, the image is contained 
in/(c, n, i)x for some i £ 3. In view of the^f *-discreteness and strong bounded-
ness of 2) it follows that P = f(ct «, i) and <p is the inclusion. 
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THEOREM 4. Let 

F= u FyU U Gy. 
7<l+a 7<l+/3 

Then F is a full embedding of 5^a^ into J£* and the image of Sfap under F is 
strongly bounded. 

Proof. It is clear that H is an embedding. For P and Q in the image of F, let 
<p:P —» Q be any non-constant lattice homomorphism. We consider two cases. 

Case 1. If P = Fy(X), X G ^ 7 , 7 < 1 + a, then choose any a G X.f(a) is a 
constituent of Fy{X) and clearly <p restricted tof(a)x is non-constant. Then, by 
Lemma 4, /(a) is a constituent of Q. Since / was 1-1, Q = Fy(Y) for some 
F G ^ / 7 , and X C F. Furthermore, by Lemma 4, <p restricted tof(x)x must be 
the inclusion for each x Ç X, hence 9? is the inclusion of Fy(X) into Fy(Y), as 
required. 

Caw 2. If P = Gy(X), l G / 7 , 7 < l + f t then let c G # 7 . Then/(c , 0, 0) 
is a constituent of Gy(X), and clearly <p restricted to f(c, 0, 0 ) x is non-constant. 
By Lemma 4,/(c, 0, 0) is a constituent of Q, hence Q = Gy( Y) for some Y G ^ y. 
We make three claims to complete the proof. 

Claim 1. For n G w, if <p restricted to f(c, n, 0)x is non-constant then p 
restricted to f(c}nyi)x is non-constant for i G {1,2}. Indeed, choose any 
element x G int(/(c, », 0)x). If, say, <p restricted to f(c, n, 2)x is constant, 
then 

<p(fi(f(c, n} 0)x)) = ^(x A 0(f(c, n, 2)x)) 

= <p(x) A <p(0(f(c, n, 2)X)) 

= <p(x) A <p(l(f(c,n,2)x)) 

= <p(x A l ( / (c ,» ,2 ) j ) ) 

= *>(*), 

contradicting Lemma 4. 
C l o k 2. Let c G iVT, » G co. If (c, ») G Y, then (c, n) £ X and <p is non-

constant on f(c, n, 0)x. We prove this by induction on n. We have (c,0) G X 
by definition and since 0(f(c, 0, 0)x) = 0(Gy(X)) and l(/(c, 0, 0)X) = l(G7(X)), 
<p is non-constant on /(c, 0, 0)x . Now assume the claim for n and suppose 
(c, n + 1 ) G F. By Lemma 4, 

*>(0(fc, », 2)x)) = 0(f(c,n,2)Y) 

*l(f(c,n,l)r) 

= ^aa^»,i)x)), 
which implies 0(/(c, », 2) x ^ l(f(c, w, l ) x ) , so that (c, » + 1) G X. Then also 
<p(0(f(c,n + l ,0)x) 9e <p(l(f(c,n + 1,0)X)), so <p is non-constant on f(c,n + l , 0 ) x . 

Claim 3. Let c £ Ny and n £ œ. If (c, n) & Y and (c, ») G -3f, then <p maps 
all of K(c, n, X) onto &(V). The proof is again by induction on n. It holds 
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vacuously for» = 0. Assume it for», and suppose (c,n + 1) G X, (c,n + 1) G F. 
There are two cases : (i) if (c, ») G F, then, since (c, n) G X, ^ maps i£(c, », X) 
onto k(c) by inductive hypothesis. Therefore <p maps i£(c, » + 1, X) to &(c). 
(ii) If (c, n) G F, then by Lemma 4 and Claim 2, 

* ( l ( fc , » + 1, 0)x)) = <p(0(f(c, », 2)x)) 

= 0tf(c, », 2)r) 

= l(/-(c f» f l)y) 

= ^( l ( / (c ,n , l )x)) 
= p(0(/(c,» + l , (M) . 

Thus, <p maps i£(c, » + 1, X) to k(c). 
Claims 1 to 3 imply that F C Z and <p = G7(^(X, F)). 

It remains finally to show that Fy is ̂ V^-acceptable for all y < 1 + OL and 
G7 is ^./"-acceptable f° r all 7 < 1 + 0. To this end we state a lemma, the 
proof of which is trivial. 

LEMMA 5. Let 7 G On. Let B be a set and for each x £ Ny X u let Ax be a set 
such that AXC\ B = Ax C\ Ay = 0 for all x ^ y in Ny X w. For each X G <^T, 
define 

M(X) = B\J U M*:x G X\. 

Then 
(i) /or X, F G A I Ç F t / and o»/;y # M(X) Q M(Y), and 

(ii) ikf preserves directed unions ; i.e., if 36 C ^ 7 is directed by inclusion, then 
Af(UX) = U {M(X):X 6 Ï } . 

THEOREM 5. F7 is ^ ^-acceptable for all 7 < 1 + a a»d G7 is ^ y*~-acceptable 
for all 7 < 1 + 0. 

Pnw/. For F7, apply Lemma 5 where B = {0(F7(Z)), l(F7(X))} and for 
each x G X, ^2 = i n t (/(#)). Since F7 obviously preserves inclusions, Fy is 
^ / ^-acceptable. 

For G7, apply Lemma 5 with B = {i(c):c G Ny\ U {0(G7(X)), 1(G7(X))} 
and for each <c, ») G iV7 X w, 4<«.,„> = U {/(c, », i):i G 2} - {0(/(c, », 2)), 
l(f(c, », 1)), 0(G7(X)), 1(G7(X))}. Then ikf(X) is the underlying set of Gy(X), 
so Gy preserves directed unions. Since Gy preserves set retractions by its 
definition, it remains only to establish (iii) of Definition 2(b). First note that 
for any morphism <p:X —> H m^7 and any x G Gy(X), either Gy(<p) (x) = x or 
else Gy((p)(x) G B. Furthermore, if x £ B, then Gy(<p)(x) = x. Now let 
8 = ( I ; {X*} ; {<?/}) be an inverse limit system in ^/V~. If g G limf_G7(8) we 
have two possibilities. 

(a) If g{i) G B for all i G I, then for all i ^ j , g{j) = G^vfigii) = g(i) by 
the preceding comment. 
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(b) If g(i0) £ B, i, e I, then for all j > i0, Gy(<pio
j)(g(j)) = g(i0) Z B. Hence 

by the remark above, g(j) Q B, so Gy(<ptQ
J)(g(j)) = g{j). Thus j > i0 implies 

g(J) = g(io) as required. 

4. In this section we show how to construct the strongly bounded class 
2 of lattices required for § 3. We will prove the following 

THEOREM 6. For each graph S there is a lattice L(S) such that if D is a discrete 
class of graphs then {L(@):S Ç D] is a strongly bounded class of v-simple and 
h-simple lattices which is discrete inJ^*. 

To complete the proof of Theorem 1, it suffices to show that there exists a 
discrete category of graphs whose objects are in one-to-one correspondence 
with the elements of the class 

A = U (Ny X «) U U (Ny X co X 3). 
7<l+« 7<l+0 

This follows from known results in category theory. More precisely, in [2] it is 
shown that any small category can be fully embedded into the category of 
graphs. Thus, if a, P < 00, then we can find the category @f. If a = 00 or 
P = 00 , then A is a proper class. But Lemma 1 of [3] shows that, assuming (M), 
the discrete category whose objects are the ordinal numbers is fully embeddable 
into the category of all universal algebras of some fixed type. In [2] it is also 
proved that every such category of algebras can be fully embedded into the 
category of graphs. It only remains to mention the bijection/ called for in § 3, 
but it is easy to see that the class A can be well-ordered and can be put in 
one-to-one correspondence with the class of all ordinals. 

In Theorem 6 and elsewhere "graph" means a directed graph, i.e., a pair 
(X; T) where X is a set a n d T Ç l X l . Let g = (X ; T) be a fixed graph. 
Define 

r = ! X 2 U l X l U 2 X 2 , 

where without loss of generality we have assumed the sets 2 and X are disjoint. 
To simplify notation, we denote X X {0} by X_ and XX {1} by X~, and if 
x e X, denote (x, 0) by X- and (x, 1) by xr. Also, let a = (0, 0), b = (0, 1), 
c = (1, 0), d — (1, 1). Thus, in this notation we have 

I * = P U L U r U {a, b, c, d], 

and these are disjoint unions. Define T* Ç (X*)2 as follows : 
(i) {(a,b),(a,d),(btc),(ctd)} e r * ; 

(ii) for x, y 6 X, {(a, x_), <x_, xr), (x_, (x, y)), «x , y), y~)} C T* ; 
(iii) for <*fy>€ T,(b,(x,y))e T*; 
(iv) T* contains only those pairs already specified in parts (i)-(iii). 
If we denote the fact that {u> v) Ç T* by drawing an arrow from u to v, then 

the diagram of the graph (X* ; T*) is illustrated in Figure 5. Let (X ; T)* 
denote (X*;T*). 
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In the following proof and elsewhere, if <p is a function with domain A and B 
is any set, let <p"(B) denote {(p(x):x G B C\ A). 

FIGURE 5. The graph (X*; T*) 

LEMMA 6. If 2$ is a discrete class of graphs, then {@*:@ Ç 2iï\ is a discrete 
class of graphs. 

Proof. Let @< = (XÙ 7\) £ 9 for each i = 1, 2, and suppose <?:(§i* - • @2* 
is a homomorphism. We introduce some notation. If i £ {1, 2}, w 6 X**, and 
w é {1, 2, 3}, define Cn*(w) to be the set of all v £ Xt* such that there exists a 
sequence z0, Zi, . . . , zw with 30 = u, zn = v, and such that (zy_i, z^) Ç 27* for 
each j = 1, 2, . . . , w. In other words, Cn{u) is the set of elements of Xt* which 
can be reached from u through a "77*-path" of length n. We now make the 
following observations, which are immediate from the definitions. For x,y £ Xt 

(i) Ci*(a) = I M I ^ I H 
(ii) Cj{a) = {c} U I / U I r ; 

(iii) Ci(a) = {d\KJXi~\ 
(iv) Ci'(6) = (c) U 7, ; 
(v) C2*(&) = {̂ } ^ fs~: (w, ^) G 71, for some w £ Xt}; 

(vi) CV(<0 = {d} ; 
(vii) G*(x_) = {x} XXtKJ {x-}; 

(viii) C 2 ' ( 0 =Xc; 
(ix) Ci*«*,y» = {?"}; 
(x) Cn(u) = 0 in all other cases not covered by (i)-(ix). 

Observe also that by repeated application of the definition of homomorphism 
for graphs, we have ipn(Cn

l{u)) C Cn
2(<p(u)) for any u Ç Xi and n £ {1, 2, 3}. 

Hence, since d G C3
1(0)> w e must have <p(d) G C3

2(<^(a)), so C3
2(^(a)) 5* 0. Thus, 

p(a) = a by inspection of (i)-(ix). Then Cz
2(<p(a)) (^ Ci2((p(a)) = {d)y so 
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<p(d) = d. Now d G C2
1(&), so d = <p(d) G C2

2(<p(b)). But d G C2
2(^) is possible 

only if w = 6, so <£>(&) = 6. Then since c G Ci1 (6), we have #>(c) £ Ci2(b) = 
\c) U T2. But d G Ci^c), so d = <p{d) G Ci2 (?(<;)), hence ç(c) G T2 by (ix). 
Thus, <p(c) = c. Next we observe that if u G X* — X t_, then C\(u) C\ Cj{u) = 0. 
Let x G Xi. Then x~ G Ci^X-) H CV(x_), hence 

<p{xr) G G2(^(x_)) r\ C2
2(^(x_)) ^ 0. 

Consequently, <p(xJ) G X2_, say < (̂x_) = y-, where y G X2. Put/(x) = y. This 
defines a function/:Xi —» X2 such that <£>(x_) = f(x)~ for all x G Xi. Now as 
we saw, if x G Xi, then <p{x~) G Ci2(jf(x))_n C2

2(/(x))_ = {/(x)}-, hence 
^(x~) = / ( x ) - . lîx,y G Xi, then (x, 3/} G Ci^X-), hence ^((x, y)) G Ci2(/(x)__). 
Clearly, CV^x, 3/)) ^ 0, so G2(<p(x, y)) 9^ 0, hence ^((x, y)) G X2~. Then by 
(vii), <p({x,y)) G {/(*)} X X2, say <p((x, y)) = (f(x), 2), where s G X2. Since 
3>_ G ^ ( ( x , 3/)), it follows that 

/(y)- = *>0r) € G2(«>«*, y») = ^ « f t * ) , * » = {2-J. 

Thus, /(y) = z, and therefore ^((x, y)) = (f(x)>f(.y))- Finally, if (x, y) G Ti, 
then <x,;y> G d\b), so </"(*) ,/0v)> = *>«*, y » G Ci2(6) = r 2 U {c}, hence 
(f(x),f(y)) G TV Thus, / is a homomorphism from Si to ®2. Consequently, 
®i = @2, and/(x) = x for all x G Xi. Then clearly (p(u) = u for all u G Xi*, so 
tp is the identity map. This completes the proof. 

Let (g = (X; r ) and S* = (X*; J*) be as defined above. If we partially 
order X* according to the diagram in Figure 6, then it becomes a lattice. We 
will denote join and meet in this lattice by V* and A*, respectively, and the 
partial order by ^* . 

In the next lemma we note two obvious facts about T* and 5£*. 

LEMMA 7. (1) T* is asymmetric. That is, if (x,y) is in T*, then (y, x) is not. 
(2) T* is compatible with ^* . That is, if (x, y) G T*, then x ^ * y. 

For x G X*, let x0 = (x, 0), xi = (x, 1), and if (x, y) is in T* (respectively, 
(2, x) is in T*), let xv = (x, (x, y)) (respectively, x2 = (x, (s, x)}). Then define 

S(x) = {x, x0, xi} U{x^:(x, y) G T*} W (xz:(z,x) G T*}. 

Finally, put L((§) = U {S(x)lx G X*}. We will describe a partial ordering on 
L((S) which makes it a lattice. 

The ordering, which we denote by ^ , can be roughly described as follows : 
for x G X*, order S(x) as in Figure 7. The elements of X* are ordered as in 
Figure 6. For every u G L((&) we put a0 ^ u. Finally, if (x, y) G T*, we require 
that x^ S yx- Thus, for each element x G X* we "hang" a copy of 5(x) — \x] 
below the occurrence of x in Figure 6. For (x, y) G T*, the elements 
3>o, 3>i, xy, 3k form a configuration like that depicted in Figure 8. Note that x0 

and 3/0 both cover a0, and are incomparable (unless, of course, x = a). Figure 9 
gives a partial diagram of L((g). In it, elements of X* are represented by 
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f~^T 

GIS 

( ••• < 

3 x-

3 X2 

j Z_ 

FIGURE 6. The lattice <X* ; V *, A * > 

x0 

FIGURE 7. S(x) 

squares, and for u £ X*, {w, wi, ^0} are depicted as in Figure 9a. T h e downward 
arrows denote coverings of a0. 

T h e precise definition of the part ial ordering is given in terms of the principal 
dual ideals. 
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FIGURE 8. Configuration for {x, y) £ 2"*, x ^ a. 

Definition 10. (1) For x ^ I * define (xj* to be {y £ X*:y ^ * x}. 
(2) Let x £ X*. We define (u] for all w G S(x) as follows: 

(i) (x] = U{S(z):ze (*]*}; 
(ii) (xi] = \xi, x0, a0} ; 

(iii) if (z, x) £ T*, then (x2] = {xz, x0, z
x, z0j a0] ; 

(iv) if (x, z) G T*, then (x2] = {x% x0, a0} ; 
(v) (x0] = {xo, a0}. 

(3) For u and » in L((S) define u S v to hold if and only if (u] Q (v]. 

The proof of the next result is a tedious but routine examination of cases, 
and can be found in [4]. 

LEMMA 8. (1) ^ is a partial ordering of L(S) under which L(d) becomes a 
lattice. 

(2) Joins of incomparable pairs are described as follows. 
(a) Let (x, y) £ T*. Then x0 V y0 = xv V y0 = y0 V xv = yx. 
(b) If u Ç .S(w), z> Ç S(£), w is incomparable with v, and u V v is not deter­

mined by (a), then u V v = w V * z. 
(3) Meets of incomparable pairs are described as follows. 
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D U 

6 Mi 

6 UQ 

FIGURE 9. Partial diagram of £ ( © . 
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(a) Let xfy,z^ X* and x ?* y. Then 
(i) x A y = x A* y; 

(ii) for (x, y) G T*, xi A yx = yx A xx = x0; 
(iii) jfor (x, j ) G r*, (x, z) G T*, awd 3> s* s x* A y* = y* A x2 = x0; 
(iv) /or (x, 3/) G T* awd (2, x) G T*, xz A 3fe = yx A x3 = x0; 
(v) if (z,y) G T*andz rg*x but not y ^*x,thenx Ayz = y2Ax = zv; 

(vi) i/* (z, x) G r*, (2, 3;) G 7"*, awdx ?£ y, then xz A yz — yz A xz — z0. 
(b) Ifu,v£ S(x) and u is incomparable with v, then u A v = x0. 
(c) Ifu,v£ L((&), w is incomparable with v, and if u A v is not determined by 

(a) or (b), then u A v = a0. 

The proof of Theorem 6 is established by the next three lemmas. 

LEMMA 9. L((&) is simple. That is, any lattice homomorphism with domain 
L(f§) is either constant or 1-1. 

Proof. Let ~ denote the congruence relation on L{f§) induced by some 
homomorphism. It is enough to show that if there exist u,v£ 7,((£) with u 9^ v 
and u ~ v, then u' ~ v' holds for all u', v' G L(f&). Since in this case u A v ~ u 
and u ~ u V» , and at least two of these three are distinct, we may without 
loss of generality assume u < v. Then there are two cases to consider. 

Case 1. If u, v G S(x) for some x G X*, then since S(x) is a simple sublattice 
of L((S) (see Figure 7), it follows that x0 ~ x. Then a0 = a A x0 ~ a A x = a, 
so a0 ^ a. Since a < d, we have d = d0 V a ~ d0 V a0 = d0, so d0 ~ d. Now 
since |X| ^ 2, we may choose y, x G X~ with y ^ z. Then y V z = y V* z = d, 
and since neither (y, z) nor (z, y) is in T*, we have yo V z0 = d. Thus, 
z0 = z0 A d ^ z0 A d0 = a0. Then d = z0 V yo ^ a0 V y0 = y0. Hence, 
d0 = d A d0 "^ yo A d0 = a0, so d ^ a0. Finally, if w G L((£), then we have 
w = w A d ^ w A a0 = a0, so there is only one congruence class. 

Case 2. If u G 5(x), t; G S (y), and x ^ y, then it follows that x < y, and if 
w' G 5(x) and z/' G S (y), then not ?/ ^ u'. Thus, x = xVu^x\/v = y. 
Now x A ) ' o = « o , s o 3 ' o = 3 ' A 3 ' o ^ ^ A 3 ' o = a0. Then since Xi V y0 = y, we 
have Xi = Xi V f l o ^ ^ i V^o = y. Hence, Xi -^ x, and we refer to Case 1. 

LEMMA 10. Let & be a graph. Then £((§) is v-simple and h-simple. 

Proof. Suppose <p:L((£) —>L is a non-constant lattice homomorphism and 
L = Li + L2. Setting (g = (X, T) and using the above notation, choose any 
element x G X~. Then (x, d) G 7"*, so x0 V do = d = 1 (L((g)), x0 A do = #o = 0 
(L(S)), and x0 and do are incomparable in L((S). Since L((S) is simple, <p(x0) and 
<p(d0) are incomparable in L, hence for some i G {1, 2}, {<p(x0), <p(do)} £ Z,i# 

Since Lf is a sublattice, <p(d) = <p(xo) V <p(do) and <p(&o) = <p(x0) A <p(do) are 
in Lu hence the image of <p lies in Lt. 

Next, let <p':L((§) —>L' = L\ © L2 be a non-constant lattice homomorphism. 
Observe that if x, 3/ G 7/ and x and 3/ are comparable, then {x, y] £ Z^ for some 
i G {1, 2}. Define C to be the transitive closure of the comparability relation 
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on the interior of L(S), that is 

C={(x,y):Qne<*)Qzu..., zn)(zt G i n t (L(<g))V*\ 
x = zi,y = zn, and z, is comparable with zi+i for 1 ^ i < n)\. 

Then it follows from the preceding observation that if <p(x) G Lt and (x, y) G C, 
then ^(y) G £*. Now every element of X* is comparable with b and every 
element of L(@) — 5(d) is comparable with some element of X* Pi i n tL (Ê) . 
The element da is comparable with ad, and d0 is comparable with da. Every 
element of S(d) is comparable with d0. Thus (x, ft) G C for every x 6 int (L(©)). 
It follows tha tL(g) is /^-simple. 

LEMMA 11. Let (S = (X ; T) and &' = (Y ; U) be members of a discrete class 2) 
of graphs. If <p:L((&) —>L((S/) is a non-constant lattice homomorphism, then 
S = ë ' , and <p is 2/ze identity map. 

Proof. By Lemma 9 <p is 1-1. Consequently, for u, v G L(S), u ^ viî and only 
if ^(w) ^ <p(fl). The proof of the lemma consists of five steps. 

(1) ip"(X*) C F* : If x G X*, then by inspection of Definition 10 we conclude 
that (x] contains at least six elements (indeed, (ft] Ç (x], and if y G X_, then 
(a] contains {a0, fti, a ab, ad, av)). If <p(x) £? F*, then (<p(x)] has at most five 
elements. Since cp is 1-1 and since clearly <p"((x]) Ç (<p(x)], this is impossible. 
(Here <p"(A) denotes the image of a set A under a mapping <p.) Hence <p(x) G F*. 

Thus, the restriction v\X* is a lattice isomorphism of X* into F*. By inspec­
tion of Figure 6 it is evident that <p(a) = a, <p(b) = b> <p(c) = c} <p(d) = d, 
v"(XJ) Ç F_, <p"{X2) Ç F2, and *>"(X-) Ç F~. (For a rigorous proof of 
these facts, note that in X* all maximal chains have the same finite length, and 
the level of an element in such a chain must be preserved by <p.) 

(2) If x G X*, then <?"(5(x)) C 5(<^(x)) : First we note that if s É I . 
(respectively, z G X2, s G X~), then 5(z) = (z\ — (a] (respectively, (z] — (&], 
(a] — (c]), and similar statements hold in L ((§'). Let x G X_. Since u ^ v for 
u,v£ L(Ç£) if and only if p(w) ^ >̂(*0, we have <£>"(5(x)) = <p"((x] — (a]) C 
(<p(x)] — (^(a)] = (^(x)] — (a]. Since we have <p(x) G F_, this is equal to 
S(<p(x)). Similar arguments apply if x G ̂ 2 or x G X~. 

Since S (a) = (ft], we have <p"(S(a)) = <p"({a\) £ (<£>(ft)] = (ft] = 5(a). 
Next, suppose x = b. For w G 5(6) we have u ^ b but not u ^ a. Hence, in 

L(&) we have (p(u) ^ & but not <p(u) ^ a. Thus, <p(u) G 5(s) for some 
z G {6} U F-. If w, fl G 5(6) — {6, 60} and u 9^ v, then let p(w) G S(z) and 
^(v) G S(w). Then at most one of z and w can be in F_. Indeed, suppose 
z, w G F_. If z = w, then >̂(w) V <p(v) is less than or equal to z, which is less 
than b. But we have <p(u V v) = <p(b) = 6, contradicting the homomorphism 
property. U z 9^ w, then 2 A w = ft, so >̂(&o) = <KW A v) = <p(u) A <K̂ ) ^ 
z A w = a. But 60 ^ ft is false, so this is a contradiction. Now it is clear that 
5(6) — {6, b0} contains at least three elements. If u, v, and w are distinct 
elements of 5(6) — {b, b0}, then by the above discussion, at least two of 
<p(u), <p(v), and <p(w) axe in S(b), say <p(u), <p(v) G 5(6). Then <p(u) A ^>(») = 

https://doi.org/10.4153/CJM-1974-125-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-125-3


1320 CRAIG PLATT 

cp(u A v) = <p(b0) G S(b). But u A w = bQ} so <p(u) A <p(w) = (p(b0) £ S(b). 
Since <p is 1-1, we have <p(bo) < <̂ (V) < 6, so cp(w) £ 5(6). Since u, v, and w 
were arbitrarily chosen, we have proved <p"(S(b)) is included in 5(6). 

The proofs for x = c and x = d are the same as for x = 6, but with X_ 
replaced by X2, AT- and a by 6, c, respectively. 

(3) If x G X*, then <p(x0) = (p(#))o: Indeed, we have x0 < Xi < x, so 
p(#o) < ^(xi) < <p{x). Since these are all members of S(<p(x)), <p(x0) must be 

(4) The restriction <p\X* is a graph homomorphism from 6* to ((§')* : Indeed, 
if (x, y) G T*, then let x' = <p{x) and 3;' = <£>(;y). Then x0 V 3/0 = Jx ^ 3% so 
(x')o V (/)o = <p(x0) V <p(yo) = <£>(x0 V 3>o) = ^Cy*) ^ / . Then by inspection 
of Lemma 8 (x', y ) G t/*, in view of x S y by Lemma 7. 

In view of Lemma 6, we have @ = ©', and <£>(x) = x for all x Ç X*. 
(5) <p(w) = w for all u £ £(@) : Let x G X*. Then we already have p(x) = x, 

so by (3), ^(x0) = x0. If (x,y) G T*, then x0 V 3>o = yx, so ^(3^) = 
<p(x0 V y0) = <p(*o) V <p(yo) = Xo V 3>o = 3 -̂ Since x A yx = xy, we have 
cp(xv) = <p(x A yx) = <p(x) A <p(;y<r) = x A yx = xv. Finally, if u G 5(x) — {xi}, 
we have shown <p(u) = u. Since <p"(5(x)) Ç ,5(x) and <p is 1-1, it follows that 
<p(xi) = Xi. 

REFERENCES 

1. G. Grâtzer, Universal algebra (Van Nostrand Reinhold, Princeton, N.J., 1968). 
2. Z. Hedrlin and A. Pultr, On full embeddings of categories of algebras, Illinois J. Math. 10 

(1966), 392-406. 
3. Z. Hedrlin and P. Vopënka, An undecidable theorem concerning full embeddings into categories 

of algebras, Comment. Math. Univ. Carolinae 7 (1966), 401-409. 
4. C. R. Piatt, Iterated limits of universal algebras, Ph.D. Thesis, Pennsylvania State University, 

1969. 
5. Iterated limits of universal algebras, Algebra Universalis 1 (1971), 167-181. 

University of Manitoba, 
Winnipeg, Manitoba 

https://doi.org/10.4153/CJM-1974-125-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-125-3

