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This paper considers a generalized panel data transformationmodel with fixed effects

where the structural function is assumed to be additive. In our model, no parametric

assumptions are imposed on the transformation function, the structural function, or

the distribution of the idiosyncratic error term. The model is widely applicable and

includes many popular panel data models as special cases. We propose a kernel-

based nonparametric estimator for the structural function. The estimator has a closed-

form solution and is easy to implement. We study the asymptotic properties of our

estimator and show that it is asymptotically normally distributed. The Monte Carlo

simulations demonstrate that our new estimator performs well in finite samples.

1. INTRODUCTION

The transformation model has received considerable attention since the pioneering

work of Box and Cox (1964). It includes many popular models as special cases,

including the accelerated failure time model, the Weibull hazard model, the

proportional hazard model, and the mixed proportional hazard model, among

others. The transformation model has been widely applied in many fields of

economics, such as labor economics, insurance, and industrial organization (see,

e.g., Ham and Rea Jr., 1987; Lancaster, 1997; Bhattacharjee et al., 2007). The

panel data transformation model is particularly appealing, as it allows fixed effects
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to account for unobservable individual heterogeneity. For example, Topel and

Ward (1992) and Pitt (2007) use the panel data transformation models to study

the issues of unemployment spells and insurance claim durations, respectively.

However, most of the existing panel data transformation models with fixed effects

need to parametrically specify the transformation function, the structural function,

or the distribution of the idiosyncratic error term. In practice, those parametric

specifications can be misspecified. It is well known that estimation and inference

based on misspecified models can be seriously misleading. To this end, this

paper considers a generalized panel data transformation model with fixed effects

where no parametric assumptions are imposed on the transformation function, the

structural function, or the distribution of the idiosyncratic error term.

Specifically, we consider the following model:

3(Yit) =
K∑

k=1

mk(Xk,it)+αi+ εit,i= 1, . . . ,n and t = 1, . . . ,T, (1.1)

where Yit is the observed dependent variable, (X1,it,X2,it, . . . ,XK,it)
′ is a K × 1

vector of observed covariates, αi is the individual fixed effect, εit is the idiosyn-

cratic error term, and 3(·),mk(·),k = 1, . . . ,K, are all general unknown func-

tions: R → R. Here, 3(·) is a strictly increasing transformation function and

(m1(·), . . . ,mK(·)) are the K structural functions.1 In applications, the K structural

functions (m1(·), . . . ,mK(·)) are often the parameters of interest. In addition, their

derivatives, (m′
1(·), . . . ,m′

K(·)), which measure the marginal effects, may be of

interest. For example, m′
k(Xk,it) can be interpreted as the marginal effect of Xk,it

on 3(Yit), where 3(·) is the cumulative (integrated) hazard function in survival

models. In addition, based on the estimator of m′
k(·),k = 1, . . . ,K, we can obtain

the relative marginal effects as

∂Yit

∂Xk,it

/
∂Yit

∂Xk′,it
=

m′
k

(
Xk,it

)

m′
k′
(
Xk′,it

) for any k and k′.

The main goal of this paper is to estimate (m1(·), . . . ,mK(·)) and their derivatives

(m′
1(·), . . . ,m′

K(·)).
Here, we impose an additive assumption on the structural function to partially

address the issue of “curse of dimensionality.” In the extension section, we also

briefly discuss a more general model where we do not impose the additive

structure, i.e.,

3(Yit) = m(X1,it,X2,it, . . . ,XK,it)+αi+ εit, i= 1, . . . ,n and t = 1, . . . ,T, (1.2)

with an unknown general function m(·) : RK → R.

We consider a short panel where T is fixed, and allow the fixed-effects αi to be

correlated with the covariates arbitrarily. Here, the main challenge is to deal with

1For simplicity, we refer to mk(·),k = 1, . . . ,K, as structural functions. Strictly speaking, they are only components

of the structural function, as the relationship between Xk,it and Yit also depends on the transformation function.
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the fixed-effects αi. Note that our model can be written as

Yit = 3−1

(
K∑

k=1

mk(Xk,it)+αi+ εit

)
,

where 3−1 (·) is the inverse function of 3(·) . We cannot use the simple first

difference or within transformation to remove αi due to the nonlinear function

3−1 (·). Our model is different from the following model:

Yit = 3−1

(
K∑

k=1

mk(Xk,it)

)
+αi+ εit,

where αi can be easily removed by the first difference. We impose the key assump-

tion that {X1,it,X2,it, . . . ,XK,it}t=1,...,T and {εit}t=1,...,T are independent over the

cross-sectional dimension i, and {εit}t=1,...,T are exchangeable. Let 1{·} be the indi-
cator function. The main innovation of our method is that we consider the binary

variable 1
{
Yit > Yi,t−1

}
that compares Yit and Yi,t−1 instead of considering Yit and

Yi,t−1 themselves.We show that the conditional expectation of 1
{
Yit > Yi,t−1

}
does

not depend on the fixed-effects αi, and can be approximated by a linear function

locally in a neighborhood. Based on the local linear approximation, we propose

a kernel-based estimator. Our estimator is easy to implement, as it is based on a

closed-form solution and no optimization is required. We show that our estimator

is asymptotically normally distributed.

To the best of our knowledge, our paper is the first attempt to address nonpara-

metric generalized panel data transformation models with fixed effects. Our paper

is related to two strands of the panel data literature: the nonparametric models and

the transformation models.We provide a brief review of each.2 There is a relatively

large literature on the nonparametric estimation of panel data models without the

transformation function (see, e.g., Chapter 19 in Li and Racine, 2007 for a review).

Henderson, Carroll, and Li (2008) and Su and Lu (2013) propose nonparametric

estimators for the model

Yit = m(X1,it,X2,it, . . . ,XK,it)+αi+ εit, (1.3)

where m(·) is a general function: RK → R. Li and Stengos (1996), Baltagi and Li

(2002), You, Zhou, and Zhou (2011), Ai, You, and Zhou (2014), and Su and Zhang

(2016) study the partially linear model

Yit = β ′Zit +m(X1,it,X2,it, . . . ,XK,it)+αi+ εit, (1.4)

where Zit is a vector of covariates that enters the linear component of themodel, β is

a vector of the corresponding coefficients, andm(·) is a general function:RK → R.

Mammen, Støve, and Tjøstheim (2009) consider the nonparametric additive

2To save space, we do not review the two large bodies of literature: linear panel data models and transformation

models with cross-sectional data, which are less relevant to our model.
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model

Yit =
K∑

k=1

mk(Xk,it)+αi+ εit. (1.5)

For models (1.3), (1.4), and (1.5), the fixed-effects αi can be easily differenced out.

Evdokimov (2011) considers a model

Yit = m(X1,it,X2,it, . . . ,XK,it,αi)+ εit,

where m(·) is a general function: RK+1 → R and the fixed-effects αi enter the

structural function nonseparably. Evdokimov (2011) proposes an estimator of

the structural function m(·) based on the method of conditional deconvolution.

Hoderlein and White (2012) and Chernozhukov et al. (2013) consider a more

general nonseparable model

Yit = m(X1,it,X2,it, . . . ,XK,it,αi,εit),

wherem(·) is a general function:RK+2 →R. They estimate certain average effects,

such as average treatment effects and local average responses. Here, we impose the

assumption on the general structural function m(·) as in model (1.1), and estimate

the components of the structural functions (m1(·), . . . ,mK(·)).
Another strand of literature related to our paper is panel data transformation

models. So far, the existing panel data transformation models in the literature are

usually parametric where the structural function is assumed to take a single index

form, that is,

3(Yit) = X′
itβ +αi+ εit, (1.6)

where Xit = (X1,it,X2,it, . . . ,XK,it)
′ and β = (β1, . . . ,βK) is the corresponding

slope coefficients. Horowitz and Lee (2004) and Lee (2008) propose partial and

weighted likelihood estimators assuming that the distribution of the error term

is parametrically specified. Abrevaya (1999) proposes a leapfrog estimator for β

based on the ranking principle. Chen (2010) imposes a strict stationary assumption

that marginal distributions of εit are identical over time and proposes a
√
n-

consistent estimator for β. Botosaru and Muris (2018) consider an estimator via

binarization. Wang and Chen (2020) relax the stationarity assumption and extend

the method to nonstationary panel data. Abrevaya (2000) and Chen and Wang

(2018) consider a more general model which allows αi to enter the structural

function nonseparably

Yit = m
(
X′
itβ,αi,εit

)
,

for a general function m(·) : R3 → R. Although the linear form X′
itβ can simplify

the estimation procedure, it can be restrictive and misspecified in practice. For

example, it is well acknowledged that the single index form X′
itβ precludes the

ratio of marginal effects of different covariates (i.e., relative effects) to vary. That
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is, the ratio of marginal effects of Xk,it and Xk′,it on Yit is

dYit

dXk,it

/
dYit

dXk′,it
= βk

βk′
,

which does not depend on the level of Xit,k and Xit,k′ . To overcome the limitations

of the existing methods, our paper relaxes the linear index assumption in the

transformationmodels. Note that even inmodel (1.1) with an additive structure, the

marginal effects or the ratio can vary with the level of covariates. In addition, many

existing estimators are solutions to nonconvex optimization problems; therefore,

the computational burden can be heavy. In contrast, our estimator is based on a

closed-form solution and is computationally easy.

The rest of this paper is organized as follows. Section 2 proposes a nonpara-

metric estimator for the structural function. In Section 3, we study the large

sample properties of the proposed estimator. In Section 4, we conduct Monte Carlo

simulations to illustrate the finite-sample performance of our estimator. Section 5

discusses two extensions of the model. First, we extend our method to a more

general model where the structural model is not necessarily additive. Second, we

discuss how to apply our method to cross-sectional data. Section 6 concludes our

paper.

2. MODELS AND ESTIMATORS

In this section, we propose our estimators for the structural function mk (·) and

its derivative m′
k (·) for model (1.1). Throughout the paper, random variables are

denoted using uppercase letters (e.g., Xk,it) and their realizations using lowercase

(e.g., xk). Calligraphic fonts are used to denote the supports of the corresponding

variables (e.g., Xk).

We first consider the simple case where T = 2. We assume that all covariates

are continuous variables. Accordingly, model (1.1) can be written as

3(Yi1) = m(Xi1)+αi+ εi1 =
K∑

k=1

mk(Xk,i1)+αi+ εi1, and

3(Yi2) = m(Xi2)+αi+ εi2 =
K∑

k=1

mk(Xk,i2)+αi+ εi2, (2.1)

where Xit = (X1,it,X2,it, . . . ,XK,it)
′ and m(Xit) =

∑K
k=1mk(Xk,it) is assumed to be

additive. We assume that each structural function mk(·),k = 1, . . . ,K, is unknown

and continuously differentiable. The fixed-effects αi are time-invariant and cap-

ture individuals’ unobserved heterogeneity. Without loss of generality, we focus

on the first structural function m1 (·) . For ease of notation, we write Xit =
(X1,it,X̃

′
it)

′ and m(Xit) = m1(X1,it) + m̃(X̃it), where X̃it = (X2,it, . . . ,XK,it)
′ and

m̃(X̃it) =
∑K

k=2mk(Xk,it).
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We first discuss the main idea of estimation and provide some heuristic argu-

ments. To facilitate our discussion, we introduce several key assumptions. More

regularity conditions will be provided in Section 3.

Assumption 1. {Xi1,Xi2,Yi1,Yi2,i = 1,2, . . . ,n} is a random sample generated

from (2.1) with the support of X ×X ×Y ×Y , where X ×X is compact. The

support of (Xi2 −Xi1) is compact, which includes 0 as an interior point.

Assumption 2. (i) (εi1,εi2) is independent of (Xi1,Xi2); (ii) εi1 and εi2 are

exchangeable in the sense that {εi1,εi2} and {εi2,εi1} have the same joint distri-

bution, and their density function is positive almost everywhere.

Assumption 3. The transformation function 3(·) is strictly increasing.
Assumption 1 describes the panel data generating process (DGP). Assumption 1

assumes that our data {Yit,Xit},i= 1, . . . ,n,t= 1 and 2, are an i.i.d. sample over the

cross-sectional dimension i. For convenience, the support of (Xi1,Xi2) is assumed

to be bounded.3 We assume that Xi1 and Xi2 have the same support; therefore;

they cannot be trending over time. The support of (Xi2 −Xi1) is also assumed

to be compact with 0 as an interior point to rule out time-invariant regressors.

Otherwise, the time-invariant regressors would be absorbed into the fixed-effects

αi. Assumption 2 is a key assumption for our estimation procedure. Assumption

2(i) requires that the error term (εi1,εi2) be independent of the covariates (Xi1,Xi2).

The full independence is often required for nonlinear models. Note that we allow

arbitrary correlation between (Xi1,Xi2) and fixed-effects αi. The independence

assumption is commonly imposed in short panel data transformation models (see,

e.g., Abrevaya, 1999; Chen, 2010). 4 Assumption 2(ii) imposes an exchangeability

assumption on (εi1,εi2). This is a reasonable assumption for a short panel. Note that

a more general condition, like strict stationarity, might be useful in cases where the

sample size T is large or indefinite, and in dynamic settings. Assumption 3 assumes

that the unknown transformation function 3(·) is strictly monotone, which is

standard in the literature (see, e.g., Cavanagh and Sherman, 1998; Abrevaya, 1999;

Chen, 2002).

To estimate transformation models, we often need to impose certain scale

and location normalizations. In our model, note that equation (1.1) holds if we

replace 3(y),
∑K

k=1mk(xk), and εit with γ (3(y)+ δ0), γ
(∑K

k=1 (mk(xk)+ δk)

)
,

and γ
(
εit + δ0 −

∑K
k=1 δk

)
, respectively, for any constants γ,δ0,δ1, . . . , and δK .

Therefore, we need to impose one scale and K+ 1 location normalizations. For

convenience, we impose Assumption 4. Define 1i = εi1 − εi2, and let f1(·) be the
probability density function (pdf) of 1i.

3This can be weakened to allow for unbounded support by using a trimming function in our estimators below, as in

Härdle and Stoker (1989) and Powell, Stock, and Stoker (1989).

4Here, we assume that εi ⊥ Xi, where εi = (εi1,εi2),Xi = (Xi1,Xi2), and ⊥ is denoted as independence. Abrevaya

(1999) and Chen (2010) impose the conditional independence assumption that εi ⊥ Xi | αi. Neither εi ⊥ Xi nor

εi ⊥ Xi | αi implies the other. For our model, we find that εi ⊥ Xi is more appropriate.
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Assumption 4. The scale normalization is that f1(0) = 1. Let
(
x1,0,x2,0, . . . ,xk,0

)

and y0 be interior points of X and Y, respectively. The K+1 location normaliza-

tions are that 3(y0) = 0, and mk

(
xk,0

)
= 0, for k = 1, . . . ,K.

We compare the two dependent variables and define di = 1{Yi2 > Yi1}, where
1{·} is the indicator function. The strict monotonicity of 3(y) implies that

di = 1{3(Yi2) > 3(Yi1)}
= 1{m(Xi2)+αi+ εi2 > m(Xi1)+αi+ εi1}
= 1{1i < m(Xi2)−m(Xi1)} .

The advantage of considering di is that the fixed-effects αi are removed by using the

strict monotonicity property of the transformation function. Our estimator utilizes

the information of the symmetric distribution of 1i, which is shown in the lemma

below.

LEMMA 2.1. If εi1 and εi2 are exchangeable, then the distribution of 1i

is symmetric around zero, and F1(0) = 1/2, where F1(·) is the cumulative

distribution function (cdf) of 1i.

For a fixed evaluation value x1 ∈ X1, let m
′
1(x1) be the first-order derivative of

m1(x1). Consider a neighborhood where X1,i2 ≈ x1, X1,i1 ≈ x1, and X̃i2 − X̃i1 ≈
0. Note that X̃i2 − X̃i1 ≈ 0 suggests that we need to match X̃i1 and X̃i2. A Taylor

expansion gives

E(di|Xi1,Xi2) = Pr (1i < m(Xi2)−m(Xi1)|Xi1,Xi2)

= F1(m1(X1,i2)−m1(X1,i1)+ m̃(X̃i2)− m̃(X̃i1))

≈ F1(0)+ f1(0)m′
1(x1)(X1,i2 −X1,i1)+ f1(0) ·

[
m̃(X̃i2)− m̃(X̃i1)

]

≈ F1(0)+ f1(0)m′
1(x1)(X1,i2 −X1,i1)

= 1

2
+m′

1(x1)(X1,i2 −X1,i1). (2.2)

The first equality holds due to the independence assumption between (εi1,εi2) and

(Xi1,Xi2). The second equality is by the definition of F1. The third approximation

applies the Taylor expansion to the neighborhood where X1,i2 and X1,i1 are close

to x1 and X̃i2 − X̃i1 is close to 0. The bias term due to the last term in the third

line above can be shown to be asymptotically negligible under our regularity

conditions, which yields the fourth approximation. The last equality uses the fact

that F1(0) = 1
2
and f1(0) = 1. Equation (2.2) serves as the basis for the estimation

of m′
1(x1). So far, we have argued that the generalized panel data transformation

model (2.1) implies a locally linear relation,

di =
1

2
+m′

1(x1)(X1,i2 −X1,i1)+ηi, (2.3)
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where

ηi = [di−E(di|Xi1,Xi2)]+
[
E(di|Xi1,Xi2)− 1

2
−m′ (x1)

(
X1,i2 −X1,i1

)]
.

Here, ηi signifies the prediction error di − E(di|Xi1,Xi2) and the approximation

error. Equation (2.3) suggests that we can run a regression of (di − 1
2
) on (X1,i2 −

X1,i1) locally to estimatem′
1(x1). Specifically, we minimize the following weighted

least-squares (LS) criterion function:

min
b

n∑

i=1

{[(
di−

1

2

)
−b · (X1,i2 −X1,i1)

]2

k1

(
X1,i2 − x1

h1

)
k1

(
X1,i1 − x1

h1

)
k̃

(
X̃i2 − X̃i1

h̃

)}
, (2.4)

where k1(·) and k̃ (·) are the kernel functions. Specifically, k1(·) is a univariate

kernel function, and h1 is its corresponding bandwidth parameter. With a slight

abuse of notation, we let k̃(·) be the (K−1)×1 product kernel function with h̃ as

its bandwidth parameter. That is, k̃
(
X̃i2−X̃i1

h̃

)
=

K∏

ℓ=2

kℓ

(
Xℓ,i2−Xℓ,i1

h̃

)
, where kℓ(·) is

a univariate kernel function.5 The solution to the above minimization problem is

the estimator of m′
1 (x1), which is denoted as m̂′

1(x1) :

m̂′
1(x1) =

∑n
i=1(di− 1

2
)(X1,i2 −X1,i1)k1

(
X1,i2−x1

h1

)
k1

(
X1,i1−x1

h1

)
k̃
(
X̃i2−X̃i1

h̃

)

∑n
i=1(X1,i2 −X1,i1)2k1

(
X1,i2−x1

h1

)
k1

(
X1,i1−x1

h1

)
k̃
(
X̃i2−X̃i1

h̃

) . (2.5)

To estimate the original structural functionm1 (·), we can take an integral of m̂′
1(·).

Note that we make the normalization that m1(x1,0) = 0 for a fixed value x1,0, as

stated in Assumption 4. Subsequently, the estimator of m1(x1) is simply

m̂1(x1) =
∫ x1

x1,0

m̂′
1(ξ1)dξ1. (2.6)

We can estimate mk(·) analogously for k = 2, . . . ,K.

Remark 2.1. As for most estimators with nonparametric denominators, trim-

ming is imposed for the estimator to be well-behaved. We omit it for simplicity.

Remark 2.2. Our estimator can be easily extended to the case of T > 2.

Assume that (εi1,εi2, . . . ,εiT) are independent of (Xi1,Xi2, . . . ,XiT), and exchange-

able. Along the same line as equation (2.5), the nonparametric estimator of

5For notation simplicity, we use the same bandwidth h̃ for different covariates. They can be different. In actual

applications, we should at least let the bandwidths be proportional to the sample standard deviations of their

corresponding covariates.
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m′
1 (x1) is

m̂′
1(x1) =

∑
s<t

∑n
i=1 (dits− 1

2
)(X1,it−X1,is)k1

(
X1,it−x1

h1

)
k1

(
X1,is−x1

h1

)
k̃
(
X̃it−X̃is

h̃

)

∑
s<t

∑n
i=1 (X1,it−X1,is)

2k1

(
X1,it−x1

h1

)
k1

(
X1,is−x1

h1

)
k̃
(
X̃it−X̃is

h̃

) ,

for s,t ∈ {1,2, . . . ,T}, where dits = 1{Yit > Yis}. m̂1(x1) can be estimated in the

same way as in equation (2.6).

Remark 2.3. For ease of notation, equation (2.2) only takes a local linear

approximation. We can also approximate E(di|Xi1,Xi2) using a higher-order series

(e.g., vth-order power series) locally if m1(·) is sufficiently smooth. Specifically,

in the neighborhood where X1,i2 ≈ x1, X1,i1 ≈ x1, and X̃i2 − X̃i1 ≈ 0,

E(di|Xi1,Xi2) ≈ 1

2
+m′

1(x1)(X1,i2 −X1,i1)+·· ·+ 1

v!
m

(v)
1 (x1)(X1,i2 −X1,i1)

v.

Then, m′
1 (x1) can be estimated by the first element of b̂, where

b̂= argmin
b

Qn(b),

with

Qn(b) =
n∑

i=1


di−

1

2
−

v∑

j=1

bj(X1,i2 −X1,i1)
j




2

k1

(
X1,i2 − x1

h1

)
k1

(
X1,i1 − x1

h1

)
k̃

(
X̃i2 − X̃i1

h̃

)
,

and b= (b1, . . . ,bv).

Remark 2.4. For efficiency consideration, our estimators use the information

of the symmetric distribution of 1i and impose F1(0) = 1
2
for the intercept. The

symmetry is implied by the exchangeability assumption of (εi1,εi2) . However, this

exchangeability assumption can be relaxed. If (εi1,εi2) is not exchangeable, the

distribution of1i may not be symmetric. Therefore, F1(0) is not necessarily equal

to 1
2
. In this instance, we can replace 1

2
in (2.4) with an additional parameter to be

estimated. In particular, we can allow time-fixed effects in our model. Specifically,

for the second period, we have 3(Yi2) =
∑K

k=1mk(Xk,i2)+αi+ (λ+ εi2), where λ

is the time-fixed effect. In this case, 1i = εi1 − (λ+ εi2) does not have symmetric

distribution in general and F1(0) 6= 1
2
; hence, F1(0) has to be treated as an

unknown parameter.

Remark 2.5. Our estimators in equations (2.5) and (2.6) and the asymptotic

theory below do not rely on the additive structure of m̃(·). Therefore, our estimators
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actually apply to a slightly more general model:

3(Yit) = m1(X1,it)+ m̃(X̃it)+αi+ εit, i= 1, . . . ,n and t = 1, . . . ,T,

where m̃(·) is a general function: RK−1 → R.

3. LARGE SAMPLE PROPERTIES

In this section, we study the large sample properties of the estimators of m′
1 (x1)

and m1 (x1) . We first make some assumptions. Let W be the support of 1i. The

pdf of 1i at w is denoted as f1(w), for w ∈ W . Let p0(x) be the joint density of

Xit at x, where x= (x1, . . . ,xK) .6 Let x10 and x20 be two finite interior points of the

support of X1,it such that x10 < x20.

Assumption 5. (i) m1(x1) is three times continuously differentiable, and m̃(x̃)

is continuously differentiable up to sth-order. (ii) Xit has a nondegenerate joint

density p0 (·)with supportX , which is a nondegenerate subset ofRK . p0(x) is third-

order continuously differentiable with respect to x1 and sth-order continuously

differentiable with respect to x̃, namely, there exists a constant M such that∣∣∣∣
∂sp0(x)

∂x
s2
2

···∂xsKK

∣∣∣∣ ≤ M, where s = s2 + ·· · + sK . (iii) f1(w) is (s+ 2) times continu-

ously differentiable. (iv) Q(x1) = 2K2

∫
p20 (x1,x̃1)dx̃1 with K2 =

∫
k1 (u)u2du is

uniformly bounded away from zero on [x10,x20].

Assumption 6. (i) The kernel function k1(u) is a symmetric second-order kernel

function of bounded variation and bounded support such that
∫
k1(u)du= 1,

∫
uk1(u)du= 0, and

∫
u2k1(u)du 6= 0.

(ii) The kernel function k̃(u) is a product kernel with each component as an sth-

order kernel of bounded variation. That is, for each element of k̃,kℓ(u) satisfies

∫
kℓ(u)du= 1,

∫
upkℓ(u)du= 0, if p= 1, . . . ,s−1, and

∫
uskℓ(u)du 6= 0.

Let δsn =
(

lnn

nh4
1
h̃K−1

)1/2

+h21 + h̃s and δqn =
(

lnn

nh2
1
h̃K−1

)1/2

+h21 + h̃s.

Assumption 7A. The bandwidths h1 → 0 and h̃→ 0 satisfy

nh41h̃
K−1 → ∞,

√
nh41h̃

K−1δsnδqn = o(1),

√
nh41h̃

K−1h̃s = o(1),

and

√
nh41h̃

K−1h21 → λ1 < ∞.

6Here, we assume Xi1 and Xi2 have the same joint distribution for ease of notation. In general, their distributions can

be different with densities p1(x) and p2(x).
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Assumption 7B. The bandwidths h1 → 0 and h̃→ 0 satisfy

nh31h̃
K−1 → ∞,

√
nh31h̃

K−1δsnδqn = o(1),

√
nh31h̃

K−1h̃s = o(1),

and

√
nh31h̃

K−1h21 → λ2 < ∞.

Assumption 5 contains certain smoothness conditions for the structural func-

tions, the joint density of Xit, and the density of 1i. In particular, in part (ii), we

require that the joint density of Xit be nondegenerate, which rules out interaction

terms, e.g., X1,it = W1,it ·W2,it,X̃it =
(
W1,it, W2,it

)
for some base covariates W1,it,

and W2,it. In Assumption 6, the kernel function k1(·) can be a normal density

function, but a higher-order kernel for k̃(·) is required when K is large in order to

remove the influence brought bymatching X̃it on the asymptotic bias. Assumptions

7A and 7B specify the conditions for bandwidths
(
h1,h̃

)
, which are imposed

for the estimators of m′
1 (x1) and m1 (x1), respectively. They can be satisfied, for

example, if h1 = c1n
−1/5 and h̃ = c̃n

− 1
2(K−1)+2s with s = 2(K− 1), where c1 and c̃

are some constants.

The following two theorems establish the large sample properties of the estima-

tors in (2.5) and (2.6), respectively.

Theorem 3.1. Let Assumptions 1–6 and 7A hold. Then,

m̂′
1(x1)−m′

1(x1) = h21b1(x1)+o(h21)+O
(
h̃s
)

+Op

(
lnn

nh41h̃
K−1

)1/2

,

uniformly in x1 ∈ [x10,x20]; in addition, for any interior point x1 ∈ X1,m̂
′
1(x1) is

consistent and asymptotically normal,

√
nh41h̃

K−1(m̂′
1(x1)−m′

1(x1)−h21b1(x1))
d→ N(0,σ 2

1 (x1)), (3.1)

where b1(x1) and σ 2
1 (x1) are defined in the Appendix.

Theorem 3.2. Let Assumptions 1–6 and 7B hold. Then,

m̂1(x1)−m1(x1) = h21b2(x1)+o(h21)+O
(
h̃s
)

+Op

(
lnn

nh31h̃
K−1

)1/2

,

uniformly in x1 ∈ [x10,x20]; in addition, for any interior point x1 ∈ X1,m̂1(x1) is

consistent and asymptotically normal,

√
nh31h̃

K−1(m̂1(x1)−m1(x1)−h21b2(x1))
d→ N(0,σ 2

2 (x1)), (3.2)

where b2(x1) and σ 2
2 (x1) are defined in the Appendix.

https://doi.org/10.1017/S0266466621000554 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466621000554


368 SONGNIAN CHEN ET AL.

The formal proofs are given in the Appendix. Theorems 3.1 and 3.2 establish

the consistency and asymptotic normality of our estimators of m′
1(x1) and m1(x1)

for any fixed evaluation point x1. The convergence rates of m̂′
1(x1) and m̂1(x1)

depend on h̃ and K− 1. Therefore, our estimators still suffer from the “curse of

dimensionality.” The intuition is that to estimate m′
1(x1) and m1 (x1), we need

to match other covariates X̃i,1 and X̃i,2, and the influence of matching cannot be

completely removed. Nevertheless, the additive assumption in (2.1) ameliorates

the curse of dimensionality to some degree. As discussed below, if we do not

impose the additive structure, the convergence rate of the estimator of the structural

function will be slower.

For the purpose of conducting statistical inference, we can make the bias terms

negligible asymptotically by undersmoothing, i.e., choosing a small bandwidth h1
with a suboptimal rate. For the asymptotic variance terms, we could estimate them

by replacing the various elements with their sample analogs.

For completeness, one may be interested in estimating 3(·). Consider the case
with T = 2. For a fixed evaluation point y, define dyi2 = 1{Yi2 < y} and dy0i1 =
1{Yi1 < y0}. For simplicity, assume that (εi1,εi2) is independent of (Xi1,Xi2,αi),

and let F denote the distribution function of εi1 (and also εi2). Then, following

Chen (2002), we can show that

E(dyi2 −dy0i1|Xi1,Xi2,αi) = F(3(y)−m(Xi2)−αi)−F(−m(Xi1)−αi) > 0,

if and only if

3(y) > m(Xi2)−m(Xi1),

where we have imposed the location normalization 3(y0) = 0. Denote m̂(x) =∑K
k=1 m̂k(xk). Consequently, given m̂(Xi1) and m̂(Xi2), for i= 1,2, . . . ,n, 3(y) can

be estimated by 3̂(y), which solves

max
b∈L

Ŵn(b;y,m̂),

where L is a compact set, and

Ŵn(b;y,m̂) = 1

n

n∑

i=1

(dyi2 −dy0i1) ·1{
(
b> m̂(Xi2)− m̂(Xi1)

)
}.

Due to technical and practical complications associated with the step function in

the above objective function, we work with a smoothed version

Ŵns(b;y,m̂) = 1

n

n∑

i=1

(dyi2 −dy0i1)Ky

(
m̂(Xi2)− m̂(Xi1)−b

hy

)
,

where Ky(t) =
∫ t
−∞ ky(u)du, ky is a kernel density function on [−1,1] such that

Ky(t) = 0 when t ≤ −1 and Ky(t) = 1 when t ≥ 1, and hy is the corresponding

bandwidth parameter. For more details on how to construct a smooth function to

replace a step function, see, e.g., Kaplan and Sun (Kaplan and Sun (2017, p. 113).
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Here, m(x) can be consistently estimated uniformly with m̂(x)−m(x) = Op(δn),

where δn = h21+ h̃s+
(
nh31h̃

K−1/ lnn
)−1/2

. The following theorem states that under

some regularity conditions, 3̂(·) is uniformly consistent for 3(·). Let y1 and y2 be
two finite interior points of the support of Yit such that y1 < y2.

Theorem 3.3. Let Assumptions 1–6 and 7B hold. In addition, assume that ky(·)
is symmetric with

∫
ky(u)du= 1 and δn/hy = o(1), then

sup
y∈[y1,y2]

∣∣∣3̂(y)−3(y)

∣∣∣= op (1) .

Note that here we only provide the consistency result. Ascertaining the right rate

of convergence and limiting distribution involves tedious and delicate arguments,

which are not considered here.

Remark 3.1. Compared with the conventional additive model in cross-sectional

data, the convergence rates of our estimators are slower. This is due to the panel

structure for which there is no averaging aspect over the time dimension to speed

up the rate of convergence. Nevertheless, to the best of our knowledge, there does

not exist a consistent estimator for the nonparametric regression model subject

to unknown transformation in a panel data setting. We can also consider the

average effect, such asE
(
m′

1(X1,it)
)
, which can be estimated by the sample analog:

1
n

∑n
i=1 m̂

′
1

(
X1,it

)
. Following the analysis of m̂1(x1), we can also show that it

converges to E
(
m′

1(X1,it)
)
at the rate of

√
nh31h̃

K−1.

Remark 3.2. As suggested by the Co-Editor, we could consider a multistage

estimation procedure and use our estimators as initial estimators, which can

potentially achieve a faster convergence rate. Specifically, let ̂̃m(·) and 3̂(·) be the
estimators of m̃(·) and 3(·), respectively, as described above. Then, using them as

initial estimators, we could estimate m1 (·) in the following model:

3̂(Yit)− ̂̃m(X̃it) = m1(X1,it)+αi+ εit + ζit, (3.3)

where ζit = 3̂(Yit)−3(Yit)−̂̃m(X̃it)+ m̃(X̃it) signifies the estimation error. Model

(3.3) is a standard nonparametric panel model except that we have to take into

account the estimation errors of 3̂(·) and ̂̃m(·). Model (3.3) can be estimated

using existing methods, e.g., the kernel estimator proposed in Su and Lu (2013).

Multistage estimators are often used in additive models (see, e.g., Horowitz and

Mammen, 2004; Ozabaci, Henderson, and Su, 2014). Although it is practical

to implement the estimation procedure as (3.3) for our model, it is challenging

to study its theoretical properties. The difficulty is to establish the uniform

consistency of ̂̃m(·) and particularly 3̂(·) for their whole support with sufficiently
fast convergence rates. For example, Chen’s Chen’s (2002) rank estimator of 3(·)
is only uniformly consistent over a compact set, and thus we can only estimate3(·)
consistently over a finite interval when the support of Y is the real line. Therefore,

we leave a detailed study on this multistage estimator for future research.
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4. SIMULATIONS

We conduct Monte Carlo simulations to examine the finite-sample performance of

the proposed estimator. To save space, we only report the detailed results for the

estimator of m1 (·) .7 We consider six DGPs.

DGP I: 3(Yit) = X2
1,it +αi+ εit, where εit ∼ U(0,1);

DGP II: 3(Yit) = X2
1,it +αi + εit, where (aεit +b) ∼ X 2(2) with a = 1

2

(
9
8

)3
and

b= 1
2
exp

(
− 1

2a

)
;

DGP III: 3(Yit) = X3
1,it +0.5X2

1,it +αi+ εit, where εit ∼ U(0,1);

DGP IV: 3(Yit) = X2
1,it +X2

2,it +αi+ εit, where εit ∼ U(0,1);

DGP V: 3(Yit) = X2
1,it+X2

2,it+αi+εit, where (aεit+b) ∼X 2(2)with a= 1
2

(
9
8

)3

and b= 1
2
exp

(
− 1

2a

)
;

DGP VI: 3(Yit) = X3
1,it +0.5X2

1,it +X2
2,it +αi+ εit, where εit ∼ U(0,1).

In all DGPs, we take the Box–Cox transformation of Bickel and Doksum

(1981) with 3(y) = |y|λsgn(y)−1

λ
for λ = 0.8. In DGPs I–III, X1,it is drawn from

the uniform distribution U(−1,1). In DGPs IV–VI, both X1,it and X2,it follow

U(−1,1), and they are correlated with a correlation coefficient of ρ ≈ 0.2. αi =
0.5(X1,i1 +X1,i2)+ 0.5ηi, where ηi is an N(0,1) random variable. The error term

follows either a uniform distribution or a chi-square distribution of freedom 2. The

former is symmetric, but the latter is asymmetric. Note that we have made sure

that the normalization condition f1 (0) = 1 is satisfied for all DGPs. For DGPs I–

III, the number of covariates is 1 (K = 1); therefore, there is only one structural

function, m1(x) = x2 or m1(x) = x3+0.5x2. For DGPs IV–VI, K = 2, and there are

two structural functions which are additive. Specifically, m(x) =m1(x1)+m2(x2),

where m1(x1) = x21 and m2(x2) = x22 for DGPs IV and V, and m1(x1) = x31 +0.5x21
and m2(x2) = x22 for DGP VI. We use the rectangular method for integration. The

kernel function k1(·) is a standard normal density. The baseline bandwidth for h1 is

chosen according to Silverman’s rule of thumb: h∗
1 = 1.06 · σ̂1 ·n−1/5, where σ̂1 is

the sample standard deviation of X1,it. To examine the robustness of our estimator

to the choice of bandwidth, we consider h1 = c1×h∗
1, where c1 takes three different

values from {1,1.5, 2}. With regard to k̃(·), we use the second-order Gaussian

kernel, with the bandwidth as h̃= σ̂2 ·n−1/6 for simplicity, where σ̂2 is the sample

standard deviation of X2,i1 −X2,i2. We can verify that the choice of (k1 (·),k̃ (·)),
and (h1,h̃) satisfies Assumptions 6, 7A and 7B.8 The number of replications for

the simulations is 1,000. We consider two sample sizes: n= 500 and 2,000.

Tables 1–6 report bias (Bias), standard deviation (SD), and root-mean-square

error (RMSE) of m̂1(x1) for DGPs I–VI, respectively. We choose eight evaluation

7The results for the estimator of its derivative m′
1 (·) are available upon request.

8We also consider a higher-order kernel for k̃ (·) in our simulations. We find that the higher-order kernels can result

in greater variance and be inferior to lower-order kernels. This phenomenon is well documented in the nonparametric

literature (see, e.g., Lewbel, 2000).
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Table 1. Estimation results for DGP I

x1 −0.8 −0.6 −0.4 −0.2 0.2 0.4 0.6 0.8

m1 (x1) 0.64 0.36 0.16 0.04 0.04 0.16 0.36 0.64

c1 n= 500

Bias −0.0876 −0.0206 0.0106 0.0138 0.0155 0.0148 −0.0154 −0.0834

SD 1 0.1166 0.0963 0.0796 0.0554 0.0544 0.0783 0.0962 0.1188

RMSE 0.1458 0.0984 0.0802 0.0571 0.0566 0.0797 0.0973 0.1451

Bias −0.1736 −0.0694 −0.0119 0.0068 0.0084 −0.0096 −0.0667 −0.1710

SD 1.5 0.0651 0.0507 0.0393 0.0259 0.0258 0.0389 0.0503 0.0649

RMSE 0.1854 0.0860 0.0411 0.0268 0.0271 0.0401 0.0836 0.1829

Bias −0.2605 −0.1251 −0.0416 −0.0030 −0.0019 −0.0400 −0.1234 −0.2588

SD 2 0.0436 0.0332 0.0245 0.0154 0.0155 0.0247 0.0333 0.0434

RMSE 0.2641 0.1294 0.0482 0.0157 0.0156 0.0470 0.1278 0.2624

Bias −0.1461 −0.0595 −0.0132 0.0039 0.0061 −0.0096 −0.0548 −0.1425

SD CV 0.1067 0.0801 0.0604 0.0372 0.0359 0.0591 0.0808 0.1085

RMSE 0.1809 0.0997 0.0618 0.0374 0.0364 0.0598 0.0976 0.1791

ccv1 1.4978 1.4182 1.6142 1.8768 1.8704 1.5772 1.4250 1.5056

n= 2,000

Bias −0.0466 0.0012 0.0182 0.0145 0.0186 0.0235 0.0053 −0.0428

SD 1 0.0869 0.0741 0.0633 0.0448 0.0466 0.0640 0.0774 0.0918

RMSE 0.0986 0.0741 0.0658 0.0471 0.0502 0.0682 0.0776 0.1012

Bias −0.1101 −0.0320 0.0055 0.0117 0.0140 0.0087 −0.0291 −0.1077

SD 1.5 0.0463 0.0375 0.0309 0.0211 0.0221 0.0318 0.0393 0.0492

RMSE 0.1194 0.0493 0.0313 0.0241 0.0262 0.0329 0.0489 0.1184

Bias −0.1750 −0.0700 −0.0121 0.0068 0.0081 −0.0103 −0.0682 −0.1736

SD 2 0.0302 0.0237 0.0186 0.0124 0.0127 0.0190 0.0245 0.0318

RMSE 0.1776 0.0739 0.0222 0.0142 0.0150 0.0216 0.0725 0.1765

Bias −0.0940 −0.0298 0.0009 0.0087 0.0114 0.0045 −0.0272 −0.0913

SD CV 0.0768 0.0595 0.0459 0.0288 0.0312 0.0467 0.0618 0.0797

RMSE 0.1213 0.0665 0.0459 0.0301 0.0332 0.0469 0.0675 0.1212

ccv1 1.4424 1.4558 1.7490 2.0408 2.0038 1.7394 1.4796 1.4340

Notes: c1 refers to the constant for the bandwidth choice. c
c
1v refers to the average value of the constant

chosen by our CV method (equation (4.1)).

points of x1: (−0.8, −0.6, −0.4, −0.2,0.2,0.4,0.6,0.8). We summarize the main

findings. First, in general, Bias, SD, and RMSE all decrease when the sample

size increases from 500 to 2,000. For example, consider DGP I and the evaluation

point x1 = −0.8 in Table 1. The RMSE reduces from (0.1458, 0.1854, 0.2641) for

c1 = (1,1.5,2) to (0.0986, 0.1194, 0.1776), respectively, when n increases from
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Table 2. Estimation results for DGP II

x1 −0.8 −0.6 −0.4 −0.2 0.2 0.4 0.6 0.8

m1 (x1) 0.64 0.36 0.16 0.04 0.04 0.16 0.36 0.64

c1 n= 500

Bias −0.1494 −0.0560 −0.0047 0.0103 0.0094 −0.0034 −0.0550 −0.1514

SD 1 0.1197 0.0969 0.0793 0.0555 0.0559 0.0804 0.0987 0.1233

RMSE 0.1914 0.1119 0.0794 0.0564 0.0566 0.0805 0.1129 0.1952

Bias −0.2326 −0.1048 −0.0286 0.0024 0.0019 −0.0292 −0.1063 −0.2363

SD 1.5 0.0658 0.0497 0.0380 0.0251 0.0254 0.0386 0.0504 0.0673

RMSE 0.2417 0.1159 0.0475 0.0252 0.0255 0.0484 0.1176 0.2457

Bias −0.3106 −0.1552 −0.0560 −0.0070 −0.0075 −0.0571 −0.1573 −0.3141

SD 2 0.0450 0.0335 0.0244 0.0153 0.0155 0.0249 0.0342 0.0462

RMSE 0.3138 0.1588 0.0611 0.0168 0.0172 0.0623 0.1610 0.3175

Bias −0.2098 −0.0954 −0.0284 0.0008 −0.0005 −0.0284 −0.0957 −0.2125

SD CV 0.1078 0.0805 0.0602 0.0381 0.0382 0.0622 0.0828 0.1115

RMSE 0.2359 0.1248 0.0666 0.0381 0.0382 0.0683 0.1265 0.2400

ccv1 1.6012 1.4946 1.6460 1.9044 1.8806 1.6030 1.5052 1.6210

n= 2,000

Bias −0.1055 −0.0301 0.0083 0.0146 0.0128 0.0079 −0.0296 −0.1052

SD 1 0.0892 0.0765 0.0627 0.0446 0.0447 0.0635 0.0761 0.0892

RMSE 0.1381 0.0822 0.0633 0.0469 0.0464 0.0640 0.0817 0.1379

Bias −0.1747 −0.0691 −0.0098 0.0090 0.0080 −0.0103 −0.0695 −0.1754

SD 1.5 0.0488 0.0389 0.0310 0.0211 0.0213 0.0313 0.0391 0.0491

RMSE 0.1814 0.0793 0.0325 0.0229 0.0227 0.0330 0.0797 0.1821

Bias −0.2373 −0.1072 −0.0294 0.0023 0.0019 −0.0296 −0.1075 −0.2378

SD 2 0.0331 0.0252 0.0192 0.0125 0.0125 0.0192 0.0253 0.0332

RMSE 0.2396 0.1101 0.0351 0.0127 0.0127 0.0353 0.1104 0.2401

Bias −0.1566 −0.0641 −0.0120 0.0067 0.0054 −0.0120 −0.0633 −0.1561

SD CV 0.0775 0.0610 0.0458 0.0292 0.0289 0.0466 0.0615 0.0785

RMSE 0.1748 0.0885 0.0473 0.0299 0.0294 0.0481 0.0882 0.1747

ccv1 1.4914 1.4950 1.7184 1.9618 1.9690 1.7056 1.4974 1.4988

Notes: c1 refers to the constant for the bandwidth choice. c
c
1v refers to the average value of the constant

chosen by our CV method (equation (4.1)).

500 to 2,000. Second, although the performance of our estimators depends on the

choice of bandwidth (i.e., c1), it is not too sensitive. As suggested by the theory,

when the bandwidth increases, the variance tends to decrease, and the bias tends

to increase. This shows the trade-off between the bias and the variance. In general,

Silverman’s rule of thumb works reasonably well. Third, as expected, we usually
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Table 3. Estimation results for DGP III

x1 −0.8 −0.6 −0.4 −0.2 0.2 0.4 0.6 0.8

m1 (x1) −0.192 −0.036 0.016 0.012 0.028 0.144 0.396 0.832

c1 n= 500

Bias −0.0547 −0.0742 −0.0512 −0.0244 0.0384 0.0534 0.0082 −0.1502

SD 1 0.1215 0.0989 0.0799 0.0551 0.0542 0.0777 0.0932 0.1089

RMSE 0.1332 0.1236 0.0949 0.0603 0.0664 0.0942 0.0935 0.1855

Bias −0.0508 −0.1036 −0.0901 −0.0524 0.0544 0.0542 −0.0311 −0.2526

SD 1.5 0.0739 0.0564 0.0419 0.0264 0.0255 0.0382 0.0480 0.0580

RMSE 0.0896 0.1180 0.0994 0.0587 0.0600 0.0664 0.0572 0.2592

Bias −0.0480 −0.1251 −0.1205 −0.0754 0.0642 0.0487 −0.0679 −0.3341

SD 2 0.0532 0.0390 0.0271 0.0160 0.0151 0.0236 0.0311 0.0387

RMSE 0.0716 0.1311 0.1235 0.0771 0.0660 0.0542 0.0747 0.3364

Bias −0.0577 −0.0999 −0.0860 −0.0478 0.0506 0.0529 −0.0047 −0.1739

SD CV 0.1010 0.0776 0.0647 0.0464 0.0372 0.0563 0.0773 0.1002

RMSE 0.1163 0.1265 0.1076 0.0666 0.0628 0.0772 0.0774 0.2007

ccv1 1.7034 1.9940 2.1970 1.7696 2.2012 1.5706 1.1922 1.1392

n= 2,000

Bias −0.0559 −0.0562 −0.0331 −0.0137 0.0315 0.0499 0.0250 −0.0940

SD 1 0.0918 0.0757 0.0626 0.0442 0.0470 0.0648 0.0768 0.0875

RMSE 0.1075 0.0943 0.0708 0.0463 0.0565 0.0817 0.0807 0.1284

Bias −0.0539 −0.0826 −0.0618 −0.0322 0.0433 0.0539 −0.0041 −0.1831

SD 1.5 0.0521 0.0402 0.0313 0.0209 0.0223 0.0320 0.0383 0.0449

RMSE 0.0749 0.0918 0.0693 0.0384 0.0487 0.0627 0.0385 0.1885

Bias −0.0511 −0.1045 −0.0914 −0.0534 0.0549 0.0542 −0.0327 −0.2565

SD 2 0.0366 0.0270 0.0197 0.0124 0.0126 0.0188 0.0234 0.0282

RMSE 0.0628 0.1080 0.0935 0.0548 0.0563 0.0573 0.0402 0.2580

Bias −0.0621 −0.0801 −0.0633 −0.0336 0.0441 0.0530 0.0158 −0.1107

SD CV 0.0770 0.0581 0.0496 0.0360 0.0334 0.0464 0.0618 0.0782

RMSE 0.0989 0.0989 0.0804 0.0493 0.0553 0.0704 0.0638 0.1355

ccv1 1.4826 1.9178 2.1358 1.7880 2.1952 1.7030 1.2134 1.0812

Notes: c1 refers to the constant for the bandwidth choice. c
c
1v refers to the average value of the constant

chosen by our CV method (equation (4.1)).

observe a relatively large bias when the evaluation point is close to the boundary

(−1 or 1), e.g., x1 = −0.8 or x1 = 0.8. Figure 1 plots the true functions of m1(·)
for the six DGPs and their estimates averaging more than 1,000 replications when

n = 2,000 and c1 = 1. In general, the estimates and true parameters match well

except those close to the boundary.
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Table 4. Estimation results for DGP IV

x1 −0.8 −0.6 −0.4 −0.2 0.2 0.4 0.6 0.8

m1 (x1) 0.64 0.36 0.16 0.04 0.04 0.16 0.36 0.64

c1 n= 500

Bias −0.1440 −0.0590 −0.0128 0.0027 0.0111 −0.0040 −0.0485 −0.1310

SD 1 0.1769 0.1454 0.1189 0.0812 0.0822 0.1214 0.1464 0.1745

RMSE 0.2280 0.1568 0.1195 0.0812 0.0829 0.1214 0.1542 0.2181

Bias −0.2107 −0.0941 −0.0260 0.0015 0.0039 −0.0233 −0.0911 −0.2068

SD 1.5 0.0994 0.0764 0.0581 0.0374 0.0385 0.0600 0.0770 0.0964

RMSE 0.2330 0.1212 0.0637 0.0374 0.0387 0.0643 0.1192 0.2281

Bias −0.2864 −0.1418 −0.0503 −0.0058 −0.0050 −0.0492 −0.1405 −0.2850

SD 2 0.0686 0.0518 0.0375 0.0231 0.0234 0.0378 0.0512 0.0661

RMSE 0.2945 0.1509 0.0628 0.0238 0.0239 0.0621 0.1495 0.2925

Bias −0.1942 −0.0910 −0.0300 −0.0025 0.0040 −0.0232 −0.0828 −0.1826

SD 0.1510 0.1180 0.0898 0.0571 0.0575 0.0900 0.1167 0.1492

RMSE CV 0.2459 0.1489 0.0946 0.0571 0.0576 0.0928 0.1430 0.2358

ccv1 1.7248 1.6638 1.8098 2.0154 1.9966 1.8068 1.6412 1.7128

c̃cv 1.6904 1.7166 1.8356 1.9478 1.8490 1.7686 1.6952 1.6912

n= 2,000

Bias −0.0918 −0.0291 0.0032 0.0108 0.0095 0.0037 −0.0253 −0.0888

SD 1 0.1511 0.1267 0.1036 0.0735 0.0724 0.1036 0.1265 0.1500

RMSE 0.1767 0.1299 0.1036 0.0742 0.0730 0.1036 0.1290 0.1742

Bias −0.1446 −0.0549 −0.0067 0.0080 0.0076 −0.0063 −0.0533 −0.1433

SD 1.5 0.0814 0.0649 0.0516 0.0349 0.0349 0.0510 0.0636 0.0800

RMSE 0.1659 0.0850 0.0520 0.0358 0.0357 0.0514 0.0829 0.1641

Bias −0.2018 −0.0876 −0.0217 0.0038 0.0038 −0.0210 −0.0864 −0.2008

SD 2 0.0531 0.0410 0.0314 0.0205 0.0203 0.0308 0.0402 0.0527

RMSE 0.2087 0.0967 0.0381 0.0208 0.0206 0.0373 0.0953 0.2076

Bias −0.1381 −0.0568 −0.0102 0.0072 0.0035 −0.0133 −0.0571 −0.1388

SD 0.1196 0.0939 0.0724 0.0493 0.0486 0.0730 0.0951 0.1212

RMSE CV 0.1826 0.1097 0.0731 0.0498 0.0487 0.0742 0.1109 0.1842

ccv1 1.7152 1.7444 1.9596 2.1146 2.1090 1.9224 1.7252 1.7318

c̃cv 1.6978 1.6850 1.6958 1.8674 1.8184 1.6604 1.5762 1.7022

Notes: c refers to the constant for the bandwidth choice. cc1v and c̃
cv refers to the average value of the

constant chosen by our CV method (equation (4.1)).
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Table 5. Estimation results for DGP V

x1 −0.8 −0.6 −0.4 −0.2 0.2 0.4 0.6 0.8

m1 (x1) 0.64 0.36 0.16 0.04 0.04 0.16 0.36 0.64

c1 n= 500

Bias −0.1958 −0.0877 −0.0244 0.0008 0.0036 −0.0247 −0.0909 −0.2025

SD 1 0.1783 0.1445 0.1169 0.0821 0.0846 0.1239 0.1517 0.1855

RMSE 0.2647 0.1689 0.1194 0.0821 0.0846 0.1263 0.1768 0.2746

Bias −0.2641 −0.1267 −0.0419 −0.0032 −0.0020 −0.0419 −0.1286 −0.2682

SD 1.5 0.1032 0.0780 0.0588 0.0385 0.0395 0.0615 0.0813 0.1064

RMSE 0.2835 0.1488 0.0722 0.0386 0.0395 0.0744 0.1521 0.2885

Bias −0.3330 −0.1704 −0.0646 −0.0101 −0.0099 −0.0648 −0.1716 −0.3357

SD 2 0.0727 0.0541 0.0390 0.0241 0.0244 0.0396 0.0552 0.0742

RMSE 0.3409 0.1788 0.0754 0.0262 0.0263 0.0759 0.1803 0.3438

Bias −0.2476 −0.1213 −0.0422 −0.0044 −0.0035 −0.0435 −0.1243 −0.2534

SD 0.1490 0.1145 0.0865 0.0564 0.0593 0.0915 0.1181 0.1535

RMSE CV 0.2890 0.1668 0.0962 0.0566 0.0594 0.1013 0.1714 0.2962

ccv1 1.8192 1.7342 1.8386 2.0320 2.0262 1.8658 1.7530 1.8316

c̃cv 1.7698 1.8326 1.8216 1.9392 1.9074 1.8248 1.8176 1.7712

n= 2,000

Bias −0.1558 −0.0673 −0.0147 0.0070 0.0018 −0.0215 −0.0758 −0.1713

SD 1 0.1468 0.1263 0.1065 0.0756 0.0774 0.1037 0.1226 0.1449

RMSE 0.2140 0.1431 0.1074 0.0759 0.0774 0.1058 0.1441 0.2244

Bias −0.2087 −0.0939 −0.0255 0.0030 0.0011 −0.0282 −0.0980 −0.2160

SD 1.5 0.0823 0.0665 0.0538 0.0366 0.0360 0.0517 0.0641 0.0802

RMSE 0.2244 0.1150 0.0595 0.0367 0.0360 0.0588 0.1171 0.2304

Bias −0.2610 −0.1240 −0.0397 −0.0015 −0.0024 −0.0410 −0.1264 −0.2653

SD 2 0.0563 0.0429 0.0325 0.0211 0.0208 0.0316 0.0416 0.0546

RMSE 0.2670 0.1312 0.0513 0.0211 0.0209 0.0517 0.1331 0.2709

Bias −0.2030 −0.0958 −0.0292 0.0017 −0.0017 −0.0349 −0.1038 −0.2181

SD 0.1159 0.0940 0.0758 0.0519 0.0522 0.0717 0.0898 0.1128

RMSE CV 0.2337 0.1342 0.0812 0.0519 0.0522 0.0797 0.1372 0.2455

ccv1 1.7968 1.7950 1.9948 2.1012 2.1120 1.9848 1.8176 1.8380

c̃cv 1.7366 1.7036 1.7400 1.8100 1.8204 1.7378 1.7698 1.8006

Notes: c refers to the constant for the bandwidth choice. cc1v and c̃
cv refers to the average value of the

constant chosen by our CV method (equation (4.1)).
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Table 6. Estimation results for DGP V

x1 −0.8 −0.6 −0.4 −0.2 0.2 0.4 0.6 0.8

m1 (x1) −0.192 −0.036 0.016 0.012 0.028 0.144 0.396 0.832

c1 n= 500

Bias −0.0211 −0.0609 −0.0501 −0.0280 0.0329 0.0331 −0.0274 −0.1995

SD 1 0.1859 0.1486 0.1206 0.0818 0.0821 0.1207 0.1451 0.1684

RMSE 0.1870 0.1605 0.1305 0.0864 0.0884 0.1251 0.1475 0.2610

Bias −0.0185 −0.0854 −0.0813 −0.0485 0.0466 0.0373 −0.0580 −0.2894

SD 1.5 0.1129 0.0836 0.0613 0.0383 0.0383 0.0591 0.0751 0.0907

RMSE 0.1144 0.1195 0.1019 0.0618 0.0603 0.0699 0.0948 0.3032

Bias −0.0185 −0.1059 −0.1087 −0.0689 0.0566 0.0349 −0.0886 −0.3621

SD 2 0.0822 0.0589 0.0402 0.0235 0.0226 0.0363 0.0486 0.0609

RMSE 0.0842 0.1211 0.1159 0.0728 0.0610 0.0503 0.1010 0.3672

Bias −0.0238 −0.0792 −0.0750 −0.0456 0.0431 0.0344 −0.0405 −0.2282

SD 0.1452 0.1099 0.0889 0.0607 0.0571 0.0870 0.1146 0.1453

RMSE CV 0.1471 0.1354 0.1163 0.0759 0.0715 0.0935 0.1215 0.2705

ccv1 1.9334 2.1472 2.1688 1.9584 2.1804 1.8294 1.3944 1.2994

c̃cv 1.7514 1.7952 1.9758 2.1128 1.8926 1.7630 1.6802 1.7254

n= 2,000

Bias −0.0242 −0.0448 −0.0296 −0.0125 0.0223 0.0295 −0.0097 −0.1449

SD 1 0.1586 0.1331 0.1076 0.0744 0.0724 0.1030 0.1241 0.1425

RMSE 0.1604 0.1404 0.1115 0.0755 0.0757 0.1071 0.1244 0.2032

Bias −0.0285 −0.0700 −0.0561 −0.0295 0.0356 0.0374 −0.0303 −0.2200

SD 1.5 0.0915 0.0716 0.0553 0.0360 0.0350 0.0510 0.0620 0.0738

RMSE 0.0958 0.1001 0.0788 0.0465 0.0499 0.0633 0.0690 0.2320

Bias −0.0282 −0.0909 −0.0837 −0.0493 0.0482 0.0411 −0.0526 −0.2841

SD 2 0.0634 0.0473 0.0345 0.0214 0.0204 0.0308 0.0389 0.0476

RMSE 0.0693 0.1024 0.0905 0.0537 0.0524 0.0514 0.0654 0.2881

Bias −0.0227 −0.0617 −0.0525 −0.0286 0.0328 0.0317 −0.0236 −0.1754

SD 0.1203 0.0961 0.0781 0.0551 0.0513 0.0733 0.0951 0.1197

RMSE CV 0.1224 0.1142 0.0941 0.0620 0.0609 0.0798 0.0979 0.2123

ccv1 1.8620 2.0892 2.1496 1.9848 2.2004 1.9282 1.4378 1.2528

c̃cv 1.6284 1.7028 1.9088 2.0178 1.8612 1.6730 1.6198 1.7442

Notes: c refers to the constant for the bandwidth choice. cc1v and c̃
cv refers to the average value of the

constant chosen by our CV method (equation (4.1)).
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Figure 1. m1 (·) and the average of m̂1(·) for n= 2,000 and c1 = 1.
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We also propose a data-driven method to choose the bandwidth. Specifically,

we set h1 = c1h
0
1 and h̃ = c̃h̃0, where (h01,h̃

0) = (1.06σ̂1n
−1/5,n−1/6σ̂2) for c1 ∈

{0.6, . . . ,2.6} and c̃ ∈ {0.6, . . . ,2.6}. For each evaluation point x1, we choose the

constant (c1,c̃) by minimizing the following leave-one-out cross-validation (CV)

function

CV (c1,c̃) =
n∑

i=1

(
di−

1

2
− m̂′

1,−i(x1)(X1,i2 −X1,i1)

)2

k1

(
X1,i2 − x1

h01

)
k1

(
X1,i1 − x1

h01

)
k̃

(
X̃i2 − X̃i1

h̃0

)
, (4.1)

where m̂′
1,−i(x1) signifies the leave-one-out estimator using the bandwidth (h1,h̃)

with the ith observation deleted. Note that the above CV function uses (h01,h̃
0) as

preliminary bandwidths.9 The selected values of (c1,c̃) are denoted as (ccv1 ,c̃cv).

At the bottom of Tables 1–6, we report the estimation results and (ccv1 ,c̃cv) when

the CVmethod is implemented. In general, our CVmethod performs well. In most

DGPs, the bandwidth selected by the CVmethod tends to be relatively large, which

can lead to a relatively large bias.

5. EXTENSIONS

In this section, we briefly discuss two possible extensions. First, we allow the

structural function to be nonadditive. Second, we consider how to estimate the

structural function when we only have cross-sectional data.

5.1. Models with a Nonadditive Structure

The generalized panel data transformation model with a nonadditive structural

function is specified as

3(Yit) = m(Xit)+αi+ εit, (5.1)

where m(·) is a general function: RK → R. The nonadditive structure allows for

arbitrary interactions among observed covariates. For simplicity, we take K = 2

and T = 2. Therefore, the model is

3(Yit) = m(X1,it,X2,it)+αi+ εit,

for t = 1,2.

9The CV function is quite different from the standard CV function for nonparametric kernel regressions. The reason

is that our approximation equation (2.3) only holds in a particular neighborhood where X1,i2 ≈ x1,X1,i1 ≈ x1, and

X̃i2 − X̃i1 ≈ 0. To control for that, we use kernel functions with preliminary bandwidths in our CV function. Although

our CV function appears intuitive, it is difficult to justify theoretically.
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We consider a neighborhood where (X1,i2,X2,i2) ≈ (x1,x2) and (X1,i1,X2,i1) ≈
(x1,x2), where (x1,x2) is an evaluation point. A Taylor expansion yields

m(X1,i2,X2,i2)−m(X1,i1,X2,i1)

≈ m
′
1(x1,x2)(X1,i2 −X1,i1)+m

′
2(x1,x2)(X2,i2 −X2,i1),

where m′
1(x1,x2) = ∂m(x1,x2)

∂x1
and m

′
2(x1,x2) = ∂m(x1,x2)

∂x2
. It follows that

E(di|Xi1,Xi2)

= F1(m(X1,i2,X2,i2)−m(X1,i1,X2,i1))

≈ F1 (0)+ f1(0)[m′
1(x1,x2)(X1,i2 −X1,i1)+m

′
2(x1,x2)(X2,i2 −X2,i1)]

= 1

2
+m

′
1(x1,x2)(X1,i2 −X1,i1)+m

′
2(x1,x2)(X2,i2 −X2,i1). (5.2)

Let wi(x1,x2) = k1

(
X1,i2−x1

h1

)
k1

(
X1,i1−x1

h1

)
k2

(
X2,i2−x2

h2

)
k2

(
X2,i1−x2

h2

)
, where k1(·)

and k2(·) are kernel functionswith respect to the first and second covariates, respec-
tively. h1 and h2 are the corresponding bandwidth parameters. With wi(x1,x2) as a

weight, equation (5.2) suggests that m′
1(x1,x2) and m

′
2(x1,x2) can be estimated by

a local linear regression of
(
di− 1

2

)
on (X1,i2−X1,i1) and (X2,i2−X2,i1). Therefore,

we minimize the following LS criterion function:

min
(b1,b2)

n∑

i=1

{[(
di−

1

2

)
−
(

1X1,i

1X2,i

)′(
b1
b2

)]2
wi(x1,x2)

}
,

where 1X1,i = (X1,i2 − X1,i1) and 1X2,i = (X2,i2 − X2,i1). Define 1Xi =(
1X1,i,1X2,i

)′
. The solution to the above minimization problem is the estimator

of
(
m

′
1(x1,x2), m

′
2(x1,x2)

)
:

(
m̂

′
1(x1,x2)

m̂
′
2(x1,x2)

)
=
(

n∑

i=1

1Xi ·1X′
i ·wi

)−1( n∑

i=1

1Xi ·
(
di−

1

2

)
·wi

)
.

We impose the location normalization that m
(
x1,0,x2,0

)
= 0 for an interior point(

x1,0,x2,0
)
. For a fixed interior evaluation point (x1,x2), note that

∫ x1

x1,0

m
′
1(ξ1,x2,0)dξ1 = m(x1,x2,0)−m(x1,0,x2,0),

and
∫ x2

x2,0

m
′
2(x1,ξ2)dξ2 = m(x1,x2)−m(x1,x2,0).

Subsequently,

m(x1,x2) =
∫ x2

x2,0

m
′
2(x1,ξ2)dξ2 +

∫ x1

x1,0

m
′
1(ξ1,x2,0)dξ1. (5.3)
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By replacing the integrands with
(
m̂

′
1(x1,x2),m̂

′
2(x1,x2)

)
, equation (5.3) suggests

the nonparametric estimator of m(x1,x2) as

m̂(x1,x2) =
∫ x2

x2,0

m̂
′
2(x1,ξ2)dξ2 +

∫ x1

x1,0

m̂
′
1(ξ1,x2,0)dξ1. (5.4)

To save space, we omit details about the asymptotic properties of m̂(x1,x2).

Although the nonadditive model (5.1) is more general, it has several disadvantages.

First, the estimator of the nonadditive model has a slower convergence rate than

that of the additive model. For example, we can show that m̂(x1,x2) in (5.4) is

asymptotically normally distributed with a convergence rate of

√
nh31h

2
2 +nh21h

3
2,

which is slower than that of m̂(x1) in (2.6)

(√
nh31h2 for K = 2

)
. Second, here,

we are only considering the simple case where K = 2; therefore, we only need

to calculate two integrals in (5.4). When K > 2, recovering the original structural

function from its derivative estimators is complicated and requires multiple inte-

grations, which can be tedious. Third, the univariate function in the additive model

is usually easier to interpret than the general function m(·) : RK→ R.

5.2. Models with Cross-Sectional Data

Our approach can also be applied to cross-sectional data.With cross-sectional data,

we cannot allow fixed effects to account for unobservable individual heterogeneity.

Specifically, consider the cross-sectional transformation model with an additive

structure,

3(Yi) =
K∑

k=1

mk(Xk,i)+ εi, i= 1, . . . ,n. (5.5)

This model has been studied in several papers, including Horowitz (2001),

Horowitz and Mammen Horowitz and Mammen (2004, 2007, 2011), and Jacho-

Chávez, Lewbel and Linton (2010). Our approach has two main advantages. First,

unlike the existing methods which require both monotonicity and smoothness of

the transformation function, our paper relaxes the smoothness condition. Second,

our estimator is computationally easy.

Throughout this subsection, we assume an i.i.d. sample of (Xi,Yi), and that

εi is independent of Xi, where Xi = (X1,i, . . . ,XK,i). Define 1ij =
(
εj− εi

)
. Let

F1(·) and f1(·) be the cdf and pdf of 1ij, respectively. As in the panel data case,

we normalize f1(0) = 1 and mk(xk,0) = 0, for k = 1, . . . ,K, for an interior point

(x1,0,x2,0, . . . ,xK,0) inX . We also focus on the first structural functionm1 (·) . Write

Xi =
(
X1,i,X̃

′
i

)′
and m̃

(
X̃i

)
=
∑K

k=2mk(Xk,i), where X̃i = (X2,i, . . . ,XK,i)
′. Define

dij = 1
{
Yi > Yj

}
. Considering a neighborhood where X1,i ≈ x1,X1,j ≈ x1, and
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X̃i− X̃j ≈ 0, we have

E(dij|Xi,Xj) = F1[m1(X1,i)−m1(X1,j)+ m̃(X̃i)− m̃(X̃j)]

≈ F1(0)+ f1(0)m′
1(x1)

(
X1,i−X1,j

)

= 1

2
+m′

1(x1)
(
X1,i−X1,j

)
.

The first equality holds because of the independence between 1ij and
(
Xi,Xj

)
.

In the approximation formula, we remove m̃(·) by matching X̃i with X̃j and apply

a local linear approximation to the first structural function. The i.i.d. assumption

implies that 1ij is symmetric around zero, and thus F1(0) = 1
2
. The above local

approximation suggests that we can obtain the estimator of m′
1(x1) by regressing

(dij− 1
2
) on (X1,i−X1,j) locally. We minimize the following LS criterion function:

min
b

∑

i6=j

{[(
dij−

1

2

)
−b · (X1,i−X1,j)

]2

k1

(
X1,i− x1

h1

)
k1

(
X1,j− x1

h1

)
k̃

(
X̃i− X̃j

h̃

)}
,

where the weights k1

(
X1,i−x1
h1

)
k1

(
X1,j−x1
h1

)
k̃
(
X̃i−X̃j
h̃

)
are kernel functions defined

analogously to the panel case. The solution to the above minimization problem is

the estimator of m′
1(x1) :

m̂′
1(x1) =

∑
i6=j(dij− 1

2
)(X1,i−X1,j)k1

(
X1,i−x1
h1

)
k1

(
X1,j−x1
h1

)
k̃
(
X̃i−X̃j
h̃

)

∑
i6=j
(
X1,i−X1,j

)2
k1

(
X1,i−x1
h1

)
k1

(
X1,j−x1
h1

)
k̃
(
X̃i−X̃j
h̃

) .

Subsequently, the estimator of m1(x1) is

m̂1(x1) =
∫ x1

x1,0

m̂′
1(ξ)dξ . (5.6)

Analogously, we can estimate mk(xk), for k= 2, . . . ,K. To save space, we omit the

detailed asymptotic analysis.

6. CONCLUSIONS

This paper considers a generalized panel data transformation model with fixed

effects where no parametric assumptions are imposed on the transformation

function, the structural functions, or the distribution of the error term. Therefore,

compared with the existing models which often require certain parametric assump-

tions, our model is less likely to suffer from model misspecfication. We propose

a kernel-based nonparametric estimator for the structural functions. Our proposed

estimator has an explicit expression and is easy to implement. These properties are
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particularly appealing in practice. We show that our estimator is asymptotically

normal.

There are several directions for future research. First, our estimators still suffer

from the curse of dimensionality to some degree even if we assume that the

structural function is additive. This is due to the fact that we have to match other

covariates locally. It will be interesting to develop an estimation procedure to

avoid this problem, which may require stronger assumptions. Second, we require

full independence between all covariates and all error terms. This type of strict

exogeneity assumption rules out dynamic models with lagged dependent variables.

Honoré and Kyriazidou (2000) consider the use of the maximum score estimator

for a binary choice fixed-effects model with lagged dependent variables. More

generally, Honoré and Lewbel (2002) study a binary choice fixed-effects model

without the strict exogeneity assumption. It will be useful for our model to allow

dynamics in future studies.
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APPENDIX

This appendix contains the proofs for the main results.

Proof of Lemma 2.1. For any w ∈ W , whereW is the support of 1i,

F1(−w) = P(εi1 − εi2 ≤ −w) = P(εi2 − εi1 ≥ w)

= 1−P(εi2 − εi1 < w) = 1−P(εi1 − εi2 < w)

= 1−F1(w),

where the fourth equality holds because of the exchangeability assumption. Let w= 0, then

F1(−w) = 1−F1(w) implies 2F1(0) = 1, namely, F1(0) = 1
2
. �

Proof of Theorem 3.1. Note that

[
m̂′
1(x1)−m′

1(x1)
]
= Sn(x1)+Rn(x1)

Qn(x1)
,

where

Sn(x1) = 1

nh1

n∑

i=1

(Pi−
1

2
−m′

1(x1)(X1,i2 −X1,i1))

(
X1,i2 −X1,i1

h1

)
1

h21

1

h̃K−1

k1

(
X1,i1 − x1

h1

)
k1

(
X1,i2 − x1

h1

)
k̃

(
X̃i2 − X̃i1

h̃

)
,

Rn(x1) = 1

nh1

n∑

i=1

(di−Pi)

(
X1,i2 −X1,i1

h1

)
1

h21

1

h̃K−1

k1

(
X1,i1 − x1

h1

)
k1

(
X1,i2 − x1

h1

)
k̃

(
X̃i2 − X̃i1

h̃

)
,

and

Qn(x1) = 1

n

n∑

i=1

(
X1,i2 −X1,i1

h1

)2 1

h21

1

h̃K−1

k1

(
X1,i1 − x1

h1

)
k1

(
X1,i2 − x1

h1

)
k̃

(
X̃i2 − X̃i1

h̃

)
,

https://doi.org/10.1017/S0266466621000554 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466621000554


ESTIMATION OF GENERALIZED TRANSFORMATION MODELS 385

with Pi = E(di|Xi1,Xi2) = E(di|X1,i1,X1,i2,X̃i1,X̃i2). We further decompose the above

into
[
m̂′
1(x1)−m′

1(x1)
]

= 1

Q(x1)
E [Sn(x1)]+

1

Q(x1)
Rn(x1)

+ 1

Q(x1)
[(Sn(x1)−E [Sn(x1)])]+

(
1

Qn (x1)
− 1

Q(x1)

)
[Sn(x1)+Rn(x1)]

≡ A1 (x1)+A2 (x1)+A3 (x1)+A4 (x1), say,

where Q(x1) is the probability limit of Qn (x1) . It is easy to show that Q(x1) =
2K2

∫
p20 (x1,x̃1)dx̃1 with K2 =

∫
k1 (u)u2du, where p0(x̄1,x̃1) and p0(x̄2,x̃2) are joint

densities of (X1,i1,X̃i1) and (X1,i2,X̃i2) evaluated at (x̄1,x̃1) and (x̄2,x̃2), respectively. We

analyze the four terms separately.

We first analyze A1 (x1) . Define

g(x̄1,x̄2,x̃1,x̃2) = F(x̄1,x̄2,x̃1,x̃2)− 1

2
−m′

1(x1)(x̄2 − x̄1),

where F(x̄1,x̄2,x̃1,x̃2) = E(di|X1,i1 = x̄1, X1,i2 = x̄2, X̃i1 = x̃1, X̃i2 = x̃2). Note that

g(x̄1,x̄1,x̃1,x̃1) = 0. Under Assumptions 5, 6, and 7A, with some tedious algebra, we can

show that

1

Q(x1)
E (Sn(x1))=

1

Q(x1)

1

h1

∫
g(x̄1,x̄2,x̃1,x̃2)

(
x̄2 − x̄1

h1

)
1

h21

k1

(
x̄1 − x1

h1

)
k1

(
x̄2 − x1

h1

)

× 1

h̃K−1
k̃

(
x̃2 − x̃1

h̃

)
p0(x̄1,x̃1)p0(x̄2,x̃2)dx̄1dx̄2dx̃1dx̃2

= h21b1(x1)+o(h21)+O
(
h̃s
)
,

uniformly in x1 ∈
[
x10,x20

]
, where

b1(x1) = b11(x1)+b12(x1)

Q(x1)
,

with

b11(x1) = 1

6

∑

α1+α2=3

∫
∂3

∂ x̄
α1
1 ∂ x̄

α2
2

g(x1,x1,x̃1,x̃1) ·p20(x1,x̃1)dx̃1

×
∫ ∫

u
α1
1 u

α2
2 (u2 −u1)k1(u1)k1(u2)du1du2,

and

b12(x1) = 1

2

∑

α1+α2=2, β1+β2=1

∫
∂2

∂ x̄
α1
1 ∂ x̄

α2
2

g(x1,x1,x̃1,x̃1)

· ∂

∂ x̄
β1
1

p0(x1,x̃1) · ∂

∂ x̄
β2
2

p0(x1,x̃1)dx̃1

×
∫ ∫

u
α1+β1
1 u

α2+β2
2 (u2 −u1)k1(u1)k1(u2)du1du2.
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b11(x1) and b12(x1) can be explicitly expressed as

b11 (x1) = 1

3

[
f ′′1 (0) ·

[
m′ (x1)

]3 (
K4 +K2

2

)
+m′′′ (x1)K4

][∫
p20(x1,x̃1)dx̃1

]
,

b12 (x1) = m′′ (x1)
(
K4 −K2

2

)(∫ ∂

∂ x̄1
p0(x1,x̃1) ·p0(x1,x̃1)dx̃1

)
,

where K4 =
∫
k1 (u)u4du.

For A2 (x1) and A3 (x1), following Pollard (1995), it is straightforward to show that

A2(x1) = Op

(
lnn

nh41h̃
K−1

)1/2
,

and

A3 (x1) = 1

Q(x1)
Sn(x1)−E (Sn(x1)) = Op

(
(h1 + h̃) lnn

nh41h̃
K−1

)1/2
,

uniformly in x1 ∈ [x10,x20].

Similarly, we can show that

Qn (x1)−Q(x1) = Op



(

lnn

nh21h̃
K−1

)1/2
+h21 + h̃s


≡ Op

(
δqn
)
,

and

Sn(x1)+Rn(x1) = Op



(

lnn

nh41h̃
K−1

)1/2
+h21 + h̃s


≡ Op (δsn),

uniformly in x1 ∈ [x10,x20]. Thus

A4 (x1) = Op
(
δqn
)
·Op (δsn) = Op

(
lnn

nh31h̃
K−1

+h41 + h̃2s

)
,

uniformly in x1 ∈ [x10,x20].

By combining the above analysis, we obtain

[
m̂′
1(x1)−m′

1(x1)
]
= h21b1(x1)+o(h21)+O

(
h̃s
)

+Op

(
lnn

nh41h̃
K−1

)1/2
,

uniformly in x1 ∈ [x10,x20].
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To show asymptotic normality, note that E (A2 (x1)) = 0 and

var

(√
nh41h̃

K−1A2 (x1)

)
= var

(√
nh41h̃

K−1
Rn(x1)

Q(x1)

)

= E

[
(di−Pi)

2

Q(x1)
2

(
X1,i2 −X1,i1

h1

)2 1

h21

1

h̃K−1

k21

(
X1,i1 − x1

h1

)
k21

(
X1,i2 − x1

h1

)
k̃2

(
X̃i2 − X̃i1

h̃

)]

= σ 2
1 (x1)+o(1),

where

σ 2
1 (x1) =

∫
σ 2(x1,x1,x̃1,x̃1)

Q(x1)
2

p20(x1,x̃1)dx̃1

∫
(u2 −u1)

2 k21(u1)k
2
1(u2)k̃

2(ũ)du1du2dũ,

with σ 2(x1,x2,x̃1,x̃2) = E
[
(di−Pi)

2|X1,i1 = x1,X1,i2 = x2,X̃i1 = x̃1,X̃i2 = x̃2

]
. An

application of the Lindeberg–Feller Central Limit Theorem yields

√
nh41h̃

K−1A2 (x1)
d→ N(0,σ 2

1 (x1)).

In addition, by the above convergence results forA1(x),A3 (x1), andA4 (x1) andAssumption

7A, we obtain
√
nh41h̃

K−1(m̂′
1(x1)−m′

1(x1)−h21b1(x1))
d→ N(0,σ 2

1 (x1)). �

Proof of Theorem 3.2. Following the arguments in the proof of Theorem 3.1, we can

show that
∫ x1

x1,0

A1 (ξ1)dξ1 = h21b2(x1)+o(h21)+O
(
h̃s
)
,

∫ x1

x1,0

A2 (ξ1)dξ1 = Op

(
lnn

nh31h̃
K−1

)1/2
,

∫ x1

x1,0

A3 (ξ1)dξ1 = 1

Q(x1)
Sn(x1)−E (Sn(x1)) = Op

(
(h1 + h̃) lnn

nh31h̃
K−1

)1/2
,

and

∫ x1

x1,0

A4 (ξ1)dξ1 = op

(
lnn

nh31h̃
K−1

)1/2
+op

(
h21 + h̃s

)
,

uniformly in x1 ∈ [x10,x20]. Consequently, we obtain

∫ x1

x1,0

m̂′
1(ξ1)dξ1 −m1(x1) = h21b2(x1)+o(h21)+Op

(
lnn

nh31h̃
K−1

)1/2
+O

(
h̃s
)
,
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uniformly in x1 ∈ [x10,x20]. In addition, we can show that

√
nh31h̃

K−1

∫ x1

x1,0

A2 (ξ1)dξ1
d→ N(0,σ 2

2 (x1)),

where

σ 2
2 (x1) =

∫
I(ξ1)

Q2(ξ1)
σ 2(ξ1,ξ1,x̃1,x̃1)p

2
0 (ξ1,x̃1)dξ1dx̃1

∫ [∫
k1 (u+u1)k1(u1)du1

]2
u2du

∫
k̃2(ũ)dũ,

and I(ξ1) = 1
{
x1,0 < ξ1 < x1

}
when x1,0 < x1, and I(ξ1) = 1

{
x1 < ξ1 < x1,0

}
when

x1,0 > x1. Then, by the above rates of convergence results and by Assumption 7B, we obtain

√
nh31h̃

K−1(m̂1(x1)−m1(x1)−h21b2(x1))
d→ N(0,σ 2

2 (x1)). �

Proof of Theorem 3.3. A simple Taylor expansion yields

Ŵns(b;y,m̂) = Ŵns(b;y,m)+ τns,

where

τns = 1

n

n∑

i=1

(dyi2 −dy0i1)
1

hy
ky

(
m̄(Xi2)− m̄(Xi1)−b

hy

)

[(
m̂(Xi2)− m̂(Xi1)

)
− (m(Xi2)−m(Xi1))

]
,

and m̄(Xi2) − m̄(Xi1) is between m̂(Xi2) − m̂(Xi1) and m(Xi2) −m(Xi1). Therefore, we

obtain

|τns| = Op

(
h−1
y δn

)
= op (1) ,

which, together with an application of the uniform law of large numbers (Pakes and Pollard,

1989), implies that

Ŵns(b;y,m̂)−Ŵ(b;y,m) = op (1),

uniformly in (y,b) ∈ [y1,y2]×L. In addition, it is straightforward to check that Ŵ(b;y,m)

is continuous in b and achieves the unique maximum at 3(y). Therefore, 3̂(y) is con-

sistent for 3(y); furthermore, Lemma A.1 in Carroll et al. (1997) implies the uniform

consistency. �
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