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THE RANGE OF GROUP ALGEBRA HOMOMORPHISMS

ANDREW G. KEPERT

ABSTRACT. A characterisation of the range of a homomorphism between two com-
mutative group algebras is presented which implies, among other things, that this
range is closed. The work relies mainly on the characterisation of such homomorphisms
achieved by P. J. Cohen.

Suppose ¤ and ” are commutative semisimple Banach algebras with carrier spaces
Φ¤ and Φ” respectively and ó:¤ ! ” is an algebra homomorphism. Then óŁ(Φ”) �
Φ¤ [ f0g, and if b 2 ó(¤), then the Gel’fand transform b̂ of b satisfies

(i) If ß 2 Φ” has óŁ(ß) ≥ 0, then b̂(ß) ≥ 0, and
(ii) If ß1,ß2 2 Φ” have óŁ(ß1) ≥ óŁ(ß2) 2 Φ¤, then b̂(ß1) ≥ b̂(ß2).
When each of ¤ and ” is the group algebra of a locally compact Abelian group, say

¤ ≥ L1(G1) and” ≥ L1(G2), then we can identify Φ¤ and Φ” with Γ1 and Γ2, the dual
groups of G1 and G2 respectively. This identifies the Gelf’and and Fourier transforms on
each of L1(G1) and L1(G2). The main result of this paper is that in this situation we have
a converse to the above.

THEOREM A. Suppose G1 and G2 are locally compact Abelian groups and ó is an
algebra homomorphism L1(G1) ! L1(G2). Then

ó
�
L1(G1)

�
≥ ff 2 L1(G2) : óŁ(ç1) ≥ 0 ≥) f̂ (ç1) ≥ 0

and óŁ(ç1) ≥ óŁ(ç2) ≥) f̂ (ç1) ≥ f̂ (ç2) (ç1, ç2 2 Γ2)g.

Since this expresses ó
�
L1(G)

�
as an intersection of the kernels of a set of continuous

linear functionals on L1(G2), we immediately have the following.

COROLLARY B. The range of a homomorphism between commutative group alge-
bras is closed.

The first three sections of this paper are devoted to developing ideas leading to a
proof of Theorem A. The starting point for this discussion is Cohen’s characterization
of homomorphisms between commutative group algebras, to be stated in Section 1. The
fourth section of this paper concerns the development of results of the above type for
classes of Banach algebras other than the commutative group algebras.
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184 A. G. KEPERT

1. Notation and preliminary results. Most of the notation and basic results used
can be found in the book of Rudin [12], or alternatively the books of Hewitt and Ross
[7] and Reiter [11]. We will mainly follow Rudin and refer, where possible, to results
therein. In particular, G, G1, . . . will always denote locally compact Abelian groups, and
their dual groups will be Γ, Γ1, . . . respectively. We will use + for the group product in all
locally compact Abelian groups.

If H is a subgroup of G, then we will denote the quotient mapping G ! GÛH by QH

and the annihilator of H in Γ by H?. If x 2 G, úx will denote the translation function
on G given by úx(y) ≥ x + y. A nonempty subset E of G is called a coset in G when
E�E + E ≥ E, for then E is a translate of the subgroup E�E of G. The terms subcoset,
index and coset generated by a set X � G then assume their obvious meanings, and the
last of these will be denoted by Aff(X).

If ÿ(Λ) is a translation-invariant set of functions defined on any locally compact
Abelian group Λ, then we defineÿ(E) to be the corresponding set of functions on a closed
coset E of a locally compact Abelian group Γ; that is, ÿ(E) consists of those f : E ! C
for which f Ž ú�ç 2 ÿ(E� E) for some, and hence all, ç 2 E. If ÿ(E�E) has additional
topological and/or algebraic structure that is translation-invariant in nature, this can be
carried over to ÿ(E), so thatÿ(E) is isomorphic toÿ(E�E). In particular we have A(E),
the Fourier algebra on E, whose carrier space is E, and whose multiplier algebra is B(E),
the Fourier-Stieltjes algebra on E. The coset ring of E, denoted by R (E), can likewise
be obtained by viewing R (E�E) as a set of characteristic functions. Clearly R (E) is the
boolean ring generated by the (relatively) open subcosets of E, and owing to the Idem-
potent Measure Theorem of P. J. Cohen, [2, Theorem 1] or [12, Theorem 3.1.3], we have
that the idempotents in B(E) consist of the characteristic functions of elements of R (E).

A more significant consequence of the Idempotent Measure Theorem is the charac-
terisation of group algebra homomorphisms, again due to Cohen. A brief statement of
this is that if ó: L1(G1) ! L1(G2) is a homomorphism between group algebras, then the
part of the graph of óŁ: L1(G2) ! L1(G1) that lies within Γ2 ðΓ1 is actually an element
of R

�
(Γ2 ð Γ1)d

�
. (Here Γd denotes the group Γ with its discrete topology imposed.)

To be able to use the original, more tractible statement of this theorem, we recall
some of the relevant definitions. A map between cosets †: E1 ! E2 is called affine if
†(x1 + x2 � x3) ≥ †(x1) + †(x2) � †(x3) for any x1, x2, x3 2 E1. A map † from X � Γ2

into Γ1 is called piecewise affine if there exists disjoint S1, . . . , Sn 2 R (Γ2) such that
X ≥ Sn

1 Sk and each†jSk has a continuous affine extension—that is, each is the restriction
of a continuous affine map whose domain is a coset containing Sk. Recall from [1] that
if X and Y are locally compact spaces, then f : X ! Y is called proper if f�1(C) � X
is compact whenever C � Y is compact. With these definitions, we have the following
theorem, which also contains the converse to the above “brief statement”. It originally
appeared in Cohen’s paper [3, Theorem 1], and can also be found in Chapter 4 of Rudin’s
book [12].

THEOREM 1.1. If ó: L1(G1) ! M(G2) is a nonzero algebra homomorphism, then
there is a set Y 2 R (Γ2) and a piecewise affine map ã: Y ! Γ1 such that for each
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f 2 L1(G1), dó(f ) ≥ f̂ Ž ã on Y and dó(f ) is zero off Y. Conversely, any such piecewise
affine map determines a homomorphism ó: L1(G1) ! M(G2), and ó

�
L1(G1)

�
� L1(G2)

if and only if ã is proper.

As in [12], we use ó̂ for the corresponding homomorphism A(Γ1) ! B(Γ2), and abbre-
viate the relation stated in Theorem 1.1 to ó̂(f ) ≥ f Žã. The maps óŁ andã of Theorems A
and 1.1 are related, in that for ç 2 Γ2,

ç Û2 Y ≥) f̂
�
óŁ(ç)

�
≥ dó(f )(ç) ≥ 0

�
f 2 L1(G2)

�
≥) óŁ(ç) ≥ 0 and

ç 2 Y ≥) f̂
�
óŁ(ç)

�
≥ dó(f )(ç) ≥ f̂

�
ã(ç)

� �
f 2 L1(G2)

�
≥) ã(ç) ≥ óŁ(ç).

Hence Y ≥
²
ç 2 Γ2 : f̂ (ç) Â≥ 0,

�
f 2 ó

�
L1(G1)

��¦
and ã ≥ óŁjY . Due to this Banach al-

gebraic characterization, we will further develop the case for more general commutative
semisimple Banach algebras before returning to the group algebra case.

If ¤ is a commutative semisimple Banach algebra, define the hull of a set X � ¤ to
be Z¤(X) ≥ fß 2 Φ¤ : ß(x) ≥ 0, (x 2 X)g ≥ X? \Φ¤, and the kernel of a set E � Φ¤

to be I¤(E) ≥ fa 2 A : ß(a) ≥ 0, (ß 2 E)g ≥ T
ß2E kerß. As with most notation of this

type, the subscript will usually be omitted. It is clear that Z(X) is always a closed subset
of Φ¤ and I (E) is always a closed ideal of ¤. Then ¤ is called regular if E ≥ Z

�
I (E)

�
for any closed set E � Φ¤. It it well known that that L1(G) is regular.

PROPOSITION 1.2. Let ó:¤ ! ” be a homomorphism between commutative semi-
simple Banach algebras. Then Y ≥ fß 2 Φ” : ß Ž ó Â≥ 0g ≥ Φ” n Z

�
ó(¤)

�
is open

in Φ”, and closed if ¤ is unital. Also, ã ≥ óŁjY is a continuous, proper, closed map

Y ! Φ¤ with Z(keró) ≥ Z
�

I
�
ã(Y)

��
, the closure of ã(Y) in the hull-kernel topology

on Φ¤, so that if ¤ is regular, then Z(keró) ≥ ã(Y).

PROOF. Clearly Y is open and ã: Y ! Φ¤ is continuous. If ¤ has unit e, then üY ≥dó(e) 2 ”̂ � C0(Φ”), and so Y is clopen. To show ã to be proper, suppose C � Φ¤ is
compact. For ß 2 C, take aß 2 ¤ with ß(aß) Ù 1 and set Kß ≥ fß1 2 Φ¤ : âß(ß1) ½
1g, a compact neighbourhood of ß. Similarly ã�1(Kß) ≥ fß2 2 Φ” : dó(a)(ß2) ½ 1g
is also compact. Take a finite set ß1, . . . ,ßn such that Kß1 , . . . , Kßn cover C, and then
ã�1(C) � ã�1(Kß1 ) [ Ð Ð Ð [ ã�1(Kßn ), which is compact, so ã�1(C) is compact.

Then from [1, Section 1.10.10, Proposition 15 and Section 1.10.1, Proposition 7], or
by a straightforward calculation, we have that ã is closed. The remaining statements are
clear from definitions.

REMARK. In the case that ó: L1(G1) ! M(G2) and ó
�
L1(G1)

�
Â� L1(G2), there is

no conflict between Theorem 1.1 and Proposition 1.2, since the first concerns Y � Γ2

and ã: Y ! Γ1, which will not be proper, whereas the second concerns Y � ΦM(G2) and
ã: Y ! Γ1, which will be proper.

https://doi.org/10.4153/CMB-1997-022-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1997-022-6


186 A. G. KEPERT

Suppose ” is a commutative semisimple Banach algebra, with U an open subset of
Φ” and † a map from U into a set X. Define

î”(†) ≥ fb 2 ” : b̂ ≥ 0 off U and b̂(ß1) ≥ b̂(ß2) whenever †(ß1) ≥ †(ß2)g.

This will be written î(†) when no confusion is likely, and the notation î̂(†) will denote
fb̂ : b 2 î(ã)g. We can view î(†) as the closed subalgebra of those b 2 I (Φ” n U) for
which b̂ Ž †�1 is a well-defined function on †(U).

Suppose ¤ and ” are commutative semisimple Banach algebras, ó:¤ ! ” is an
algebra homomorphism and Y and ã are obtained from ó as in Proposition 1.2. We have
seen from the opening discussion of this paper that ó(¤) � î(ã). Thus we can consider
î(ã) as a convenient upper bound on ó(¤). Theorem A asserts that if ¤ and ” are both
group algebras, then ó(¤) ≥ î(ã).

As a model for the proof of Theorem A, it is instructive to consider the case where¤ ≥
C0(X), for some locally compact Hausdorff topological space X, and ” is semisimple.
Suppose b 2 î(ã), then since ã is proper, b̂Žã�1 2 C0

�
ã(Y)

�
. Moreover,ã(Y) is closed

in X, so it is a simple matter to apply the Tietze Extension Theorem on the one-point
compactification of X to give an extension g 2 C0(X) of b̂Žã�1. Then b̂ ≥ gŽã ≥ dó(g),
and since” is semisimple, b ≥ ó(g). Hence î(ã) ≥ ó(¤).

The use of “extension” results analogous to the Tietze Extension Theorem will be
used to prove Theorem A. In fact, it is clear that the following theorem is equivalent to
Theorem A.

THEOREM 1.3. If Y 2 R (Γ2) and ã: Y ! Γ1 is a proper piecewise affine map, then
for any f 2 î(ã), f̂ Ž ã�1:ã(Y) ! C has an extension in A(Γ1).

We will prove this theorem in three stages. Firstly when Y is an open coset and ã
is affine, then for certain cases in which ã has an affine extension, and finally for the
general case as stated above. Each case will be proven by obtaining properties of ã(Y),
then characterizing the behaviour of f̂ Žã�1, and finally finding an extension. Throughout,
the notation ó, Y and ã will be as in Theorem 1.1. Here is the case where ã is affine.

LEMMA 1.4. If Y is an open coset in Γ2 and ã: Y ! Γ1 is affine, proper and contin-
uous, then for any f 2 î(ã), f̂ Ž ã�1 has an extension in A(Γ1).

PROOF. Since Y is closed andã is closed and affine,ã(Y) is a closed coset. Take ç0 2
Y, then Λ ≥ ã�1fã(ç0)g�ç0 is a compact subgroup of Y�ç0 and Y1 ≥ QΛ(Y) is an open
coset in Γ2ÛΛ. Clearly f̂ 2 A(Γ2) is constant on cosets of Λ, so by [12, Theorem 2.7.1]
f ≥ 0 a.e. off the open subgroup H ≥ Λ? of G2. Put f1 ≥ f jH 2 L1(H), then for all
ç + Λ 2 Γ2ÛΛ ≥ H?, we have by [12, Equation 2.7.1(2)] that f̂1(ç + Λ) ≥ f̂ (ç). Thus
f̂1 ŽQΛ ≥ f̂ and f̂1 is zero off Y1.

Now, ã Ž Q�1
Λ : Y1 ! ã(Y) is a well defined affine bijection. Furthermore ã Ž Q�1

Λ
is continuous and proper, and hence is an affine homeomorphism onto ã(Y). Thus g 7!
gŽãŽQ�1

Λ is an isomorphism A
�
ã(Y)

�
! A(Y1), so f̂ Žã�1 ≥ f̂1Ž

�
ãŽQ�1

Λ

��1 2 A
�
ã(Y)

�
.

But A
�
ã(Y)

�
≥ A(Γ1)jã(Y), by [12, Theorem 2.7.4], so f̂ Žã�1 has an extension in A(Γ1).
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It should be noted that the action of ó: L1(G1) ! L1(G2) is essentially given by the

homomorphism TH1 : L1(G1) ! L1(G1ÛH1), where H1 ≥
h
ã(Y) � ã(Y)

i?
and TH1 is

the transformation that averages over cosets of H1 with respect to the Haar measure on
H1—see [11, Sections 3.4–3.6]. The extension result in Lemma 1.4 relies on TH1 being
an epimorphism with T̂H1 (f̂ ) ≥ f̂ jH?

1
.

COROLLARY 1.4.1. If Γ2 is connected, and ó: L1(G1) ! L1(G2) is a nonzero homo-
morphism, then for some open subgroup H of G2,

ó
�
L1(G1)

�
≥ î(ã) ≥ ff 2 L1(G2) : f ≥ 0 a.e. off Hg ¾≥ L1(H).

PROOF. Since R (Γ2) ≥ f;, Γ2g we have that Y ≥ Γ2 and ã is affine, so by the
lemma, ó

�
L1(G1)

�
≥ î(ã). Then with Λ and H as above, the conditions f 2 î(ã) and

f ≥ 0 a.e. off H are each equivalent to f̂ being constant on cosets of Λ.
In the case where G2 is also connected, this reduces to ó

�
L1(G1)

�
≥ L1(G2), and

since the Euclidean groups Rn are the only connected locally compact Abelian groups
with connected dual, we have the following.

COROLLARY 1.4.2. If G2 ≥ Rn for some n Ù 0, then ó is onto.

2. The coset ring and piecewise affine maps. As a starting point for considering
general piecewise affine maps, we have from the discussion in [12, Section 4.3.4] that
any set in the coset ring of a locally compact Abelian group Γ is a finite disjoint union
of sets in

R0(Γ) ≥
²

E0

� � [
1�k�m

Ek

�
: E0 � Γ is an open coset and E1, . . . , Em

are open subcosets of infinite index in E0

¦
.

Clearly, by [12, Lemma 4.3.3], ; Û2 R0(Γ). If S ≥ E0 n
�Sm

1 Ek

�
2 R0(Γ), then for all

ç 2 E0 � E0, S \ (S + ç) ≥ E0 n
�Sm

1 Ek [ Sm
1 (Ek + ç)

�
2 R0(Γ). So if E is any coset

containing S, then E\ (E +ç) Â≥ ;, so ç 2 E�E. Thus E0�E0 � E�E, and so E0 � E.
Hence E0 ≥ Aff(S), the coset generated by S.

By applying this result plus the decomposition of [12, Section 4.3.4] to the original
definition of “piecewise affine” we obtain the following characterisation.

LEMMA 2.1. If X 2 R (Γ2) then †: X ! Γ1 is piecewise affine if and only if there
are disjoint S1, . . . , Sn 2 R0(Γ2) such that X ≥ S1 [ Ð Ð Ð [ Sn and for each k, †jSk has a
continuous affine extension †k: Aff(Sk) ! Γ1.

The following pair of lemmas will be used to obtain information about the affine maps
†1, . . . ,†n from†. Each lemma allows us to “smudge” a set S 2 R0(Γ) to cover a slightly
larger set. In the first case the slightly larger set is Aff(S), and in the second it is S + Λ,
for Λ a compact subgroup of Γ.

https://doi.org/10.4153/CMB-1997-022-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1997-022-6


188 A. G. KEPERT

LEMMA 2.2. Let S 2 R0(Γ) and put E0 ≥ Aff(S), then there is a finite subset F of
E0 � E0 such that E0 ≥ S + F.

PROOF. We proceed by induction on m to show that if S ≥ E0 n
�Sm

1 Ek

�
2 R0(Γ)

then there is a finite set F � E0 � E0 with S + F ≥ E0. If m ≥ 0, then S ≥ E0 so that
F ≥ feg suffices. Now let m Ù 0 and put S0 ≥ E0 n

�Sm�1
1 Ek

�
2 R0(Γ). By hypothesis,

there is a finite set F0 � E0 � E0 with S0 + F0 ≥ E0. Since Em is of infinite index in E0,
there exists ç 2 (E0 � E0) n (Em � Em + F0 � F0), so that (Em + F0) \ (Em + F0 + ç) ≥ ;.
Put F ≥ F0 [ (F0 + ç).

Since S0 � S [ Em, we have E0 ≥ S0 + F0 � (S + F0) [ (Em + F0) � E0, so that
(S + F0)[ (Em + F0) ≥ E0, and similarly (S + F0 +ç)[ (Em + F0 +ç) ≥ E0. But (Em + F0)\
(Em + F0 + ç) ≥ ;, due to the choice of ç, so that S + F ≥ (S + F0) [ (S + F0 + ç) ≥ E0.

LEMMA 2.3. If S 2 R (Γ) and Λ is a compact subgroup of Γ, then there is a finite
subset F of Λ such that S + Λ ≥ S + F.

PROOF. Let E1, . . . , En be open cosets such that S is in the Boolean ring generated
by fE1, . . . , Eng. Let Ξ ≥ Tn

1

�
Ek � Ek

�
, an open subgroup of Γ with S + Ξ ≥ S. Since

Λ is compact and Λ \ Ξ is open in Λ, Λ \ Ξ is of finite index in Λ. Let F � Λ be a
finite set with

�
Λ \ Ξ

�
+ F ≥ Λ, then since S � S +

�
Λ \ Ξ

�
� S + Ξ ≥ S, we have

S + F ≥ S +
�
Λ \ Ξ

�
+ F ≥ S + Λ.

PROPOSITION 2.4. If S 2 R0(Γ2) and†: Aff(S) ! Γ1 is affine such that †jS is proper,
then † is proper.

PROOF. Assume first that Aff(S) is a subgroup and † is a homomorphism, then let
F � Aff(S) be such that S + F ≥ Aff(S), as in Lemma 2.2. Note that (†jS)�1(Ð) ≥
S \ †�1(Ð), so that for any compact C � Γ1,

†�1(C) ≥ [
ç2F

†�1(C) \ (ç + S) ≥ [
ç2F

�
†�1

�
C� †(ç)

�
\ S

�
+ ç,

which is compact. Hence † is proper. The general case follows by translation.

COROLLARY 2.4.1. Suppose S 2 R0(Γ2) and †: S ! Γ1 is proper with an affine

extension †0. Then †0
�
Aff(S)

�
is a closed coset in Γ1 and †(S) 2 R

�
†0
�
Aff(S)

��
.

PROOF. Without loss, we can assume that †0 has domain E0 ≥ Aff(S), so that by
Lemma 2.4,†0 is proper. Hence E ≥ †0(E0) is a closed coset in Γ1. Now, as in Lemma 1.4
there is a compact subgroup Λ of E0 � E0 such that †0 Ž Q�1

Λ : E0ÛΛ ! E is an affine
homeomorphism. Then by Lemma 2.3, there is a finite set F � Λ with S + Λ ≥ S + F,
giving S + Λ 2 R (E0). Hence QΛ(S) 2 R (E0ÛΛ) and †(S) ≥ †0(S) 2 R (E).

Note that if E is a closed coset in Γ, then any X 2 R (E) is a closed set in R (Γd).
Define Rd(Γ) ≥ R (Γd) and Rc(Γ) ≥ fx � Γ : X is closed and X 2 Rd(Γ)g. By
combining Lemma 2.1 with the preceding corollary, we obtain the following.
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COROLLARY 2.4.2. If X 2 R (Γ2) and †: X ! Γ1 is proper and piecewise affine then
†(X) 2 Rc(Γ1).

A similar result holds for piecewise affine maps that are not necessarily proper. It can
be shown that the range of such a map X ! Γ1 is an element of Rd(Γ1).

3. Proof of the main theorem. In this section we apply the analysis of the coset ring
and piecewise affine maps presented in Section 2 to complete the proof of Theorem 1.3.
We begin with the second stage of Theorem 1.3.

LEMMA 3.1. Suppose Y 2 R0(Γ) and ã: Y ! Γ1 has an affine extension ã1:
Aff(Y) ! Γ1. Then for any f 2 î(ã), f̂ Ž ã�1 has an extension in A(Γ1).

PROOF. Put E ≥ Aff(Y), then by Lemma 2.4, ã1: E ! Γ1 is proper, so as in
Lemma 1.4, there is a compact subgroup Λ of E�E such that ã1 ŽQ�1

Λ : EÛΛ ! ã(E) is
an affine homeomorphism. Define f̃ : Γ2 ! C to be the unique function that agrees with
f̂ on Y, is constant on cosets of Λ, and is zero off Y + Λ. That is,

f̃ (ç) ≥
(

f (ç � ï) when ï 2 Λ is such that ç � ï 2 Y;
0 if ç Û2 Y + Λ.

To show f̃ 2 A(Γ2), we require sets S1, . . . , Sn 2 R (Γ2) such that
Sn

1 Sj ≥ Y + Λ and each
f̃ Ð üSk 2 A(Γ2), for then f̃ ≥ f̃ Ð üS1[ÐÐÐ[Sn ≥

Pn
k≥1 f̃ Ð üSk Ð

Qk�1
j≥1 üΓnSj

2 A(Γ).
By Lemma 2.3, there is a finite set F � Λ such that Y + Λ ≥ S

ï2F(Y + ï). Then for
each ï 2 F, f̃ Ð üY+ï ≥ f Ž ú�ï 2 A(Γ2), so the sets fY + ïgï2F � R (Γ2) are as required,
giving f̃ 2 A(Γ2). Furthermore, the defined properties of f̃ mean that f̃ 2 î̂(ã1). Hence
by Lemma 1.4, f̃ Žã�1

1 has an extension in A(Γ1), and since f̃ Ž ã�1
1 is itself an extension

of f̂ Ž ã�1, we are done.
So we have proven Theorem A for the case where the decomposition of ã given in

Lemma 2.1 yields just one piece. In the general case, we will apply Lemma 3.1 to each
piece of a “multi-piece” piecewise affine map, and then combine them. Lemma 3.3 below
is crucial in that it allows us to carry out this last step.

If ¤ is a Banach algebra, recall that a bounded approximate right identity for ¤ is a
bounded net fengn2∆ � ¤ such that for each a 2 ¤, aen ! a.

LEMMA 3.2. If I and J are closed ideals of a Banach algebra¤ and I has a bounded
approximate right identity fengn2∆, then I + J is a closed ideal of ¤.

PROOF. Clearly I +J is an ideal of¤. Let ô be the natural isomorphism JÛ(I\J ) !
(I + J )ÛI . Clearly ô is continuous. Let y 2 J be such that ky + Ik Ú 1, so that there
exists x 2 I with ky� xk Ú 1. Then

kô�1(y + I )k ≥ inffky + zk : z 2 I \ Jg
� inf

n2∆
ky� yenk

� inf
n2∆

(ky� xk + kx� xenk + kenk kx� yk)

Ú 1 + 0 + sup
n2∆

kenk
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and so ô�1 is continuous. Hence (I + J )ÛI is complete, and it follows that I + J is a
closed ideal of ¤.

LEMMA 3.3. If X, Y 2 Rc(Γ) then I (X) + I (Y) ≥ I (X \ Y).

PROOF. By [10, Theorem 13], I (X) has a bounded approximate identity, so that by
Lemma 3.2, I (X)+I (Y) is a closed ideal of A(Γ). Furthermore, we have Z

�
I (X)+I (Y)

�
≥

X\Y 2 Rc(Γ). By [5, Theorem 3.9], X\Y is a set of spectral synthesis—that is, I (X\Y)
is the only ideal whose hull is X \ Y—giving I (X) + I (Y) ≥ I (X \ Y).

COROLLARY 3.3.1. If X, Y 2 Rc(Γ) and g1, g2 2 A(Γ) are such that g1jX\Y ≥ g2jX\Y,
then there exists g 2 A(Γ) with gjX ≥ g1jX and gjY ≥ g2jY .

PROOF. Since g1 � g2 2 I (X \ Y), there exist f1 2 I (X), f2 2 I (Y) with f1 � f2 ≥
g1 � g2. Then g ≥ g1 � f1 ≥ g2 � f2 is as required.

This corollary enables us to find a common extension to the pieces of f̂ Ž ã�1, and
thus complete the proof of Theorem 1.3, and consequently that of Theorem A.

PROOF OF THEOREM 1.3. By Lemma 2.1 there are disjoint S1, . . . , Sn 2 R0(Γ2) such
that

Sn
1 Sk ≥ Y and each ãjSk is proper with an affine extension ãk: Aff(Sk) ! Γ1. For

each 1 � k � n, f̂ Ð üSk 2 î̂(ãjSk ), so by Lemma 3.1, there exists gk 2 A(Γ1) such that
gkjã(Sk) ≥ f̂ Ž (ãjSk )�1 ≥ f̂ Ž ã�1jã(Sk).

By repeatedly applying Corollary 3.3.1, we obtain g 2 A(Γ) such that for each 1 �
k � n, gjã(Sk) ≥ gkjã(Sk). Then gjã(Y) ≥ f Ž ã�1, as required.

We can now apply Theorem A to obtain a further property of homomorphisms be-
tween commutative group algebras.

THEOREM 3.4. If ó: L1(G1) ! L1(G2) is an algebra homomorphismand J is a closed
ideal in L1(G1), then ó(J ) is a closed subalgebra of L1(G2).

PROOF. Let I ≥ keró ≥ I
�
ã(Y)

�
. By Corollary 2.4.2 and [10, Theorem 13] I has

a bounded approximate identity. So by Lemma 3.2 I + J is a closed ideal of L1(G1). By
Corollary B and the Open Mapping Theorem, ó

�
L1(G1) n (I + J )

�
is open in î(ã). But

ó
�
L1(G1) n (I + J )

�
≥ î(ã) n ó(J ), so that ó(J ) is closed in î(ã), and hence in L1(G2).

Finally, ó(J ) is an ideal of î(ã), and hence a subalgebra of L1(G2).

4. Final remarks. Given that Theorem A and Corollary B present Banach-alge-
braic properties of commutative group algebras, it is natural to consider whether these
results admit generalisations to other classes of Banach algebras. The possibility that ei-
ther the domain or codomain algebras could be allowed to be any commutative semisim-
ple Banach algebra is too general. In the first case, the group algebra L1(G) on any infinite
locally compact Abelian group G has a proper dense subalgebra¤with a Banach algebra
norm such that¤ !̈ L1(G) is continuous: if G is non-discrete, let ¤ be the Segal algebra
L1(G) \ L2(G) of [11, Section 6.2]; and if G is discrete, let ¤ be the Beurling algebra
‡1(G,°) of [11, Section 6.3], where °: G ! [1,1] is an unbounded submultiplicative
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weight on G. In the second case, such a group algebra can be continuously injected into
C0(Γ) via the Fourier transform, and this monomorphism has proper dense range.

The possibility of generalising to algebras on non-abelian locally compact groups
seems more promising. Here there are two obvious cases to consider, the first being the
group algebras L1(G) on non-abelian groups, and the second being the Fourier algebras
A(G) on non-abelian groups. However, in each case we only have partial results analo-
gous to Cohen’s theorem on homomorphisms between group algebras.

In the case of homomorphisms between noncommutative group algebras, the existing
classification results only deal with homomorphisms with norm bounded by some small
constant—see for instance [6] or [9]. As in the case dealt with in Lemma 1.4 the homo-
morphisms of norm 1 are essentially given by the map TH: L1(G) ! L1(GÛH) of [11,
Sections 3.4–3.6], and are easily shown to have closed range.

The homomorphisms ó: A(G1) ! A(G2) between the Fourier algebras of two locally
compact groups have been characterised in [8] in the case where G1 is a finite extension
of an abelian group. Here the characterisation is precisely that obtained by Cohen for
the abelian case, given an appropriate definition of “piecewise affine”. For such G1, the
ideals with bounded approximate identity are those with hull in Rc(G1), and so the proof
in Sections 2 and 3 of the present paper can be carried through with only minor changes.
For more general G1, it seems possible that the result will still hold. Certainly the example
given in [8] of a homomorphism where ã is not piecewise affine does have closed range
of the type described in Theorem A—it is an isomorphism. So it seems that an alternative
method of proof must be sought. A second potential obstacle is that due to the results in
[4], in that if we are to have bounded approximate identities in any but the most trivial
ideals of a Fourier algebra, we require the group to be amenable.

Finally, we should note that in situations not too far removed from Theorem A, we do
not get the result we might expect. Recall from [12, Theorem 4.6.2] that for G1 and G2

locally compact abelian groups, any homomorphism ó: L1(G1) ! L1(G2) has a natural
extension ó̃: M(G1) ! M(G2) given by ó̃(ñ)b ≥ ñ̂ Ž ã on Y and ó̃(ñ)b≥ 0 off Y. Put

î̃(ã) ≥ fñ 2 M(G2) : ñ̂jΓ2nY ≥ 0 and ã(ç1) ≥ ã(ç2) ≥) ñ̂(ç1) ≥ ñ̂(ç2)g,

a closed subalgebra of M(G2) containing ó̃
�
M(G1)

�
. Then we do not always have

ó̃
�
M(G1)

�
≥ î̃(ã). For instance, let ã:Z ! (Z+1Û2)[(

p
2Z) � R be a piecewise affine

bijection and let ó: L1(R) ! L1(T) and ó̃: M(R) ! M(T) be the homomorphisms deter-
mined by ã. By Theorem A, ó is an epimorphism. However, üã�1(Z+1Û2) 2 B(Z) ≥ î̃(ã)b
cannot be expressed as F Žã for any F 2 B(R), due to the uniform continuity of Fourier-
Stieltjes transforms, and so ó̃

�
M(R)

�
Â≥ î̃(ã).
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