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Abstract

An important issue faced by implementors of higher-order functional programming languages

is the allocation and deallocation of storage for variables. The possibility of variables escaping

their scope during runtime makes traditional stack allocation inadequate. We consider the

problem of detecting when variables in such languages do not escape their scope, and thus

can have their bindings allocated in an efficient manner. We use an annotated type system to

infer information about the use of variables in a higher-order, strict functional language and

combine this system with a translation to an annotated language which explicitly indicates

which variables do not escape. The type system uses a notion of annotated types which

extends the traditional simple type system with information about the extent of variables. To

illustrate the use of this information we define an operational semantics for the annotated

language which supports both stack and environment allocation of variable bindings. Only

the stack allocated bindings need follow the protocol for stacks: their extent may not exceed

their scope. Environment allocated bindings can have any extent, and their allocation has

no impact on the stack allocated ones. We prove the analysis and translation correct with

respect to this operational semantics by adapting a traditional type consistency proof to our

setting. We have encoded the proof into the Elf programming language and typechecked it,

providing a partially machine-checked proof.

Capsule Review

Typical implementations of functional languages take one of two approaches to closure

allocation. Some allocate all closures on the heap, while others use a mixture of stack allocation

and heap allocation. Reducing closure allocation costs through stack allocation may yet prove

to be the best way to achieve pay-as-you-go efficiency for higher-order functions, but this

approach requires an effective analysis to determine which closures may be stack allocated.

This paper presents an extended static type system that addresses this important problem.

The paper augments a growing body of work that recognizes the power and simplicity of

extended static type systems for inferring and representing the results of program analyses.

The author defines a type system with annotations indicating which variables have lifetimes

that do not escape their lexical scope. A type-directed transformation uses this information

to translate a higher-order functional language to an abstract machine with instructions for

manipulating both closures and stacks. The type systems, abstract machines, and translations

in the paper are clearly and carefully defined. Appropriate correctness theorems are presented,

and these theorems are supported by detailed proofs. This paper is an important step towards

more efficient implementations of functional languages.
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1 Introduction

A higher-order functional language allows functions, with free variables, as values.

This feature presents a significant problem to implementors of these languages:

the scope of a variable (a static property) and the extent of the same variable

(a dynamic property) may not have a simple correspondence, as found in block-

structured languages. This condition prohibits the general use of a stack to allocate

space for variable bindings. As a simple example consider the λ-term λx.λf.f x. To

apply this function to some value v, we bind the variable x to v and evaluate the

body of the function. In block-structured languages the extent of a formal parameter

to a function ends when the function returns. But in this case, the value of the body

is simply λf.f x, where x is bound to v. The reference to x in the body has not been

accessed.

Typical approaches to implementing functional languages build a closure contain-

ing both λf.f x and the binding of x to v and return this as the result of the function

call. The binding for x is still needed in case we ever apply the function λf.f x to

an argument. Thus the extent of x continues even after function call return. To

support this situation, some implementations of higher-order functional languages

allocate all variables on a heap and use garbage collection to deallocate inaccessible

structures. While this approach has proven viable, we believe that implementations

can profit from an analysis that detects cases in which stack allocation of a variable

is safe. The ORBIT compiler (Kranz, 1988) for Scheme performed a first-order

escape analysis to provide such information, but it did not provide information for

higher-order functions. An important advantage of using stack allocation over heap

allocation, besides the automatic deallocation of storage, is the reduction in the size

of closures that must be created, either at compile time or run time, to support

non-local variable access. By detecting variables that can be stack allocated, we also

detect that these variables need not be placed in a closure. At best, we may detect

situations in which no closure need be created. Thus our analysis can lead to savings

of space (by reducing the size of closures) and also time (by reducing the need to

store values in closures at run time). It should be noted, however, that Shao and

Appel have demonstrated space-efficient closure representations which reduces the

space required for closures (by introducing shared closures) (Shao and Appel, 1994).

We develop a static analysis via a type system to perform an escape analysis

in which the type of an expression indicates which variable bindings can safely be

allocated on a stack. This effort contrasts with the work on region analysis (Tofte

and Talpin, 1994) which studies the lifetime of values and provides a stack discipline

for storage of values. This is admittedly a more difficult problem due to the sharing

of data structures which occurs. While it might be safe to allocate a binding x7→v
on a stack, it might not be safe to allocate the value v on a stack, if this value

can be shared with other bindings. The lifetime of the value can exceed the lifetime

of the binding. This situation arises with data structures passed as arguments to

functions. Rather than copying the entire structure, an implementation typically

passes a pointer to the data structure, resulting in sharing.

A simple distinction which illustrates the essential difference between our work and
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region analysis is that we study properties of the environment (mapping variables

to locations) while region analysis studies properties of the store (mapping locations

to values). In the cases where values are small and can be copied (when passed

as arguments) then both approaches provide similar information. But when values

are large and are passed by reference, then sharing of data structures occurs and

region analysis provides information regarding the lifetime of these data structures.

However, the lifetime of variable bindings is important in its own right because such

information can be utilized to construct efficient representations of function closures

(Hannan, 1995). In particular, non-escaping variable bindings might not need to be

included into a function closure, resulting in faster closure creation and potentially

more efficient variable access.

An important contribution of this work is that we allow for both stack and

environment-allocated objects, and the allocation of one variable in an environment

does not necessarily preclude the earlier allocation of another variable on a stack.

This contrasts with previous work which detected when stack allocation alone was

sufficient (Banerjee and Schmidt, 1994), or a strict heap allocation policy was used

(Appel, 1992). A second contribution of our work is the construction of a simple

abstract machine that exhibits the stack behavior and illustrates the difference be-

tween stack and environment allocation. We also introduce an operational semantics

that uses both a stack and an environment. A third contribution is our proof which

demonstrates the correctness of the analysis and the operational semantics, with

respect to a traditional operational semantics. We have encoded this proof into the

Elf programming language (Pfenning, 1991), providing a partially machine-checked

proof (Ibarra, 1997). This effort revealed minor errors and deficiencies in an earlier

version of the analysis and its proof. It also enhanced our understanding of some

of the more complicated aspects of this work. We believe that the type system,

the abstract machine, the definition of consistency (used in the proof), and the

encoded version of the proof provide a useful set of tools for experimenting with,

and reasoning about, storage allocation techniques in languages.

The remainder of the paper is organized as follows. In section 2 we introduce

the syntax of our source and target languages. We also introduce an operational

semantics and an abstract machine for the source language. In section 3 we introduce

the static analysis and translation from source to target language. These are given

as a single deductive system using annotated types to guide the translation. In

section 4 we define an operational semantics and an abstract machine for the

annotated target language. The abstract machine utilizes a global variable stack and

explicitly pops the stack when a variable’s block or scope terminates. In section 5 we

prove the equivalence of the source and target operational semantics and state the

equivalence of the source and target abstract machines. We prove the consistency

of these operational semantics with respect to the static analysis, justifying the use

of type annotations. Here, consistency includes the traditional notion of subject

reduction but also statements justifying the presence of annotations. We also discuss

our experience with developing a machine-checked proof in Elf. In section 6 we

discuss a possible refinement of the analysis which provides lifetime information for

variables. In section 7 we discuss related work, and finally, in section 8 we conclude.
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2 Operational semantics

Both the source and target languages are simple higher-order functional languages

with call-by-value parameter passing. The source language consists of the simply

typed λ-terms extended with constants, a conditional and a fixed-point operator:

e :: = c | x | λx.e | e@ e | if e e e | µf.λx.e

where c ranges over some set of constants and (e1 @ e2) represents the application

of e1 to e2. The fixed-point operator µ provides for recursive function definitions.

Types are implicit, à la Curry, and terms can be typed via a standard typing system

using judgments of the form Γ >e : τ. In the next section we introduce a type system

which combines this notion of typing with a translation to the target language. We

assume Barendregt’s ‘variable convention’ (Barendregt, 1984) in which all bound

variables are chosen to be distinct from each other and from the free variables.

The target language is again an extended typed λ-calculus, but it includes two

forms of variables and applications: one regular form and one annotated form:

z, h :: = x | x∗

m :: = c | z | λz.m | m@m | m@∗ m | if m m m | µh.λz.m

We use h to range over recursive function names and z to range over other variable

names. We assume the same set of constants in both languages. We also assume

a one-to-one correspondence between the variables of the source language and the

unannotated variables of the target language, and a one-to-one correspondence

between the annotated and unannotated variables of the target language. The term

x∗ will be used to indicate that the value binding for the variable does not escape

the scope of x, similarly for recursive function names f∗. The term (m1 @∗ m2) will

be used to indicate that the value of the term m1 (if it exists) will be a function

whose argument binding does not escape its scope.

We provide an operational semantics for the source language via a set of inference

rules specifying call-by-value evaluation to weak-head normal form. We introduce

the judgment ρ > e ↪→ v, in which ρ is an environment, e is a source language

expression, and v is a source language value. We axiomatize it via the rules of

Fig. 1. For this deductive system, and others introduced subsequently, we write

Π :: ρ > e ↪→ v to indicate that Π is a deduction of the judgment ρ > e ↪→ v. Values

are either constants or function closures ([ρ, λx.e] and [ρ, µf.λx.e]) consisting of a

function and an environment ρ.

We assume an environment is an ordered sequence of bindings (associating distinct

variables to values), with the most recent binding on the right end. Thus ρ{x7→v}
represents the environment obtained after adding the binding of x to v to the

environment ρ (with x not already bound in ρ). We use ‘•’ to represent the empty

environment. Let dom(ρ) denote the domain of ρ. We write ρ(x) to denote the value

bound to x in ρ. (We also use these same constructors and definitions for representing

type contexts and variable stacks in later sections.) As a convenience we introduce

the notion of prefix for environments and other structures. An environment ρ′ is a

prefix of ρ, written ρ′ v ρ, if either ρ′ = ρ, or ρ = ρ′′{x7→v} for some x and v, and
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ρ > c ↪→ c
(1.1)

ρ(x) = v

ρ > x ↪→ v
(1.2)

ρ > e1 ↪→ true ρ > e2 ↪→ v

ρ > if e1 e2 e3 ↪→ v

ρ > e1 ↪→ false ρ > e3 ↪→ v

ρ > if e1 e2 e3 ↪→ v
(1.3, 1.4)

ρ > λx.e ↪→ [ρ, λx.e] ρ > µf.λx.e ↪→ [ρ, µf.λx.e]
(1.5, 1.6)

ρ > e1 ↪→ [ρ′, λx.e′] ρ > e2 ↪→ v2 ρ′{x7→v2} > e′ ↪→ v

ρ > e1 @ e2 ↪→ v
(1.7)

ρ > e1 ↪→ [ρ′, µf.λx.e′] ρ > e2 ↪→ v2

ρ′{f 7→ [ρ′, µf.λx.e′]}{x7→v2} > e′ ↪→ v

ρ > e1 @ e2 ↪→ v

(1.8)

Fig. 1. Source language operational semantics.

ρ′ is a prefix of ρ′′. An environment can be considered as an abstraction of a heap

which contains only variable bindings. We assume that we manipulate only closed

terms or terms whose free variables are bound in a given environment.

As an alternative to the operational semantics of Fig. 1, we can also define

an abstract machine which implements the source language. An abstract machine

provides an intermediate level description of a language by defining a set of rewrite

rules that operate on a machine state. Each rule describes a single reduction in the

machine state. For our call-by-value source language we have previously defined the

CLS machine (Hannan and Miller, 1992), our variant of the SECD machine, which

is given in Fig. 2. In this machine, a state is a triple 〈C,L, S〉 in which C is a sequence

of instructions (terms to be reduced), L is a sequence of environments, and S is a

stack for holding intermediate results. The machine operates by stepping through

a sequence of states with the effect of evaluating the first term on the instruction

list C and leaving its value on top of the stack S . The term is evaluated using

the first environment in L. The new instructions ap and branch apply a function

to its evaluated argument and select a branch of a conditional, respectively. To

evaluate a term e with respect to environment ρ we start the machine in the state

〈e::nil, ρ::nil, nil〉. If e has a value (with respect to ρ) then the machine will reach a

final state 〈nil, nil, v::nil〉 from which the value v can be extracted. In previous work

(Hannan and Miller, 1992) we have demonstrated the precise relationship between

the operational semantics and this abstract machine, which can simply be expressed

as:

ρ > e ↪→ v iff 〈e::nil, ρ::nil, nil〉 ⇒ 〈nil, nil, v::nil〉
in which all the free variables of e are in dom(ρ). The original version of this machine

described in (Hannan and Miller, 1992) uses a syntax with de Bruijn indices for

variables instead of symbolic names. We prefer to use symbolic names here to

simplify the presentation.
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〈c::C, ρ::L, S〉 ⇒ 〈C, L, c::S〉
〈x::C, ρ::L, S〉 ⇒ 〈C, L, ρ(x)::S〉
〈(if e1 e2 e3)::C, ρ::L, S〉 ⇒ 〈e1::branch(e2, e3)::C, ρ::ρ::L, S〉
〈branch(e2, e3)::C, ρ::L, true::S〉 ⇒ 〈e2::C, ρ::L, S〉
〈branch(e2, e3)::C, ρ::L, false::S〉 ⇒ 〈e3::C, ρ::L, S〉
〈(λx.e)::C, ρ::L, S〉 ⇒ 〈C, L, [ρ, λx.e] ::S〉
〈(µf.λx.e)::C, ρ::L, S〉 ⇒ 〈C, L, [ρ, µf.λx.e] ::S〉
〈(e1 @ e2)::C, ρ::L, S〉 ⇒ 〈e2::e1::ap::C, ρ::ρ::L, S〉
〈ap::C, L, [ρ, λx.e] ::v::S〉 ⇒ 〈e::C, (ρ{x7→v})::L, S〉
〈ap::C, L, [ρ, µf.λx.e] ::v::S〉 ⇒ 〈e::C, (ρ{f 7→ [ρ, µf.λx.e]}{x7→v})::L, S〉

Fig. 2. The CLS machine.

This abstract machine and its relationship to the operational semantics above pro-

vide a convenient starting point from which we can develop an abstract machine for

the target language. This machine, defined in section 4, provides a clear description

of the storage allocation and deallocation actions provided by stack allocation of

variable bindings. Before getting to this implementation we define the static analysis

and translation from source language to target language.

3 Static analysis

The goal of our work is to define a translation from source terms to target terms

that maximizes the number of annotations. To do this we define a type system

in which the types provide information regarding the lifetime of variables. Let ∆

(possibly subscripted) range over sets of target language variables.

The set of annotated types is defined as

φ :: = ι | φ ∆−→ φ | φ ∆−→∗φ

in which ι ranges over some base types. We have two function types to distinguish

between functions whose argument does not escape (annotated arrow) and functions

whose argument may escape (unannotated arrow). The ∆’s over the arrows represent

sets of variables. Intuitively, the type φ1
∆−→ φ2 represents a function (from type

φ1 to φ2) such that ∆ contains at least the annotated variables, occurring in the

function, which may be accessed during evaluation of the body of the function. We

let LV(φ) denote the set of live annotated term variables occurring in the annotated

type φ, defined as follows:

LV(ι) = {} LV(φ1
∆−→ φ2) = ∆ ∪ LV(φ2) LV(φ1

∆−→∗φ2) = ∆ ∪ LV(φ2)

We can relate these annotated types to simple types. Let τ range over simple types

including the same set of base types as our annotated types. Then we can define type
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erasure as a function from annotated types to simple types, written |φ|, as follows

|ι| = ι |φ1
∆−→ φ2| = |φ1|→|φ2| |φ1

∆−→∗φ2| = |φ1|→|φ2|

We also define erasure on sets of variables. For any set S of target language variables

let |S | be the set (of source language variables) obtained by erasing any annotations

on variables in S .

We define a translation from source to target language as part of a static analysis

using the annotated types. The typing judgment is of the form Γ > e : (φ,∆) ⇒ m

in which

• Γ is a type context, mapping target language variables to types;

• e is a source language expression;

• m is a target language expression;

• φ is an annotated type; and

• ∆ is a set of annotated language variables.

The judgment can be understood as stating: “Under the type assumptions of Γ,

expression e has type φ, may access at most the annotated variables in ∆ (excluding

the bound variables of e) during call-by-value evaluation to weak head normal form

(whnf), and translates to target term m.” We assume type contexts to be an ordered

sequence of bindings with the most recently added binding on the right. We define

dom(Γ) = {x|(x : φ) ∈ Γ} ∪ {x∗|(x∗:φ) ∈ Γ}.
The static analysis is given by the rules in Fig. 3. Before presenting formal

properties of this system we provide an informal description of the rules. The first

rule (3.1) treats constants. We assume given some signature Σ which maps constants

to simple types. A constant c can then be given any annotated type φ such that

the erasure of φ yields the simple type associated with c in Σ. This generality of

types of constants is necessary to allow flexible mixing of primitive operators with

user-defined functions (which may have annotations and non-empty sets in their

types). The next two rules (3.2, 3.3) treat variables. We have two cases to distinguish

between the two kinds of variable bindings in contexts and the resulting translation

to target language variables. In the rule for the conditional (3.4) observe that we

require the types of the two branches to be the same, as expected, but allow the

variable sets ∆2 and ∆3 to be distinct.

The next two rules (3.5, 3.6) treat λ-abstractions. For both rules, the treatment of

the sets ∆ and ∆′ can easily be explained. We consider just rule (3.5) as it is the one

involving an annotated variable. If expression e requires the variables in ∆, then the

type of the function is annotated with the set ∆′ ⊇ ∆− {x∗}, which includes all the

free annotated variables required to evaluate the body of λx.e. The expression λx.e

requires no variables to be evaluated (because it is already in whnf), so we use {}
in the conclusion. The ability to weaken the set ∆− {x∗} to ∆′ allows certain typing

constraints to be satisfied. For example, the two branches of a conditional must

have the same type, but they may contain different free variables. If the type of

the conditional is functional, then each branch may otherwise (without weakening)

have a distinct set of variables annotating the function arrow. The weakening of sets

included in rules (3.5) and (3.6) provides a means to construct the same type for each
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(c : |φ|) ∈ Σ

Γ > c : (φ, {})⇒ c
(3.1)

(x∗:φ) ∈ Γ

Γ > x : (φ, {x∗})⇒ x∗
(x:φ) ∈ Γ

Γ > x : (φ, {})⇒ x
(3.2, 3.3)

Γ > e1 : (bool,∆1)⇒ m1

Γ > e2 : (φ,∆2)⇒ m2 Γ > e3 : (φ,∆3)⇒ m3

Γ > if e1 e2 e3 : (φ,∆1 ∪ ∆2 ∪ ∆3)⇒ if m1 m2 m3

(3.4)

Γ{x∗:φ1} > e : (φ2,∆)⇒ m ∆ ⊆ (∆′ ] {x∗})

Γ > λx.e : (φ1

∆′−→∗φ2, {})⇒ λx∗.m
x∗ 6∈ LV(φ2) (3.5)

Γ{x:φ1} > e : (φ2,∆)⇒ m ∆ ⊆ ∆′

Γ > λx.e : (φ1

∆′−→ φ2, {})⇒ λx.m
(3.6)

Γ{f∗:φ1

∆′−→∗φ2}{x∗:φ1} > e : (φ2,∆)⇒ m ∆ ⊆ (∆′ ] {f∗, x∗})

Γ > µf.λx.e : (φ1

∆′−→∗φ2, {})⇒ µf∗.λx∗.m

f∗ 6∈ LV(φ1)

x∗, f∗ 6∈ LV(φ2)
(3.7)

Γ{f:φ1

∆′−→ φ2}{x:φ1} > e : (φ2,∆)⇒ m ∆ ⊆ ∆′

Γ > µf.λx.e : (φ1

∆′−→ φ2, {})⇒ µf.λx.m
(3.8)

Γ > e1 : (φ1

∆−→∗φ2,∆1)⇒ m1 Γ > e2 : (φ1,∆2)⇒ m2

Γ > (e1 @ e2) : (φ2,∆ ∪ ∆1 ∪ ∆2)⇒ m1 @∗ m2

(3.9)

Γ > e1 : (φ1

∆−→ φ2,∆1)⇒ m1 Γ > e2 : (φ1,∆2)⇒ m2

Γ > (e1 @ e2) : (φ2,∆ ∪ ∆1 ∪ ∆2)⇒ m1 @m2

(3.10)

Fig. 3. Static analysis and translation.

branch. Weakening is a safe operation because the sets ∆ represent a conservative

approximation to a set of variables. The approximation is conservative in the sense

that if a variable is needed then it will be an element of the set. But not every element

of the set is necessarily needed in all possible uses (evaluations) of an expression.

This level of imprecision is inherent in the problem due to the expressive power of

the language. Our use of weakening follows a similar technique found in Tofte and

Talpin (1994) where latent effects over arrows are also allowed to be weakened for

similar reasons. Using this technique avoids the need for explicit subtyping as found

in Amtoft (1993).

The side condition on rule (3.5), x∗ 6∈ LV(φ2), provides the critical constraint which

ensures that the binding for variable x∗ can be stack allocated. The key observation

here is that the result of evaluating the body e will be a term v of type φ2 (given

subject reduction) and if LV(φ2) contains no occurrences of x∗ then x∗ can never

be accessed in the evaluation of any function that may be contained in v. Thus,

the binding for x∗ can be deallocated (popped) after the value v is produced. Rule
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(3.6) contains no side condition and so is always applicable. Note that the names of

variables are significant here, and so we should ensure that all bound variable names

are distinct. (This assumption is made in section 5 where we prove correctness.)

Rules (3.7, 3.8) treat recursive functions and they operate analogously to the two

rules for λ-abstraction. The side conditions on rule (3.7) are precisely those required

to ensure that the bindings for both f and x can be allocated on a stack. The

condition f∗ 6∈ LV(φ1) ensures that the value (of type φ1) bound to x does not

depend upon the value bound to f, as both of these bindings will be on the same

stack. Note that the annotation of a recursive function name f does not preclude

the binding of another variable to a closure representing a recursive function which

can escape. For example consider (λg.e) @ µf∗.λx∗.e′. The variable g (bound to the

closure for the recursive function) may escape the body e. In such a case g could not

be annotated. Note that we require the annotations on a recursive function name f

to be the same as the (first) argument to the function. While it may be unnecessary,

this restriction reduces the number of cases which must be considered. Note further

that because we have not included pairs in the language, functions of multiple

arguments will be Curried. The current analysis is sensitive to Curried functions:

the analysis will never annotate a Curried recursive function of two arguments.

Therefore, we should assume that this analysis occurs during compilation only after

an unCurry analysis which introduces unCurried forms of functions where possible.

The last two rules (3.9, 3.10) treat application, corresponding to the two forms

of application in the target language. In both cases the set ∆ ∪ ∆1 ∪ ∆2 represents

the appropriate set of variables that the application (e1 @ e2) may access during

evaluation to whnf because the evaluation of (e1 @ e2) requires

1. the evaluation of e2 which requires at most the variables in ∆2;

2. the evaluation of e1 which requires at most the variables in ∆1 to a function

λx.e′ of type φ1
∆−→∗φ2 or φ1

∆−→ φ2; and

3. the evaluation of e′ which requires at most the variables in ∆.

The only difference between these two rules is the use of annotations in rule (3.9).

If the expression e1 has type φ1
∆−→∗φ2, then the application in the target language

will be annotated.

Some examples of judgments derivable in this system illustrate its ability to detect

variables which do not escape their scope and hence can be annotated. For the

identity function the following judgment is derivable:

• > λx.x : (φ
{}
−→∗φ, {}) ⇒ λx∗.x∗

As should be expected the argument to the identity function can be pushed onto

the stack, as no reference to x can remain after evaluating the body of the function.

For the function λx.λy.x the following judgment is derivable:

• > λx.λy.x : (φ1

{}
−→ (φ2

{x}
−→∗φ1), {}) ⇒ λx.λy∗.x

indicating that only y can be stack allocated. For a slightly more complex example

consider the term λx.((λf.(f@ x)) @ (λz.z)). Though x has an occurrence inside the
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body of a locally nested function, once this function is applied to some argument,

this occurrence will be accessed. We can derive the judgment

• >λx.((λf.(f@ x)) @ (λz.z)) : (φ
{}
−→∗φ, {})⇒ λx∗.((λf∗.(f∗@∗ x∗)) @∗ (λz∗.z∗))

indicating that all the variables can be stack allocated. Alternatively, we can derive

the judgment

• >λx.((λf.(f@ (λy.x))) @ (λz.z)) : (φ1

{}
−→ (φ2

{x}
−→∗φ1), {})⇒

λx.((λf∗.(f∗@∗ (λy∗.x))) @∗ (λz∗.z∗))

but not a judgment in which the translated form (for the same input term) contains

x annotated. This situation indicates that x cannot be stack allocated. Because the

type (φ2

{x}
−→∗φ1) contains x, this type would violate the side condition of rule (3.5).

Hence, we must use rule (3.6), and the bound variable x cannot be stack allocated.

Observe that after applying the source language expression to some value v, we

would bind x to v and produce the result λy.x. So x cannot be stack allocated.

Before addressing the correctness of our analysis we consider its completeness

relative to simply typed terms. We have that every simply typed term can be

analyzed and translated into an annotated term. For any context Γ, let |Γ| be the

context obtained by applying the erasure function to the types in Γ and by erasing

any annotations on variables in Γ.

Theorem 3.1 (Completeness)

1. If ` Γ > e : τ then there exists some Γ′, φ, ∆, and m such that ` Γ′ > e :

(φ,∆)⇒ m, |Γ′| = Γ, and |φ| = τ.

2. if ` Γ > e : (φ,∆)⇒ m then ` |Γ| > e : |φ|.

The proof of part (i) relies on constructing function types and variables which are

not annotated. Thus, rules (3.2), (3.5) and (3.7) are never used. This restriction also

results in all the ∆-sets being empty, leaving essentially the traditional simple-type

system. The proof of part (ii) is straightforward as any deduction using the rules of

Fig. 3 can be translated into a simple typing derivation by erasing all annotations,

sets, and target terms.

While the static analysis has only been specified as a set of inference rules here,

this specification does lead to an algorithm for type reconstruction and program

translation. The algorithm, which can be found in Burns (1996), is based on algorithm

W (Milner, 1978), but it deals with annotation variables and set variables (and

substitutions over these variables) in much the same way in which algorithm W
treats type variables. To handle the problem of efficiently manipulating sets, we

employ the technique described in Tofte and Talpin (1994) for managing effects.

Our representation of sets takes the form δ.∆ in which ∆ is a list of variables and

δ is a variable. By mapping δ to another representation of a set we can extend the

set represented by δ.∆ (under some substitution S). The unification of two types

may now require two sets δ1.∆1 and δ2.∆2 to be unified. This can easily be handled

by applying appropriate substitutions to δ1 and δ2 (possibly introducing a new set

variable δ3).
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4 Implementing the annotated language

The static analysis of the previous section describes a translation from source

language to target language. In this section we develop an operational semantics and

an abstract machine for the target language. Both use a stack and an environment for

allocation of variable bindings. Our goal is not to construct realistic implementations,

but to illustrate the use of the analysis and to provide a framework in which we can

reason about its correctness. We will avoid discussing specific low-level details about

the actual representation of environments and stacks, and, in particular, when such

structures can be shared or must be copied.

To construct these specifications, we start with the operational semantics and

abstract machine for the source language defined in section 2. Both of these specifi-

cations use environments for all binding allocations. We modify these specifications

by introducing a stack for allocating the bindings of annotated variables. Unanno-

tated variables will still be allocated in an environment.

4.1 An operational semantics

We introduce the new judgment π; η > m ↪→t w in which π represents a stack, η

represents an environment, m is a target term, and w is a target value. We use η

instead of ρ to distinguish between an environment which maps variables to source

language values (ρ) and one which maps variables to target language values (η).

As with environments, we assume that a stack is an ordered sequence of bindings,

with the most recent binding on the right end. Thus, pushing the binding x∗7→w
onto the stack π yields the stack π{x∗7→w}. We define dom(π) = {x∗|(x∗7→w) ∈
π, for some w}. As in the operational semantics for the source language, values

are either constants or function closures of the form [η, λz.m] or [η, µhλz.m]. The

axiomatization of the judgment π; η > m ↪→t w is given in Fig. 4.

The first rule handles constants. The next two rules (4.2, 4.3) illustrate the two

forms of variable access, either from the stack π or the environment η, and the

necessity of annotating occurrences of variables in terms to distinguish stack and

environment-allocated variables. The next two rules (4.4, 4.5) handle the conditional.

The next two rules (4.6, 4.7) illustrate the construction of closures which do not

contain the current stack. Our static analysis guarantees that any references in m (the

body of the λ-abstraction) to variables on the stack will be evaluated at a point when

the variables are still on the stack. Compare this behavior to that of environment-

allocated variables, where references to a variable in η cannot necessarily be restricted

to a particular segment of a deduction. The next two rules (4.8, 4.9) treat application

involving non-recursive function closures. Rule (4.9) is analogous to rule (1.7), using

the environment to store the binding. Rule (4.8) illustrates the stack-like behaviour

of annotated variables. The binding x7→w2 is pushed onto the stack just prior to

evaluating m′. Upon computing the value w, we can pop the stack, returning it to its

form just prior to evaluating (m1 @∗ m2). The action of popping the stack is implicit

in this specification.

The final two rules (4.10, 4.11) treat application involving recursive function
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π; η > c ↪→t c
(4.1)

π(x∗) = w

π; η > x∗ ↪→t w

η(x) = w

π; η > x ↪→t w
(4.2, 4.3)

π; η > m1 ↪→t true π; η > m2 ↪→t w

π; η > if m1 m2 m3 ↪→t w
(4.4)

π; η > m1 ↪→t false π; η > m3 ↪→t w

π; η > if m1 m2 m3 ↪→t w
(4.5)

π; η > λz.m ↪→t [η, λz.m] π; η > µh.λz.m ↪→t [η, µh.λz.m]
(4.6, 4.7)

π; η > m1 ↪→t [η′, λx∗.m′] π; η > m2 ↪→t w2

π{x∗ 7→w2}; η′ >m′ ↪→t w

π; η > m1 @∗ m2 ↪→t w

(4.8)

π; η > m1 ↪→t [η′, λx.m′] π; η > m2 ↪→t w2

π; η′{x7→w2} >m′ ↪→t w

π; η > m1 @m2 ↪→t w

(4.9)

π; η > m1 ↪→t [η′, µf∗.λx∗.m′] π; η > m2 ↪→t w2

π{f∗ 7→ [η′, λx∗.m′]}{x∗ 7→w2}; η′ >m′ ↪→t w

π; η > m1 @∗ m2 ↪→t w

(4.10)

π; η > m1 ↪→t [η′, µf.λx.m′] π; η > m2 ↪→t w2

π; η′{f 7→ [η′, µf.λx.m′]}{x7→w2} >m′ ↪→t w

π; η > m1 @m2 ↪→t w

(4.11)

Fig. 4. Target language operational semantics.

closures. These rules are analogous to the previous two, except for the addition of

handling the recursive function binding. Note that the binding for f∗ pushed on

the stack binds f∗ to the closure
[
η′, λx∗.m′

]
, not

[
η′, µf∗.λx∗.m′

]
. This is possible

because recursive calls to f∗ in m′ need not push another binding for f∗ onto the

stack each time. Thus only upon the first invocation of a recursive function is the

closure
[
η′, µf∗.λx∗.m′

]
encountered and a binding for f∗ pushed.

4.2 An abstract machine

While the operational semantics for the target language provides some of the flavor

of the distinction between stack and environment allocation, an abstract machine

description can further illustrate the stack behavior. We can adapt the CLS machine

from section 2 to manipulate both a stack and a environment. The new machine,

the CπLS machine, uses a state of the form 〈C, π, L, S〉 in which we have added

the variable stack π. We introduce the new instructions aps and pop. The aps

instruction pushes a binding onto the stack, and the pop instruction pops the stack.

The CπLS machine is given in Fig. 5.
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〈c::C, π, η::L, S〉 ⇒ 〈C, π, L, c::S〉
〈x∗::C, π, η::L, S〉 ⇒ 〈C, π, L, π(x∗)::S〉
〈x::C, π, η::L, S〉 ⇒ 〈C, π, L, η(x)::S〉
〈(if e1 e2 e3)::C, π, η::L, S〉 ⇒ 〈e1::branch(e2, e3)::C, π, η::η::L, S〉
〈branch(e2, e3)::C, π, η::L, true::S〉 ⇒ 〈e2::C, π, η::L, S〉
〈branch(e2, e3)::C, π, η::L, false::S〉 ⇒ 〈e3::C, π, η::L, S〉
〈(λz.m)::C, π, η::L, S〉 ⇒ 〈C, π, L, [η, λz.m] ::S〉
〈(µf.λx.m)::C, π, η::L, S〉 ⇒ 〈C, π, L, [η, µf.λx.m] ::S〉
〈(µf∗.λx∗.m)::C, π, η::L, S〉 ⇒ 〈C, π, L, [η, µf∗.λx∗.m] ::S〉
〈(m1 @∗ m2)::C, π, η::L, S〉 ⇒ 〈m2::m1::aps::C, π, η::η::L, S〉
〈(m1 @m2)::C, π, η::L, S〉 ⇒ 〈m2::m1::ap::C, π, η::η::L, S〉
〈aps::C, π, L, [η, λx∗.m] ::w::S〉 ⇒ 〈m::pop::C, π{x∗ 7→w}, η::L, S〉
〈ap::C, π, L, [η, λx.m] ::w::S〉 ⇒ 〈m::C, π, (η{x7→w})::L, S〉
〈aps::C, π, L, [η, µf∗.λx∗.m] ::w::S〉 ⇒ 〈m::pop::pop::C, π{f∗ 7→ [η, λx∗.m]}{x∗ 7→w}, η::L, S〉
〈ap::C, π, L, [η, µf.λx.m] ::w::S〉 ⇒ 〈m::C, π, (η{f 7→ [η, µf.λx.m]}{x7→w})::L, S〉
〈pop::C, π{x7→w}, L, S〉 ⇒ 〈C, π, L, S〉

Fig. 5. The CπLS machine.

The CπLS machine has two rules for handling variables, two rules for applications

and two rules for function application. In each case, one of the two rules manipulates

unannotated terms just as in the CLS machine, while the other rule manipulates

annotated terms. Of particular interest are the two rules involving application. The

rule for reducing an annotated application introduces the aps instruction when it

decomposes the term (m1 @∗ m2). This indicates that the value of m2 will be pushed

onto the stack during evaluation and should be popped after the value of the

application is produced. The first two rules for aps and ap illustrate the difference in

storage allocation, with the first one pushing the binding onto the stack π, and the

second one adding the binding to the environment η. The next two rules illustrate

the handling of recursive function closures by pushing a binding for the recursive

function onto the stack. The addition of pop instructions ensures that the two

bindings will be popped when the recursive function terminates.

We have implemented this machine using a syntax with de Bruijn indices in place

of symbolic variable names. This eliminates the need to search for variable names,

but it also complicates the handling of stacks and environments because the size of

the stack may grow between the time a function (which contains de Bruijn indices

which index into the stack) is first encountered and when it is actually applied.

We can prove the correctness of this abstract machine with respect to the op-

erational semantics of Fig. 4, using an approach analogous to the one we took

in Hannan and Pfenning (1992), in which we proved the correctness of the CLS

machine with respect to the operational semantics of Fig. 1. The difficulty in relating

the abstract machine to its operational semantics arises from two differences: (1) the

operational semantics axiomatizes a judgment relating an expression and its final
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value while the abstract machine axiomatizes a relation between states in a machine

in which one state is obtained from the other by a single reduction step; and (2)

the abstract machine state may contain contextual information relating to previous

(S) and subsequent (C) computations while the operational semantics does not. We

surmount these difficulties by isolating an invariant of the abstract machine, namely

that starting from a machine state 〈m::C, π, η::L, S〉, the machine will eventually

reach a state 〈C, π, L, w::S〉 where w is the value of m (assuming m has a value).

This property motivates the following theorem.

Theorem 4.1

` π; η > m ↪→t w iff for all C , L, S , 〈m::C, π, η::L, S〉 ⇒∗ 〈C, π, L, w::S〉.

The proof is a straightforward extension of our previous proof of correctness for

the CLS machine (Hannan and Pfenning, 1992), where some insight is needed to

capture the nature of the stack discipline of the abstract machine. In the forward

direction the proof uses induction on the structure of the deduction for π; η >

m ↪→t w. In the reverse direction the proof uses induction on the length of the

reduction 〈m::C, π, η::L, S〉 ⇒∗ 〈C, π, L, w::S〉. Observe that a consequence of

this theorem is that the abstract machine never reaches a stuck state such as〈
aps::C, π, η::L,

[
η′, λx.m

]
::w::S

〉
: the operator term of an annotated application

cannot reduce to an unannotated function closure.

Of particular interest is the case in which the C , L, and S are all empty. From this

we observe that to evaluate expression m with respect to stack π and environment η

we should start the machine in the state 〈m::nil, π, η::nil, nil〉 and if m has a value

w, the machine will stop in the state 〈nil, π, nil, w::nil〉.

4.3 Two simple optimizations

The annotated language contains two forms of application, distinguishing between

applications in which the operator part evaluates to a stackable function and appli-

cations in which the operator part evaluates to a regular function. The annotated

form of application, however, is not necessary. We can redefine our analysis and tar-

get language implementations without using @∗ , while still maintaining all of our

results. While this modification has little impact on the limited language considered

here, it can be significant on a larger language.

We begin by modifying rule (3.7) of Fig. 3 simply by replacing @∗ with @ :

Γ > e1 : (φ1
∆−→∗φ2,∆1)⇒ m1 Γ > e2 : (φ1,∆2)⇒ m2

Γ > (e1 @ e2) : (φ2,∆ ∪ ∆1 ∪ ∆2)⇒ m1 @m2

Next we modify the operational semantics of Fig. 4 by replacing rule (4.8) with

π; η > m1 ↪→t

[
η′, λx∗.m′

]
π; η > m2 ↪→t w2 π{x∗7→w2}; η′ >m′ ↪→t w

π; η > m1 @m2 ↪→t w

Again, we have simply replaced @∗ with @ . In the resulting operational semantics

we now have two rules for evaluating an application (m1 @m2). Deciding which

rule to apply is based on whether m1 evaluates to an annotated or unannotated
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λ-abstraction. In both rules, we evaluate both m1 and m2 in the same ways. Once we

have values for these terms we can decide which rule to use. Using these observations

we can redesign the relevant rules of Fig. 5 for the CπLS machine. The current rules

for reducing the two forms of application differ in the use of the @ and @∗

instructions. As expected, the decision as to whether the binding for value of m2

will be placed on the stack or environment is fixed at this point. We can delay this

decision until after we have the value of m1. The natural point to make this decision

is during the reduction of the ap instruction. Using these observations we replace

four rules for applications, aps, and ap with the following new rules:

〈(m1 @m2)::C, π, η::L, S〉 ⇒ 〈m2::m1::ap::C, π, η::η::L, S〉〈
ap::C, π, L,

[
η, λx∗.m

]
::w::S

〉
⇒ 〈m::pop::C, π{x∗7→w}, η::L, S〉

〈ap::C, π, L, [η, λx.m] ::w::S〉 ⇒ 〈m::C, π, (η{x7→w})::L, S〉

Application is reduced in only one way, and now the ap instruction, based on the

structure of the value of m1 which is on the stack, decides whether to insert a pop

instruction. This optimization of the machine can be exploited as follows: a term

could be of the form ((if m1 then m2 else m3) @m4) in which m2 evaluates to a

function (closure) λx∗.w2 while m3 evaluates to a function (closure) λx.w3. Then the

value of m4 could be pushed onto the stack in the case that m1 evaluates to true,

while it could be placed in the environment in the case that m1 evaluates to false.

Using the unoptimized machine we would be forced to remove the annotations from

λx∗.w2, even though x∗ is stackable. Similar results hold for recursive functions.

If we extend the target operational semantics to support a tail recursion opti-

mization then we can extend the analysis to identify tail-recursive function calls. If

an application is identified as being a tail recursive call (and the argument to the

function has been allocated on the stack) then the standard optimization can be

performed. Assume ‘ @t ’ is used to denote tail calls. (The identification of such calls

is straightforward and not presented here.) We introduce the new instruction apt

and add the following rules to the abstract machine of Fig. 5:

〈(m1 @t m2)::C, π, η::L, S〉 ⇒ 〈m2::m1::apt::C, π, η::η::L, S〉〈
apt::C, π{x∗7→wx}, L,

[
η, λx∗.m

]
::w::S

〉
⇒ 〈m::C, π{x∗7→w}, η::L, S〉

Note that no pop instruction is generated in this case.

5 Correctness

To justify our static analysis and show the correctness of the target language

operational semantics (with respect to the source language semantics) we need

to demonstrate a consistency among the static analysis and the two operational

semantics. In particular we must show that the annotations on types have an

interpretation consistent with the informal description given to them earlier. For

example, if a term e can be shown to have type φ1
∆−→∗φ2 by our static analysis

and if e evaluates to value v, then we want to ensure that v is a function closure

consistent with the type φ1
∆−→∗φ2, taking into account the annotation ∆. Our
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approach to showing correctness is based on the proof of consistency between a

static and operational semantics from Milner and Tofte (1991), where a polymorphic

language is shown to be consistent with its type system. We adapt this proof by

simultaneously considering two operational semantics. Our correctness result will

also imply the consistency (in the sense of Milner and Tofte (1991)) of both the

source and target languages with respect to the static analysis.

We make one assumption about the names of variables in terms we manipulate.

We assume that each λ (and µ) binds a variable which is distinct from all the other

bound variables and distinct from all the free variables. This is not a significant

restriction as we can always α-convert terms to achieve this condition. Let Rectify(e)

be true of a term e when all the bound variables in e are unique and distinct from

all the free variables of e. Any term not in such a form can be α-converted to

satisfy Rectify. We assume that a term has been rectified before undergoing the

static analysis. If we start with a rectified term then we will be able to assume that

bindings in environments are distinct, as described by the following. We not only

require terms to be rectified, but we also require a similar property of environments,

contexts, and values.

Definition 5.1 (Distinct)

The property Distinct is the smallest property satisfying

1. Distinct(•) for empty environments and empty contexts;

2. Distinct(ρ{x7→v}) if Distinct(ρ), Distinct(v), and x 6∈ dom(ρ);

3. Distinct(Γ{x : φ}) if Distinct(Γ) and x 6∈ |dom(Γ)|;
4. Distinct(Γ{x∗ : φ}) if Distinct(Γ) and x 6∈ |dom(Γ)|;
5. Distinct(c) for all constants c;

6. Distinct([ρ, e]) if Distinct(ρ), Rectify(e), and BV(e) ∩ dom(ρ) = {}.

The last case in this definition describes the required property of function closures:

the environment must be distinct, the term must be rectified, and the bound variables

occurring in the term must be distinct from the variables bound in the environment.

This last condition ensures that if we extend the environment with a (currently)

bound variable from the term, then the resulting environment will also be distinct

(assuming the value bound to the variable is also distinct).

A useful property of the operational semantics for the source language is that the

distinct property is preserved by evaluation.

Theorem 5.2 (Distinct Source Environments)

If Distinct([ρ, e]) and Π::ρ > e ↪→ v then Distinct(v).

The proof is straightforward by induction on Π.

We next introduce a definition for the consistency of values in the source and

target languages. A traditional, type-based consistency relation found in proofs

of type soundness (subject reduction) uses a binary relation between values and

types, e.g. v : τ. When we add a source and target language we naturally have

two values (one in the source language and one in the target language) related

to a type, e.g. v ≈ w : τ. When values include closures, the consistency relation is
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extended to environments and contexts, e.g. ρ ≈ η : Γ. However, several aspects

of our analysis and target language complicate this simple notion of consistency.

First, values in our target language include closures [η, m] in which m can contain

annotated variables whose values are found on a stack (and not in η). Hence

consistency between values must be relative to a stack. Second, the relationship

between variable bindings in a source environment and a target environment and

stack is not a trivial one-to-one relationship. The ability to pop a stack can allow

fewer bindings in the target setting than in the source setting. The ‘global’ nature

of the stack in the target language can also result in bindings in π with no

corresponding bind in ρ. (This happens during some computation using a local

environment ρ.) To account for these discrepancies we define consistency relative

to a set of variables ∆. The set ∆ includes those (annotated) variables on the stack

whose binding is required to establish the consistency of two values. If a variable x

is not in ∆ then the binding of x will not be needed (to establish consistency). The

resulting consistency relation for values is a quintuple Consistent(π, v, w, φ,∆). The

relation for environments, stacks and contexts is also a quintuple Consistent(ρ, π, η,

Γ,∆).

Definition 5.3 (Consistency)

The relations Consistent(π, v, w, φ,∆) and Consistent(ρ, π, η,Γ,∆) are the two small-

est relations satisfying

1. Consistent(π, c, c, φ,∆) for all π,∆ and (c : |φ|) ∈ Σ;

2. Consistent(π, [ρ, λx.e] , [η, λz.m] , φ,∆) if there exists a Γ such that Γ > λx.e :

(φ, {})⇒ λz.m is derivable, and Consistent(ρ, π, η,Γ,∆ ∩ LV(φ));

3. (a) Consistent(π, [ρ, µf.λx.e] , [η, µh.λz.m] , φ,∆) if there exists a Γ such that

Γ > µf.λx.e : (φ, {}) ⇒ µh.λz.m is derivable, and Consistent(ρ, π, η,Γ,

∆ ∩ LV(φ));

(b) Consistent(π, [ρ, µf.λx.e] ,
[
η, λx∗.m

]
, φ,∆) if there exists a Γ such that Γ >

µf.λx.e : (φ, {})⇒µf∗.λx∗.m is derivable, and Consistent(ρ{f 7→
[
ρ, µf.λx.e′

]
},

π, η,Γ{f∗ : φ}, (∆ ∩ LV(φ)) ] {f∗});

4. Consistent(•, •, •, •, {});
5. Consistent(ρ{x 7→v}, π, η{x 7→w}, Γ{x : φ},∆) if (LV(φ) ∩ ∆) ⊆ dom(Γ),

Consistent(ρ, π, η,Γ,∆) and Consistent(π, v, w, φ,∆);

6. Consistent(ρ{x7→v}, π{x∗7→w}, η,Γ{x∗ : φ},∆] {x∗}) if (LV(φ)∩∆) ⊆ dom(Γ),

Consistent(ρ, π, η,Γ,∆) and Consistent(π, v, w, φ,∆);

7. Consistent(ρ{f 7→
[
ρ′, µf.λx.e

]
}, π{f∗7→

[
η′, λx∗.m

]
}, η,Γ{f∗ : φ},∆ ] {f∗}) if

(LV(φ)∩∆) ⊆ dom(Γ), Consistent(ρ, π, η,Γ,∆) and Consistent(π,
[
ρ′, µf.λx.e

]
,[

η′, µf∗.λx∗.m
]
, φ,∆);

8. Consistent(ρ{x 7→v}, π, η,Γ{x∗ : φ},∆) if (LV(φ) ∩ ∆) ⊆ dom(Γ) and

Consistent(ρ, π, η,Γ,∆);

9. Consistent(ρ, π{x∗7→w}, η,Γ,∆) if x∗ 6∈ ∆, and Consistent(ρ, π, η,Γ,∆).

Note that because environments (and all the other data structures involved)

are well-founded this definition is also well-founded, and hence we can reason by

induction over derivations of these judgments.
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This definition is somewhat involved and deserves explanation, as it is critical

to the correctness proof. The set ∆ represents the annotated variables which may

be used in the future, and so it is only these annotated variables whose values

must be shown to be consistent. The first three rules describe the consistency of

two values. Constants can only be related to themselves, independent of π and ∆.

The consistency of two closures (rules (2) and (3)) requires a typing derivation and

the consistency of environments, stacks, and contexts, with respect to ∆ ∩ LV(φ).

This restriction of ∆ to just the live variables of φ allows us to eliminate annotated

variables which might have been popped from the stack. Note that rule (3b) relates

a recursive function closure from the source language with a non-recursive function

closure from the target language. This relationship is required to account for the

optimization of the target language which replaces a recursive function closure with

a non-recursive one (rule (4.10)).

The rules of consistency for environments, stacks and contexts can be motivated as

follows. Rules (5) and (6) provide the means for extending environments, stacks and

contexts (with arguments to functions) during function application. The condition

(LV(φ)∩∆) ⊆ dom(Γ) ensures that the annotated variables of interest in w all occur

in Γ. Rule (7) relates a recursive function closure in the source environment with a

non-recursive target-language function closure in π. We require this rule due to the

different handling of recursive function closures in the two operational semantics

(rules (1.8) and (4.10)). Rule (8) allows for consistency to hold after an item has been

popped from the stack (but still exists in ρ and Γ). Rule (9) allows for consistency

when the stack contains global bindings which have no corresponding bindings in

a local environment ρ and local context Γ. The condition x∗ 6∈ ∆ implies that the

value bound to x∗ is not needed to show consistency.

While this definition of consistency may appear overly complicated, it precisely

captures the relationship between environments, stacks, and contexts. Note that

Consistent(ρ, π, η,Γ,∆) implies dom(ρ) = dom(Γ) and ∆ ⊆ dom(Γ). We establish

these and other properties in the appendix, where they contribute to the proof of

the theorem below.

We can now give the main correctness theorem. The theorem requires a number

of technical conditions on the relationships between environments, stacks, sets, etc.

Note that these conditions are trivially satisfied when we start with a closed, rectified

term and empty environments and stacks.

Theorem 5.4

If Distinct([ρ, e]), Ξ :: Γ > e : (φ,∆0) ⇒ m, ∆0 ⊆ ∆′, and Consistent(ρ, π, η,Γ,

∆′) then

1. Π :: ρ > e ↪→ v implies that there exist w and Θ :: π; η > m ↪→t w such that

Consistent(π, v, w, φ,∆′);

2. Θ :: π; η > m ↪→t w implies that there exist v and Π :: ρ > e ↪→ v such that

Consistent(π, v, w, φ,∆′).

The proof can be found in the appendix.

https://doi.org/10.1017/S0956796898003025 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003025


A type-based escape analysis 257

From this general theorem (and the correctness of the CLS machine of Fig. 2) we

can state a simpler statement of correctness. Given a closed λ-term of a base type,

we have the following corollary.

Corollary 5.5

If Rectify(e) and ` • > e : (ι,∆)⇒ m for some base type ι then

1. ` • > e ↪→ c iff ` •; • >m ↪→t c; and

2. 〈e::nil, ρ::nil, nil〉 ⇒ 〈nil, nil, v::nil〉 iff 〈m::nil, π, η::nil, nil〉 ⇒ 〈nil, π, nil, w::nil〉

for some constant (c : ι) ∈ Σ.

Because only constants can have a base types and the consistency of base-type

values is essentially the identity relation, we are guaranteed to have both source and

target languages produce the same constant.

The proof of Theorem 5.4 and all the supporting lemmas and propositions have

been encoded into the programming language Elf and partially machine-checked

(Ibarra, 1997), using techniques developed in previous work (Hannan and Pfenning,

1992). In this setting, we encode proofs as sets of type declarations. The types

correspond to formulas (representing theorems, lemmas, etc.) and the objects of

these types correspond to cases of the proofs. The implementation of the Elf

language provides type reconstruction and type checking, which serves to guarantee

the correctness of each case. However, the system does not guarantee that all cases of

a proof have been included. Hence, machine-checking alone is not sufficient. Visual

inspection of the code ensures that all cases have been considered.

The encoding of the proofs proceeded by first translating the syntaxes, semantics,

and various definitions, and then sequentially translating the propositions, lemma,

main theorem, and their corresponding proofs. In addition, we needed to encode nu-

merous propositions regarding the manipulation of sets (e.g. the associative property

of set intersection). While generally not difficult, this task proved tedious and time-

consuming. During the encoding process we uncovered a few typographical errors

in the paper and several minor errors in the original definitions of the analysis and

of consistency. The total effort of encoding the proofs as described in Ibarra (1997)

required approximately two months by an individual who had no prior experience

with Elf or theorem-provers. Subsequent revisions based on modifications of the

analysis and proofs required an additional week. While often tedious work, the

process of encoding these proofs served to deepen our understanding of the require-

ments of the analysis and definition of consistency. The explicit manipulation of Elf

objects representing deductions in these systems yielded an appreciation for every

single aspect of these definitions, serving to strengthen our belief in the correctness

of these definitions.

6 Future work

The current analysis provides an escape analysis in which each bound variable

is determined not to escape or possibly to escape its scope. This provides useful

information for handling non-escaping variables (such as stack allocation), but
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provides no information to support the efficient handling of escaping variables. A

useful refinement of the analysis is to provide lifetime information for these escaping

variables. Such information could be used to determine closure representations, and,

in some cases, to determine that a form of stack allocation is still possible.

Another extension to the analysis is the support of polymorphism. Traditional

type polymorphism does not appear to present any significant challenges to the

escape analysis. The instantiation of a type variable with an annotated type and the

quantification of a type variable can be carried out in the usual fashion. The ability

to instantiate a type variable with either an annotated or unannotated function type

simply means that some decisions about allocation strategies must be performed at

run time. With annotated types we can consider the introduction of set variables and

their quantification. This kind of set polymorphism allows us to generalize over the

sets annotating function types. The ability to do this can potentially provide better

information about variable usage. In particular, quantified set variables contribute

to the support of separate compilation.

Consider the example of function composition. Supporting set variables and their

quantification, our analysis should specify:

compose : ∀α∀β∀γ∀δ1∀δ2.(α
δ1−→ β)

{}
−→ (β

δ2−→ γ)
{}
−→ (α

δ1∪δ2−→ γ)

Without such quantification of set variables, the type of compose would depend on

all of its possible uses. Each use may contribute variables to the sets annotating the

function type. By introducing quantified set variables we can avoid this dependency

and give the function a set-polymorphic type independent of its uses. Extending the

traditional polymorphic type schemas of Standard ML with quantification over set

variables and extending the static analysis to include generalization and instantation

rules (similar to those used in Standard ML’s type system), we can produce types

such as the one above for compose.

7 Related work

This work considers the same problem addressed in Banerjee and Schmidt (1994),

though in that work the authors base their analysis on Sestoft’s closure analysis

(Sestoft, 1991). This closure analysis computes the fixed points of two equations

that describe the set of closures to which an expression can evaluate and the set

of closures to which a variable can be bound. This analysis appears to be more

precise than our analysis as we only generate a set of variables, along with a type,

with no indication of precisely where these variables occurred. For the current

application of stack allocation, however, this is all that is required. Their analysis

appears to correspond to our analysis producing a target term that is completely

annotated (meaning that all allocations can be done on a stack), though the precise

correspondence between the two approaches has not been considered. However,

closure analysis is typically a global operation and hence does not support separate

compilation. As mentioned in the previous section, our type-based analysis can

support separate compilation.

Most closely related to our work is the escape analysis of Goldberg and Park
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(1990), which starts with a denotational semantics and develops an escape analysis

based on abstract interpretation techniques. Their approach supports an analysis

similar in spirit to ours in that it examines the properties of a function independent

of how it is used. Their approach also supports a local analysis which examines

particular applications of functions. This local analysis can provide better results

than our approach. For example, in the expression (((λx.λy.x+y) e1) e2) our analysis

would indicate that x can escape its scope. The local analysis of Goldberg and Park

(1990) detects that stack allocation of x is still possible. However, their approach

again appears to require global information, and, thus, does not support separate

compilation.

Recent work on region inference (Tofte and Talpin, 1994) provides a more sophis-

ticated storage allocation analysis. In this work a type system guides the translation

from a functional language to a target language which contains explicit refer-

ences to blocks or regions in which values are stored. The storage model used

to implement this target language uses a stack of regions, where regions can be

of varying size. The translation to the target language incorporates a lifetime

analysis, detecting expressions in which any storage allocated can be deallocated

upon completing the evaluation of the expression. In our work we have so far

ignored the issue of storage for values, choosing to focus only on the allocation

of bindings. As mentioned in the introduction our analysis differs from region

analysis in that we study the lifetime of variable bindings, not values. Besides

this distinction, the present analysis only differentiates between escaping and non-

escaping bindings, while region analysis studies the lifetime of values and partitions

values into regions based on their similar lifetimes. These two efforts, however,

are complementary as both can be used together to support efficient implemen-

tations of functional languages. Region analysis supports efficient allocation of the

store while our escape analysis supports efficient allocation (representation) of the

environment.

The use of sets of relevant variables is also present in the type reconstruction sys-

tem of Damas (1985), where the sets are used to record information about reference

variables that might be updated during evaluation. The use of two kinds of arrow

types is present in Amtoft (1993), where the task considered there is the process

of converting call-by-name into call-by-value. Though a different problem domain

than ours, the two have much in common. Both have a ‘default’ approximation –

environment allocation here and call-by-name there – and both try to find better

approximations by finding those instances of terms which have certain properties.

Like the type system used here, Amtoft uses annotated types to distinguish between

two cases (call-by-value and call-by-name). He mentions the possible use of anno-

tating arrows with sets of variables, but dismisses it because of complications. More

generally, our use of type systems to perform a static analysis joins a growing list

of such efforts, including Baker-Finch (1994), Kuo and Mishra (1989) and Wright

(1991), as well as those mentioned above.

As mentioned in the introduction, this work has impact on closure conversion

because stack allocated variables need not be included in closures. From this

perspective, our work relates to other work on closure conversion, particularly
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approaches to detecting variables which need not be included in closures (Hannan,

1995; Wand and Steckler, 1997).

8 Conclusion

We have presented a type system that provides an analysis of a simple functional

language and yields a translation from this language to an annotated version of

the language. The type system guarantees that the annotations can be given in-

terpretations that allow the stack-allocation of variable bindings. Starting with an

operational semantics and an abstract machine for the source language, we devel-

oped corresponding operational semantics and abstract machine for the annotated

language, introducing a stack for variable allocations, but also retaining the en-

vironment. These implementations of the annotated language serve primarily as

a means for demonstrating the correctness of the analysis, but they also provide

some intuition into the use of the analysis. In a more practical implementation of

a functional language we expect this analysis to provide useful information for the

implementation of some function calls and also in the design of function closures.
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9 Proof of Theorem 5.4

The following propositions provide useful properties for manipulating the sets ∆ in

consistency relations:

Proposition 9.1

If Consistent(ρ, π, η,Γ,∆) then ∆ ⊆ dom(Γ).

The proof follows by induction on the definition of consistency. Observe that

this proposition implies that Consistent(ρ, π, η,Γ,∆) and x∗ 6∈ dom(Γ) imply x∗ 6∈
dom(∆). We use this observation in the proof of Lemma 9.6 below.

Proposition 9.2 (Weakening)

1. If Consistent(ρ, π, η,Γ,∆) and ∆′ ⊆ ∆ then Consistent(ρ, π, η,Γ,∆′).

2. If Consistent(π, v, w, φ,∆) and ∆′ ⊆ ∆ then Consistent(π, v, w, φ,∆′).

The proof follows by induction on the definition of consistency. Note that for each

variable x∗ ∈ ∆, the construction of Consistent(ρ, π, η,Γ,∆) requires one application
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of rule (6) or (7). Hence for each variable in x∗ ∈ ∆ − ∆′ we must replace the

application of rule (6) or (7) (which requires x∗ ∈ ∆′) with applications of rules (8)

and (9) which has the combined net effect of rule (6) or (7), except that they do not

require x∗ 6∈ ∆′.

We need to demonstrate that values extracted from a stack or an environment are

consistent with a larger stack. The following propositions contribute towards this

goal.

Proposition 9.3

If Consistent(ρ, π, η,Γ,∆) then

1. dom(ρ) = |dom(Γ)|;
2. Distinct(ρ) implies Distinct(Γ).

The proof follows by induction on the definition of consistency.

Proposition 9.4

If LV(φ) ∩ ∆1 = LV(φ) ∩ ∆2 then

Consistent(π, v, w, φ,∆1) iff Consistent(π, v, w, φ,∆2).

The proof follows directly from rules 1–3 of Definition 5.3.

We often need to account for the consistency of two values before and after

popping the stack. The following provides a suitable property for doing so:

Proposition 9.5

If x∗ 6∈ (LV(φ) ∩ ∆) then

Consistent(π, v, w, φ,∆− {x∗}) iff Consistent(π{x∗ 7→ w′}, v, w, φ,∆).

Proof

In the forward direction we have two cases based on the structure of the values. If

v = w = c for some constant c then the statement holds from the definition of value

consistency. Otherwise, v and w are closures. We consider just the case in which v

and w are non-recursive closures; the cases for closures involving recursive functions

follow similarly. Assume v = [ρ, e] and w = [η, m] for some ρ, e, η, m. Then from

Consistent(π, [ρ, e] , [η, m] , φ,∆− {x∗}) we have that there exists a Γ such that

Γ > e : (φ, {})⇒ m, (1)

Consistent(ρ, π, η,Γ, (∆− {x∗} ∩ LV(φ))). (2)

Because x∗ 6∈ (∆∩LV(φ)) we have (∆−{x∗})∩LV(φ) = ∆∩LV(φ). Let ∆′ = ∆∩LV(φ).

To show Consistent(π{x∗ 7→ w′}, [ρ, e] , [η, m] , φ,∆) we use item (1) and need only

show

Consistent(ρ, π{x∗ 7→ w′}, η,Γ,∆′). (3)

This follows from (2) using rule (9) of the definition of consistency.

For the reverse direction we again have two cases. If v = w = c for some constant c

then the statement follows from the definition of consistency for constants. Otherwise

v and w are closures. We consider just the case in which v and w are non-recursive
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closures; the cases for closures involving recursive functions follow similarly. Assume

v = [ρ, e] and w = [η, m]. From the assumption

Consistent(π{x∗7→w′}, [ρ, e] , [η, m] , φ,∆) (4)

we have that there exists a Γ such that

Γ > e : (φ, {})⇒ m, (5)

Consistent(ρ, π{x∗7→w′}, η,Γ,∆ ∩ LV(φ)). (6)

To show Consistent(π, [ρ, e] , [η, m] , φ,∆−{x∗}) we use item (5) above and then need

only establish

Consistent(ρ, π, η,Γ, (∆− {x∗} ∩ LV(φ))). (7)

Again, because x∗ 6∈ (∆ ∩ LV(φ)) we have (∆ − {x∗}) ∩ LV(φ) = ∆ ∩ LV(φ). Let

∆′ = ∆ ∩ LV(φ). Note x∗ 6∈ ∆′. Then

Consistent(ρ, π{x∗7→w′}, η,Γ,∆′) (8)

must have followed inductively (via some number - 0 or more - of applications of

rules (5) and (8) of Definition 5.3) from

Consistent(ρ′, π{x∗7→w′}, η′,Γ′,∆′) (9)

for some ρ′, η′ and Γ′ such that ρ′ v ρ, η′ v η and Γ′ v Γ, which, in turn, must be

the result of an application of rule (9) (because x∗ 6∈ ∆′) from

Consistent(ρ′, π, η′,Γ′,∆′). (10)

From this we can then “reapply” the sequence of rules (5) and (8) from above to

obtain

Consistent(ρ, π, η,Γ,∆′). (11)

A required property of consistency of environments and stacks is that a variable

map to related values in the source and target languages. We have the following

lemma to ensure this.

Lemma 9.6 (Variable Consistency)

If Consistent(ρ, π, η,Γ,∆) and Distinct(ρ) then:

1. if (y : φ) ∈ Γ then y ∈ dom(ρ), y ∈ dom(η), and Consistent(π, ρ(y), η(y), φ,

∆);

2. if (y∗:φ) ∈ Γ and y∗ ∈ ∆ then y ∈ dom(ρ), y∗ ∈ dom(π), and Consistent(π,

ρ(y), π(y∗), φ,∆).

Proof

The proof for both parts proceeds by induction on the definition of consistency. For

the base case (rule (4)) both parts hold vacuously. We consider the inductive steps for

each case separately. The proof of each decomposes into five cases, corresponding

to rules (5) through (9) of the definition of consistency. We use the property that

Distinct(ρ) implies Distinct(Γ).

Inductive step for part 1:
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Rule 5: Assume Consistent(ρ{x7→v}, π, η{x7→w},Γ{x : φ′},∆) because (LV(φ′)∩∆) ⊆
dom(Γ), Consistent(ρ, π, η,Γ,∆) and Consistent(π, v, w, φ′,∆). If x = y then φ = φ′

and the statement holds from Consistent(π, v, w, φ,∆). If x 6= y then by induction

on Consistent(ρ, π, η,Γ,∆) we have Consistent(π, ρ(y), η(y), φ,∆), which, along

with x 6= y implies Consistent(π, ρ{x7→v}(y), η{x7→w}(y), φ,∆).

Rule 6: Assume Consistent(ρ{x7→v}, π{x∗7→w}, η,Γ{x∗ : φ′},∆ ] {x∗}) because

(LV(φ′)∩∆) ⊆ dom(Γ), Consistent(ρ, π, η,Γ,∆) and Consistent(π, v, w, φ′,∆). Then

x 6= y (by Distinct(Γ{x∗ : φ′})), and by induction on Consistent(ρ, π, η,Γ,∆) we

have Consistent(π, ρ(y), η(y), φ,∆). We have x∗ 6∈ ∆, and so by Proposition 9.5 we

then have Consistent(π{x∗7→w}, ρ(y), η(y), φ,∆ ] {x∗}), which along with x 6= y

implies Consistent(π{x∗7→w}, ρ{x7→v}(y), η(y), φ,∆ ] {x∗}).
Rule 7: Assume Consistent(ρ{f 7→

[
ρ′, µf.λx.e

]
}, π{f∗7→

[
η′, λx∗.m

]
}, η,Γ{f∗ : φ′},∆]

{f∗}) because (LV(φ′) ∩ ∆) ⊆ dom(Γ), Consistent(ρ, π, η,Γ,∆) and Consistent(π,[
ρ′, µf.λx.e

]
,
[
η′, µf∗.λx∗.m

]
, φ′,∆). Then f 6= y (by Distinct(Γ{f∗ : φ′})), and by in-

duction on Consistent(ρ, π, η,Γ,∆) we have Consistent(π, ρ(y), η(y), φ,∆). We have

f∗ 6∈ ∆, and so by Proposition 9.5 we then have Consistent(π{f∗7→
[
η′, λx∗.m

]
},

ρ(y), η(y), φ,∆]{f∗}), which along with f6=y implies Consistent(π{f∗7→
[
η′, λx∗.m

]
},

ρ{f 7→
[
ρ′, µf.λx.e

]
}(y), η(y), φ,∆ ] {f∗}).

Rule 8: Assume Consistent(ρ{x7→v}, π, η,Γ{x∗ : φ′},∆) because (LV(φ′) ∩ ∆) ⊆
dom(Γ), and Consistent(ρ, π, η,Γ,∆). Then x 6= y (by Distinct(Γ{x∗ : φ′}))
and by induction we have Consistent(π, ρ(y), η(y), φ,∆). This and x 6= y imply

Consistent(π, ρ{x7→v}(y), η(y), φ,∆).

Rule 9: Assume Consistent(ρ, π{x∗7→w′}, η,Γ,∆) because x∗ 6∈ ∆, and Consistent(ρ,

π, η,Γ,∆). Then by induction we have Consistent(π, ρ(y), η(y), φ,∆). We have

x 6∈ LV(φ)∩∆ and so by Proposition 9.5 we then also have Consistent(π{x∗7→w′},
ρ(y), η(y), φ,∆) (because ∆− {x∗} = ∆).

Inductive step for part 2:

Rule 5: Assume Consistent(ρ{x7→v}, π, η{x7→w},Γ{x : φ′},∆) because (LV(φ′) ∩
∆) ⊆ dom(Γ), Consistent(ρ, π, η,Γ,∆), and Consistent(π, v, w, φ′,∆). Then x 6= y

(by Distinct(Γ{x : φ′})) and by induction on Consistent(ρ, π, η,Γ,∆) we have

Consistent(π, ρ(y), π(y∗), φ,∆). This and x 6= y imply Consistent(π, ρ{x7→v}(y),

π(y∗), φ,∆).

Rule 6: Assume Consistent(ρ{x7→v}, π{x∗7→w}, η,Γ{x∗ : φ′},∆ ] {x∗}) because

(LV(φ′) ∩ ∆) ⊆ dom(Γ), Consistent(ρ, π, η,Γ,∆) and Consistent(π, v, w, φ′,∆). If

x = y then φ = φ′ and we have Consistent(π, v, w, φ,∆). we have x∗ 6∈ ∆, and so

by Proposition 9.5 we have Consistent(π{x∗7→w}, v, w, φ,∆ ] {x∗}).
If x 6= y then by induction on Consistent(ρ, π, η,Γ,∆) we have Consistent(π,

ρ(y), π(y∗), φ,∆). We have x∗ 6∈ ∆ and so by Proposition 9.5 we then have

Consistent(π{x∗7→w}, ρ(y), π(y∗), φ,∆ ] {x∗}). This and x 6= y imply Consistent

(π{x∗7→w}, ρ{x7→v}(y), π{x∗7→w}(y∗), φ,∆ ] {x∗}).
Rule 7: Assume Consistent(ρ{f 7→

[
ρ′, µf.λx.e

]
}, π{f∗7→

[
η′, λx∗.m

]
}, η,Γ{f∗ : φ′},∆]

{f∗}) because (LV(φ′) ∩ ∆) ⊆ dom(Γ), Consistent(ρ, π, η,Γ,∆) and Consistent(π,
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ρ′, µf.λx.e

]
,
[
η′, µf∗.λx∗.m

]
, φ′,∆). If f = y then φ = φ′ and we have

Consistent(ρ{f 7→
[
ρ′, µf.λx.e

]
}, π{f∗7→

[
η′, λx∗.m

]
}, η,Γ{f∗ : φ},∆ ] {f∗}), (12)

Consistent(π,
[
ρ′, µf.λx.e

]
,
[
η′, µf∗.λx∗.m

]
, φ,∆). (13)

We need to show

Consistent(π{f∗7→
[
η′, λx∗.m

]
},
[
ρ′, µf.λx.e

]
,
[
η′, λx∗.m

]
, φ,∆ ] {f∗}), (14)

which by Definition 5.3 requires showing that there exists a Γ′ such that

Γ′ > µf.λx.e : (φ, {})⇒ µf∗.λx∗.m, (15)

Consistent(ρ′{f 7→
[
ρ′, µf.λx.e

]
}, π{f∗7→

[
η′, λx∗.m

]
},

η′,Γ′{f∗ : φ}, ((∆ ] {f∗}) ∩ LV(φ)) ] {f∗}).
(16)

Observe that ((∆ ] {f∗}) ∩ LV(φ)) ] {f∗} = (∆ ∩ LV(φ)) ] {f∗}. Item (13) implies

that we have a Γ′ such that item (15) holds and

Consistent(ρ′, π, η′,Γ′, (∆ ∩ LV(φ))) (17)

By Proposition 9.1, this implies (∆∩LV(φ)) ⊂ Γ′. Applying Proposition 9.2 to item

(13) yields

Consistent(π,
[
ρ′, µf.λx.e

]
,
[
η′, µf∗.λx∗.m

]
, φ,∆ ∩ LV(φ)). (18)

Using (∆ ∩ LV(φ)) ⊂ Γ′ and items (17) and (18) we can apply rule (7) of Defini-

tion 5.3 to obtain (16).

If f 6= y then by induction on Consistent(ρ, π, η,Γ,∆) we have Consistent(π,

ρ(y), π(y∗), φ,∆). We have f∗ 6∈ ∆ and so by Proposition 9.5 we then have

Consistent(π{f∗7→
[
η′, λx∗.m

]
}, ρ(y), π(y∗), φ,∆ ] {f∗}). This and f 6= y imply

Consistent(π{f∗7→
[
η′, λx∗.m

]
}, ρ{f 7→

[
ρ′, µf.λx.e

]
}(y), π{f∗7→

[
η′, λx∗.m

]
}(y∗), φ,∆

] {f∗}).
Rule 8: Assume Consistent(ρ{x7→v}, π, η,Γ{x∗ : φ′},∆) because (LV(φ′) ∩ ∆) ⊆

dom(Γ), and Consistent(ρ, π, η,Γ,∆). Then x 6= y (because x∗ 6∈ ∆ which we obtain

from Consistent(ρ, π, η,Γ,∆) and x∗ 6∈ dom(Γ) by Proposition 9.1) and by induc-

tion we have Consistent(π, ρ(y), π(y∗), φ,∆). This and x 6= y imply Consistent(π,

ρ{x7→v}(y), π(y∗), φ,∆).

Rule 9: Assume Consistent(ρ, π{x∗7→w}, η,Γ,∆) because x∗ 6∈ ∆ and Consistent(ρ,

π, η,Γ,∆). Then x 6= y (because x∗ 6∈ ∆) and by induction we have Consistent(π,

ρ(y), π(y∗), φ,∆). Observe that x∗ 6∈ (LV(φ) ∩ ∆). By Proposition 9.5 we then also

have Consistent(π{x∗7→w}, ρ(y), π(y∗), φ,∆) (because ∆− {x∗} = ∆). And because

x 6= y we also have Consistent(π{x∗7→w}, ρ(y), π{x∗7→w}(y∗), φ,∆).

Theorem 5.4

If Distinct([ρ, e]), Ξ :: Γ > e : (φ,∆0) ⇒ m, ∆0 ⊆ ∆′, and Consistent(ρ, π, η,Γ,

∆′) then

1. Π :: ρ > e ↪→ v implies that there exist w and Θ :: π; η > m ↪→t w such that

Consistent(π, v, w, φ,∆′);
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2. Θ :: π; η > m ↪→t w implies that there exist v and Π :: ρ > e ↪→ v such that

Consistent(π, v, w, φ,∆′).

Proof

We prove only the first part; the second follows similarly. The proof follows by

induction on Π. We assume Distinct([ρ, e]), Ξ :: Γ > e : (φ,∆0) ⇒ m, ∆0 ⊆ ∆′,

Consistent(ρ, π, η,Γ,∆′), and Π :: ρ > e ↪→ v. We show that there exist w and

Θ :: π; η > m ↪→t w such that Consistent(π, v, w, φ,∆′).

1. Π is
ρ > c ↪→ c

and Ξ is
(c : |φ|) ∈ Σ

Γ > c : (φ, {})⇒ c
. Then Θ is

π; η > c ↪→t c

and we have Consistent(π, c, c, φ,∆′).

2. Π is
ρ(x) = v

ρ > x ↪→ v
. Then we have two possible cases for the structure of Ξ:

(a) Ξ is the deduction
(x : φ) ∈ Γ

Γ > x : (φ, {})⇒ x
. By Lemma 9.6 we have x ∈

dom(η) and Consistent(π, ρ(x), η(x), φ,∆′). Θ is then of the form

η(x) = w

π; η > x ↪→ w
.

(b) Ξ is the deduction
(x∗ : φ) ∈ Γ

Γ > x : (φ, {x∗})⇒ x∗
. We have ∆0 = {x∗} and

hence x∗ ∈ ∆′ by assumption. By Lemma 9.6 we have x∗ ∈ dom(π) and

Consistent(π, ρ(x), π(x∗), φ,∆′). Then Θ is of the form

π(x∗) = w

π; η > x∗ ↪→ w
.

3. Assume Π is of the form

Π1

ρ > e1 ↪→ true

Π2

ρ > e2 ↪→ v

ρ > if m1 m2 m3 ↪→ v

.

(The case in which e1 evaluates to false follows similarly.) Then Ξ is of the
form

Ξ1

Γ > e1 : (bool,∆1)⇒ m1

Ξ2

Γ > e2 : (φ,∆2)⇒ m2

Ξ3

Γ > e3 : (φ,∆3)⇒ m3

Γ > if e1 e2 e3 : (φ,∆1 ∪ ∆2 ∪ ∆3)⇒ if m1 m2 m3

.

Note that ∆0 = ∆1 ∪ ∆2 ∪ ∆3. Applying the inductive hypothesis to Π1 and

Π2 (using Ξ1, Ξ2, Consistent(ρ, π, η,Γ,∆′), Distinct([ρ, e1]), Distinct([ρ, e2]),

∆1 ⊆ ∆′, and ∆2 ⊆ ∆′) we have

Θ1 :: π; η > m1 ↪→t true, (19)

Θ2 :: π; η > m2 ↪→t w, (20)

Consistent(π, true, true, bool,∆′), (21)

Consistent(π, v, w, φ1,∆
′). (22)
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Then we can construct Θ as

Θ1

π; η > m1 ↪→t true

Θ2

π; η > m2 ↪→t w

π; η > if m1 m2 m3 ↪→t w

.

4. Π is
ρ > λx.e1 ↪→ [ρ, λx.e1]

. Then Ξ is a deduction of Γ > λx.e1 : (φ, {})⇒

λz.m1 where z is either x or x∗. Then Θ is
π; η > λz.m1 ↪→t [η, λz.m1]

. To

show Consistent(π, [ρ, λx.e1] , [η, λz.m1] , φ,∆′) we use Ξ and need only show

Consistent(ρ, π, η,Γ′,∆′ ∩ LV(φ)) which we obtain by applying Proposition 9.2

to Consistent(ρ, π, η,Γ′,∆′).

The case for recursive functions follows similarly.

5. Π is of the form

Π1

ρ > e1 ↪→
[
ρ′, λx.e′

] Π2

ρ > e2 ↪→ v2

Π3

ρ′{x7→v2} > e′ ↪→ v

ρ > (e1 @ e2) ↪→ v

.

From Distinct([ρ, (e1 @ e2)]) we have Distinct([ρ, e1]), Distinct([ρ, e2]), and from

Lemma 5.2 and Definition 5.1 we have Distinct(
[
ρ′{x7→v2}, e′

]
). Then we have

two possible cases for the structure of Ξ:

(a) Ξ is a deduction of

Ξ1

Γ > e1 : (φ1
∆−→ φ2,∆1)⇒ m1

Ξ2

Γ > e2 : (φ1,∆2)⇒ m2

Γ > (e1 @ e2) : (φ2,∆ ∪ ∆1 ∪ ∆2)⇒ (m1 @m2)

.

Note that ∆0 = ∆ ∪ ∆1 ∪ ∆2. Applying the inductive hypothesis to Π1 and

Π2 (using Ξ1, Ξ2, Consistent(ρ, π, η,Γ,∆′), Distinct([ρ, e1]), Distinct([ρ, e2]),

∆1 ⊆ ∆′, and ∆2 ⊆ ∆′), we have

Θ1 :: π; η > m1 ↪→t

[
η′, λx.m′

]
, (23)

Θ2 :: π; η; >m2 ↪→t w2, (24)

Consistent(π,
[
ρ′, λx.e′

]
,
[
η′, λx.m′

]
, φ1

∆−→ φ2,∆
′), (25)

Consistent(π, v2, w2, φ1,∆
′). (26)

Let ∆a = ∆′ ∩ LV(φ1
∆−→ φ2). Item (25) implies that there exists some Γ′

such that

Γ′ > λx.e′ : (φ1
∆−→ φ2, {})⇒ λx.m′, (27)

Consistent(ρ′, π, η′,Γ′,∆a). (28)

Applying Proposition 9.1 to item 28 yields

∆a ⊆ dom(Γ′). (29)

Applying Proposition 9.2 to item (26) and ∆a ⊆ ∆′ yields

Consistent(π, v2, w2, φ1,∆a). (30)
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Item (27) implies that we have a derivation of

Γ′{x : φ1} > e′ : (φ2,∆
′′)⇒ m′ (31)

in which ∆′′ ⊆ ∆. Using (LV(φ1)∩∆a) ⊆ dom(Γ′) (which follows from item

(29)) and items (28) and (30), we can apply rule (5) of Definition 5.3 to

obtain

Consistent(ρ′{x7→v2}, π, η′{x7→w2},Γ′{x : φ1},∆a). (32)

By some simple reasoning we have ∆′′ ⊆ ∆ ⊆ ∆a. Using this property, items

(32) and (31), and the property Distinct(
[
ρ′{x7→v2}, e′

]
), we can apply the

inductive hypothesis to Π3, yielding that there exists some w and Θ3 such

that

Θ3 :: π; η′{x7→w2} >m′ ↪→t w, (33)

Consistent(π, v, w, φ2,∆a). (34)

By some simple reasoning we have ∆a ∩ LV(φ2) = ∆′ ∩ LV(φ2). From this

and item (34), Proposition 9.4 yields

Consistent(π, v, w, φ2,∆
′). (35)

Finally we can construct the deduction Θ as:

Θ1

π; η > m1 ↪→t [η′, λx.m′]
Θ2

π; η > m2 ↪→t w2

Θ3

π; η′{x7→w2} >m′ ↪→t w
π; η > (m1 @m2) ↪→t w

.

(b) Ξ is a deduction of

Ξ1

Γ > e1 : (φ1
∆−→∗φ2,∆1)⇒ m1

Ξ2

Γ > e2 : (φ1,∆2)⇒ m2

Γ > (e1 @ e2) : (φ2,∆ ∪ ∆1 ∪ ∆2)⇒ (m1 @∗ m2)

.

Note that ∆0 = ∆ ∪ ∆1 ∪ ∆2. Applying the inductive hypothesis to Π1 and

Π2 (using Ξ1, Ξ2, Consistent(ρ, π, η,Γ,∆′), Distinct([ρ, e1]), Distinct([ρ, e2]),

∆1 ⊆ ∆′, and ∆2 ⊆ ∆′), we have

Θ1 :: π; η > m1 ↪→t

[
η′, λx∗.m′

]
, (36)

Θ2 :: π; η; >m2 ↪→t w2, (37)

Consistent(π,
[
ρ′, λx.e′

]
,
[
η′, λx∗.m′

]
, φ1

∆−→∗φ2,∆
′), (38)

Consistent(π, v2, w2, φ1,∆
′). (39)

Let ∆a = ∆′ ∩ LV(φ1
∆−→∗φ2). Item (38) implies that there exists some Γ′

such that

Γ′ > λx.e′ : (φ1
∆−→∗φ2, {})⇒ λx∗.m′, (40)

Consistent(ρ′, π, η′,Γ′,∆a). (41)

From (41) and Distinct(
[
ρ′{x7→v2}, e′

]
), Proposition 9.3 implies x∗ 6∈dom(Γ′),

Applying Proposition 9.1 to item 41 yields

∆a ⊆ dom(Γ′). (42)
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This and x∗ 6∈ dom(Γ′) yields x∗ 6∈ ∆a. Applying Proposition 9.2 to item

(39) and ∆a ⊆ ∆′ yields

Consistent(π, v2, w2, φ1,∆a). (43)

Item (40) implies that we have a derivation of

Γ′{x∗ : φ1} > e′ : (φ2,∆
′′)⇒ m′ (44)

in which ∆′′ ⊆ ∆ ] {x∗} and x∗ 6∈ LV(φ2). Using (LV(φ1) ∩ ∆a) ⊆ dom(Γ′)

(which follows from item (42)) and items (41) and (43), we can apply

rule (6) of Definition 5.3 to obtain

Consistent(ρ′{x7→v2}, π{x∗7→w2}, η′,Γ′{x∗ : φ1},∆a ] {x∗}). (45)

Observe that ∆′′ ⊆ ∆ ] {x∗} ⊆ (∆a ] {x∗}). Using this property, items

(45) and (44), and the property Distinct(
[
ρ′{x7→v2}, e′

]
), we can apply the

inductive hypothesis to Π3, yielding that there exists some w and Θ3 such

that

Θ3 :: π{x∗7→w2}; η′ >m′ ↪→t w, (46)

Consistent(π{x∗7→w2}, v, w, φ2,∆a ] {x∗}). (47)

By some simple reasoning we have (∆a]{x∗})∩LV(φ2) = (∆′]{x∗})∩LV(φ2).

From this and item (47), Proposition 9.4 yields

Consistent(π{x∗7→w2}, v, w, φ2,∆
′ ] {x∗}). (48)

By Proposition 9.5, item (48) and x∗ 6∈ LV(φ2) imply

Consistent(π, v, w, φ2,∆
′). (49)

We can construct the deduction Θ as:

Θ1

π; η > m1 ↪→t [η′, λx∗.m′]
Θ2

π; η > m2 ↪→t w2

Θ3

π{x∗ 7→w2}; η′ >m′ ↪→t w
π; η > (m1 @∗ m2) ↪→t w

.

6. Π is of the form

Π1
ρ > e1 ↪→ [ρ′ , µf.λx.e′]

Π2
ρ > e2 ↪→ v2

Π3
ρ′{f 7→[ρ′ , µf.λx.e′]}{x7→v2} > e′ ↪→ v

ρ > (e1 @ e2) ↪→ v

From Distinct([ρ, (e1 @ e2)]) and Lemma 5.2 we have

Distinct(
[
ρ′{x7→v2}{f 7→

[
ρ′, µf.λx.e′

]
}, e′
]
). (50)

Then we have two possible cases for the structure of Ξ:

(a) Ξ is a deduction of

Ξ1

Γ > e1 : (φ1
∆−→ φ2,∆1)⇒ m1

Ξ2

Γ > e2 : (φ1,∆2)⇒ m2

Γ > (e1 @ e2) : (φ2,∆ ∪ ∆1 ∪ ∆2)⇒ (m1 @m2)

.

Note that ∆0 = ∆ ∪ ∆1 ∪ ∆2. Applying the inductive hypothesis to Π1 and

Π2 (using Ξ1, Ξ2, Consistent(ρ, π, η,Γ,∆′), Distinct([ρ, e1]), Distinct([ρ, e2]),
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∆1 ⊆ ∆′, and ∆2 ⊆ ∆′), we have

Θ1 :: π; η > m1 ↪→t

[
η′, µf.λx.m′

]
, (51)

Θ2 :: π; η; >m2 ↪→t w2, (52)

Consistent(π,
[
ρ′, µf.λx.e′

]
,
[
η′, µf.λx.m′

]
, φ1

∆−→ φ2,∆
′), (53)

Consistent(π, v2, w2, φ1,∆
′). (54)

Let ∆a = ∆′ ∩ LV(φ1
∆−→ φ2). Item (53) implies that there exists some Γ′

such that

Γ′ > µf.λx.e′ : (φ1
∆−→ φ2, {})⇒ µf.λx.m′, (55)

Consistent(ρ′, π, η′,Γ′,∆a). (56)

Applying Proposition 9.1 to item 56 yields

∆a ⊆ dom(Γ′). (57)

From ∆a ⊆ ∆′ we can apply Proposition 9.2 to items (53) and (54) to yield

Consistent(π,
[
ρ′, µf.λx.e′

]
,
[
η′, µf.λx.m′

]
, φ1

∆−→ φ2,∆a), (58)

Consistent(π, v2, w2, φ1,∆a). (59)

Item (55) implies that we have a derivation of

Γ′{f : φ1
∆−→ φ2}{x : φ1} > e′ : (φ2,∆

′′)⇒ m′ (60)

in which ∆′′ ⊆ ∆. Using (LV(φ1
∆−→ φ2)∩∆a) ⊆ dom(Γ′) and (LV(φ1)∩∆a) ⊆

dom(Γ′) (which follow from item (57)) and items (56), (58), and (59), we

can apply rule (5) of Definition 5.3 twice to obtain

Consistent(ρ′{f 7→
[
ρ′, µf.λx.e′

]
}{x7→v2}, π,

η′{f 7→
[
η′, µf.λx.m′

]
}{x7→w2},Γ′{f : φ1

∆−→ φ2}{x : φ1},∆a.)

(61)

Observe that ∆′′ ⊆ ∆ ⊆ ∆a. Using this property, items (61) and (60), and

the property Distinct(
[
ρ′{f 7→

[
ρ′, µf.λx.e′

]
}{x7→v2}, e′

]
), we can apply the

inductive hypothesis to Π3, yielding that there exists some w and Θ3 such

that

Θ3 :: π; η′{f 7→
[
η′, µf.λx.m′

]
}{x7→w2} >m′ ↪→t w, (62)

Consistent(π, v, w, φ2,∆a). (63)

With some simple reasoning we can show that ∆a ∩ LV(φ2) = ∆′ ∩ LV(φ2).

From this and item (63) Proposition 9.4 yields

Consistent(π, v, w, φ2,∆
′). (64)

Finally we can construct the deduction Θ as:

Θ1
π; η > m1 ↪→t [η′ , µf.λx.m′]

Θ2
π; η > m2 ↪→t w2

Θ3
π; η′{f 7→[η′ , µf.λx.m′]}{x7→w2} >m′ ↪→t w

π; η > (m1 @m2) ↪→t w

.
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(b) Ξ is a deduction of

Ξ1

Γ > e1 : (φ1
∆−→∗φ2,∆1)⇒ m1

Ξ2

Γ > e2 : (φ1,∆2)⇒ m2

Γ > (e1 @ e2) : (φ2,∆ ∪ ∆1 ∪ ∆2)⇒ (m1 @∗ m2)

.

Applying the inductive hypothesis to Π1 and Π2 (using Ξ1, Ξ2, Consistent

(ρ, π, η,Γ)∆′, Distinct([ρ, e1]), Distinct([ρ, e2]), ∆1 ⊆ ∆′, and ∆2 ⊆ ∆′), we

have

Θ1 :: π; η > m1 ↪→t w1, (65)

Θ2 :: π; η; >m2 ↪→t w2, (66)

Consistent(π,
[
ρ′, µf.λx.e′

]
, w1, φ1

∆−→∗φ2,∆
′), (67)

Consistent(π, v2, w2, φ1,∆
′). (68)

Let ∆a = ∆′ ∩ LV(φ1
∆−→∗φ2). From item (67) and the definition of consis-

tency we have two cases, based on the possible form of w1:

(i) w1 =
[
η′, µf∗.λx∗.m′

]
(Case 3a of Definition 5.3).

Item (67) implies that there exists some Γ′ such that

Γ′ > µf.λx.e′ : (φ1
∆−→∗φ2, {})⇒ µf∗.λx∗.m′, (69)

Consistent(ρ′, π, η′,Γ′,∆a). (70)

From Distinct(
[
ρ′{f 7→

[
ρ′, µf.λx.e′

]
}{x7→v2}, e′

]
), and item (70), Propo-

sition 9.3 implies x∗ 6∈ dom(Γ′) and f∗ 6∈ dom(Γ′). Applying Proposi-

tion 9.1 to item (70) yields

∆a ⊆ dom(Γ′). (71)

Thus, x∗ 6∈ dom(Γ′) and f∗ 6∈ dom(Γ′) yield x∗ 6∈ ∆a and f∗ 6∈ ∆a. From

∆a ⊆ ∆′ we can apply Proposition 9.2 to items (67) and (68) to yield

Consistent(π,
[
ρ′, µf.λx.e′

]
,
[
η′, µf∗.λx∗.m′

]
, φ1

∆−→∗φ2,∆a), (72)

Consistent(π, v2, w2, φ1,∆a). (73)

Item (69) implies that we have a derivation of

Γ′{f∗ : φ1
∆−→∗φ2}{x∗ : φ1} > e′ : (φ2,∆

′′)⇒ m′ (74)

in which ∆′′ ⊆ ∆ ] {x∗, f∗}, f∗ 6∈ LV(φ1) and x∗, f∗ 6∈ LV(φ2). Using

(LV(φ1
∆−→∗φ2) ∩ ∆a) ⊆ dom(Γ′) (which follows from item (71)) and

items (70), and (72), we can apply rule (7) of Definition 5.3 to obtain

Consistent(ρ′{f 7→
[
ρ′, µf.λx.e′

]
}, π{f∗7→

[
η′, λx∗.m′

]
},

η′,Γ′{f∗ : φ1
∆−→∗φ2},∆a ] {f∗}).

(75)

Using items (73) and the properties f∗ 6∈ LV(φ1) and f∗ 6∈ ∆a we can

apply Proposition 9.5 to obtain

Consistent(π{f∗7→
[
η′, λx∗.m′

]
}, v2, w2, φ1,∆a ] {f∗}). (76)
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Using (LV(φ1) ∩ (∆a ] {f∗})) ⊆ dom(Γ′{f∗ : φ1
∆−→∗φ2}) (which follows

from item (71)) and items (75) and (76), we can apply rule (6) of

Definition 5.3 to obtain

Consistent(ρ′{f 7→
[
ρ′, µf.λx.e′

]
}{x7→v2},

π{f∗7→
[
η′, λx∗.m′

]
}{x∗7→w2},

η′,Γ′{f∗ : φ1
∆−→∗φ2}{x∗ : φ1},∆a ] {x∗, f∗}).

(77)

Observe that ∆′′ ⊆ (∆ ] {x∗, f∗}) ⊆ (∆a ] {x∗, f∗}). Using this property,

items (50), (74) and (77), we can apply the inductive hypothesis to Π3,

yielding that there exists some w and Θ3 such that

Θ3 :: π{f∗7→
[
η′, λx∗.m′

]
}{x∗7→w2}; η′ >m′ ↪→t w, (78)

Consistent(π{f∗7→
[
η′, λx∗.m′

]
}{x∗7→w2}, v, w, φ2,∆a ] {x∗, f∗}). (79)

By Proposition 9.5, item (79) and x∗, f∗ 6∈ LV(φ2) imply

Consistent(π, v, w, φ2,∆a). (80)

With some simple reasoning we can show that ∆a∩LV(φ2) = ∆′∩LV(φ2).

From this and item (80), Proposition 9.4 yields

Consistent(π, v, w, φ2,∆
′). (81)

Finally we can construct the deduction Θ from rule (4.10) and deduc-

tions Θ1, Θ2, and Θ3.

(ii) w1 =
[
η′, λx∗.m′

]
. (Case 3b of Definition 5.3).

Item (67) implies that there exists some Γ′ such that

Γ′ > µf.λx.e′ : (φ1
∆−→∗φ2, {})⇒ µf∗.λx∗.m′, (82)

Consistent(ρ′{f 7→
[
ρ′, µf.λx.e′

]
}, π,

η′,Γ′{f∗ : φ1
∆−→∗φ2},∆a ] {f∗}).

(83)

From Distinct(
[
ρ′{f 7→

[
ρ′, µf.λx.e′

]
}{x7→v2}, e′

]
), and item (70), Proposi-

tion 9.3 implies x∗ 6∈ dom(Γ′{f∗ : φ1
∆−→∗φ2}). Applying Proposition 9.1

to item (83) yields

(∆a ] {f∗}) ⊆ dom(Γ′{f∗ : φ1
∆−→∗φ2}). (84)

Thus, x∗ 6∈ dom(Γ′) yields x∗ 6∈ ∆a. (We already have f∗ 6∈ ∆a from

∆a ] {f∗}.) From ∆a ⊆ ∆′ we can apply Proposition 9.2 to item (68) to

yield

Consistent(π, v2, w2, φ1,∆a). (85)

Item (82) implies that we have a derivation of

Γ′{f∗ : φ1
∆−→∗φ2}{x∗ : φ1} > e′ : (φ2,∆

′′)⇒ m′ (86)

in which ∆′′ ⊆ ∆ ] {x∗, f∗}, f∗ 6∈ LV(φ1) and x∗, f∗ 6∈ LV(φ2). Using

items (85) and the property f∗ 6∈ LV(φ1) we can apply Lemma 9.4 to

https://doi.org/10.1017/S0956796898003025 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003025


272 John Hannan

obtain

Consistent(π, v2, w2, φ1,∆a ] {f∗}). (87)

Using (LV(φ1) ∩ (∆a ] {f∗})) ⊆ dom(Γ′{f∗ : φ1
∆−→∗φ2}) (which follows

from item (84)) and items (83) and (87), we can apply rule (6) of

Definition 5.3 to obtain

Consistent(ρ′{f 7→
[
ρ′, µf.λx.e′

]
}{x7→v2}, π{x∗7→w2},

η′,Γ′{f∗ : φ1
∆−→∗φ2}{x∗ : φ1},∆a ] {x∗, f∗}).

(88)

Observe that ∆′′ ⊆ (∆ ] {x∗, f∗}) ⊆ (∆a ] {x∗, f∗}). Using this property,

items (50), (86) and (88), we can apply the inductive hypothesis to Π3,

yielding that there exists some w and Θ3 such that

Θ3 :: π{x∗7→w2}; η′ >m′ ↪→t w, (89)

Consistent(π{x∗7→w2}, v, w, φ2,∆a ] {x∗, f∗}). (90)

By Proposition 9.5, item (90) and x∗ 6∈ LV(φ2) imply

Consistent(π, v, w, φ2,∆a ] {f∗}). (91)

By Proposition 9.4, item (91) and f∗ 6∈ LV(φ2) imply

Consistent(π, v, w, φ2,∆a). (92)

With some simple reasoning we can show that ∆a∩LV(φ2) = ∆′∩LV(φ2).

From this and item (92), Proposition 9.4 yields

Consistent(π, v, w, φ2,∆
′). (93)

Finally we can construct the deduction Θ as

Θ1
π; η > m1 ↪→t [η′ , λx∗ .m′]

Θ2
π; η > m2 ↪→t w2

Θ3
π{x∗ 7→w2}; η′ >m′ ↪→t w

π; η > (m1 @∗ m2) ↪→t w

.
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