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THE RANGE OF GROUP ALGEBRA HOMOMORPHISM S

ANDREW G. KEPERT

ABSTRACT. A characterisation of the range of a homomorphism between two com-
mutative group algebras is presented which implies, among other things, that this
rangeis closed. The work relies mainly on the characterisation of such homomorphisms
achieved by P. J. Cohen.

Suppose A and B are commutative semisimple Banach algebras with carrier spaces
@y and Py respectively and v: U — 1 is an algebra homomorphism. Then v*(Py) C
®y U {0}, and if b € v(U), then the Gel’ fand transform b of b satisfies

(i) If ¢ € dy hasv*(p) = 0, then b(y) = 0, and

(il) If ¢1,2 € Dy havev* (1) = v*(2) € Py, thenb(y1) = b(ip2).

When each of ) and 13 isthe group algebra of alocally compact Abelian group, say
A = LY(Gy) and B3 = LY(G,), then we can identify ®,; and ®y, with I, and I, the dual
groups of G; and G, respectively. Thisidentifiesthe Gelf’ and and Fourier transforms on
each of L1(G;) and LY(G,). The main result of this paper isthat in this situation we have
aconverseto the above.

THEOREM A. Suppose G; and G; are locally compact Abelian groupsand v is an
algebra homomorphismL(G;) — LY(G,). Then

v(LAGy) = {f € LX(Gp) : " (1) =0=T(11) = 0
andv*(11) = v (72) = f(11) = F(72) (11,72 € T)}.

Sincethis expr%ses:x(Ll(G)) as an intersection of the kernels of a set of continuous
linear functionals on L1(G,), we immediately have the following.

COROLLARY B. The range of a homomor phism between commutative group alge-
brasis closed.

The first three sections of this paper are devoted to developing ideas leading to a
proof of Theorem A. The starting point for this discussion is Cohen’s characterization
of homomorphisms between commutative group algebras, to be stated in Section 1. The
fourth section of this paper concerns the development of results of the above type for
classes of Banach algebras other than the commutative group algebras.
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Dr. R. J. Loy and Dr. G. A. Willis for their encouragement and suggestions.
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1. Notation and preliminary results. Most of the notation and basic results used
can be found in the book of Rudin [12], or alternatively the books of Hewitt and Ross
[7] and Reiter [11]. We will mainly follow Rudin and refer, where possible, to results
therein. In particular, G, Gy, ... will always denote locally compact Abelian groups, and
their dual groupswill bel™, '3, . .. respectively. We will use + for the group product in all
locally compact Abelian groups.

If H isasubgroup of G, then we will denote the quotient mapping G — G/H by Qx
and the annihilator of H in T by H*. If x € G, 7 will denote the translation function
on G given by 74 (y) = x+y. A nonempty subset E of G is called a coset in G when
E— E+E = E, for then E isatrandate of the subgroup E — E of G. The terms subcoset,
index and coset generated by a set X C G then assume their obvious meanings, and the
last of these will be denoted by Aff(X).

If X(A\) is a trandlation-invariant set of functions defined on any locally compact
Abeliangroup A, then we define X (E) to bethe corresponding set of functionson aclosed
coset E of alocally compact Abelian group I'; that is, X (E) consists of thosef:E — C
for whichf o 7_, € X(E — E) for some, and henceall, ¥ € E. If X(E — E) has additional
topological and/or algebraic structure that is translation-invariant in nature, this can be
carried over to X (E), sothat X (E) isisomorphic to X(E — E). In particular we have A(E),
the Fourier algebraon E, whose carrier spaceis E, and whosemultiplier algebrais B(E),
the Fourier-Stieltjes algebra on E. The coset ring of E, denoted by R (E), can likewise
be obtained by viewing R (E— E) asaset of characteristic functions. Clearly R (E) isthe
boolean ring generated by the (relatively) open subcosets of E, and owing to the Idem-
potent Measure Theorem of P. J. Cohen, [2, Theorem 1] or [12, Theorem 3.1.3], we have
that the idempotentsin B(E) consist of the characteristic functions of elementsof R (E).

A more significant consequence of the Idempotent Measure Theorem is the charac-
terisation of group algebra homomorphisms, again due to Cohen. A brief statement of
thisisthat if v: L1(G1) — LY(Gy) is ahomomorphism between group algebras, then the
part of the graph of v*: L>°(G;) — L*>°(Gy) that lieswithin I, x I'; is actually an element
of R ((Fz X Fl)d). (Here 'y denotesthe group I with its discrete topology imposed.)

To be able to use the original, more tractible statement of this theorem, we recall
some of the relevant definitions. A map between cosets ¢: E; — E; is called affine if
Y1+ X2 — X3) = Y(X1) + (%) — ¥(Xs) for any x1, Xz, X3 € E1. A map ¢ from X C I,
into Iy is called piecewise affine if there exists disioint Sy,..., S, € R () such that
X = U} S&andeach |, hasacontinuousaffine extension—that is, eachistherestriction
of a continuous affine map whose domain is a coset containing S;. Recall from [1] that
if X and Y are locally compact spaces, then f: X — Y is called proper if f~1(C) C X
is compact whenever C C Y is compact. With these definitions, we have the following
theorem, which also contains the converse to the above “brief statement”. It originally
appearedin Cohen’spaper [3, Theorem 1], and can also be found in Chapter 4 of Rudin’s
book [12].

THEOREM 1.1. If v:LY(G;1) — M(G,) is a nonzero algebra homomorphism, then
thereisaset Y € R (I) and a piecewise affine map o: Y — I such that for each
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f € LY(Gy), 1//(f\) =foaonYand 1//(f\) is zero off Y. Conversely, any such piecewise
affine map determines a homomorphism: L1(G1) — M(Gy), and v (LY(Gy)) € LX(Gy)
if and only if o is proper.

Asin[12], we use? for the corresponding homomorphism A(I';) — B(I™2), and abbre-
viatetherelation statedin Theorem 1.1to 7(f) = f oa. Themapsr* and o of TheoremsA
and 1.1 arerelated, in that for v € I,

YEY=T(0) =vH)) =0 (f LGy
= 1*(7) =0 and
yeY=Ti(r() =vH)) =f(am) (f €LG)
= oY) = (7).

HenceY = {“/ e :f() #£0, (f S I/(Ll(Gl)))} and & = v*|y. Dueto this Banach al-
gebraic characterization, we will further develop the case for more general commutative
semisimple Banach algebras before returning to the group algebra case.

If U is a commutative semisimple Banach algebra, define the hull of aset X C 2 to
beZy(X) = {p € Py : p(X) = 0,(x € X)} = X- N Dy, and the kernel of aset E C dy
tobely(E) = {a€ A: ¢(@) = 0,(¢ € E)} = N,e ker . Aswith most notation of this
type, the subscript will usually be omitted. It is clear that Z(X) is aways a closed subset
of @, and | (E) isalways aclosed ideal of . Then % is called regular if E = Z(1 (E))
for any closed set E C ®y,. It it well known that that LY(G) is regular.

PrOPOSITION 1.2. Letv: A — 5 be a homomor phism between commutative semi-
simple Banach algebras. Then Y = {¢ € ®y : p ov # 0} = @y \ Z(»(X)) is open
in @y, and closed if % is unital. Also, « = v*|y is a continuous, proper, closed map
Y — @y with Z(kerv) = z(l (a(v))), the closure of a(Y) in the hull-kernel topology
on @y, so that if 2 isregular, then Z(kerv) = o(Y).

ProoF. Clearly Yisopenand a: Y — @y iscontinuous. If 2 hasunit e, then xy =
v(e) € B C Co(Pyy), and so Y is clopen. To show « to be proper, suppose C C @y is
compact. For ¢ € C, takea, € A with ¢(a,) > landset K, = {¢1 € Oy : &, (p1) >
1}, a compact neighbourhood of . Similarly a1(K,) = {2 € @y : v(@)(p2) > 1}
is also compact. Take a finite set ¢4, ..., ¢n such that K., ,...,K,, cover C, and then
a}(C) C oYK, )U---Ua }(K,,), whichis compact, so o 1(C) is compact.

Then from [1, Section 1.10.10, Proposition 15 and Section 1.10.1, Proposition 7], or
by a straightforward calculation, we havethat « is closed. The remaining statements are
clear from definitions. "

REMARK. In the case that v:L}(Gy) — M(G;) and »(LY(Gy)) Z LY(Gy), thereis
no conflict between Theorem 1.1 and Proposition 1.2, since the first concernsY C I,
and a: Y — Iy, which will not be proper, whereas the second concerns Y C ®y g, and
oY — 1, which will be proper.
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Suppose 13 is a commutative semisimple Banach algebra, with U an open subset of
@,y and y» amap from U into a set X. Define

k(1) = {b € B : b= 00ff Uandb(p1) = bip2) whenever y(1) = ¥(¢2)}-

Thiswill be written (1)) when no confusion is likely, and the notation & (1) will denote
{b: b e k(a)}. Wecan view () asthe closed subalgebraof thoseb e | (dy \ U) for
which b o ¢ is awell-defined function on y(U).

Suppose A and B are commutative semisimple Banach algebras, v: % — B isan
algebrahomomorphism and Y and o are obtained from » asin Proposition 1.2. We have
seen from the opening discussion of this paper that () C x(c). Thuswe can consider
# (o) as a convenient upper bound on (). Theorem A assertsthat if 2( and %3 are both
group algebras, then v(U) = k().

Asamodel for theproof of Theorem A, itisinstructiveto consider the casewhere Al =
Co(X), for some locally compact Hausdorff topological space X, and 23 is semisimple.
Supposeb € r(«), thensince  is proper, boa™* € Co((Y)). Moreover, o(Y) is closed
in X, so it is a simple matter to apply the Tietze Extension Theorem on the one-point
compactification of X to give an extensiong € Co(X) of boaL. Thenb = goa = y/@,
and since 5 is semisimple, b = v(g). Hence k() = v(W).

The use of “extension” results analogous to the Tietze Extension Theorem will be
used to prove Theorem A. In fact, it is clear that the following theorem is equivalent to
Theorem A.

THEOREM 1.3. IfY € R () and a: Y — Ty is a proper piecewise affine map, then
for anyf € r(a), f o oL a(Y) — C hasan extension in A(Iy).

We will prove this theorem in three stages. Firstly when Y is an open coset and o
is affine, then for certain cases in which o has an affine extension, and finally for the
general case as stated above. Each case will be proven by obtaining properties of (),
then characterizing the behaviour of foa?, andfina ly finding an extension. Throughout,
the notation v, Y and o will be asin Theorem 1.1. Hereis the case where « is affine.

LEMMA 1.4. If Yisanopencosetin I, and a: Y — I'1 is affine, proper and contin-
uous, then for any f € r(a), f o =1 hasan extensionin A(l).

PROCF. SinceYisclosedand « isclosed and affine, a(Y) isaclosed coset. Takeyg €
Y, then A = o~ a(V0) } —7o isacompact subgroup of Y—o and Y; = Qa(Y) isan open
cosetin Iz /A. Clearly fe A(I"2) is constant on cosets of A, so by [12, Theorem 2.7.1]
f = 0 ae. off the open subgroup H = A* of G,. Putf; = f|y € LY(H), then for all
Y+ A € a/A = H-, we have by [12, Equation 2.7.1(2)] that fy(y + A) = f(7). Thus
f 0 Qu = f and fy is zero off Y;.

Now, o o Qrt: Y1 — «a(Y) is awell defined affine bijection. Furthermore o o Qit
is continuous and proper, and hence is an affine homeomorphism onto «(Y). Thusg —
goaoQyt isanisomorphism A(a(Y)) — A(Y1), sofoat = fio(@oQx) ™ € A(a(Y)).
But A((Y)) = A(T)|o(v, by [12, Theorem 2.7.4], sof o o+ hasan extensionin A('). m
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It should be noted that the action of v: LY(G;) — LY(G,) is essentialy given by the
homomorphism Ty, : L}(Gy) — LY(Gy/Hi), where Hy = [a(Y) — oc(Y)}L and Ty, is
the transformation that averages over cosets of H; with respect to the Haar measure on
Hi;—see [11, Sections 3.4-3.6]. The extension result in Lemma 1.4 relies on Ty, being
an epimorphism with Ty, (f) = f|H1i.

COROLLARY 1.4.1. If I, isconnected, and v: LY(G;) — LY(G,) is a nonzero homo-
mor phism, then for some open subgroup H of G,

v(LY(G1)) = k() = {f € L(Gp) : f = 0ae off H} = L'(H).

ProoF. Since R (M) = {0, I} we havethat Y = I, and « is affine, so by the
lemma, v(L*(G1)) = x(). Then with A and H as above, the conditionsf € r(c) and
f = 0 ae. off H are each equivalent to f bei ng constant on cosets of A. ]

In the case where G is also connected, this reduces to v(L*(Gy)) = LY(G), and
since the Euclidean groups R" are the only connected locally compact Abelian groups
with connected dual, we have the following.

COROLLARY 1.4.2. If G, = R" for somen > 0, then v isonto. n

2. Thecoset ring and piecewise affine maps. As a starting point for considering
general piecewise affine maps, we have from the discussion in [12, Section 4.3.4] that
any set in the coset ring of alocally compact Abelian group I' is afinite digoint union
of setsin

Ro(N) = {E0\< U Ek) :Eg CTisanopencosetand Ey,...,En

1<k<m

are open subcosets of infiniteindex in Eo} .

Clearly, by [12, Lemma4.3.3], § ¢ Ro(I). If S= Eo \ (UT'Ex) € Ro(T"), then for all
Y € Eo— Eo, SN (S+7) = B \ (UT'Ex U UT(Ex +7)) € Ro(1). Soiif E isany coset
containing S, then EN(E+7) # (), s0Y € E—E. ThusEg—Ey C E—E, andso Ep C E.
Hence Eq = Aff(9), the coset generated by S

By applying this result plus the decomposition of [12, Section 4.3.4] to the original
definition of “ piecewise affine” we obtain the following characterisation.

LEMMA 2.1. If X € R (I',) then ¢: X — T is piecewise affine if and only if there
aredigoint S, ..., S, € Ro(l2) suchthat X = S U--- U S, and for each k, 1|s_hasa
continuous affine extension : Aff(S) — Is. ]

Thefollowing pair of lemmaswill be used to obtain information about the affine maps
Y1, ..., fromap. Eachlemmaallows usto “smudge” aset S € Ro(I") to cover aslightly
larger set. In the first case the slightly larger set is Aff(S), and in the second it is S+ A,
for A a compact subgroup of T.
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LEMMA 2.2. Let S e Ro(I") and put E; = Aff(S), then there is a finite subset F of
Eo — Ep suchthat Eg = S+ F.

PROOF.  We proceed by induction on mto show that if S= Eo \ (UT'Ex) € Ro(I)
then thereisafiniteset F C Eg — Ep with S+ F = Eq. If m = 0, then S = Ej so that
F = {e} suffices. Now let m > 0 and put S = Eo \ (U " Ex) € Ro(I"). By hypothesis,
thereisafiniteset F C Ey — Eg with S + F' = Ey. Since E,, is of infinite index in Eg,
thereexistsy € (Eo — Eo) \ (Em — Em+F — F'), sothat (En+ F') N (Em+ F' +7) = ().
PUtF = F'U(F +9).

Since S C SUEy, wehaveEy = S+F C (S+F)U (En+F) C Eg, so that
(S+F)U(Em+F’) = Ey, andsimilarly (S+F' +7)U(En+F +7) = Eg. But (En+F') N
(Em+ F +7) = 0, dueto the choice of v, sothat S+ F = (S+F)U(S+F +7) = Eo. m

LEMMA 2.3. If Se R (IN) and A is a compact subgroup of I, then there is a finite
subset F of A suchthat S+ A = S+F.

PROOF. Let Ey, ..., E, be open cosets such that Sis in the Boolean ring generated
by {E1,...,En}. Let = = NJ(Ex — Ex), an open subgroup of I" with S+ = = S Since
A iscompact and AN = isopenin A, AN = isof finiteindex in \. Let F C A bea
finite set with (AN=) +F = A, thensinceSC S+ (ANZ) C S+= = S wehave
S+F =S+ (ANZ)+F=S+A. .

PROPOSITION 2.4.  If S€ Ry(I2) and v: Aff(S) — Iy isaffinesuchthat |sisproper,
then ¢ is proper.

PROOF.  Assume first that Aff(S) is a subgroup and ¢ is a homomorphism, then let
F C Aff(S) be suchthat S+ F = Aff(S), asin Lemma 2.2. Note that (v|s)"*(-) =
SN y~Y(-), so that for any compact C C I,

vHO = YO0+ = U (v (C-um)ns)+,

which is compact. Hence ¢ is proper. The general case follows by translation. ]

COROLLARY 2.4.1. Suppose S € Rq(I2) and ¢:'S — T is proper with an affine
extension . Then ¢/ (Aff(S)) isaclosed cosetin I and /() € R (w’(Aff (S))).

PrOOF. Without loss, we can assume that ¢/’ has domain Eg = Aff(S), so that by
Lemmaz2.4,v’ isproper. Hence E = +/(Ep) isaclosed cosetin ;. Now, asin Lemmal.4
there is a compact subgroup A of Eq — Eg such that /' o Q,—\l: Eo/A\ — Eisan affine
homeomorphism. Then by Lemma 2.3, thereis afinite set F C A with S+ A = S+ F,
giving S+ A € R (Ep). Hence Qa(S) € R (Eo/A) and ¢(S) = ¢/(S) € R (E). "

Note that if E is aclosed cosetin I, then any X € R (E) isaclosed set in R ().
Define Ry(MN) = R (Ig) and Re(N) = {x C I : Xisclosed and X € Ry4(")}. By
combining Lemma 2.1 with the preceding corollary, we obtain the following.
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COROLLARY 2.4.2. 1fX € R (I;) andy: X — Iy is proper and piecewise affine then
¥(X) € Re(T). .

A similar result holdsfor piecewise affine mapsthat are not necessarily proper. It can
be shown that the range of such amap X — I; is an element of Ry(I").

3. Proof of themain theorem. Inthissectionweapply theanalysisof thecosetring
and piecewise affine maps presented in Section 2 to complete the proof of Theorem 1.3.
We begin with the second stage of Theorem 1.3.

LEMmMA 3.1. Suppose Y € Ro(f) and o: Y — I has an affine extension o
Aff(Y) — . Thenfor any f € x(«), f o o1 hasan extensionin A(I"y).

ProoOF. Put E = Aff(Y), then by Lemma 2.4, ay:E — T iS proper, so as in
Lemma 1.4, thereis acompact subgroup A of E — E suchthat oy o Q1 E/A — a(E) is
an affine homeomorphism. Defi nef:, — C tobethe unique function that agrees with
f on'Y, is constant on cosets of A, and is zero off Y + A. That is,

f(y —A) whenX € Aissuchthaty — X €,
0 ify ¢ Y+A

Toshowf e A(2), werequiresets Sy, ..., § € R () such that U1S = Y+Aandeach
f Xs € A(rz) for thenf —f XSU-US, = Zk— f XS - H] 1 Xr\g S A(F)

By Lemma 2.3, thereisafiniteset F C A suchthat Y + A = [J,ce(Y + A). Then for
each A € F, - xysy = f o7, € A(l), sothesets {Y+A}yer C R () are asrequired,
givingf e A(I"2). Furthermore, the defined properties of f meanthat f € %(ay). Hence
by Lemmal 4,fo a7 hasan extensionin A(Ty), and sincef o ap tisitself an extension
of f o a2, we are done. ]

So we have proven Theorem A for the case where the decomposition of « givenin
Lemma 2.1 yields just one piece. In the general case, we will apply Lemma 3.1 to each
pieceof a"multi-piece” piecewise affine map, and then combinethem. Lemma 3.3 below
is crucial in that it allows usto carry out thislast step.

If A is aBanach algebra, recall that a bounded approximate right identity for 2 isa
bounded net {en}nea € AU such that for eacha € U, ag, — a.

LEMMA 3.2. Ifl andJ areclosedidealsof aBanachalgebra 2 and | hasabounded
approximate right identity {€}nea, then | +J isa closed ideal of .

ProOF. Clearly | +J isanideal of 2. Let 7 bethenatural isomorphismJ /(1 NJ) —
(I +J)/1. Clearly 7 is continuous. Let y € J be suchthat ||y + ||| < 1, so that there
existsx € | with [ly — x| < 1. Then

f() =

7~ Xy + D) = inf{|ly+2]| :ze I NJ}
< Inf [ly — ye|
< inf(|ly — x| + [x — xenl| + [[enll [Ix = ylI)
neA

< 1+0+suple
nel

https://doi.org/10.4153/CMB-1997-022-6 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1997-022-6

190 A. G. KEPERT

and so 7~ is continuous. Hence (I +J)/1 is complete, and it follows that | +J isa
closed ideal of 2. n

LEMMA 3.3. If X, Y € Re(N) then I (X) + 1 (Y) = I (XNY).

PrOOF. By [10, Theorem 13], | (X) has a bounded approximate identity, so that by
Lemma3.2, | (X)+1(Y) isaclosedideal of A(T). Furthermore, wehaveZ(1 (X)+1(Y)) =
XNY € R¢(N). By [5, Theorem 3.9], XN Y isaset of spectral synthesis—that s, | (XNY)
isthe only ideal whose hull is XN Y—giving | (X) + 1 (Y) = I (XNY). "

COROLLARY 3.3.1. IfX,Y € R¢(") and gy, g2 € A() aresuchthat gi|x~v = Gz|xwv,
then there existsg € A(I") with g|x = g1|x and gy = Ga|y.

PrOOF. Sinceg; — g € 1(XNY), thereexistf; € 1(X), f, € 1(Y) withf;, —f, =
01— Q2. Theng = g1 — f1 = g2 — f2 isasrequired. [

This corollary enables us to find a common extension to the pieces of foa and
thus complete the proof of Theorem 1.3, and consequently that of Theorem A.

PROOF OF THEOREM 1.3. By LemmaZ2.1therearedisjoint Sy, ..., S, € Ro(I2) such
that U] S = Y and each «|g, is proper with an affine extension oy: Aff(S;) — I1. For
eecchl <k<n,f- xs € R(als), so by Lemma 3.1, there exists gx € A('1) such that
Olasy = F o (@) =Foa s,

By repeatedly applying Corollary 3.3.1, we obtain g € A(I") such that for each 1 <
K<, glas) = Klasy- Then gl = f o a1, asrequired. .

We can now apply Theorem A to obtain a further property of homomorphisms be-
tween commutative group algebras.

THEOREM 3.4. Ifv: LY(G;1) — LY(G,) isanalgebrahomomorphismandJ isaclosed
ideal in L1(G,), then »(J) is a closed subalgebra of L1(Gy).

ProOF. Let | = kerv = I((Y)). By Corollary 2.4.2 and [10, Theorem 13] | has
abounded approximate identity. So by Lemma3.2 | +J isaclosed ideal of L1(G;). By
Corollary B and the Open Mapping Theorem, v(LY(Gy) \ (I +J)) is openin x(c). But
v(LYGy) \ (I +J)) = k(@) \ »(J), so that v(J) is closed in x(a), and hencein LY(Gy).
Finally, »(J) isan ideal of x(«), and hence a subalgebraof LY(Gy). "

4. Final remarks. Given that Theorem A and Corollary B present Banach-alge-
braic properties of commutative group algebras, it is natural to consider whether these
results admit generalisations to other classes of Banach algebras. The possibility that ei-
ther the domain or codomain algebras could be allowed to be any commutative semisim-
ple Banach algebraistoo general. In thefirst case, the group algebraL1(G) on any infinite
locally compact Abelian group G hasa proper dense subalgebra 2l with aBanach algebra
normsuchthat 2l — L(G) iscontinuous: if G isnon-discrete, let 9 bethe Segal algebra
LY(G) N L2(G) of [11, Section 6.2]; and if G is discrete, let 2 be the Beurling algebra
(Y(G, w) of [11, Section 6.3], where w: G — [1, 00] is an unbounded submultiplicative
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weight on G. In the second case, such agroup algebra can be continuously injected into
Co(I") viathe Fourier transform, and this monomorphism has proper dense range.

The possibility of generalising to algebras on non-abelian locally compact groups
seems more promising. Here there are two obvious cases to consider, the first being the
group algebras L1(G) on non-abelian groups, and the second being the Fourier algebras
A(G) on non-abelian groups. However, in each case we only have partial results analo-
gousto Cohen’s theorem on homomaorphisms between group algebras.

In the case of homomorphisms between noncommutative group algebras, the existing
classification results only deal with homomorphismswith norm bounded by some small
constant—see for instance [6] or [9]. Asin the case dealt with in Lemma 1.4 the homo-
morphisms of norm 1 are essentially given by the map Ty:LY(G) — LY(G/H) of [11,
Sections 3.4-3.6], and are easily shown to have closed range.

The homomorphismsv: A(G;) — A(G;) between the Fourier algebras of two locally
compact groups have been characterised in [8] in the case where G; is afinite extension
of an abelian group. Here the characterisation is precisely that obtained by Cohen for
the abelian case, given an appropriate definition of “piecewise affine”. For such Gy, the
ideals with bounded approximate identity are thosewith hull in R¢(Gy), and so the proof
in Sections 2 and 3 of the present paper can be carried through with only minor changes.
For moregeneral Gy, it seemspossiblethat theresult will still hold. Certainly the example
givenin [8] of ahomomorphism where « is not piecewise affine does have closed range
of thetype described in Theorem A—it isanisomorphism. So it seemsthat an alternative
method of proof must be sought. A second potential obstacle isthat dueto the resultsin
[4], inthat if we are to have bounded approximate identities in any but the most trivial
ideals of a Fourier algebra, we require the group to be amenable.

Finally, we should note that in situations not too far removed from Theorem A, we do
not get the result we might expect. Recall from [12, Theorem 4.6.2] that for G; and G,
locally compact abelian groups, any homomorphism v: L1(G;) — LY(G,) has a natural
extension 7: M(G1) — M(Gy) givenby 7(u)y = i o @ on'Y and v(u) = 0 off Y. Put

() = {u € M(G2) : filr,\y = 0and a(71) = a(V2) = fi(11) = (V2)},

a closed subalgebra of M(Gy) containing 7(M(Gy)). Then we do not always have
7(M(G1)) = R(a). Forinstance, let a: 7 — (Z+1/2)U(v/2Z) C R beapiecewiseaffine
bijection and let »: LY(R) — LY(T) and &: M(R) — M(T) be the homomorphisms deter-
mined by . By Theorem A, v is an epimorphism. However, x,-yz+1/2) € B(Z) = k(o)
cannot be expressed asF o o for any F € B(R), dueto the uniform continuity of Fourier-
Stieltjes transforms, and so 7(M(R)) # &(a).
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