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Unveiling the mystery of effective slip
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Boundary layers are present in many natural and industrial fluid flows. The concept of
boundary layers can be traced back to Leonardo da Vinci’s paintings of pipe flow, where he
was aware of a higher velocity away from the walls. During the 19th century, the physics of
boundary conditions had been extensively debated, and the well-known Maxwell–Navier
slip length was proposed in 1823. In most cases, the no-slip boundary condition is valid
at a fluid–solid interface. However, with the advancement of measurement techniques,
slip lengths ranging from nanometre to micrometre scales were experimentally measured,
raising questions regarding the applicability of the no-slip condition. In 2003, Lauga &
Stone (J. Fluid Mech., vol. 489, 2003, pp. 55–77) proposed a simple model to elucidate
the effect of surface heterogeneities on the slip length, elegantly bridging the microscopic
structure of the wall-boundary conditions to the macroscopic effective slip length.
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1. Introduction

Leonardo da Vinci (1452–1519), a luminary of the Renaissance era, was renowned not
only as a painter and draftsman, but also as an engineer and fluid mechanician. Based on
observations, Leonardo had illustrated many valuable concepts in modern fluid mechanics
such as turbulence, the hydraulic jump and the no-slip condition (Marusic & Broomhall
2021). A notable example is the depiction of pipe flow shown in figure 1(a), where
Leonardo commented: ‘The water that rises through a pipe, that which rises highest will
be furthest away from the walls of the pipe’. This comment suggested that he had been
aware of the no-slip boundary condition, and it could also be found in his other works,
such as the drawing of an experimental water tank in figure 1(b).

Although the boundary layer had been demonstrated by Leonardo, scientific inquiry of
the boundary layer had to wait until the 18th and 19th centuries, when many renowned
physicists started to consider this topic, including Bernoulli, Euler, Coulomb, Darcy,
Navier, Helmholtz, Poisson, Poiseuille, Stokes, Hagen, Couette, Maxwell, Prandtl and
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Figure 1. Leonardo da Vinci’s depictions of (a) pipe flow (Royal Collection at Windsor, RCIN 919117r)
and (b) water tank (Paris Manuscript I, f. 41v), both adapted from Marusic & Broomhall (2021), from
where the figures are taken with permission. (c) Illustration of the Maxwell–Navier slip length λ and
(d) experimentally determined slip length λ for different surface (the contact angle θ ) and flow conditions
(shear rate γ̇ ), respectively, both adapted from Lauga et al. (2007). (e) Schematic drawing of the effective slip
length model, adapted from Lauga & Stone (2003).

Taylor (Lauga, Brenner & Stone 2007). In 1823, Navier proposed the linear boundary
condition (Navier 1823), as depicted in figure 1(c), where λ is the slip length. Afterwards,
Maxwell quantified the slip length of gas flowing past a solid surface (Maxwell 1879),
which indicated that the slip length was of the order of the mean free path of the fluid.

The definition of the boundary condition proposed by Navier and Maxwell has been
widely adopted in characterising the slip properties at a fluid–solid interface. In most
cases, the no-slip boundary condition (i.e. λ = 0) is found to be valid. Nevertheless, the
development of the surface force apparatus enables a much more precise measurement of
the slip length, down to a few nanometres. From these measurements the slip length λ
is found to vary from nanometre to micrometre scales (Lauga et al. 2007). As shown in
figure 1(d), λ depends on the surface roughness, surface nanobubbles, wetting properties
(e.g. the contact angle θ ) and the shear rate γ̇ .

According to these experimental observations, the principal question concerns the
applicability of the no-slip condition at a solid–liquid boundary, especially for complex
boundaries. To better understand the slip boundary condition, Lauga & Stone (2003)
proposed an effective slip model, as illustrated in figure 1(e), emphasising the effect of
surface heterogeneities induced by surface nanobubbles.

2. Overview

The paper by Lauga & Stone (2003) considered two elementary configurations of surface
heterogeneities in steady pressure-driven Stokes flow, as illustrated in figure 1(e). The
pipe of radius R with no-slip boundary condition (i.e. λ = 0 at a fluid–solid interface)
was patterned with perfect slip boundary condition (i.e. λ = ∞ at a fluid–gas interface) of
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Longitudinal case (λeff ,‖/R) Transverse case (λeff ,⊥/R)

Expression Asymptotic condition Expression Asymptotic condition

ln [sec(δπ/2)] · L/π All δ and L < 2π δ/4 δ → 0 and L fixed
Lπδ2/4 δ → 0 and L fixed (1 − δ)−1/4 δ → 1 and L fixed
− ln(1 − δ) · L/π δ → 1 and L fixed ln[sec(δπ/2)] · L/2π L → 0 and δ fixed
— — δ(1 − δ)−1/4 L → +∞ and δ fixed

Table 1. Summary of the effective slip length λeff proposed by Lauga & Stone (2003).

width h and separation H in transverse and longitudinal configurations, respectively. The
dimensionless spacing and percentage of the perfect slip domains are defined as L = H/R
and δ = h/H.

The equations of incompressible Stokes flow in a circular pipe were solved numerically
with the appropriate boundary conditions. Utilising analytical derivation and asymptotic
approximation, the effective slip length λeff in the longitudinal (λeff ,‖) and transverse
(λeff ,⊥) directions along the pipe can be derived, as shown in table 1.

When the percentage of slip is small (δ → 0), the transverse patterns can lead to a larger
effective slip length than the longitudinal patterns, λeff ,⊥ > λeff ,‖. When the percentage
of slip is large (δ → 1), the longitudinal patterns have a much more significant impact on
the friction than the transverse patterns. Moreover, when the distance between the perfect
slip domains is small (L → 0), the slip regions are approximately two-dimensional and the
shear in the longitudinal case is expected to be twice as large as the shear in the transverse
case. Consequently, the slip length in the longitudinal case is double that in the transverse
case, λeff ,‖ = 2λeff ,⊥.

In reality, surface heterogeneities (or slip/non-slip regions) are unlikely to be distributed
in either purely transverse or purely longitudinal fashion, but may be viewed as a
combination of the two. Therefore, the experimentally obtained effective slip length
would be intermediate between that given by a distribution of transverse slip domains
λeff ,⊥ and that given by a distribution of longitudinal domains λeff ,‖. This reflects the
power of the model. It is simple yet applicable to a myriad of complicated situations.
Indeed, with regard to experimentally determined slip length, the effective slip model
provides a robust interpretation of the observed slip length, ensuring the applicability of
the no-slip condition at a fluid–solid interface. This simple model can reproduce the sizes
of slip domains that are consistent with the experimental observation of nanobubbles on
hydrophobic surfaces (Tyrrell & Attard 2001) and surface roughness (Watanabe, Udagawa
& Udagawa 1999).

3. Impact

The work by Lauga & Stone (2003) elegantly demonstrates how surface heterogeneities
at the microscopic level affect the macroscopic effective slip length, and has garnered
widespread recognition in the field of fluid dynamics. From a physical perspective, the
concept of effective slip lays down the fundamental understanding of slip boundary
conditions, especially over complex and heterogeneous boundaries.

From a practical perspective, given the inherent heterogeneity and the complex interplay
of various physical parameters within experimental set-ups, the concept of effective
slip offers a more coherent framework for guiding the design of surfaces, such as
nanofluidics (Kavokine, Netz & Bocquet 2021), microfluidics (Stone, Stroock & Ajdari
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2004), superhydrophobic surfaces (Quéré 2008) and liquid-infused surfaces (Hardt &
McHale 2022). The slip characteristic can significantly affect fluid behaviours near the
fluid–solid interface, and further affect global characteristics, including drop rebounce
(Sprittles 2024), drag reduction and enhanced mixing (Rothstein 2010).

4. Outlook

Since the publication of Lauga & Stone (2003), our understanding of the slip boundary
condition over the past two decades has significantly advanced, which is partly owing to the
swift progression of experimental and computational fluid dynamics (Vega-Sánchez et al.
2022; Hadjiconstantinou 2024) as well as the widespread existence and stability of surface
nanobubbles (Lohse & Zhang 2015), which were among the situations that motivated
the Lauga and Stone model. From both fundamental and applied points of view, much
future work remains to be done that should include multicomponent (Lyu et al. 2021),
multiphase, phase transition (Canale et al. 2019), extreme conditions, molecular scale
(Hadjiconstantinou 2024) and fluid–elastic interactions (Rallabandi 2024). It should also
be stressed that the effective slip length developed in the Lauga and Stone model is very
different from the microscopic slip length at the scale of individual molecules, which must
be determined using molecular dynamics approaches and depends on material properties.
A truly microscopic model based on a first-principles approach would be necessary to
fully understand the slippery boundary problem. However, this has been a long-standing
challenge due to the wide separation of length scales necessary to tackle this problem. In
this context, the Lauga and Stone model provides a simple yet powerful framework for
bridging the microscopic and the macroscopic.
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