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Hydrodynamic approaches that treat granular materials as a continuum via the
homogenization of discrete flow properties have become viable options for efficient
predictions of bulk flow behaviours. However, simplified boundary conditions in
computational fluid dynamics are often adopted, which have difficulty in describing
the complex stick–slip phenomenon at the boundaries. This paper extends the lattice
Boltzmann method for granular flow simulations by incorporating a novel frictional
boundary condition. The wall slip velocity is first calculated based on the shear rate limited
by the Coulomb friction, followed by the reconstruction of unknown density distribution
functions through a modified bounce-back scheme. Validation is performed against a
unique plane Couette flow configuration, and the analytical solutions for the flow velocity
profile and the wall slip velocity, as functions of the friction coefficient, are reproduced by
the numerical model. The transition between no-slip and partial-slip regimes is captured
well, but the convergence rate drops from second order to first order when slip occurs.
The rheological parameters and the basal friction coefficient are calibrated further against
the discrete element simulation of a square granular column collapsing over a horizontal
bottom plane. It is found that the calibrated continuum model can predict other granular
column collapses with different initial aspect ratios and slope inclination angles, including
the basal slip and the complex internal flow structures, without any further adjustments to
the model parameters. This highlights the generalization ability of the numerical model,
which has a wide range of application in granular flow predictions and controls.
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1. Introduction

Over the past decades, a large amount of experimental and numerical work has been
carried out to understand and predict complex granular flow behaviours. Laboratory
experiment is an essential approach to observe granular flows in controlled conditions,
e.g. the flow down an inclined chute (Savage & Lun 1988; Pouliquen 1999; Gollin et al.
2017), the granular column collapse (Balmforth & Kerswell 2005; Lajeunesse, Monnier &
Homsy 2005; Lube et al. 2005) and the flow in a rotating drum (Ristow 1996; Mellmann
2001; Liu, Specht & Mellmann 2005). Meanwhile, some key flow characteristics, e.g. the
shear rate close to the boundary and the local pressure level, are still difficult to measure
in experiments, but are accessible directly in numerical simulations. There are mainly two
modelling approaches. In discrete methods, particles in granular flows are represented by
individual elements that can interact with each other through contact models (Cundall &
Strack 1979). In continuum methods, the granular materials are treated as a fluid, which
allows the modelling of granular flows using a large variety of hydrodynamic approaches
(Lacaze & Kerswell 2009; Lagrée, Staron & Popinet 2011; Chauchat & Médale 2014;
Franci & Cremonesi 2019; Yang et al. 2023). The continuum approaches enable the
possibility of large-scale simulations at an acceptable computational cost, but require a
thorough understanding of the granular flow physics, including the constitutive relations
for the stresses and the boundary conditions, which remain the major challenges.

Great efforts have been made to define proper constitutive relations of granular flows
across different flow regimes, and successful outcomes have been achieved to capture
the solid-like, liquid-like and gas-like behaviours (Campbell 1990; Johnson, Nott &
Jackson 1990; Goldhirsch 2003; Midi 2004; Jop, Forterre & Pouliquen 2006). Meanwhile,
relatively less work has been devoted to develop proper boundary conditions for granular
flows, especially in the dense flow regime in which particles undergo enduring contacts,
and energy dissipation is governed by friction (Artoni, Santomaso & Canu 2009; Artoni
et al. 2012). Indeed, simplified and common boundary conditions in computational fluid
dynamics (CFD), i.e. no-slip and free-slip, are often adopted to describe rough and smooth
walls (Lagrée et al. 2011; Yang et al. 2023). Nevertheless, the frictional nature of dense
granular flows and their interactions with solid boundaries usually produce a complex
stick–slip behaviour that is neither no-slip nor free-slip (Nasuno et al. 1998; Artoni et al.
2009, 2012; Jing et al. 2016). It is worth mentioning that although the boundary may cover
only a small percentage of the whole simulation domain, the effect of a boundary condition
is rather significant and is no less important than the rheology of the flow. In fact, it is the
boundary condition that often determines the overall convergence rate and shapes all kinds
of CFD simulations.

Recently, the lattice Boltzmann method (LBM) has been applied successfully as an
accurate and efficient numerical tool to model dense granular flows (Yang et al. 2023).
Instead of solving directly for the macroscopic quantities, i.e. velocity and pressure – as
is normally the case in conventional CFD approaches based on Navier–Stokes equations
using finite difference or other discretization schemes – the LBM solves hydrodynamic
problems via a set of density distribution functions streaming and colliding on a regular
lattice (Chen & Doolen 1998). The kinetic heritage of the LBM encourages boundary
conditions to be formulated based on the bounce-back and the specular reflection
(mirror-like) of density distribution functions for the no-slip and free-slip boundary
conditions, respectively (Reis 2020). This heuristic way of handling boundary conditions
is simple and straightforward, which promotes the use of the LBM for simulating fluid
flows in complex geometries, such as flow through porous media (Aharonov & Rothman
1993; Dong, Yan & Li 2011).
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Another popular application of the LBM is to simulate fluid flows in microchannels
and rarefied gas flows, in which the continuity assumption breaks down and there exist
slip velocities at boundaries (Chai et al. 2008; Wang et al. 2018). In such conditions, the
Navier slip model that linearly correlates the slip velocity uw with the shear rate γ̇w near the
boundary is adopted commonly, namely uw = lsγ̇w, where ls is the so-called slip length.
In the LBM, this partial-slip boundary condition is implemented simply at the mesoscopic
scale that linearly combines the bounce-back and the specular reflection schemes (Succi
2002). The amount of boundary slip is determined by a single constant r, sometimes
called the molecular slip coefficient (Švec & Skoček 2013). Generally, the molecular
slip coefficient r varies between 0 and 1, and the boundary slip gradually attenuates as
r increases. However, the boundary slip for the flow of granular materials occurs only
beyond a critical threshold, which depends on the wall roughness (Jing et al. 2016), and
such a yielding criterion is still absent in the currently available slip length models.

Despite the successful applications of the LBM for different fluid flow problems with
complex boundary conditions, to our best knowledge, there seems to be no existing
boundary condition characterized by friction, which limits the capability of the LBM for
dense granular flow simulations. The goal of this study is to develop a frictional boundary
condition for the LBM so that the shear stress at the boundary is limited by the Coulomb
friction. We are aware of the more advanced boundary conditions that derive from the
Navier slip model (Artoni et al. 2009, 2012; Artoni & Santomaso 2014). However, as
a first attempt, we focus on the simple Coulomb friction boundary condition, which is
characterized by a constant friction coefficient. Similar boundary conditions have been
implemented in other numerical methods (Wu, Hill & Yu 2007; Domnik & Pudasaini
2012), and have been proved to be essential components to reproduce the complex stick-slip
behaviour at the boundary. Our results also show that this simplified boundary condition,
as a direct derivation from the frictional nature of dense granular flows, can improve
drastically the predictability of continuum models for transient flow problems, such as
the granular column collapse.

This paper is organized as follows. Section 2 presents the LBM, with particular focus on
the free-surface tracking and the granular flow rheology. Detailed implementation of the
newly proposed frictional boundary condition is also introduced. A unique plane Couette
flow with a frictional and stationary bottom wall is simulated to validate the numerical
model in § 3. Then LBM simulation of a granular column collapse over a horizontal
bottom plane is performed in § 4, and the model parameters, including the wall friction
coefficient, are calibrated against the discrete element results. The same model parameters
after calibration are employed in § 5 for the LBM simulation of granular column collapses
with different aspect ratios and on a slope. Conclusions are drawn in § 6.

2. Model formulation

2.1. Lattice Boltzmann method

2.1.1. The D2Q9 Bhatnagar–Gross–Krook model
Since the LBM is based on the kinetic theory of gases, the method deals with mesoscopic
density distribution functions, rather than macroscopic flow quantities, such as velocity
and pressure (Chen & Doolen 1998). The density distribution functions determine
physically the amount of fluid moving in space with certain velocities. To solve the
Boltzmann equation numerically, the two-dimensional space is commonly discretized
into square fluid cells forming a uniform Cartesian grid. Figure 1 shows a sketch of the
D2Q9 lattice structure with 9 discrete velocities (including one at rest) in two dimensions

973 A21-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

78
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.782


G.C. Yang and others

(Qian, D’Humières & Lallemand 1992). The propagation of density distribution functions
to the neighbour fluid cells is allowed only along the orthogonal and diagonal directions,
by following the lattice Boltzmann equation. Considering a Bhatnagar–Gross–Krook
approximation and a body force term for the collision operator, we can write the lattice
Boltzmann equation as (He et al. 1997)

fi(x + ci �t, t + �t) − fi(x, t) = −1
τ

[fi(x, t) − f eq
i (x, t)] + wi

ci · F
c2

s
, (2.1)

where the density distribution function fi(x, t) represents the amount of fluid positioned
at x at time t moving with velocity ci along the ith direction at each lattice node, and i
varies from 0 to 8 for the D2Q9 model (see figure 1). The time step is denoted by �t. The
body force density is denoted by F = ρg, where ρ is the fluid density and g is commonly
the gravitational acceleration. The dimensionless relaxation time is denoted by τ , which
determines physically how fast the density distribution function recovers the equilibrium
state f eq

i (x, t). The equilibrium distribution function depends on the macroscopic fluid
density ρ and velocity u, which can be expressed as (Qian et al. 1992)

f eq
i = wiρ

[
1 + ci · u

c2
s

+ (ci · u)2

2c4
s

− u2

2c2
s

]
, (2.2)

where wi is the weighting coefficient, and cs is the speed of sound. For the D2Q9 model,
w0 = 4/9, wi = 1/9 for i = 1–4 (orthogonal directions), wi = 1/36 for i = 5–8 (diagonal
directions), and cs = 1/

√
3 in lattice units (Qian et al. 1992). The macroscopic fluid

density ρ and velocity u can be reconstructed from the density distribution functions
according to the conservation of mass and momentum:

ρ =
8∑

i=0

fi, (2.3a)

ρu =
8∑

i=0

cifi. (2.3b)

A multiscale Chapman–Enskog expansion can be performed on (2.1) (He & Luo 1997)
to obtain the conventional Navier–Stokes equation with a relation between the relaxation
time τ and the fluid kinematic viscosity ν given by

ν = c2
s

(
τ − 1

2

)
. (2.4)

For isothermal problems, the local pressure p is related to the fluid density by the
equation of state (He & Luo 1997)

p = c2
s ρ. (2.5)

2.1.2. Free-surface tracking
The problem of dense granular flows, such as the granular column collapse (see § 4),
usually involves a dynamic evolution of the particle–air interface, i.e. the free surface. In
this study, a single-phase free-surface tracking algorithm originally proposed to optimize
the production process of metal foams is adopted (Körner et al. 2005). Different from the
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Figure 1. Sketch of the D2Q9 lattice structure. The black, grey and white circles represent the fluid, interface
and empty nodes, respectively. The dashed lines stand for the cell boundaries. The solid line depicts the free
surface going through the interface cells.

normal LBM, in which there exist only fluid and boundary nodes, the free-surface model
introduces two additional types of lattice nodes: the interface node and the empty node (see
figure 1). Each lattice node is located at the centre of a lattice cell and is associated with
the corresponding cell type. In LBM calculations, the different cell types are distinguished
by a single parameter, i.e. the fluid volume fraction of a lattice cell ε, which is given by

ε = m
ρ

, (2.6)

where m is the mass of fluid contained in a cell, and the fluid density ρ is calculated using
(2.3a). Note that the physical lengths are non-dimensionalized by the lattice spacing �x
before actual calculation. Therefore, the volume of a lattice cell becomes 1 in lattice units,
and (2.6) essentially gives a dimensionless fluid volume fraction ε, instead of a result in
units of volume. The value of ε ranges from 0 to 1: ε = 0 for empty cells, ε ∈ (0, 1) for
interface cells, and ε = 1 for fluid cells.

The dynamic evolution of the free surface is achieved by the conversion of interface cells
to fluid or empty cells, depending on the fluid volume fraction ε. It requires the exact mass
exchange between adjacent cells during the propagation of density distribution functions,
which can be calculated as

�mi(x, t + �t) = [ f−i(x + ci�t, t) − fi(x, t)]
ε(x + ci�t, t) + ε(x, t)

2
, (2.7)

in which the averaged fluid fraction has been used to approximate the contact area between
two adjacent cells. The subscript −i denotes the direction opposite to i. The new mass
value is obtained by adding the mass flux in all directions (except the one at rest) to the
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current value:

m(x, t + �t) = m(x, t) +
8∑

i=1

�mi(x, t + �t). (2.8)

Note that (2.7) is symmetric, meaning that the mass of fluid leaving one cell has to enter
another cell, and the total mass is conserved up to machine precision. Another advantage
of the single-phase free-surface model is that the empty cells are never accessed during
actual calculations. Compared to the conventional volume-of-fluid method in CFD that
solves both the fluid and the empty (i.e. air) phases (Lagrée et al. 2011), the single-phase
model is computationally efficient and largely saves computer memory (Yang et al.
2023). Meanwhile, a proper free-surface boundary condition is required to reconstruct
the unknown density distribution functions streaming from the empty cells to the interface
cells; see the arrows with dashed lines in figure 1. It is assumed that the air density is
ρA = 1 (equivalent to zero gauge pressure) and that the air shares the same velocity u
with the fluid at the free surface, so that the unknown density distribution functions can be
calculated via the bounce-back of the non-equilibrium part:

f−i(x, t + �t) = f eq
i (ρA, u) + f eq

−i(ρA, u) − fi(x, t). (2.9)

A full set of density distribution functions coming from the empty region for all interface
cells (including the ones that interact with the solid boundary, e.g. at the tip of a flow) can
be obtained by applying (2.9) to all directions with empty neighbour cells. In this way,
any physics related to the presence of three phases, e.g. the surface tension, is ignored,
and we assume that those effects are negligible in our problem. Also, the propagation of
flow front in CFD-like continuum simulations requires an additional treatment to solve the
so-called moving contact line problem (Liu et al. 2016), which is not present in the LBM
due to its particulate nature. Note that only the key equations for the mass exchange and
the free-surface boundary condition are presented here, and further details about cell type
conversion are available from Körner et al. (2005) and Thürey & Rüde (2009).

2.1.3. Granular flow rheology
To model dense granular flows, a special rheology has to be applied. One remarkable
finding of previous research is that granular materials flow like viscoplastic fluids, which
have a solid-like behaviour at low shear stress, and flow like liquid at high shear stress
(Midi 2004; Jop et al. 2006; Lacaze & Kerswell 2009). In our recent work, the most
widely adopted μ(I)-rheology for dense granular flows is implemented successfully
using the LBM, and the resulting framework is called LBGrain (Yang et al. 2023). The
μ(I)-rheology can be regarded as an extended Coulomb friction law with a varying friction
coefficient μ that depends on the dimensionless inertial number I (Midi 2004; Jop et al.
2006). So we have

μ(I) = σ

p
, with I = γ̇ dp√

p/ρp
, (2.10)

where γ̇ is the shear rate, dp is the particle diameter, and ρp is the particle density. Note
that here we use σ to denote the shear stress, since the commonly used symbol τ has been
assigned to denote the relaxation time in the LBM. Previous experiments and discrete
element simulations have demonstrated that the friction coefficient μ is an increasing
function of the inertial number I (Midi 2004; Jop et al. 2006; Lacaze & Kerswell 2009),
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which can be written as

μ(I) = μs + μd − μs

I0/I + 1
, (2.11)

where μs, μd and I0 are model constants that depend on the frictional material properties.
For viscous fluids, the shear stress is proportional to the local shear rate, i.e. σ = ηγ̇ ,
where η is the proportionality constant and is normally called the dynamic viscosity. Using
the Coulomb friction law for the shear stress, we can get an apparent fluid viscosity ηapp
that depends on the local shear rate and the local pressure level:

ηapp(γ̇ , p) = μ(I) p
γ̇

= pμs

γ̇
+ p(μd − μs)

I0
√

p/ρp + dpγ̇
dp. (2.12)

However, (2.12) is ill-defined at zero shear rate, in which case the apparent viscosity
becomes infinitely large. This is encountered commonly when a static initial condition is
applied. The solution is to adopt a regularization method so that the apparent viscosity
converges to a finite large value as the shear rate vanishes. Here, we use the Papanastasiou
method, and (2.12) is modified as (Chauchat & Médale 2014; Franci & Cremonesi 2019)

ηapp = pμs

γ̇
(1 − e−γ̇ /λ) + p(μd − μs)

I0
√

p/ρp + dpγ̇
dp, (2.13)

where λ is the regularization parameter. In general, a smaller λ value yields a better
approximation of the ideal rheology (Yang et al. 2023). Note that only the first term on
the right-hand side of (2.13) has been regularized, and the second term still diverges when
both the pressure p and the shear rate γ̇ are equal to zero. Therefore, a small pressure,
�p = ρgdp, corresponding to one layer of particles below the free surface, is added to the
local pressure if p = 0 and γ̇ = 0 simultaneously, to avoid division by zero.

Within the lattice Boltzmann framework, the fluid viscosity is related directly to the
relaxation time through (2.4), i.e. η = ρν = ρc2

s (τ − 0.5). To model dense granular flows,
the fluid viscosity in (2.4) is replaced by the apparent value given by (2.13), so that an
effective local relaxation time is obtained:

τeff = ηapp

ρc2
s

+ 1
2
. (2.14)

The lattice Boltzmann modelling of dense granular flows is achieved by substituting the
effective relaxation time τeff into (2.1) for the collision operator. Similarly to the apparent
viscosity, the effective relaxation time in the LBM now depends on the local shear rate
and the local pressure level, which are updated continuously during the calculation. The
proposed numerical framework for lattice Boltzmann modelling of dense granular flows
(i.e. LBGrain) has been validated against analytical solutions of simple flow conditions
and discrete element simulations, and has been proved to be computationally accurate and
efficient (Yang et al. 2023).

2.2. Frictional boundary condition
Defining appropriate boundary conditions is as important as applying proper rheologies
when solving hydrodynamic problems. In the LBM, there are mainly two ways to
implement various boundary conditions. On one hand, boundary conditions can be defined
phenomenologically. Typical examples are the bounce-back scheme for no-slip, the

973 A21-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

78
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.782


G.C. Yang and others

Free

surface

Velocity

profile

Frictional

wall

uw

ut
xf

xb

6

3 10

7 4 8

2 5

Figure 2. Sketch of the velocity profile and the lattice grid near a frictional wall. The black squares represent
the frictional nodes. The symbols xb and xf denote the locations of the frictional node and the fluid (or
interface) node next to the frictional wall, respectively. The frictional wall sits halfway between the fluid (or
interface) nodes and the frictional nodes, so it overlaps with the cell boundaries. See the caption of figure 1 for
other notations.

specular reflection scheme for free-slip, and the direct propagation of density distribution
functions across boundaries in the same direction for the periodic boundary condition
(Chen, Martínez & Mei 1996). On the other hand, boundary conditions can also be
defined hydrodynamically. The unknown density distribution functions propagating from
the boundary to the fluid domain are reconstructed based on their relationships with the
macroscopic flow quantities (Chen et al. 1996; Zou & He 1997); see (2.3) and (2.5), which
are normally well defined at the boundaries.

In this study, we propose a novel boundary condition governed by the Coulomb friction
law for the LBM. Wall slip takes place provided that the wall shear stress, i.e. the product of
the shear rate and the flow viscosity at the boundary, exceeds a critical threshold set by the
Coulomb friction. The way of implementing the frictional boundary condition is a hybrid
method that combines both the phenomenological and the hydrodynamic approaches.
Figure 2 shows a sketch of the lattice grid near a frictional wall, which sits halfway between
the fluid (or interface) nodes and the frictional nodes. In this particular case, the density
distribution functions f2, f5 and f6 have to be constructed based on the frictional boundary
condition. First, the shear rate at the wall is estimated by the finite difference method,
γ̇w = 2(ut − uw), where ut and uw denote the tangential components of the velocity at
the wall and at the fluid (or interface) node just next to the wall. Second, the maximum
allowable shear rate is calculated based on the Coulomb friction law:

γ̇max =
{

μwp/ηapp if p > 0,

0 if p ≤ 0,
(2.15)

where μw is the constant wall friction coefficient, and p and ηapp are estimated at the fluid
or interface node near the wall. Third, the wall slip velocity uw is adjusted according to the
flow kinematics. If γ̇w > γ̇max, then the upper limit set by the Coulomb friction is reached
and partial-slip takes place at the wall. Then the new wall slip velocity is calculated as

uw = ut − 0.5γ̇max
γ̇w

|γ̇w| . (2.16)
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When γ̇w ≤ γ̇max and there exists a finite wall slip velocity, i.e. uw /= 0, the Coulomb
friction is still fully active. Then the wall slip velocity is updated as

uw = ut − 0.5γ̇max
ut

|ut| . (2.17)

The minus signs in (2.16) and (2.17) indicate that the frictional force always acts in the
opposite flow direction. Also, the frictional force can only provide resistance to the flow,
therefore no change of sign for the wall slip velocity uw is allowed in (2.17), and the wall
slip velocity will be set to 0 when it happens. If γ̇w ≤ γ̇max and uw = 0, then the slip
criterion set by the Coulomb friction law is not reached and the wall slip velocity uw will
remain at 0, recovering the no-slip boundary condition.

Finally, a modified bounce-back scheme is applied to constructed the unknown density
distribution functions, e.g. f2, f5 and f6 in figure 2, considering the updated wall slip
velocity (Ladd 1994):

f−i(xf , t + �t) = fi(xf , t) − 2wiρ
ci · uw

c2
s

, (2.18)

where xf is the location of the fluid or interface node next to the frictional wall.
There are several characteristics of the proposed frictional boundary condition that

are worth mentioning. The updates of the wall slip velocity and the density distribution
functions are carried out in a progressive manner. This means that the constraint posed
by the Coulomb friction law is well considered by the flow kinematics at the boundary, so
that the whole problem is translated into the determination of the correct wall slip velocity.
Then the conventional moving wall boundary condition, i.e. (2.18), can be applied directly,
which facilitates an easy implementation into any available LBM code. Also, the modified
bounce-back scheme can be extended easily to three-dimensional conditions. Furthermore,
since the same wall slip velocity uw is used in (2.18) to construct the unknown density
distribution functions for a certain fluid or interface node, the quantities added to and
subtracted from the fluid domain are identical, at least for the flat walls considered in this
study. As a result, the mass of the whole system is well conserved, which is essential for
problems when a dynamic free surface is present.

3. Validation of the frictional boundary condition

3.1. Plane Couette flow with a frictional and stationary bottom wall
To validate the frictional boundary condition, we design a unique plane Couette flow as
shown in figure 3. In this validation section, we focus on the steady flow of a Newtonian
fluid between two infinite parallel walls placed at a distance h apart. The flow is driven
by the upper wall with a constant velocity U, and it is assumed that the no-slip boundary
condition holds so that the fluid shares the same velocity with the upper wall, i.e. u = U at
y = h. The lower wall is still kept stationary but becomes frictional with a predefined
friction coefficient μw. To facilitate a finite frictional resistance at the lower wall, a
positive pressure has to be applied; see (2.15). Therefore, the flow is subjected to a gravity
field with a magnitude equal to g pointing downwards, which is normally ignored when
solving the conventional plane Couette flow problem. The frictional bottom wall results
in a boundary condition characterized by a dynamic shear stress, which depends on the
friction coefficient and the local pressure level. The validity of the frictional boundary
condition combined with the granular flow rheology and the free surface will be tested
against discrete element simulations regarding the transient granular column collapse in
§§ 4 and 5.
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y

x

g

h

Frictional stationary wall with friction coefficient μw

No-slip wall moving with velocity U

Figure 3. Sketch of the steady plane Couette flow. The flow is driven by the upper wall with a constant velocity
U moving in the positive x-direction. The lower wall is stationary with a constant friction coefficient μw that
permits wall slip.

There are mainly two reasons why we choose plane Couette flow for the validation of
the frictional boundary condition. First, this simple shear configuration has been applied
widely in physical experiments and numerical simulations to investigate the rheology
of all kinds of fluid flows, including dense granular flows (Midi 2004). Second, an
analytical solution can be derived easily to measure the accuracy and the convergence
rate of the proposed frictional boundary condition. For a certain driving velocity of the
upper wall, when the friction coefficient of the lower wall is high enough so that it can
provide adequate shear resistance to the flow, the boundary condition of the stationary
and frictional wall becomes no-slip, which yields the well-known linear velocity profile
increasing from 0 to U as y increases from 0 to h (Philippou et al. 2017). However, when the
friction coefficient of the lower wall is small and the wall shear stress required to maintain
the no-slip boundary condition is larger than that provided by the Coulomb friction, wall
slip will occur, and the wall shear stress σw becomes

σw = μwp = η
∂u
∂y

∣∣∣∣
y=0

, (3.1)

where p is the hydrostatic pressure at the lower wall due to gravity, i.e. p = ρgh. From the
momentum balance in the x-direction, we can get that the shear stress is constant across
the flow depth and equal to σw. Then, integrating (3.1) with respect to y and applying the
no-slip boundary condition for the upper wall, we can get the velocity distribution

u( y) = U − μwρgh2

η

(
1 − y

h

)
, y ∈ [0, h]. (3.2)

The slip velocity at the lower wall can be obtained by setting y = 0, which gives

uw = U − μwρgh2

η
. (3.3)

Obviously, the wall slip velocity uw cannot be negative, and the critical friction
coefficient for wall slip to occur can be obtained by setting uw = 0. Another extreme case
is that the friction coefficient μw is set to be 0, and then uw = U, which is equivalent to
the free-slip boundary condition.
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Figure 4. Comparison between the numerical results and the analytical solution regarding the velocity profile
in plane Couette flow with μw = 0.2 so that a finite slip takes place at the lower wall. The inset shows two
initial conditions (t = 0): one with a linear velocity distribution (u = yU/h), and the other with a uniform
velocity distribution (u = U) across the whole flow depth. The former is denoted by acceleration and the latter
is denoted by deceleration.

3.2. Accuracy and convergence rate
In LBM simulations of the plane Couette flow, the wall separation distance h is fixed at
0.01 m, and periodic boundary conditions are defined in the x-direction. The upper wall
moves with constant velocity 1.0 m s−1, and different friction coefficients are adopted
for the lower frictional wall, so that both no-slip and slip (i.e. partial-slip and free-slip)
conditions are simulated. The fluid density ρ and the dynamic viscosity η are set to be
1500 kg m−3 and 0.5 Pa s, respectively. Taking the velocity of the upper wall and the
wall spacing as the characteristic velocity and length scales, we can get that the Reynolds
number of the problem is 30. The gravitational acceleration g is set to be 9.81 m s−2. As
for the numerical resolution, the lattice spacing and the time step are varied consistently by
following the so-called diffusive scaling (Krüger, Varnik & Raabe 2010), i.e. �t ∝ �x2,
so that the same relaxation time (τ = 0.8) can be applied for a fixed fluid viscosity in
physical units; see (2.4).

To obtain the critical friction coefficient below which wall slip will occur, the wall
slip velocity uw is set to be 0 in (3.3), and the resulting critical value is about 0.34. It is
first interesting to test whether the newly proposed boundary condition is able to capture
the velocity profile across the whole flow depth when there is a finite slip at the lower
frictional wall. Therefore, a small friction coefficient μw = 0.2, below the critical value,
is adopted first. The resolution is set to be level 9, corresponding to 512 (i.e. 29) lattice cells
across the flow depth. As a result, the lattice spacing �x and the time step �t are equal to
1.953 × 10−5 m and 1.144 × 10−7 s, respectively. The velocity profile at the steady state
is extracted and compared to the analytical solution, i.e. (3.2), in figure 4. Let us first look
at the two different initial conditions, as shown in the inset of figure 4. Case 1 is initialized
with a linear velocity distribution (u = yU/h) as indicated by the blue dashed line, while
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Figure 5. Comparison between the numerical results and the analytical solutions regarding the normalized
wall slip velocity uw/U as a function of the friction coefficient μw. The dashed line separates the partial-slip
and no-slip boundary conditions.

case 2 is initialized with a uniform velocity distribution (u = U) as indicated by the red
dashed line. Therefore, initially, it has zero slip velocity at the lower wall in case 1, and
the wall slip velocity is set to be the maximum in case 2. During the simulations, the two
initial velocity profiles converge to the same steady state solution gradually, which has a
finite wall slip velocity between 0 and U. Thus cases 1 and 2 are denoted by acceleration
and deceleration, respectively. Figure 4 shows that both case 1 and case 2 yield roughly
the same steady-state velocity profile, agreeing with the analytical solution very well. This
means that the wall shear stress, which defines a one-to-one correspondence between the
friction coefficient and the local shear rate according to (3.1), is also well described by the
frictional boundary condition.

To test further the accuracy of the frictional boundary condition, different friction
coefficients below and above the critical value of 0.34 are adopted. The initial condition
is set to be case 1, and the resolution level is fixed at 9. Figure 5 compares the numerical
results and the analytical solutions regarding the normalized wall slip velocity uw/U at
the steady state as a function of the friction coefficient μw. It is found that the transition
from partial-slip to no-slip at the critical friction coefficient 0.34 is captured well by the
frictional boundary condition. More specifically, the wall slip velocity remains zero when
μw is larger than the critical value. Meanwhile, when μw decreases from the critical value,
the wall slip velocity increases, following a linear trend described by (3.3). When μw is as
small as 0.05, the wall slip velocity at the lower wall is over 85 % of the maximum driving
velocity at the upper wall, and further reducing the friction coefficient will approach the
free-slip boundary condition.

Apart from the accuracy, it is also important to check the convergence rate of the
simulation when the frictional boundary condition is applied. It is well known that
the Bhatnagar–Gross–Krook LBM is second-order accurate for the main body of fluid
flows, and the overall convergence rate depends highly on the boundary condition
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Figure 6. Plot of the relative error against the lattice resolution h/�x for the LBM simulation of plane
Couette flow. The bounce-back boundary condition and the frictional boundary condition with different friction
coefficients μw are defined for the lower wall.

(Chen et al. 1996; Krüger et al. 2010). We change systematically the resolution level from
5 to 9, and the resulting relative error is plotted against the lattice resolution h/�x in
figure 6. Here, the relative error refers to the global L2 velocity error and is calculated as

relative error =

√√√√√
∑

(us − ua)
2∑

u2
a

, (3.4)

where us and ua are the numerical and analytical results for the x-component of the
flow velocity, respectively. Three different boundary conditions for the lower wall are
examined, referring to one bounce-back boundary condition (i.e. the conventional no-slip
scenario) and two frictional boundary conditions, with one friction coefficient (0.5)
above the critical value, and the other (0.1) below the critical value. Figure 6 shows
that the frictional boundary condition with μw = 0.5 produces the same error with the
bounce-back boundary condition, further confirming that the no-slip scenario associated
with a rough wall can be described well by the frictional boundary condition without
any deterioration of accuracy. On the other hand, in the case of partial-slip when the
friction coefficient is below the critical value, the numerical error increases noticeably. The
convergence rate becomes first-order, which is expected since a first-order finite difference
scheme is applied to estimate the shear rate and the local pressure level at the frictional
wall (see § 2.2). Further improvements can be made by using higher-order extrapolation
schemes, which will increase the complexity of the boundary condition and the locality of
the calculation will be lost. In addition, extra cautions have to be considered since multiple
layers of fluid nodes next to the frictional wall may be unavailable due to the presence of
the free surface (see figure 2).
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Figure 7. Deposition of particles at a certain time instant after the release of a rectangular granular column
on a rough inclined plane. The initial length and height of the granular column are denoted by Li and Hi,
respectively. The runout distance and the residual height are represented by Lt and Ht, respectively. The flow
front is zoomed in to show the dilute particles and the rough base.

All in all, the proposed frictional boundary condition is accurate and provides a unified
numerical framework for the stick (no-slip) and slip behaviours at the flow–boundary
interface governed by the Coulomb friction law.

4. Application to granular column collapse

4.1. Model set-up
Figure 7 shows the collapse of a granular column over a rough inclined plane. The simple
geometry, embedded with rich mechanical behaviours, including the complex transition
between static and flow states, makes granular column collapse an ideal benchmark case
for testing the performance of numerical models. Initially, the granular column is in a
rectangular shape, which is depicted by the dashed lines perpendicular and parallel to the
rough base in figure 7, and all particles are at rest. The initial length and height of the
granular column are denoted by Li and Hi, respectively. The granular column collapse
is driven by the downward gravity, and the gravitational acceleration is g = 9.81 m s−2.
During the collapse, the granular assembly elongates gradually along the inclined base,
with the runout distance and the residual height at time t denoted by Lt and Ht, respectively.
The symbol θ is used to denote the slope inclination angle. In this section, we focus on the
case with Li = Hi = 8 cm and θ = 0◦.

In this study, direct numerical simulations of granular column collapses are performed
using the discrete element method (DEM), which tracks the motion of individual grains
according to Newton’s second law, and resolves inter-particle interactions following a
predefined contact model (Cundall & Strack 1979). Although the complex fluid–particle
interactions can be considered well by coupling the DEM with a fluid solver (Jing
et al. 2018, 2019; Yang et al. 2019, 2020, 2021), the influence of ambient air on the
collapse dynamics is considered to be negligible, which has been proved to be a valid
assumption by comparing results from pure DEM simulations and experiments (Staron &
Hinch 2005, 2006; Zenit 2005; Lacaze, Phillips & Kerswell 2008). While the dynamics
of granular column collapse is essentially two-dimensional, our DEM simulations are
actually three-dimensional so that it is more realistic. The average particle diameter is
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dp = 1 mm with a 10 % variation around the mean. A typical value for the density of
glass beads is adopted, i.e. ρp = 2500 kg m−3. The simple linear contact model is used
to describe the inter-particle and particle–wall interactions. The Young’s modulus E and
the normal-to-tangential stiffness ratio κ are defined as 1.0 × 109 Pa and 1.5, respectively.
Note that a reduced Young’s modulus compared to glass beads is adopted so that the
DEM simulation can be stable at a larger time step. Our previous study has shown that
reducing Young’s modulus to this extent has little effect on the collapse dynamics, but
improves computational efficiency significantly (Jing et al. 2019). The Young’s modulus
can be converted to the normal contact stiffness via kn = EA/L, where A and L denote an
area and a length, respectively. For particle–particle contacts, A = πr2 and L = r1 + r2,
where r1 and r2 are the radii of the two contacting particles, and r = min(r1, r2). For
particle–wall contacts, the area A still equals πr2 but both L and r are defined as the
radius of the particle. A damping force is applied to the contact normal direction, which
can be calculated as (2β

√
mkn)δ̇, where β is the damping ratio, and δ̇ is the relative

normal velocity. The equivalent mass m equals m1m2/(m1 + m2) for particle–particle
contacts, where m1 and m2 are the masses of the two contacting particles, and equals the
particle mass for particle–wall contacts. A small damping ratio 0.2, which corresponds
to a restitution coefficient close to 0.55, is adopted to damp the energy during inelastic
collisions. The tangential force is limited by the Coulomb friction, beyond which sliding
at the contact takes place, with the friction coefficient fixed at 0.5. Additional geometric
roughness is introduced to the system by gluing particles of 0.5 mm diameter to the base
following a simple cubic packing (Jing et al. 2016); see figure 7.

Companion continuum simulations of granular column collapses are carried out using
the extended LBM (LBGrain). Based on (2.13), several parameters have to be defined,
apart from the local strain rate γ̇ and the pressure level p, which are accessed in real time
in actual calculations. The same mean particle diameter dp and density ρp for the DEM
simulations are used in the LBGrain simulations. Note that for the bulk density of the
granular flow (ρ), the voids between the solid grains have to be considered. Assuming a
typical value for the packing density of densely packed granular assembly, i.e. φ = 0.6, we
can get ρ = φρp = 1500 kg m−3. According to Lagrée et al. (2011), the granular column
collapse undergoes higher resistances as one of the three model constants μs, μd and 1/I0
increases due to the enhanced total friction, as given by (2.11). However, the collapsing
dynamics is not very sensitive to those rheological parameters, and in fact fair results
can be obtained through a simplified linear formulation of μ(I)-rheology (da Cruz et al.
2005); see Appendix A, especially for small inertial numbers. In this study, the model
constants are selected so that the LBGrain simulations can reproduce the DEM results
approximately, which are considered as the reference or the ground truth. As a result,
μs, μd and I0 are set to be 0.3, 0.5 and 0.5, respectively. The regularization parameter
λ is set to be 0.1, which is small enough to approximate the μ(I)-rheology (Yang et al.
2023). The relaxation time τ is initialized to be 1.0 and will be varied according to (2.14)
for this set-up. Different lattice resolutions and time steps are adopted to ensure grid
independence; see Appendix B for the details. As a result, the lattice spacing �x and
the time step �t are set to be 9.766 × 10−4 m and 9.537 × 10−5 s, respectively

Here, it is important to discuss the boundary conditions in both DEM and LBGrain
simulations. In the three-dimensional DEM simulation, periodic boundary conditions
are defined in the spanwise direction, and the corresponding length is 0.01 m, i.e. 10dp.
Further increasing the length in the spanwise direction has little influence on the collapse
dynamics. The bottom and the back of the simulation domain are enclosed by frictional
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walls that share the same properties of the particles. Note that the bottom wall is roughened
by the glued particles (see figure 7). In this section, the simulation domain is large enough
so that the entire collapse process finishes without any interference from the top and
right boundaries, which are left open. However, particles will reach the right boundary
and exit the simulation domain as the aspect ratio and the slope angle increase in § 5,
and those particles are simply deleted. In the two-dimensional LBGrain simulation, the
whole simulation domain is enclosed by frictional walls. It is worth mentioning that
the macroscopic friction coefficient defined in the continuum simulation is a measure
of overall energy dissipation at the boundary due to various mechanisms, including
rolling, sliding and collision, which is intrinsically different from the microscopic friction
coefficient at the contacts in the DEM. Generally speaking, a larger friction coefficient
should be applied in LBGrain when there is a hindering effect on rolling/sliding or an
enhanced collision. In this study, a small friction coefficient 0.1 is applied to the straight
frictional walls in LBGrain simulations, and larger friction coefficients are adopted for the
rough base. The influence of the basal friction coefficient on the collapse dynamics will
be investigated in § 4.2.

4.2. Sensitivity analysis of basal friction coefficient
The DEM simulations of granular column collapse have been compared to and validated
by experimental measurements thoroughly (Staron & Hinch 2005; Zenit 2005; Lacaze
et al. 2008), whose results are taken as the reference or the ground truth for the calibration
of basal friction coefficient in LBGrain simulations. To illustrate the important role of
basal friction coefficient, series of snapshots of granular column collapses from numerical
simulations using the DEM and LBGrain at t = 0.05, 0.1, 0.2, 0.3 s are displayed in
figure 8. At first glance, the morphologies of the granular materials from LBGrain match
well with those from the DEM at all time instants, showing the ability of LBGrain to model
free-surface granular flows.

Meanwhile, the basal roughness has a noticeable influence on the collapse dynamics.
Comparing the DEM results from two different base conditions, one being a flat frictional
wall and the other being the bumpy base defined in § 4.1, we can observe that the collapse
dynamics is slightly faster and the granular deposit is more elongated when the base
is flat; see figures 8(a–h). The longer runout distance is associated with a longer flow
duration, indicating that the particle kinetic energy is dissipated at a lower rate. In fact,
many particles at the flow front keep rolling and sliding over the flat base even after the
simulation stops at t = 0.7 s. In this study, the resultant effect of basal roughness on the
energy dissipation rate is treated as the frictional resistance at the base, which will be
quantified by the basal friction coefficient in LBGrain simulations. In the following, we
focus on the case with the bumpy base, whose roughness is still small so that finite slip
velocities exist.

The influence of the basal friction coefficient in LBGrain simulations is also quite
noticeable. When the no-slip boundary condition is applied, the runout distance Lt after
0.3 s is shorter than the DEM result with a bumpy base; see figures 8(h,l). This indicates
that the continuous granular flow undergoes higher resistance than the flow of discrete
particles. When the base is changed to be frictional and the basal friction coefficient is
μw = 0.5, there is almost no change to the LBGrain simulations. That means that the
basal friction coefficient is high enough to provide adequate resistance to the flow, and
there exists only minor basal slip. On the other hand, when the basal friction coefficient
reduces to μw = 0.1, the collapse dynamics becomes significantly faster. For example, at
t = 0.3 s, the normalized runout distance Lt/Li is larger than 3.5 when μw = 0.1, while
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Figure 8. Snapshots of granular column collapses from numerical simulations using (a–d) DEM with a flat
frictional base, (e–h) DEM with a bumpy base, (i–l) LBGrain with no-slip base, (m–p) LBGrain with frictional
base (μw = 0.5), and (q–t) LBGrain with frictional base (μw = 0.1) at the selected time instants (t = 0.05, 0.1,
0.2, 0.3 s). The dashed lines in (a,e,i,m,q) depict the initial column geometries. Particles in the DEM simulation
only with their z-coordinates in the range (0.5lz − dp, 0.5lz + dp) are shown.

in the other cases (including the DEM with a bumpy base) it reaches a normalized runout
distance at around 3.0, see figures 8(d,h,l,p,t). Note that the basal friction coefficient has a
larger influence at the later stage (i.e. after 0.2 s). This is due to the fact that the collapse
dynamics is initially dominated by the fall of granular materials under gravity, and then
more interactions between the flowing materials and the rough base take place afterwards.

To better quantify the influence of the basal friction coefficient on the flow mobility,
we plot the normalized runout distance (Lt − Li)/Li against the normalized time t/

√
Hi/g

in figure 9. It is relatively easier to determine the runout distance in LBGrain, which is
the maximum horizontal position of a lattice cell with a non-zero fluid volume fraction.
However, it becomes more difficult to extract the exact position of the flow front in the
DEM, mainly due to the sparse distribution of particles at the front; see a zoom-in view
in figure 7. In this study, we simply ignore the detached particles that have no contacts
with the main body of the granular flow. Figure 9 shows that the LBGrain simulation
cannot reproduce the DEM result if the no-slip or free-slip boundary condition is adopted.
More specifically, the no-slip boundary condition underestimates the final runout distance,
and the free-slip boundary condition overestimates the final runout distance drastically.
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Figure 9. Plots of the normalized runout distance (Lt − Li)/Li against the normalized time t/
√

Hi/g from the
DEM simulation and the LBGrain simulations with no-slip, free-slip and frictional boundary conditions. For
the LBGrain simulation with the frictional boundary condition, three basal friction coefficients are adopted,
i.e. μw = 0.1, 0.3, 0.5.

The use of a frictional boundary condition results in partial-slip at the base, which is
well bounded by the no-slip and free-slip boundary conditions. In addition, the collapse
dynamics becomes faster and the final runout distance elongates as the basal friction
coefficient decreases.

Hence there must be a basal friction coefficient that allows LBGrain to reproduce the
final runout distance in the DEM simulation. Figure 10 plots the final normalized runout
distance (Lf − Li)/Li against the basal friction coefficient μw, showing a monotonic
relationship. Note that the final runout distance here refers to the value at the end of the
simulation, which is 0.7 s after the release. Two different trends can be observed. When μw
is less than 0.4, the final runout distance decreases quickly as μw increases, while the final
runout distance reduces slightly when μw increases from 0.4 to 0.9. This saturated effect
of μw at larger values or the sudden increase of mobility for μw less than a threshold is an
intrinsic feature of the frictional boundary condition, which is also observed for the plane
Couette flow case; see figure 5. Figure 10 shows that the LBGrain simulation with a basal
friction coefficient 0.35 can capture approximately the final normalized runout distance
from the DEM simulation, as indicated by the dashed line.

4.3. Internal flow characteristics
Although the runout distance is a measurable indicator for the flow mobility and
sometimes has important practical implications for hazard mitigation in geophysical flows,
it is measured locally and might not represent the overall flow dynamics. To examine
further the performance of LBGrain and the frictional boundary condition, we fix the
basal friction coefficient at 0.35 and compare the LBGrain results to the DEM regarding
the internal flow characteristics. Figure 11 presents the velocity vector fields of granular
column collapses at four selected time instants. When t = 0.1 s, the top right corner of the
granular column falls down due to gravity, forming a distinguished shear plane inclined
at around 45◦ to the horizontal direction, which separates the static and flow regions; see
figures 11(a,b). After that, the flow direction gradually changes to be along the rough
base. During flow propagation, the flowing region remains within a shallow depth below
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Figure 10. Plots of the final normalized runout distance (Lf − Li)/Li against the basal friction coefficient μw.
The dashed line indicates the final normalized runout distance from the DEM simulation. The solid lines show
two different trends below and above μw = 0.4.

the free surface. It is due mainly to the pressure-dependent granular flow rheology; see
(2.12). At shallow depth, the low pressure level results in a small apparent viscosity that
promotes fluid motions. As the flow depth increases, the local pressure also increases,
which is associated with the rise of apparent viscosity that inhibits fluid motions. Also, in
both DEM and LBGrain simulations, there is a noticeable amount of flow velocity close
to the rough base, especially at the frontal region, indicating the presence of basal slip.

To better visualize the velocity distribution inside the flow and the slip velocity at the
base, we plot in figure 12 the horizontal velocity profiles at cross-sections x/Lt = 0.1, 0.3,
0.5, 0.7, 0.9, and at two time instants when the flow is quite active. The vertical coordinates
are normalized by the maximum flow thickness ymax from the DEM simulation, and the
velocities are normalized by

√
gHi. At the back of the flow, i.e. x/Lt ≤ 0.5, the velocity

profiles consist of a linear portion within the flowing layer beneath the granular free surface
and an exponential decay inside the lower static zone. Close to the front, e.g. x/Lt = 0.9,
the granular flow is active throughout the whole flow depth with a finite basal slip velocity.
The filled and hollow arrows in figure 12 indicate the basal slip velocity from LBGrain
and the smallest particle velocity close to the base from the DEM, respectively, at the
cross-section x/Lt = 0.9. It is shown that the basal slip velocity from LBGrain is always
smaller than the particle velocity close to the base from the DEM. This discrepancy will
become even larger if the rough base is defined simply as no-slip in LBGrain, in which case
the velocity will be zero everywhere at the base. On the other hand, the current difference
is more acceptable when considering the fact that the basal slip velocity from LBGrain
is accessed at the exact position of the bottom frictional wall, while the smallest particle
velocity from the DEM is usually associated with the lowest particle, which is at least half
a diameter above the rough base. All in all, we can conclude that LBGrain with a frictional
base matches the DEM simulation regarding the velocity profiles rather well, despite the
totally different natures of the two methods.

Figure 13 compares the DEM and LBGrain simulations regarding the spatial distribution
of the shear rate γ̇ normalized by

√
g/Hi at four selected time instants. The DEM results

are obtained through a finite difference operation on the locally averaged velocity fields,
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Figure 11. Velocity vector fields of granular column collapses from numerical simulations using (a,c,e,g) the
DEM and (b,d, f ,h) LBGrain with a frictional base (μw = 0.35) at the selected time instants (t = 0.1, 0.2, 0.3
and 0.4 s). The length of the horizontal arrow in (a) corresponds to velocity scale 0.5 m s−1.
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Figure 12. Comparison between DEM and LBGrain simulations of granular column collapses regarding the
normalized velocity (u/

√
gHi) profiles at cross-sections x/Lt = 0.1, 0.3, 0.5, 0.7, 0.9 when (a) t = 1.3

√
Hi/g

and (b) t = 1.5
√

Hi/g. The vertical positions are normalized by the maximum flow thickness ymax from the
DEM simulation. Different symbols represent the DEM data at various cross-sections, with only one shown in
the legend.
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Figure 13. Spatial distribution of the shear rate γ̇ normalized by
√

g/Hi from numerical simulations using
(a,c,e,g) the DEM and (b,d, f ,h) LBGrain with a frictional base (μw = 0.35) at the selected time instants
(t = 0.1, 0.2, 0.3 and 0.4 s). All the plots share the colour bar in (a).

which are less smooth compared to the LBGrain results. Nevertheless, the overall strain
rate variations from the DEM and LBGrain are rather similar. More specifically, a high
shear rate region can be found close to the front and near the base when the flow is active,
i.e. before t = 0.3 s. This high shear rate region quickly disappears from t = 0.3 to 0.4 s.
A closer examination of the strain rate fields at t = 0.2 and 0.3 s shows that the high
shear rate region from the DEM extends further back towards the static zone compared
to the LBGrain results. This could be more evidence for the inadequacy of the frictional
boundary condition for granular flows (Artoni & Santomaso 2014), which deserves further
investigation.

5. Effects of initial aspect ratio and slope angle

In § 4, we calibrate the parameters of the LBGrain model so that it agrees with the DEM
simulation. However, the calibration is carried out for only one simple case, in which a
square granular column collapses over a horizontal bottom plane. Meanwhile, it is well
known that the dynamics of granular column collapses depends highly on the initial
aspect ratio (Hi/Li), and granular material flowing on a slope is encountered commonly
in nature. Therefore, it is important to test the performance of LBGrain when the slope
angle and the initial aspect ratio change. In this section, we simulate two additional cases:
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Figure 14. Snapshots of granular column collapses at t = 0.05, 0.1, 0.2 and 0.3 s from the DEM simulations.
Only particles with z-coordinates in the range (0.5lz − dp, 0.5lz + dp) are shown. The initial aspect ratio and
the slope angle are (a–d) 1 and 0, (e–h) 1 and 15◦, and (i–l) 2 and 0, respectively. The dashed lines in (a,e,i)
depict the initial column geometries. The yellow solid lines are the free-surface profiles extracted from the
companion LBGrain simulations at the corresponding time instants.

one with the geometry of the granular column unchanged and the slope angle increased
from 0 to 15◦; the other with the initial column length Li and height Hi adjusted to 5
and 10 cm, respectively, so it gives initial aspect ratio 2. In the DEM simulations, the
material properties and the rough base remain unchanged. Ideally, the LBGrain results
should match the DEM results automatically by simply changing the column geometry or
the gravity orientation correspondingly, without any further adjustments to the rheological
parameters and the basal friction coefficient.

5.1. Macroscopic observations
Figure 14 presents snapshots of granular column collapses at t = 0.05, 0.1, 0.2 and 0.3 s
from the DEM simulations. The yellow solid lines are the free-surface profiles extracted
from the companion LBGrain simulations at the corresponding time instants. For the
original case with the initial aspect ratio a and the slope angle θ equal to 1 and 0,
respectively, as shown in figures 14(a–d), the granular column collapse initiates with
the fall of the top right corner. The residual height drops only slightly within the first
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Figure 15. Plots of the normalized runout distance (Lt − Li)/Li against the normalized time t/
√

Hi/g from
the DEM and LBGrain simulations with various initial aspect ratios and slope inclination angles.

0.1 s. After that, the runout distance elongates further, and at t = 0.3 s, the free-surface
profile has a concave shape. When the slope angle θ increases to 15◦, as shown in
figures 14(e–h), the collapse dynamics becomes totally different. At t = 0.1 s, the residual
height drops significantly, and the upper surface of the granular column becomes more
rounded and is in a convex shape. The granular deposits at t = 0.2 and 0.3 s are thinner
and longer compared to the original case, indicating a higher flow mobility. At t = 0.3 s,
the free-surface profile is quite linear, and the column height is more than halved. When
the initial aspect ratio a increases to 2, as shown in figures 14(i–l), the vertical fall of
the granular column becomes more prominent, similar to the collapse on the slope. At
t = 0.3 s, the maximum flow thickness is about halved and the runout distance normalized
by Li is the longest, which exceeds 5. The free-surface profile, on the other hand, has a
slightly concave shape, similar to the original case. In all three cases tested in this study,
with different slope angles and initial aspect ratios, the LBGrain model is able to capture
the free-surface evolution from the DEM simulations very well using the same set of model
parameters.

Figure 15 compares the temporal evolution of the normalized runout distance (Lt −
Li)/Li from the DEM and LBGrain simulations. Again, the runout behaviours are totally
different when the slope angle or the initial aspect ratio changes. In terms of the normalized
quantities, the rate of acceleration is the largest when the initial aspect ratio increases to
2, but the final runout distance is the longest when the slope angle increases to 15◦. In
fact, the final runout distance in the case with θ = 15◦ would be even longer, which is
here limited by the size of the simulation domain, i.e. lx = 0.5 m. This is the reason why
the runout distance suddenly stops increasing at around t = 6

√
Hi/g in both the DEM and

LBGrain simulations; see the red lines in figure 15, and supplementary movie 1 (available
at https://doi.org/10.1017/jfm.2023.782). On the other hand, the simulation domain is large
enough to enclose the final deposit of the case with a = 2. Interestingly, although the
final normalized runout distance is about doubled when a increases from 1 to 2, the
flow deposition finishes at approximately the same normalized time, i.e. t = 4

√
Hi/g. It

agrees with our previous finding that the term
√

Hi/g is the relevant time scale for the
measure of flow duration in granular column collapse problems (Jing et al. 2018). All in
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Figure 16. Comparison between DEM and LBGrain simulations of granular column collapses regarding the
normalized velocity (u/

√
gHi) profiles at cross-sections x/Lt = 0.1, 0.3, 0.5, 0.7, 0.9 when t = 1.5

√
Hi/g. The

initial aspect ratio and the slope angle are (a) 1 and 15◦, and (b) 2 and 0, respectively. The vertical positions
are normalized by the maximum flow thickness ymax from the DEM simulation. Different symbols represent
the DEM data at various cross-sections, with only one shown in the legend.

all, the LBGrain model agrees with the DEM simulation regarding the runout evolution
throughout the whole flow duration for different slope angles and initial aspect ratios.

5.2. Flow kinematics
Apart from the morphologies of the granular deposits during the collapses, it is also vital to
capture the flow kinematics in the two generalized cases. Figure 16 compares the DEM and
LBGrain simulations regarding the velocity profiles at five selected cross-sections when
t = 1.5

√
Hi/g. Similarly to figure 12, the vertical position and the horizontal velocity are

normalized by the maximum flow thickness ymax in the DEM and
√

gHi, respectively.
First, the velocity profiles from LBGrain (solid lines in figure 16) almost overlap with the
particle velocities from the DEM (markers in figure 16), demonstrating the predictability
of the continuous LBGrain model.

When the slope angle is 15◦ and the initial aspect ratio is 1, as shown in figure 16(a), a
small finite basal slip velocity is observed at x/Lt = 0.7, which is absent when the slope
angle is 0; see figure 12(b). In addition, at the cross-section x/Lt = 0.9, the basal slip
velocity in LBGrain and the smallest particle velocity in the DEM increase significantly
as the slope angle increases. When the slope angle is 0 and the initial aspect ratio is
2, as shown in figure 16(b), a noticeable basal slip is still present at the cross-section
x/Lt = 0.7. And the basal slip velocity in LBGrain and the smallest particle velocity in the
DEM at the cross-section x/Lt = 0.9 also become larger compared to the case with initial
aspect ratio 1. This further highlights the importance of applying a partial-slip boundary
condition, e.g. the frictional boundary condition in this study, for the simulation of dense
granular flows, especially when the flow mobility is high, which can be caused by the flow
over an inclined slope or a high initial potential energy.

The kinetic energy of the granular flow is also monitored in both DEM and LBGrain
simulations during the whole flow process. From the physics perspective, we use the
evolution of kinetic energy as an indicator for flow regime transitions caused by the initial
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Figure 17. Comparison between DEM and LBGrain simulations of granular column collapses, with different
initial aspect ratios and slope inclination angles, regarding the temporal evolution of the translational kinetic
energy Ek, which is normalized by the initial potential energy E0 of each case.

aspect ratio and the packing density when the pore fluid effects cannot be ignored, as in
our previous studies (Jing et al. 2018; Yang et al. 2020). In engineering practice (e.g. the
risk assessment of landslides), the kinetic energy of the granular flow usually provides an
upper bound for the impact energy on the resisting structures along the flow path (Utili,
Zhao & Houlsby 2015). Figure 17 compares the temporal evolution of the kinetic energy
Ek from the DEM and LBGrain simulations of granular column collapses with various
initial aspect ratios and slope inclination angles. Note that the rotational component of the
kinetic energy in the DEM, which is not available in LBGrain, is found to be negligible,
and only the translational kinetic energy is considered. Another difference is the dimension
(the DEM is three-dimensional, and LBGrain is two-dimensional), which has been taken
into account by normalizing the kinetic energy Ek by the initial potential energy E0 of each
case.

Figure 17 shows that the two granular column collapses over the horizontal bottom plane
(θ = 0) reach the peak kinetic energy at around t = 1.5

√
Hi/g. The maximum Ek/E0 value

becomes significantly larger as the initial aspect ratio a increases, indicating that a higher
percentage of the potential energy is transferred to the kinetic energy during the collapse
of tall granular columns, resulting in a higher flow mobility and a longer runout distance.
For the case with a = 1 and θ = 15◦, the peak kinetic energy is reached at a later stage
(around t = 2.5

√
Hi/g), and the maximum Ek/E0 value becomes even larger with the

kinetic energy covering over 25 % of the initial potential energy. Taking the DEM results as
the reference, the LBGrain model overestimates the peak kinetic energy by at least 11.6 %,
which will lead to more conservative designs of countermeasures when considering the
kinetic energy as a measure of the destructive power of granular flows. Apart from that,
the effects of the initial aspect ratio and the slope angle on the kinetic energy are well
described by LBGrain, producing the same trend with the DEM simulations.

5.3. Discussion and limitations
Among numerous researches on the simulation of granular flows, the DEM is still
considered one of the most sophisticated methods because of its discrete nature and
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the relatively few assumptions. All the numerical data are accessible either directly or
indirectly via local average, such as the spatio-temporal distribution of flow velocity and
energy inside the flow, which are usually very difficult to be measured in laboratory
experiments. However, the use of the DEM for large-scale granular flow simulations is also
limited due to its high computational cost. For example, the DEM modelling of granular
column collapses in this study, consisting of more than 70 000 particles, take several days
to finish just 0.7 s of simulation in physical time. By contrast, the companion LBGrain
simulations take only a few minutes.

Although no special treatment of the boundary condition is required in the DEM, aside
from the normal particle–wall and particle–particle interactions, the definition of proper
boundary conditions in continuum models becomes exceptionally tricky, being neither
no-slip nor free-slip. In this study, we propose a frictional boundary condition in the
lattice Boltzmann framework as a first-order approximation to the stick–slip behaviour of
granular flows at the boundary. We find that after the calibration against one simple DEM
simulation, i.e. a square granular column collapsing over a horizontal bottom plane, the
LBGrain model is capable of simulating granular column collapses in other scenarios with
different initial aspect ratios and slope inclination angles. It highlights the generalization
ability of LBGrain, due mainly to the physics-informed rheology and boundary condition,
which is essential for any practical prediction of the complex granular flow behaviours.

Nevertheless, the limitations of the frictional boundary condition described by a
constant friction coefficient should not be overlooked. For instance, the frictional boundary
condition will predict a sharp transition between no-slip and constant acceleration in
an inclined chute flow, in which a steady slip state is possible only when tan θ = μw.
However, the actual behaviour of the granular chute flow is that a steady state with a
finite basal slip velocity can be obtained with a wide range of tan θ < μw (Artoni &
Santomaso 2014). The close agreement between the DEM and LBGrain in this study
could be due to the fact that the overall dynamics of transient granular column collapses is
dominated by the average basal resistance, which can be described well by a single friction
coefficient after calibration. And there seems to be a one-to-one relationship between
the friction coefficient and the geometric roughness of the boundary, which deserves
further investigations in more detail in a future study. Recently, detailed measurements of
stresses and flow kinematics at the boundary, both numerically and experimentally, provide
opportunities for discovering emerging boundary conditions for dense granular flows, e.g.
the weakening of effective wall friction and its scaling with the interface properties in
various flow configurations (Artoni & Richard 2015; Yang & Huang 2016; Artoni et al.
2018; Roche et al. 2021). The numerical framework proposed in this study can be extended
easily to model a dynamic friction coefficient, as long as the relevant flow quantities for
scaling are accessible during simulations.

6. Conclusions

In this paper, we propose a novel frictional boundary condition within the lattice
Boltzmann framework for better numerical simulations of dense granular flows. We adopt
a hybrid approach that first calculates the wall slip velocity based on the shear rate
limited by the Coulomb friction, followed by the reconstruction of unknown density
distribution functions through the modified bounce-back scheme. The newly proposed
boundary condition has several advantages, including the easy implementation in existing
LBM codes and the conservation of mass up to machine precision with the presence of a
free surface.
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To validate the numerical model, we simulate a modified plane Couette flow bounded by
two infinite parallel walls. The upper wall is no-slip and has a constant velocity driving the
fluid flow. The lower wall is stationary but becomes frictional so that wall slip occurs when
the shear stress exceeds a critical threshold defined by the Coulomb friction. Analytical
solutions for the velocity profile and the wall slip velocity, as functions of the friction
coefficient, are derived. We carry out LBM simulations with various friction coefficients
and find excellent agreement with the analytical solutions, including the regime transition
between no-slip and partial-slip. A close examination of the convergence rate shows that
the frictional boundary condition is second-order accurate when there is no slip, but it
drops to first order when slip occurs. Further improvements should be made to increase
the order of accuracy, so that the same convergence rate (i.e. second order) with the main
body of the fluid flow calculation can be achieved.

After validation, the LBM model is applied to simulate granular column collapse, which
has been well recognized as a model case to study geophysical flows. Discrete element
simulations are also carried out, whose results are considered to be accurate and are
taken as the reference to examine the performance of the LBM model. The rheological
parameters and the friction coefficient in LBM are first calibrated for a simple case of a
square granular column collapsing over a horizontal bottom plane, i.e. a = 1 and θ = 0.
The calibrated LBM model agrees with the companion DEM simulation in terms of both
the macroscopic observations of granular deposit morphologies and the complex internal
flow structures, i.e. the spatio-temporal distributions of flow velocity and shear rate. The
use of a commonly adopted no-slip boundary condition for the rough base underestimates
the runout distance and cannot reproduce the non-zero basal slip velocity, which is present
in the DEM simulation, especially close to the flow front.

Then the calibrated LBM model for granular column collapse is applied to study the
effects of initial aspect ratio a and the slope angle θ . It is found that the LBM model
automatically matches the DEM simulation for cases with different a and θ values,
without any further adjustments to the model parameters. The successful simulation of
the generalized cases demonstrates the predictability of the LBM model and the proposed
frictional boundary condition for dense granular flows. Benefitting from easy access to all
the numerical data, such as the flow kinetic energy, the proposed method has the potential
to become an alternative numerical tool for large-scale geophysical flow predictions, and
aid the design of mitigation measures. Our future work will focus on the extension of the
frictional boundary condition for curved walls, and the improvement of the computational
efficiency through heterogeneous computing.

Supplementary movie. A supplementary movie is available at https://doi.org/10.1017/jfm.2023.782.
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Figure 18. Comparison of free-surface profiles of granular column collapses at t = 0.05, 0.1, 0.2 and 0.3 s
from the LBGrain simulations with the linear and nonlinear formulations of μ(I)-rheology. The initial aspect
ratio and the slope angle are (a–d) 1 and 0, (e–h) 1 and 15◦, and (i–l) 2 and 0, respectively. The grey dashed
lines in (a,e,i) depict the initial column geometries.

Appendix A. LBGrain results with the linear formulation of µ(I)-rheology

The μ(I)-rheology defined by (2.11) relates the friction coefficient to the inertial number
nonlinearly with a smooth transition from the minimum (μs) to the maximum (μd) values.
Sections 4 and 5 demonstrate that this nonlinear formulation of μ(I)-rheology is capable
of capturing the collapsing dynamics of granular columns with various aspect ratios and
on different slopes. Meanwhile, one may question the necessity of using a nonlinear model
since the influence of the model parameters on the collapsing dynamics is relatively small
(Lagrée et al. 2011). Therefore, we performed an additional set of LBGrain simulations
using the linear formulation of μ(I)-rheology (da Cruz et al. 2005), μ(I) = μs + bI, which
has two model parameters, namely μs and b. We calibrated the linear model regarding the
temporal evolution of runout distance when the initial aspect ratio and the slope angle are
1 and 0, respectively. The resulting model parameters are μs = 0.22 and b = 0.7.

Figures 18(a–d) compare the free-surface profiles of granular column collapses from the
linear and nonlinear models at t = 0.05, 0.1, 0.2 and 0.3 s. The linear and nonlinear models
produce rather similar results. When the slope angle increases to 15◦, the free-surface
profiles from the linear and nonlinear models are still visually similar to each other before
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Figure 19. (a) Plot of the normalized runout distance (Lt − Li)/Li against the normalized time t/
√

Hi/g at
different resolution levels. (b) Comparison of the free-surface profiles at different resolution levels when t =
0.1, 0.2 and 0.4 s. The grey dashed line depicts the initial column geometry. Note that the horizontal and
vertical axes are not to scale.

t = 0.1 s; see figures 18(e, f ). However, the granular deposit from the nonlinear model
becomes slightly more elongated after t = 0.2 s, as shown in figures 18(g,h). A similar
behaviour can be observed when the initial aspect ratio increases to 2; see figures 18(i–l).
The good agreement between the linear and nonlinear models during the early stage
indicates that the two models perform similarly for small inertial numbers. However, the
linear model predicts the increase of μ with I without any saturation. It is likely the reason
why the linear model results in a shorter final runout distance when larger inertial numbers
are encountered during the later stage of collapse for steeper slopes and taller columns, due
to the larger total friction.

Appendix B. Convergence analysis of granular column collapse

It is important to ensure that an adequately high lattice resolution is adopted to achieve
grid independence of LBGrain simulations. We simulate the granular column collapse on
a horizontal bottom plane with the initial height Hi and length Li both equal to 8 cm, i.e.
the case we used for calibration in § 4. The dimensions of the simulation domain in the
x- and y-directions are 0.5 and 0.2 m, respectively. LBGrain simulations with three
different levels of lattice resolution, referring to 8, 9 and 10 for 256, 512 and 1024 lattice
cells along the x-direction, are tested. When the lattice spacing �x varies, the ratio �x2/�t
is kept constant at 0.01 so that the Mach number is small and the compressibility error is
maintained at a low level for all resolutions.

Figure 19(a) presents the temporal evolution of the normalized runout distance (Lt −
Li)/Li. Before t = 0.5

√
Hi/g, there is a negligible influence of the lattice resolution on the

runout distance. However, the granular column collapses at a faster rate as the resolution
level increases at the later stage. During deposition, the deposit elongates slowly at level 8
without a clear sign of stoppage, similar to creeping. It is potentially caused by the large
influence of regularization at a coarser resolution. The deposits almost stop deforming
after t = 5

√
Hi/g at levels 9 and 10, with the latter propagating slightly farther.

Figure 19(b) compares the free-surface profiles at three different resolution levels when
t = 0.1, 0.2 and 0.4 s. It is shown that the free-surface profiles at different resolution levels
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and time instants are rather similar, indicating that the overall collapse dynamics is affected
only slightly for the three tested resolutions. A larger difference is observed close to the
horizontal and vertical walls, which could be due to the lower convergence rate of the
frictional boundary condition when slip occurs. In this study, to balance the computational
accuracy and efficiency, the resolution level 9 is adopted for the LBGrain simulation of
granular column collapses.
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