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The prevalence of Parkinson’s disease (PD) is 200-300 cases
per 100,000 persons, with an overall estimated annual incidence
of 12 cases per 100,000.1 The prevalence is heavily age-
dependent, estimated at 1% in subjects over the age of 65, and
increasing to 4.3% in those over 85 years of age.2 In addition,
there seems to be a gender effect; men have a somewhat higher
risk of PD than women.3

Despite intense research efforts over many years, the cause(s)
of PD still await elucidation. Over the past two decades,
scientific opinion has varied between two extreme poles: from a
position in which only environmental factors were deemed to be
relevant, to a position where genetic factors were considered to
be dominant. The importance of heredity in the etiology of PD
has been strengthened by the discovery of some kindreds with
rare genetic forms of PD.4 , 5 Environmental risk factors,
including exposure to pesticides and metals, well water drinking,
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rural living and farming, have been investigated in many recent
case-control and epidemiological studies.6-9 The common view
today is that PD results from the combined effects of genetic
susceptibility, environmental exposure and complex genetic-
environmental interactions. Aging is also a likely contributory
factor.10 Several mechanisms have been proposed to explain cell
death in PD, including oxidative stress, mitochondrial
dysfunction, apoptosis, excitotoxicity and inflammatory
responses. 
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PARKINSON’S DISEASE IN DIFFERENT POPULATIONS

Although PD has a worldwide distribution, incidence rates
may vary among populations. The results are, however,
somewhat contradictory. Thus, while the prevalence of PD has
been reported to be relatively low in South African and Nigerian
blacks, blacks living in Mississippi are affected to a comparable
degree as the white population.11 Also, an autopsy study found
that black Africans have an equivalent prevalence of incidental
Lewy body disease as compared with white populations.12

Similarly, while lower prevalence rates have also been reported
in some Oriental populations,13,14 the prevalence of PD in Taiwan
is much higher and closer to that in Western countries.15 Even if
population differences in PD incidence do exist, the question still
remains as to the relative contribution of genetic or
environmental variations to such differences. 

There is also evidence that PD patients are more likely to
have a close relative with PD compared to controls.3,16 This
observation, however, does not necessarily imply genetic
causation. Shared environmental exposure could also explain
some of the patterns of familial aggregation observed in PD.17

For example, disease onset among affected family members
seems to cluster around the same calendar year, which supports
a shared environmental exposure.18

GENETIC FACTORS AND ABNORMAL PROTEIN PROCESSING

There is increasing interest in the heritability of PD. This
heightened interest was greatly promoted by the clinical
observation of familial aggregation of PD cases3,19 and by the
discovery of families with genetic forms of parkinsonism.4,5,20,21

Nevertheless, we have already noted that familial aggregation
does not necessarily imply genetic causation17,18 and that most
PD cases test negative for known mutations. In fact, a recent
large twin study comparing clinical concordance rates between
monozygotic and dizygotic twins detected increased
concordance only in monozygotic twins who developed PD
symptoms before the age of 50 years; no increased concordance
was found in those who manifested disease at a later age.22

Although a small twin study using both clinical assessment and
[1 8F]fluoro-dopa positron emission tomography did report
increased concordance among identical twins,23 this important
observation needs to be confirmed in further studies. The effect

of maternal factors on their children’s risk of PD may mask the
distinction between environmental and genetic causation.24 A
recent epidemiological, statistical and mathematical study on PD
patients and their parents showed that the child’s risk of PD was
related to the child’s age at the time the parent developed PD
rather than the parental age at onset of PD.25 Thus, the younger
the child at the time the parent developed PD, the higher the risk
for the child. This relationship was especially apparent when the
affected parent was the mother. The degree to which parents and
children share their environment usually decreases with age.
Furthermore, for inherited illnesses, the risk for the child is
usually related to parental age at onset. Taken together, the
observations support the notion that most PD cases, including
most familial cases (at least those families in which only two
members are affected), are due to shared environmental
exposure. 

Although genetic mutations have only been associated with
rare forms of parkinsonism, the discovery of these genes has
provided a tremendous insight into the pathogenesis of PD. The
role of abnormal protein processing in particular has now been
recognized as a major mechanism of cell death not only in
genetic forms of parkinsonism26,27 but also in sporadic PD28 and
in other neurodegenerative disorders.28,29

Mutations in three identified genes have been associated with
parkinsonism: α-synuclein, on locus 4q21-23,4,21 parkin on locus
6q25.2-275 and ubiquitin C-terminal hydrolase L1 (UCH-L1), on
locus 4p14.30 Moreover, five additional gene loci with linkage to
inherited parkinsonism have recently been identified: 2p13,20

4p14-16,31 1p35-35,32 1p3633 and 12p11.2-q13.134 (Table), and
there is evidence for additional loci.3,35 Whereas only two disease
causing mutations, A53T and A30P, of α-synuclein have been
identified,4,21 multiple mutations in the parkin gene have already
been described.36,37 The phenotype associated with α-synuclein
and parkin mutations is variable. While parkinsonism arising
from mutation in the α-synuclein gene is usually characterized
by an early age at onset compared to sporadic PD, parkin-
associated parkinsonism has been reported with onset in the 7th
decade (in addition to the originally described juvenile onset). To
date, only one UCH-L1 mutation has been described30 and the
relationship to disease has been controversial.38,39

All proteins currently associated with monogenic forms of
parkinsonism appear to be involved in the ubiquitin-mediated

Table: Genes responsible for parkinsonism

Gene Locus Inheritance Phenotype Reference

α-synuclein 4q21-23 Autosomal dominant Early onset PD Polymeropoulos et al., 19974

Kruger et al., 199821

parkin 6q25.2-27 Autosomal recessive Juvenile onset PD Kitada et al., 1998 5

UCH-L1 4p14 Autosomal dominant Typical PD Leroy et al., 199830

PARK3 2p13 Autosomal dominant Typical PD Gasser et al., 199820

PARK4 4p14-16 Autosomal dominant PD / Essential tremor Farrer et al., 199931

PARK6 1p35-35 Autosomal recessive Early onset PD Valente et la., 200132

PARK7 1p36 Autosomal recessive Early onset PD van Duijn et al., 2001 33

PARK8 12p11.2-q13.1 Autosomal dominant Typical PD Funayama et al., 200234
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pathway of protein degradation. Proteins that are degraded
through this system are tagged with polyubiquitin chains through
a series of enzymatic reactions and then degraded by the
proteasome, a multicatalytic complex.4 0 Some ubiquitinated
proteins may also be degraded by the lysosomal system.41 α-
Synuclein is a protein localized within presynaptic terminals in
the central nervous system (CNS)42 and, together with ubiquitin,
is a major component of the filaments associated with Lewy
bodies.43 Parkinsonism associated with mutations of α-synuclein
resembles clinically sporadic PD, and is characterized by the
presence of Lewy bodies in surviving cells of the substantia
nigra. Expression of mutant A53T44 or A30P21 α-synuclein leads
to the formation of small ubiquitinated aggregates, and to
autophagic cellular degeneration. These effects are accompanied
by, and may be consequences of, defects in the lysosomal and
proteasomal degradation systems.40,45 Transgenic expression of
human α−synuclein results in degeneration of dopaminergic
terminals in the mouse46 and loss of dopaminergic neurons in
Drosophila.47 In the latter model, degeneration is even greater
when mutant human α−synuclein (either A30P or A53T) is
expressed, and there is formation of abnormal protein inclusions
reminiscent of Lewy bodies.47 Aberrant α−synuclein appears to
increase cell vulnerability to oxidative stress48 and conversely,
oxidative stress may result in increased α −s y n u c l e i n
aggregation.49 α-Synuclein accumulation appears to result in
dopamine-dependent apoptosis;49a this may be one explanation
for the selectivity of neuronal loss seen in parkinsonism. 

A juvenile autosomal recessive form of parkinsonism was
initially described in Japan and was found to be characterized by
selective loss of nigral dopamine neurons, without Lewy
bodies.50 This disorder, which is caused by mutations of the
parkin g e n e ,5 has now been shown to have a worldwide
distribution, particularly among patients younger than 50 years
of age.3 6 , 5 1 Parkin (the gene product) functions as an E3
ubiquitin-protein ligase, responsible for the attachment of
ubiquitin to substrates such as synaptic vesicle-associated
protein, PNUTL1 (d rosophila peanut-like gene 1 p r o t e i n ) /
CDCrel-1,52 parkin-associated endothelin receptor-like receptor
(Pael receptor),53 and a glycosylated form of α-synuclein.54 It has
been suggested that mutations in the parkin gene could result in
abnormal accumulation of its substrate proteins, which could
potentially lead to inhibition of transmitter release and/or
insoluble Pael-R mediated cell death.53

A mutation in the gene encoding for UCH-L1 has been
associated with parkinsonism in one family.30 UCH-L1 is an
enzyme that hydrolyzes small C-terminal adducts of ubiquitin to
generate ubiquitin monomers, which can then be recycled and
used to clear other proteins. The mutant form of UCH-L1 has
diminished enzymatic activity resulting in impaired protein
clearance through the ubiquitin-proteasome pathway.41

ENVIRONMENTAL FACTORS

Several epidemiological studies have given support to the
environmental hypothesis of PD.3,55 Most studies agree on the
role played by pesticide exposure and smoking on the risk of
PD.3,6 While the exposure to pesticides may be associated with
an increased risk of PD, smoking seems to play a protective role.
Other factors often imputed to increase the risk of PD (e.g., head

trauma) have not been supported by consistent evidence.56 In
addition, many of these factors may be associated with one
another, which poses difficulties in teasing apart their individual
contribution, if any. For example, rural living, well water
drinking, and farming activity may be compound risk factors.6

Young-onset parkinsonism in particular has been associated with
exposure to well water.57 While no toxic constituents have been
identified, well water drinking may simply be a marker for rural
environment, which might, in turn, point to pesticide exposure.
Dietary factors have also been purported to have an effect on the
risk of PD.3 Thus, for example, consumption of products
containing niacin may reduce the risk;58 diets heavily dependent
on animal fat, on the other hand, may increase the risk of PD.59,60

No evidence has yet been provided to support a role for
antioxidants (e.g., vitamin E) as potential neuroprotective
agents.3

As noted above, a key factor in the etiology of PD may be
pesticide exposure;3,6,8,9,61 this association has recently been
confirmed in the meta-analysis by Priyadarshi and colleagues.62

There is also some evidence that exposure to pesticides may
increase mortality in PD patients.63 It should be noted that most
studies grouped several agents, including pesticides, herbicides,
and insecticides, as “pesticides”. Hence, we do not know the risk
associated with each specific substance. Interestingly, the
potential relationship between pesticides and PD has received
experimental support from the recent demonstration of selective
nigral dopaminergic cell degeneration in rats exposed to chronic
low-dose rotenone.64 The rotenone model, if confirmed, may
help identify specific factors involved in the etiology of PD.
Rotenone-induced dopaminergic neuronal degeneration is
thought to result from selective dysfunction of mitochondrial
Complex I, as is the case for the other selective dopaminergic
neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
(see discussion below). MPTP results in parkinsonism in both
humans65 and experimental animals. 66 Associations between PD
and exposure to plastic or epoxy resin and metals such as
manganese7,67 have also been reported, but the results are less
consistent.68,69 It has also been suggested that exposure to
industrial toxins may explain the higher risk in urban compared
to rural environments found in China.70

In contrast to pesticide exposure, numerous investigators
have suggested an inverse relationship between smoking and the
risk of PD,3,71-74 although not all studies have found such an
association.70,75,76 Whereas a case-control study confirmed a
lower prevalence of current smoking in parkinsonian patients,
but no difference in prior exposure (suggesting that there is no
protective effect, but rather that PD itself leads to reduced
smoking),75 a recent study demonstrated that the risk of PD is
inversely correlated with the dose of cigarette smoking in twin
pairs.77 This effect is most pronounced in monozygotic twins.
Another prospective study of more than 8,000 men enrolled in
the Honolulu Heart Program did indeed support a reduced risk of
PD in smokers or ex-smokers, with an apparent dose-response
effect.78 Similarly, this inverse relationship was found to be more
striking among current smokers than among ex-smokers.71 If the
relationship is indeed a real one, there still exists the question of
whether it reflects a ‘rigid’ premorbid personality trait, as has
been repeatedly described in PD,56 or a lower propensity to
nicotine addiction (perhaps in relation to dysfunctional reward
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mechanisms), rather than a ‘protective’ e ffect of smoking.
Nevertheless, there is some evidence to suggest that nicotine
may indeed play a protective role in PD,79 possibly acting on
toxin-neutralizing enzymatic pathways. 8 0 Cerebral MAO-B
activity was reported to be significantly lower in heavy cigarette
smokers than in nonsmokers.8 1 A more recent study
demonstrated that nicotine was capable of inducing neurotrophic
factors, such as basic fibroblast growth factor, in the striatum.82

It has been suggested that caffeine intake may also decrease the
risk of PD, independently of the effect of smoking.83 This may
correspond to recent evidence for a neuroprotective effect of
adenosine receptor blockade in experimental models of
parkinsonism.84,85

There is some evidence to suggest that PD may be more
prevalent in certain occupations. A recent study suggested a
higher risk of PD among physicians, teachers, miners and
loggers.86 One could argue that miners and loggers may be
preferentially exposed to some of the neurotoxins mentioned
earlier. This explanation, however, would not apply to physicians
and teachers. Given the heavy exposure of physicians and
teachers to the public at large and the shared environment due to
frequently cramped living arrangements for the latter two (often
staying in crowded camps while working), the authors of the
study proposed that PD could be due to droplet-spread infections
(especially viral infections). Indeed, although viruses have been
neglected as potential agents, several threads of evidence
indicate that they deserve attention. 

It is now generally believed that the pandemic of encephalitis
l e t h a rgica, which occurred in the early 20th century, was
probably related to influenza infection.8 7 , 8 8 Like PD,
postencephalitic parkinsonism is also associated with late
progression.89 In addition, clinically typical parkinsonism with
image evidence of damage confined to the substantia nigra has
been reported in patients with sporadic encephalitis90 and there is
experimental evidence that the substantia nigra is particularly
vulnerable to virulent influenza A v i r u s .9 1 N a t u r a l l y, other
viruses could also be involved in the etiology of PD.92 Most
importantly, a recent mathematical model based on the age at
onset of PD symptoms predicts that PD is caused by exposure to
randomly distributed discrete events.25 Infections in general (and
viral infections in particular) may well be such discrete events.

MECHANISMS OF CELL DEATH

We have already seen that abnormal protein processing is
likely to play a pivotal role in cell death in PD and, perhaps, in
other neurodegenerative disorders as well. We will review now
other factors – namely, oxidative stress, mitochondrial
dysfunction, apoptosis, excitotoxicity, and inflammation – that
may also be involved. None of these factors should, however, be
seen as mutually exclusive. Abnormal protein processing, for
example, may increase the susceptibility to oxidative stress (and
vice versa). Impaired mitochondrial function may promote both
excitotoxicity and free radical damage. Naturally, environmental
toxins could act at any of these stages, with the common end
result of selective nigral death (Figure). 

Oxidative stress
Oxidative stress is thought to play a pathogenic role in PD.

This has been evidenced by increased lipid peroxidation,40

reduced glutathione levels93,94 a high concentration of iron and
reactive oxygen free radical generation via autocatalytic
mechanisms within neuromelanin-containing catecholaminergic
neurons in the substantia nigra.40,95 In addition, the observation
that exogenous administration of cysteine, N-acetyl cysteine or
glutathione decreased the neurotoxic effects of 6-hydroxy-
dopamine (6-OHDA) in vitro and in vivo reinforces this
hypothesis.96 It is recognized that dopamine itself undergoes
both enzymatic and nonenzymatic reactions that result in the
formation of toxic radicals.97

One such toxic radical is the superoxide anion which, under
normal circumstances, is cleared by superoxide dismutase
(SOD1), resulting in the formation of hydrogen peroxide.98,99

Hydrogen peroxide is, in turn, usually cleared by reduced
glutathione (via glutathione peroxidase) or catalase but there is a
deficiency of reduced gluthatione in the substantia nigra of
parkinsonian subjects.100 Gluthatione deficiency appears to result
at least in part from increased activity of the degradative enzyme
γ-glutamyltranspeptidase. Thus, in PD, there may be an excess of
hydrogen peroxide, which is now free to undergo nonenzymatic
(Fenton) reactions with iron, thereby resulting in the formation
of highly toxic hydroxyl radicals.97 While there is evidence for
increased lipid peroxidase and abnormally oxidized DNA98,99 in
PD, these findings are not restricted to the substantia nigra and it
is not clear to what extent they may reflect the effects of
treatment. One obvious concern which arose from the free
radical hypothesis was the possibility that levodopa itself could
be toxic to substantia nigra neurons; there is, however, no in vivo
evidence that this is the case.101 While high concentrations of
levodopa in artificial conditions do indeed result in oxidative cell
death,102, levodopa could even be neuroprotective to neurons of
the substantia nigra in rodent models103 and in humans.104

Selegiline is a potent and selective monoamine oxidase B
(MAO-B) inhibitor. This led to speculation that selegiline could
be neuroprotective by diminishing oxidative stress.
Unfortunately there is no convincing clinical evidence for a
neuroprotective effect of selegiline.105,106 More recently, a new
MAO-B inhibitor (rasagiline) has shown some experimental
promise107 and is currently under investigation.108 However, in
both cases, any protective effects may be independent of MAO-
B inhibition.109,110 The mechanism of action has been related to
either altering protein synthesis109 or stablizing mitochondrial
membrane potential,111 thus protecting neuronal cells against
apoptotic injury.

Mitochondrial dysfunction
Mitochondrial DNAdeletions or point mutations that cause a

reduced capacity for oxidative phosphorylation (OXPHOS)
result in a number of diseases and pathologies.11 2 , 11 3

Mitochondria play a critical role in the health and survival of
cells by providing the energy that fuels the maintenance, repair,
and turnover of cellular components. Deterioration of
mitochondrial function is therefore thought to play a major role
in aging and neurological diseases as a result of the buildup of
damage caused by reactive oxygen free radicals produced by the
mitochondrion itself during oxidative phosphorylation. 11 4 , 11 5

Reactive oxygen free radical production is a function both of the
inefficiency of transfer of electrons through the respiratory chain
and the level of antioxidant defenses in the cell. 
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The discovery that MPTP exposure produces CNS pathology
very similar to that observed in PD strengthened the hypothesis
that PD could be caused by exogenous or endogenous
neurotoxins, and provided a heuristic model for investigating the
pathological process of PD in animals. The first stage in the
mechanism of action of MPTP is its deamination by MAO-B in
glial cells, which results in the formation of the 1-methyl-4-
phenylpyridinium ion (MPP+). MPP+ is then selectively
accumulated in dopamine nerve terminals by the plasma
membrane dopamine transporter. Once inside the dopamine
nerve terminals, MPP+ acts in a manner similar to 6-OHDA by
generating hydrogen peroxide and other free radicals that
interfere with mitochondrial respiration.11 6 MPP+ is
concentrated in mitochondria, where it impairs mitochondrial
respiration by inhibiting complex I of the electron transfer
complex and consequently causing the death of neurons. It has
also been suggested that the neuromelanin present in
dopaminergic neurons may act as a storage site for MPP+ or
other neurotoxins. Hence, MPTP-related dopaminergic cell
death is caused by oxidative stress followed by lipid
peroxidation brought about by inhibition of mitochondrial
enzymes participating in the synthesis of adenosine triphosphate.
In experimental models, selegiline protects substantia nigra
neurons by blocking the conversion of MPTP to MPP+.117

There is fairly consistent evidence for impairment of
mitochondrial complex I function in PD. Complex I deficiency
was first identified in the substantia nigra of postmortem PD

brain.118-120 The complex I defect appears to be specific and
restricted to the substantia nigra, i.e., other brain areas, including
striatum, cortex, cerebellum, globus pallidus and substantia
innominata were reported to have normal OXPHOS
activity.118,119 There are also reports of reduced complex I
activity in muscle121 and platelets122 in PD patients, suggesting
systemic involvement. The importance of impaired complex I
function in the pathogenesis of PD received further support from
the demonstration of selective nigral death following chronic
exposure to rotenone, a well-known inhibitor of complex I.64

Unlike MPP+, rotenone is not dependent upon selective uptake
via the membrane dopamine transporter. However, other reports
have suggested additional defects in complexes II and III, as well
as abnormal immunoreactivity for α-ketoglutarate, an enzyme of
the citric acid cycle.123 In multiple system atrophy, a disorder
with degeneration of neurons in substantia nigra, no OXPHOS
defect was found124 and there was no complex I abnormality in
Lewy body rich cingulate cortex of diffuse Lewy body brains.118

This suggests that the complex I defect is specific to PD and
selective for the substantia nigra but not related to the formation
of Lewy bodies.

Apoptosis
A number of reports have demonstrated apoptotic cell death

in the substantia nigra of parkinsonian patients,125-127 but this is
still somewhat controversial and some studies have reported
little or no evidence of apoptotic cell death in PD tissue.128-130

Figure: Possible mechanisms leading to the neuronal cell death in PD. Inflammatory responses may
occur at different levels of the cascade leading to cell death.
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Furthermore, the presence of apoptosis does not necessarily
provide significant insight into the etiopathogenesis of selective
cell death in PD, as oxidative stress, mitochondrial dysfunction
and excitotoxicity (see below) can all result in apoptotic death
rather than necrosis, depending, perhaps, on a dose effect. 

A number of pro- and anti-apoptotic genes have been reported
to be associated with PD. Activated caspase 3, considered the
major downstream caspase involved in the execution phase of
neuronal cell death, has been detected in the substantia nigra of
PD patients.131. Nevertheless, it has been suggested that this
caspase activation may occur in reactive astrocytes and
microglial cells rather than in neurons themselves.132 Recent
studies suggest that activated forms of both caspase 8 and
caspase 9, upstream caspases that are known to cleave and
activate caspase 3, are present in dopaminergic neurons of the
substantia nigra in MPTP-treated mice.133 Caspase-mediated
parkin cleavage that compromises parkin function was also
recently demonstrated in cell lines.134 Upregulation of the anti-
apoptotic gene bcl-2135 may, on the other hand, reflect an
incomplete compensatory response; it is also possible that
neurons expressing higher levels of bcl-2 are those more likely
to survive. A selective elevation of calpain activity in
dopaminergic neurons of the substantia nigra further supports the
notion of active apoptosis.136 There is a single report of increased
translocation of NF-κB in the substantia nigra of parkinsonian
subjects;137 this study has not yet been replicated and it is not
clear whether such increased translocation represents active
apoptosis or a compensatory response.

Excitotoxicity
Although there is no direct evidence for increased levels of

excitatory amino acids prior to the onset of symptomatic PD, it
has been suggested that mitochondrial dysfunction might
promote toxicity resulting from normal levels of excitatory
amino acid transmission.1 3 8 I n t e r e s t i n g l y, treatment with
amantadine, a weak N-methyl-D-aspartate blocker, is associated
with prolonged survival in PD.139 However, there is no direct
evidence for neuroprotective effects of excitatory amino acid
antagonists. Clinical trials of the sodium-dependent glutamate
release blocker riluzole were recently terminated due to lack of
clear benefit.

Inflammatory response
Activated microglia have been demonstrated in the substantia

nigra in PD and other degenerative disorders.140 Inflammatory
and glial responses have also been observed in the substantia
nigra of patients exposed to MPTP141 and in MPTP-treated
primates.66 In addition, a significant inflammatory response to
progressive dopaminergic degeneration was recently also
demonstrated in the nigrostriatal system of animals after 6-
OHDAadministration.142

It is not clear, however, whether inflammation plays a
primary role or whether it represents a secondary phenomenon.
Although there have been reports of disease-specific
antineuronal antibodies in the cerebrospinal fluid and there may
be complement-dependent dopaminergic toxicity in PD
serum,143 there is no direct evidence to suggest a primary
immunological abnormality in PD. Interestingly, treatment with
aspirin was found to attenuate MPTPtoxicity in mice.144

CONCLUSION

The etiology of PD remains a mystery. Specific
environmental and genetic factors, as well as complex genetic-
environmental interactions are likely to be involved. Current
evidence suggests that environmental exposure plays a major
role in the majority of PD cases. It should be noted, however, that
no specific agent has yet been identified. Experiments based on
recently discovered mutations in α−synuclein and parkin genes
have provided evidence to suggest that abnormal protein
processing leading to aberrant protein accumulation is a major
pathogenetic mechanism in PD. Contributory mechanisms of cell
death in PD include, excessive generation of free radicals,
impaired function of mitochondrial complex I and inflammatory
responses; abnormal regulation of ‘pro- or anti-apoptotic’factors
and excitotoxicity may also be involved. Improved
understanding of these issues will allow the development of
more rational treatment strategies for PD and, perhaps, for other
neurodegenerative disorders as well. 
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