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Abstract

In this paper, we consider the relationship between the cohomologies of the basic differential forms and
the transverse holonomy groupoid of a foliation. Applications to minimal models are given.
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Introduction

The minimal model of a foliation .% on a manifold M is, in some sense, the algebraic
analogue of the homotopy fibration M — M /.# onto the leaf space which is obtained
by identifying each leaf of .# to a point. More precisely, it is the minimal model of the
inclusion of the sub-differential graded algebra of basic differential forms, Qz(.%),
into the de Rham algebra Qpr(M) of M [15]. In this set-up, it is of considerable
interest to have a geometric interpretation for the fibre (also called the relative minimal
model of the foliation) of the minimal model. For certain foliations, for example if M
is compact and .# is Riemannian, it is known that there is a locally trivial fibration
L - M — BT, where BT denotes the classifying space of the transverse holonomy
groupoid of .# and L is the common holonomy covering of the leaves of Z. A study
of the relationship between Q3(#) and BT thus allows us to compare the fibre of
the minimal model with L. This is the motivation for our work. It is also interesting
to note that the relationship between Q23(%) and BT ties the basic cohomology into
considerations of characteristic classes and dual homotopy invariants. Qur previous
paper [16] fits into this scheme.

All our objects are in the C* category. We refer to [9] for background to Sections 2,
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3 and 35; to [12] for background to Section 1; and to [15] for background to Section 6.

1. Basic cohomology

Let % denote a non-singular foliation of dimension p and codimension ¢ on a
connected manifold M without boundary. We recall that a differential form w is said
to be basic if

iX)w=Lyw=0

whenever X is a vector field tangent to the leaves of .#. Here, i and L denote the
interior product and Lie derivative respectively. The set of all basic differential forms
constitutes a sub-differential graded algebra, denoted by Qz(%), of the de Rham
algebra Qpr(M) of M. The cohomology of Q2;(.%) is denoted by Hz(&#) and is
called the basic cohomology of .Z#.

2. Cohomology of the transverse holonomy groupoid

The transverse holonomy semigroup of % is generated by the identification or
transition maps on the non-empty intersections of local Frobenius coordinate charts,
which can be considered as Iocal diffeomorphisms of local transversals. The germs of
these local diffeomorphisms generate a well-defined topological groupoid called the
transverse holonomy groupoid of %, denoted by I'. The identities of " are given by
the collection of local transversals, denoted by U. Two maps, «, 8 : I' — U, are also
defined and are called the source and target maps, respectively.

The following result is due to Winkelnkemper [17] :

THEOREM 2.1. T" admits a separable, locally q-dimensional Euclidean topology
as well as a differentiable structure. If the holonomy of % is locally determined,
such as for isometric or real analytic groupoids, then U is Hausdorff and is thus a
q-dimensional paracompact differentiable manifold.

A T-sheaf &/ is a sheaf on U which has a continuous I'-action with respect to «
and B, that is, for all £ € 4,,,, there is a continuous map defined by

E.¥) > &y € ).

The cohomology of I" with coefficients in a I'-sheaf & is defined to be the cohomology
of the double complex C"* = C* (I'; C"(&)) with the differentials § : C™* — C™**!
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defined by

GHWos o v =0y s V) = i;(—l)if(yo, ViVt e s Ve)
+ =D f o, - ¥,
and 3 : C* — C™!* where
0> o — CUF)>CHA)>CHL) -

is an injective resolution of & by flabby I'-sheaves.

3. Resolution using differential forms

Let R denote the constant trivial I'-sheaf with stalk R and consider its resolution
by the I"-sheaves of germs of differential forms on U':

0> R—QU) S QU S -

where d is induced by the exterior derivative. Let C*(I"; "(U)), r, s > 0, denote the
double complex with the differentials d and § which is given in Section 2.

THEOREM 3.1. The double complex C*°(I"; Q"(U)) gives rise to a convergent third
quadrant spectral sequence with E5° = H}(.F).

PROOF. Using the standard filtration on a double complex, we get a spectral se-
quence with

E’ = H(T; X U) = ¢ (U)" = Q(F)

since the differential forms on the transversals which are invariant under holonomy
are exactly basic. It follows that E;O = Hy(F).

If T is not Hausdorft, the resolution by differential forms is in general not injective.
However, for an injective resolution CR of R, there is a map Q(U) — CR which
induces a map

SJ  CT;QU)) — C(; CR).
In the case that ' is Hausdorff, and is thus a Hausdorff paracompact manifold, .#

induces an isomorphism in cohomology.
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4. Examples

In the following, we consider the computation of the cohomology of holonomy
groupoids in several situations.

1. Since the holonomy of Riemannian foliations are local isometries, the map ¥
induces an isomorphism in cohomology. Thus, the cohomology of the holonomy
groupoid of a Riemannian foliation can be calculated using the resolution by differ-
ential forms.

2. Let & be a Riemannian foliation with all leaves compact. Then, the source and
target maps of the holonomy groupoid give rise to locally trivial fibrations with fibre
L, called the universal leaf of #. Furthermore, L is compact. It follows that in the
double complex C*(I"; " (U)), one can define a chain homotopy for §,

H : CH(QU) — C(; 2 WU)),

by
(Hf)(yb ey Vs) = /: yo_lf(yo, vy )’x) dVO
L

where dy, is the volume form on L with /; ;dvo = 1. Thus, the spectral seqence
of the double complex collapses, that is, E;° = 0 for s > 0, which implies that
H(T; R) = Hp(F).

3. Haefliger [10] showed that if % is a foliation on a manifold M such that the
holonomy covering of the leaves are all contractible, then H(I'; R) = Hpg(M).
Thus, for example, the cohomology of the transverse holonomy groupoid of the Reeb
foliation on S is that of S3.

4. LetM = Bx,G/H,where B is the universal covering of a manifold B, G is a Lie
group, H is a closed subgroup of G, ¢ : m,(B) — G is a homomorphism, and 7, (B)
acts on B by deck transformations and on G/H by ¢. Let & be a flat transversely
homogeneous foliation [1] on M, that is, Z is induced by the product foliation with
leaves B x {(x}onBxG /H. Then £ is a foliation transverse to a fibration with fibre
G/H. Now, suppose G is compact. Denote the image of ¢ by I', and the closure of
I by I". Then T is a compact Lie group. Denote the transverse holonomy groupoid
of & by I'g,n. Then, since the holonomy of a transversly homogeneous foliation is
analytic,

H(Tg/u; R) = H (C (To/n; Q(G/H))) = H (C (T QG/H)))
—H (c (F"; Q(G/H)f)) — H(®,R) ® Hpr(G/H).
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Here, I denotes the group I' with the discrete topology and Q(G/H ' denotes the
T-invariant forms on G/H.

5. Let # be aLie foliation on a compact connected manifold M which is modelled
on the simply-connected Lie group G. Then # has a development map, that is, a
locally trivial fibration M — G, where M denotes the universal covering of M, which
induces the foliation # on M. Furthermore, the fibration is equivariant with respect
to the holonomy representation H : 7;(M) — G. Denote the image of H by T,
and the transverse holonomy groupoid of % by I'z. Then, similar to the previous
example, we have

H(;R) = H (C (T Q(G))).

5. The characteristic homomorphism

Let % be a foliation on a paracompact manifold M with transverse holonomy
groupoid I'. Then & is a ["-structure in the sense of Haefliger, and hence given by a
map y : M — BT, where BT is the classifying space of I" of Buffet-Lor [2]. The
map induced in cohomology by y is known as the characteristic homomorphism of
&Z. Using the double complex of Section 3, we have a map

y' O QU)) — C(%; 2(M))

where the double complex on the right is the Cech-de Rham complex of M with
respect to a covering % of M, defined by

O U NU, NN U ) = 100 f B B, o s iy ()

ifx e U, NU, N---NU,, where y,;,,, : U, NU,,, — T isthe I'-structure defining
Z. Passing to cohomology, we have the followmg commutative diagram.

H(C (r: 2w)))

H('; R)
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6. The minimal model of a foliation

Let % be a foliation on a connected manifold M. Then there is a map of connected
differential graded (DG) algebras

Lt 93(9) —> QDR(M)

The minimal model of ¢ is called the minimal model of the foliation F. It consists
of a DG algebra (.#, d) which is minimal in the sense of Sullivan [7, 11], and a DG
algebra map @ such that the following diagram commutes:

2p(F) (Q(F)®M, D)

Qpr(M)

(A, d)

where

(1) i is the inclusion in the first factor,
(ii) j is the projection onto the second factor,
(iii) @ induces an isomorphism in cohomology, and
(iv) Qp(F)R. is the tensor product of graded algebras, and the differential D
satisfies

D(1&m) — 1&dm € UF)QM .
The filtration
Fi(Qp(F)OM) = G (F)OM

gives rise to a third quadrant spectral sequence converging to H (M) with E;° =
Hy(%).

We would like to remark, as we have mentioned in the introduction, that the fibre
# of the minimal model, also called the relative minimal model of .% , does not have
an obvious geometric interpretation, as we illustrate by the following easy result that
indeed it can have infinite cohomological dimension.

PROPOSITION 6.1. Let M be a compact, connected, simply-connected manifold, and
let & be a Riemannian foliation of codimension 3 on M. Then, either H} z(M) # 0,
or the fibre of the minimal model of % has infinite cohomological dimension.

PROOF. For the spectral sequence introduced above, we have the isomorphism

Hy(F)=E’=EX =9"H},.
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Since M is simply-connected, it follows that Hy(%#) = 0. By the duality res-
ult of Kamber-Tondeur [13], Hp(.#) satisfies Poincaré duality. Hence, Hy(#) =
H}(Z) =R, H}(ZF) = HXZF)=0.

Let [v] be a basis for H3(#). Then, either (i) t.[v] # 0 € H}z(M), or (ii)
t,[vl = 0. In the case (i), we observe that {v] is a spherical class, that is, its
image under the dual Hurewicz map Hp(F#) — n*(Q23(H#)) is non-zero. It can be
represented by a generator 8 in the minimal model of Q(%). Thus,

ker {®, : H? (Q(F)QA ) > Hp (M)} #0

and there exists a generator @ of .# of degree 2 such that da = 8. From do* =
ka*™'B, k =1,2,3,..., we see that da* = 0 and o* ¢ d.#, that is,

0 # [o*] € H¥*(A), k=1,2,3,....

EXAMPLE 6.1. It is well-known that a non-singular taut Riemannian flow % is
given by a non-vanishing Killing vector field [13], and if the ambient manifold is
connected and compact, there is a decomposition of the de Rham algebra of M, up to
cohomology, as follows [6]:

Q(F) ® AX—>Qpr(M),

where A X denotes the exterior algebra with one generator of degree one with the
trivial differential. Thus the minimal model of a non-singular taut Riemannian flow
is described by

Qp(F)

Qp(F)QAX

T~

Qpr(M)

AX

and its relative minimal model is the algebra A X.

For the double complex C(I'; Q(U)), there is a DG algebra ¥ and a map of
complexes € — C(I"; Q(U)), where the complex on the right is equipped with the
total differential d + &, which induces an isomorphism in cohomology [4]. Further-
more, this construction is natural in the category of complexes. In the following, we
will abuse notation and refer to & by C(I'; (U)), and when we write the minimal
model or rational homotopy of the Cech complex, we actually refer to that of the
cohomologically equivalent DG algebra.
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Let # be afoliation on a connected manifold M with transverse holonomy groupoid
I". Then there is an injection of connected differential graded algebras

Qp(F) = C(; QWU)),
and we can consider its minimal model [11]:
Qp(F) Q(F)RT
\ . l .
C(; QW)

where X is a minimal algebra in the sense of Sullivan.
For the remainder of this paper, we will need to make a technical assumption on
our foliations as embodied in the following:

DEFINITION 6.1. In the notation established above, a foliation .# on a connected
manifold M is said to be of finite type if both the algebras .# and X are of finite type,
that is, finite-dimensional in each degree.

7. Comparison results

The aim of this section is to obtain a model for the universal leaf of a Riemannian
foliation % on a compact connected manifold M through a comparison theorem. We
note that the passage from the manifold M to the transverse holonomy groupoid I' is
by replacing the leaves by contractible spaces. Thus, it can be viewed as a fibration
construction over the leaf space M/, and the fibre should be the model for the
universal leaf. Following this line, we consider the ‘fibrations’ M — M /% and
' - M/.% and the models for their fibres, namely, .# and X, respectively. .# and
3 are then compared to obtain a model for the universal leaf.

For our subsequent arguments involving the minimal model construction to be
valid, we need to impose the technical condition that all foliations discussed are of
finite type.

Analogous to the construction of the minimal model of the classifying map y :
M — BT, we have:

THEOREM 7.1. Let F be a foliation of finite type on a connected manifold M. Then
there exists a commutative diagram of DG algebras as follows.

Qp(F) Qp(F)RT b
| g
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PROOF. Consider the following diagram.

Qp(F)

Qp(F)QT

7
Ve
s~
y 7

L ey

s
s
Ve *
- 4
¥

Qp(F)QM Qpr(M)

Since the map ® induces an isomorphism in cohomology of DG algebras and
Qp(F)RA is a free DG algebra over Qz(.#), by obstruction theory [7, 11], there
exists a map

V1 Q(F)RT - Qp(F)RM

which makes the diagram commutative as claimed.

The minimal model of the map y can be constructed as follows.

Qp(F)VE (2(F)HBT) ®A

\ Nl'

Qp(F)QMA

A

THEOREM 7.2. Under the the conditions of Theorem 1.1, there is a DG algebra
map

P ZQA > A
which induces an isomorphism in cohomology.

PROOF. Consider the following commutative diagram of DG algebras.

Qp(F) Qp(F)R(ZRA) TRA
Qp(F) Q(F QM M

This is a morphism of KS-extension in the terminology of [11] where it is also proved
that as I induces an isomorphism in cohomology, so does p ([11, Theorem 4.5]).
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Let o : A4’ — T®A be the minimal model of Z®A. By Theorem 7.2, by
composing with p, .#" is also the minimal model of .#. Since .# is itself minimal,
by the uniqueness of minimal models, we have:

COROLLARY 7.3. The minimal model of LR A is given by
o M — TRA.

Thus, .# and @A are isomorphic up to cohomology.

In the next theorem, which is our main result, we identify the algebra A with the
minimal model of the universal leaf under certain nilpotence assumptions. For this, we
need the result of Winkelnkemper [17] (see also [10]) that for a Riemannian foliation
Z on a compact manifold M with transverse holonomy groupoid I', there is a locally
trivial fibration L — M — BT where L is the common holonomy covering of the
leaves of %, that is, the universal leaf.

THEOREM 7.4. Let F be a Riemannian foliation of finite type on a compact, con-
nected manifold M. For the fibration L — M 2 BT, suppose

() H(BT)or H(L) has finite type, )
(i) m(BT)=n'(C(; Q(U)))* is nilpotent and acts nilpotently on each H(L).

Then, in the minimal model of the characteristic homomorphism y, the minimal
algebra A is the minimal model of the universal leaf.

PROOFE. We note that the minimal model of the map
y' o O 2U)) - C(%; QUM))

gives rise to the following commutative diagram of DG algebras:

Qp(F)®T (U(FIQTIRA A
T, U) C(; QU))RA A

Qpr(M)
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which is a minimal model of the fibration . By a result of Da Silveira [3] (see also
[8, Theorem 6.4] when BI" is simply-connected), the algebra A is the model of the
fibre, that is, L.

We remark that since a Riemannian foliation with all leaves compact is a generalized
Seifert fibration with the universal leaf as fibre, and the leaf space is a Satake manifold
whose cohomology is that of the algebra of basic forms [10], the relative minimal
model .# for M — M /% is the minimal model of the universal leaf. On the other
hand, the inclusion Qz (%) < C(I'; L(U)) induces an isomorphism in cohomology
(cf. Example (2) in Section 4), hence the relative minimal model ¥ of the fibration
BT — M /% is trivial. Thus, we have the following obvious result:

COROLLARY 7.5. Let F be a Riemannian foliation of finite type on a compact
connected manifold M with all leaves compact. Then the minimal algebra A is the
minimal model of the universal leaf.

Let M, N be connected manifolds, and let the fundamental group m;(M) act on
the universal covering M by deck transformations and on N by diffeomorphisms via
¢ : m (M) — Diff(N). Suppose there exists a submersion ¢ : M — N which is
equivariant with respect to the , (M)-actions. Then ¢ induces a foliation % on M
which is transversally modelled on N. Such a foliation is called developable, and
is called the development map. The image of ¢, denoted by G, is called the global
holonomy group of %, and we denote the holonomy groupoid of .# by I';. Note that
Qp(F) consists exactly of those differential forms on N which are invariant under
G.

In the following, we will assume that the source map of the holonomy groupoid of
F defines a locally trivial fibration

L—Ts—N.

This class of foliations includes the Riemannian foliations on compact manifolds,
foliations which are analytic and transverse to compact fibrations, and foliations for
which the holonomy groups of closed leaves are infinite [10]. In this case, there is a
locally trivial fibration

L — ET;5 BT

where L denotes the common holonomy covering of the leaves of %, and there is a
homotopy equivalence M — ET';. This fibration is the universal principal I';-bundle
[2,10] of £.
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We recall that the Buffet-Lor [2] construction of EI'g isabundle EG — E I‘G—&> N,
where & is induced by «, and hence is also a locally trivial fibration. Thus, we have a
locally trivial fibration

BG — BT4-5N/G

induced on BI'; = ET';/ I'¢ with the quotient topology, where BG is the classifying
space of the abstract group G. We remark that in this case, in the calculation of the
cohomology of BI'; using differential forms, the double complex C(G; Q(N)) is
nothing else but the double complex of the fibration &. In particular, the edge terms
E}?° are the basic cohomology groups Hj(%).

Now, assume that (i) H(G) or Hg (%) has finite type (this is satisfied for Rieman-
nian foliations on compact manifolds [5, 14]), and (ii) ; (N /G) is nilpotent and acts
nilpotently on H(G). Then, by considering the minimal model of the fibration &, we
have the following DG algebra map which induces an isomorphism in cohomology

¢ Qp(F)®Mpe—C(G; QUN)).
We are now ready to formulate the following result, which gives the relative minimal

model # of % in terms of the minimal models .43 and .#; of the classifying space
BG and the universal leaf L respectively.

THEOREM 7.6. Under the assumptions of the above discussion, there is a DG al-
gebra map M — Mpc®H; which induces an isomorphism in cohomology.

PROOF. By using the homotopy equivalence M —> ET'; and composing the
minimal model of the fibration = with {, we obtain the following commutative

diagram.
Q(F) —— Q(F)E M ((F)OM30)OM; M
M
C(G; (N)) Q(ETq)
Qor(M)

Comparing this with the relative minimal model .# of .%, our result follows.
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Corresponding to the DG algebra map 7 * o o}, we consider the following diagram

of fibrations.
EG BG
L ET BT
N N/G

Our comparison result shows that the relative minimal model .# of % corresponds
to the Borel construction EG xg L resulting from the the holonomy action on the
universal leaf. We remark that in the case that the action of G on L is free, that is,
that the foliation is without holonomy, the minimal algebra .# is in fact the minimal
model of the leaves which are all diffeomorphic.

EXAMPLE 7.1. (i) Consider the foliation & of the torus T by lines with a rational
slope. Then all the leaves of % are compact (diffeomorphic to S') and # is without
holonomy. By Theorem 7.6, the relative minimal model of .# is the minimal model
of S! which is the free DG algebra with one generator of degree one with the trivial
differential.

(ii) Consider the foliation . of the torus T2 by lines with an irrational slope. Then
all the leaves of # are diffeomorphic to R' and the transverse holonomy groupoid
is the free cyclic group. By Theorems 7.2 and 7.4, the relative minimal model of #
is the minimal model of the free cylic group which is the free DG algebra with one
generator of degree one with the trivial differential.

We note that the relative minimal models of these examples have already been
calculated in Example 6.1. We point out, however, that the two foliations considered
have different minimal models as Q5 (%) are different.
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