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Abstract

Given a cardinal A with A = A™, we show that there is a field of cardinality A whose automorphism
group is a free group of rank 2*. In the proof of this statement, we develop general techniques that
enable us to realize certain groups as the automorphism group of structures of a given cardinality.
They allow us to show that analogues of this result hold for free objects in various varieties of
groups. For example, the free abelian group of rank 2* is the automorphism group of a field of
cardinality A whenever A is a cardinal with A = A™. Moreover, we apply these techniques to
show that consistently the assumption that A = A™ is not necessary for the existence of a field
of cardinality » whose automorphism group is a free group of rank 2*. Finally, we use them to
prove that the existence of a cardinal A of uncountable cofinality with the property that there is no
field of cardinality A whose automorphism group is a free group of rank greater than X implies the
existence of large cardinals in certain inner models of set theory.

2010 Mathematics Subject Classification: primary 03E75, 20E05, 20F29; secondary 03E35.

1. Introduction

Given an infinite cardinal A, we say that a group G is the automorphism group
of a A-structure if there is a first-order language £ and an L-structure M such
that the cardinality of the signature of £ and the cardinality of the domain of
M are at most A and the group Aut(M) consisting of all automorphisms of
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M is isomorphic to G. The work of this paper is motivated by questions of the
following type: given an abstract group G and an infinite cardinal A, is G the
automorphism group of a A-structure? We start by presenting some known results
related to this kind of problem.

Let G be a group that is the automorphism group of a A-structure for some
infinite cardinal A. Then G can be embedded into the group Sym(A) of all
permutations of A, and therefore has cardinality at most 2*. It is shown in [6,
Section 5.5] and [11, Section 3] that there is a graph of cardinality » whose
automorphism group is isomorphic to G. Moreover, the results of [4] and [11]
show that G is also isomorphic to the automorphism group of a field of cardinality
M. Hence we only need to consider finite languages and structures of cardinality
A if we want to check whether a given group is the automorphism group of a
A-structure.

In the other direction, if X is an infinite cardinal and G is a group of cardinality
at most A, then it is easy to construct a first-order language £ of cardinality A
and an L£-model M of cardinality A such that the groups G and Aut(M) are
isomorphic. In particular, every infinite group G is the automorphism group of
a |G|-structure. In contrast, for every infinite cardinal A, there is a group of
cardinality A™ that is not the automorphism group of a A-structure. For example,
De Bruijn showed in [3, Theorem 5.1] that the group Fin(A1) consisting of all
finite permutations of A* cannot be embedded into the group Sym(1). Moreover,
Sanerib showed in [14, Theorem 2.2] that the group Sym() has 2% -many
nonisomorphic subgroups. Since, up to isomorphism, there are only 2*-many
fields of cardinality A, this shows that there is a subgroup of Sym(A) that is not
the automorphism group of a A-structure.

In this paper, we focus on free groups and the following instances of the above
problem.

QUESTION 1.1. Given an infinite cardinal A, is there a free group of rank greater
than A that is the automorphism group of a A-structure?

The above question was first asked by David Evans for the case A = Ry. Its
generalization to uncountable cardinalities is motivated by [10, Theorem 1.14].

In [17], the second author showed that Question 1.1 has a negative answer for
A = Ry.

THEOREM 1.2. A free group of uncountable rank is not the automorphism group
of an Ry-structure.
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The methods developed in the proof of this theorem can be generalized to
higher cardinalities to prove the next result that answers Question 1.1 in the
negative for singular strong limit cardinals of countable cofinality (see [17,
Remark 5.2]).

THEOREM 1.3. Let (A, | n < w) be a sequence of infinite cardinals with 2*» <
M1 for all n < w. Define A =Yy, _ A, and u =Y, _ 2" Then every free
group of rank greater than w is not the automorphism group of a A-structure.

In contrast, Just, Thomas, and the second author showed in [10, Theorem 1.14]
that, given an uncountable cardinal A with A = A<* and a cardinal v > A, there
is a cofinality-preserving forcing extension ofthe ground model that adds no new
sequences of ordinals of length less than A and contains a graph of cardinality
A whose automorphism group is a free group of rank v. This shows that it is
consistent with the axioms of set theory that the above question has a positive
answer for some uncountable cardinal.

The following main result of this paper shows that the axioms of ZFC already
imply a positive answer to the above question for a large class of cardinals of
uncountable cofinality.

THEOREM 1.4. Let A be a cardinal with A = A™. Then the free group of rank 2*
is the automorphism group of a A-structure.

In particular, the free group of rank 22 is always the automorphism group
of a 2M-structure. Moreover, a combination of the above results allows us
to simultaneously answer Question 1.1 for all infinite cardinals under certain
cardinal arithmetic assumptions. The following corollary is an example of such
an application.

COROLLARY 1.5. Assume that the Continuum Hypothesis and the Singular
Cardinal Hypothesis hold. Then the following statements are equivalent for every
infinite cardinal ).

(1) Either cof(A) > w or there is a cardinal k < ) with 2° > \.

(2) There is a free group of rank greater than A that is the automorphism group
of a A-structure.

We outline the proof of Theorem 1.4. In Section 2, we will show that it suffices

to construct an inverse system of groups satisfying certain cardinality assumptions
whose inverse limit is a free group of large cardinality. We will construct such
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systems of groups assuming the existence of certain inverse systems of sets in
Section 3. Finally, we will use the assumption that A = A™ to construct these
systems of sets in Section 4.

In the approach sketched above, we develop general techniques to construct
structures with prescribed automorphism group. They will allow us to show that
analogues of Theorem 1.4 hold for free objects in various varieties of groups. For
example, the free abelian group of rank 2* is the automorphism group of a A-
structure whenever A is a cardinal with A = A™. This contrasts a result of Solecki
(see [19, Remark 1.6]) who showed that a free abelian group of uncountable rank
is not the automorphism group of an Ry-structure.

In another direction, the methods developed in the proof of Theorem 1.4
also allow us to show that the cardinal arithmetic assumption that A = A™ is
consistently not necessary for the existence of a free group of rank 2* that is the
automorphism group of a A-structure. This statement follows directly from the
next result. Given a cardinal x, we let Add(w, ) denote the forcing that adds
k-many Cohen reals to the ground model.

THEOREM 1.6. Let A be a cardinal with .. = A™, and let G be Add(w, k)-generic
over the ground model V for some cardinal k. In V[G], there is a free group
of rank greater than or equal to (2*)V that is the automorphism group of a -
structure.

The above results raise the question whether the existence of a cardinal A of
uncountable cofinality with the property that no free group of rank greater than A
is the automorphism group of a A-structure is even consistent with the axioms of
ZFC. Another byproduct of our constructions is the observation that the existence
of such a cardinal has consistency strength strictly greater than that of ZFC. This
observation is a consequence of the next result.

Remember that a partial order T = (T, <7) is a tree if T has a unique minimal
element and the set preg(r) = {s € T | s <r t,s # t} iswell-ordered by < for
every t € T.Givensuchatree T andt € T, we define rnky(¢) to be the order-type
of (pre;(#), <r). We define the height ht(T) of T to be the least upper bound of
the set {rnkr(¢) | ¢+ € T}. Finally, a subset B of T is a branch through T if B is
<r-downwards closed and B is well-ordered by <r.

THEOREM 1.7. Let A be a cardinal of uncountable cofinality. If there is a tree of
cardinality and height ) with more than h-many branches of order-type A, then
there is a free group of rank greater than A that is the automorphism group of a
A-Structure.
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By considering the tree ((<*2)™, C) for some inner model M, the above result
directly implies the following corollary.

COROLLARY 1.8. Let A be a cardinal of uncountable cofinality, and let M be an
inner model of ZFC. If AT = (WM and & = (2<*)M, then there is a free group of
rank greater than A that is the automorphism group of a A-structure. O

This statement allows us to directly derive large cardinal strength from the
nonexistence of certain automorphism groups.

COROLLARY 1.9. Let A be a regular uncountable cardinal such that there is no
[free group of rank greater than A that is the automorphism group of a A-structure.
Then A" is an inaccessible cardinal in L[x] for every x C A.

Proof. Assume, towards a contradiction, that A is not an inaccessible cardinal
in L[x] for some x C A. Then there is a subset y € A with AT = (A7), Since
(21T = ) holds, we can use Corollary 1.8 to derive a contradiction. O

Note that Mitchell used an inaccessible cardinal to construct a model of ZFC in
which every tree of cardinality ®; and height w, has at most 8,-many branches of
order-type w; (see [2, Section 8] and [13]). This statement is also a consequence
of the Proper Forcing Axiom (see [1, Theorem 7.10]).

In the case of singular cardinals of uncountable cofinality, it is possible to use
core model theory (see, for example, [15]) to obtain inner models containing much
larger large cardinals from the above assumption.

COROLLARY 1.10. Let A be a singular cardinal of uncountable cofinality such
that there is no free group of rank greater than A that is the automorphism group
of a A-structure. Then there is an inner model with a Woodin cardinal.

Proof. Assume, towards a contradiction, that there is no inner model with a
Woodin cardinal. Then we can construct the core model K below one Woodin
cardinal (see [9]). It satisfies the Generalized Continuum Hypothesis and has the
covering property. In particular, we have that A* = (A")X and (2<*)X = A. By
Corollary 1.8, this yields a contradiction. (|

The results of [16, Section 2] show that the nonexistence of trees with the
properties listed in Theorem 1.7 at a singular cardinal of uncountable cofinality is
equivalent to a PCF-theoretic statement that is not known to be consistent. Related
questions can also be found in [18, Chapter II, Section 6].
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2. Realizing limits of groups as automorphism groups

In this section, we show that certain limit objects in the category of groups
can be realized as the automorphism group of a structure whose cardinality
only depends on the size of the objects appearing in the corresponding limit
construction. We will later use this observation to reduce the problem of
constructing structures with a prescribed automorphism group to the problem of
constructing inverse systems of groups with a prescribed inverse limit.

The results of this section are formulated using the language of category theory.
This approach was suggested to us by one of the anonymous referees. It will allow
us to apply our results to a great variety of limit constructions in the category of
groups. We start by recalling some basic category theoretical notions. Our account
of category theory follows [12].

DEFINITION 2.1. Let F : J — C be a functor from a set-sized category J into
a category C.

(1) A cone over F is a pair (N, (¥x | X € Ob(J))) such that N is an object
in G, ¥x : N —> F(X) is a morphism in C for every object X in J, and
Yy = F(f) o ¥y holds for every morphism f : X —> Y in J.

(2) A limit of F is a cone (L, (¥ | X € Ob(J))) over F such that, for every
cone (N, (¥x | X € Ob(J))) over F, there is a unique morphism u : N —>
L in C with ¥y = Wy o u for every X € Ob(J).

EXAMPLE 2.2. Limits exist in the category Set of sets. Let J be a set-sized
category, and let F : J —> Set be a functor. Define Ay to be the set of
all (ax)xecobwy In HXeOb(J) F(X) with the property that ay = F(f)(ax) holds
for every morphism f : X — Y in J. Given an object X in J, we let py :
Ar —> F(X) denote the canonical projection. Then it is easy to check that (Af,
(px | X € Ob({J))) is a limit of F.

EXAMPLE 2.3. Limits exist in the category Grp of groups. If J is a set-sized
category and F : J — Grp is a functor, then we can obtain a limit of F by
considering the subgroup G of [ [ cony F(X) consisting of all (gx)xeconw) With
gy = F(f)(gyx) for every morphism f : X —> Y in J together with the canonical
projections my : G — F(X).

The following result shows that the group G ¢ constructed in Example 2.3 is
isomorphic to the automorphism group of a structure of small cardinality.

https://doi.org/10.1017/fms.2014.9 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2014.9

Free groups and automorphism groups of infinite structures 7

THEOREM 2.4. Let A be an infinite cardinal, let J be a set-sized category of
cardinality at most A, and let F : J —> Grp be a functor with |F(X)| < A for
every X € Ob(J). Then the group G  is the automorphism group of a A-structure.
Proof. Define Lr to be a first-order language with the following symbols.

(i) A binary relation symbols H ¢ for every morphism f : X — Y in J.

(i) A binary relation symbol Rg, x for every object X in J and every g € F(X).

By our assumptions, the signature of £r has cardinality at most A. We let M
denote the unique L g-structure with the following properties.

(i) The domain of M is the set
Mr={(g,X) | X € Ob(J), g € F(XO)}.
(ii) If f : X — Y is a morphism in J, then
H;Mf = {{(g, X), (F(f)(8),Y)) | g € F(X)}.
(iii) If X is an object in J and g € F(X), then
R} = (((h. X),(h-g. X)) | h € F(X)}.

Since our assumptions imply that the set M has cardinality at most A, it suffices
to show that the group Aut(M ) is isomorphic to Gr. We prove a number of
claims that will allow us to construct such an isomorphism.

CLAIM 1. Ifo € Aut(Mpy), X € Ob(J), and g € F(X), then there is an h x €
F(X) witho ((g, X)) = (hg x, X).
Proof of the Claim. By the definition of M, we have that

((g. X). (8. X)), (0 ((g. X)), o ({g. X)) € Hpl",
and this shows that there is an h € F(X) with o ({g, X)) = (h, X). O

CLAIM 2. If o € Aut(M) and X € Ob(J), then there is a unique ¢, € F(X)
with o ((g, X)) = (¢ - &, X) forall g € F(X).

Proof of the Claim. Set ¢, = h{

1rx),

x € F(X).Given g € F(X), we have that

((Mrcoys XD, (g2 X)), (e XD, (hS . X)) € RYY

and hence hg’x = ¢% - g. This allows us to conclude that o ({(g, X)) = (c% - &,
X). O
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CLAIM 3. Ifo € Aut(M), then (¢%) xconw) is an element of G .

Proof of the Claim. Let f : X —> Y be a morphism in J. Then
((Tpxy, X), (Mg, YD), (€%, X), (7, Y)) € H,{\AF,
and hence F(f)(c%) = c5. [
CLAIM 4. The map
@ : Aut(Mp) — Gp; 0 —> (c%)xecob)
is an isomorphism of groups.
Proof of the Claim. Given oy, o1 € Aut(M ) and X € Ob(J), we have that

(01 0 00) ((Ipx), X)) = 01({c¥, X)) = (% - ¥, X),

and therefore ¢3°™ = ¢} - ¢¥. Since @ (idpq,) = g, holds by the definition of

the function @, this shows that @ is a homomorphism of groups.
Fix an element (gx)xcobyy Of G r. Then the function

o :Mp— Mg; (h, X) —> (gx - h, X)

is an automorphism of My with @ (o) = (gx)xeoby)- This shows that @ is
surjective. By Claim 2, @ is also injective. O

This completes the proof of the theorem. 0

3. Automorphism groups constructed from inverse systems of sets

This section shows that the existence of certain inverse systems of sets allows
us to realize large free groups as the inverse limits of systems of groups of small
cardinality. In combination with the results of the last section, this will enable
us to show that the existence of such limits yields the existence of a structure
whose automorphism group is a large free group. Again, we start by recalling
some standard definitions and presenting the relevant examples.

A directed set is a partial order D = (D, <p) with the property that D # ¢ and
for all p,q € D thereisanr € D with p <p r and g <p r. Given a directed set
D = (D, <p), we let J denote the category defined by the following clauses.

(i) The elements of D are the objects of Jp.
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(ii) If p <p ¢, then Hom,, (g, p) consists of a unique element a, ,. Otherwise,
Hom,, (g, p) is the empty set.

(i) If p<p g <p r,thena,, =a,,0a,,.

LetD = (D, <p) be a directed set, let C be a category, and let F' : Jp —> C be
a functor. Then we call the pair ({(F(p) | p € D), {(F(a,,) | p <p q)) an inverse
system in G over D, and we call a limit of the functor F an inverse limit of this
inverse system.

EXAMPLE 3.1. Let I = ((A, | pe D), {fpqs: Ay — A, | p<pq)) be an
inverse system of sets over a directed set D = (D, <p). Then the inverse limit
of I consists of the set

A= {(a,,),,eD c HA,, | frqlay) =a, forall p,q € Dwith p <p q}

peD

together with the canonical projections p, : Ay —> A,.

EXAMPLE 3.2. Let A be an infinite cardinal, and let [A]™ denote the set of all
countable subsets of A. Given u, v € [A]Y with u C v, set A, = “2, and define
Juvw i Ay — A, by f,,(s) =s [uforall s € V2. Let

L= (A, u € M), (fuw lu,v € AT, u S v)) ey

denote the resulting inverse system of sets over the directed set ([A]™, C).
Then it is easy to see that

b:"2— Ap; x —> (X | W)yeppo (2)
is a well-defined bijection between the sets *2 and Ay, .

EXAMPLE 3.3. Let T = (T, <) be a tree. Given o < ht(T), we let T(«) denote
the setof allt € T withrnky(¢) = «. If t € T and @ < rnkp(¢), then we let ¢ | o
denote the unique element s € T with s <t ¢ and rnky(s) = «.

Given ¢ < B < ht(T), set A, = T(«), and

JaupiAg—> Ay t—t [ o

We let
Iy = ((As | @ < ht(T)), (fup | @ < B < ht(T))) €))

denote the resulting inverse system of sets over the directed set (ht(T), <).
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It is easy to see that the induced map
b: A]I-ﬂ- — [T], (aa)(x<ht(']l‘) I {aa |O[ < ht(T)} (4)

is a bijection between the inverse limit Ay, and the set [T] consisting of all
branches through T of order-type ht(T).

We now consider inverse systems in the category of groups.

EXAMPLE 34. Let I = {((G, | pe D), (h,,: G, — G, | p <p g)) be an
inverse system of groups over a directed set D = (D, <p).
Then the inverse limit of I consists of the subgroup

Gy = {(gp)pep € [16Gr1hpyley) =gy forall p,q € D with p <g q}

peD

of the product [, _, G, together with the canonical projections 7, : G —> G,.

peD
LetI = ({(A, | p € D), {fpq | P <p q)) be an inverse system of sets over a
directed set D = (D, <p), and let F : Set —> Grp be a functor. Then

Ir = (F(Ap) | peD),(F(fpg) | P.g €D, p<pq)) (&)

is an inverse system of groups over D, and

urr @ F(A) — Gip: g > (F(Pg)(8))geps (6)

is the unique homomorphism u : F(A;) — Gy, with F(p,) = m, o u for all
q € D.

Let Fr : Set —> Grp be the functor that sends a set A to the free group with
basis A. Note that this definition implies that Fr () is the trivial group.Assume
that A is an infinite cardinal, D is a directed set of cardinality at most A, and
I is an inverse limit of sets of cardinality at most A over . Since |Fr(A)| <
|A| + Ry holds for every set A, Theorem 2.4 implies that the group Gy, is the
automorphism group of a A-structure. In particular, if the map u; p defined in (6)
is an isomorphism, then the free group of rank | Aj| is the automorphism group of
a A-structure.

Given a functor F : Set —> Grp and an inverse system I of sets, the above
observation shows that it is natural to ask whether the group F(Aj) can be the
inverse limit of I. In the remainder of this section, we isolate assumptions on
the functor F and the underlying directed set D that lead to a positive answer
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to this question. This will allow us to use the argument sketched above to prove
Theorem 1.4.

We start by discussing the desired properties of the functor F. The next
definition and the category theoretical formulation of the following results were

suggested to us by one of the anonymous referees. Given sets A © A, we let
iia:A—> Adenote the canonical inclusion map.

DEFINITION 3.5. A functor F : Set — Grp induces a free construction if the
following statements hold.

(1) Givenaset A and g € F(A), there is a unique finite subset A(g) of A such
that g € ran(F (ia(),4)) and A(g) € A for every finite subset A of A with
g eran(F(iz 4)).

(2) Given a set A, the homomorphism F(ig 1) : F(¥) — F(A) is injective.

The functor Fr : Set —> Grp defined above obviously satisfies the assump-
tions of this definition. Moreover, the construction of free objects in all nontrivial
varieties of groups can be realized by a functor with these properties. For example,
the above statements are satisfied by the functor that sends a set A to the free
abelian group with basis A and the functor that sends a set A to the A-fold free
product of some fixed group G.

LEMMA 3.6. Let F : Set —> Grp be a functor that induces a free construction.
If I is an inverse system of sets, then the induced map uyr : F(A) — Gy,
defined in (6) is injective.

Proof. LetD = (D, <p) be adirected set with [ = ((A,|p € D), (f,41p <b q)).
Fix an element g € F(Ap) with uy r(g) = HGIF' Then there is a unique minimal
finite subset Aj(g) of Ay with ¢ = F(i4,(),4,)(g) for some g € F(A(g)).

First, assume that Aj(g) = . Pick some ¢ € D. Since the canonical projection
Py : Ar —> A, satisfies iy 4, = P, o ig 4, and the canonical projection 7, :
G, — F(A,) satisfies F(p,) = m, o ur, r, we have that

F(ipa,)(8) = (F(Py) © Flip))(8) = (g ourr)(8) = lpa,)-

Since our assumption implies that F(iy 4,) is an injection, this shows that g =
U7 (4;(0))> and hence g = L.

Now, assume that there are pairwise different (a},) peDs -+ (@) pen € Ap
with Aj(g) = {(a;)pep,..., (aZ)peD}. Since D is a directed set, there is a
g+ € D with a;, # a) for all i < j < n. This implies that the map
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Pg. ©lae)a; - A1(g) —> A,, is injective, and hence F(P,,) o F(iaq).4,) 1 also
injective. Since

(F(pq*) o F(iAH<g),AH))(§) = (qu* ourr)(g) = HF(Aq*)a
we can conclude that g = (4, and g = llp4, also hold in this case. O

Next, we discuss the desired properties of the underlying directed set. Given a
directed set D = (D, <p), we define an infinite game G (D) of perfect information
between Player I and Player II: in the ith round of this game, Player I chooses an
element p,; from D with p, <p p,; for all k < 2i, and then Player II chooses
an element py; ;1 from D with p,; <p pai;1. Player I wins a run (p;); ., of G(ID)
if and only if there is a ¢ € D with p; <p ¢ for all i < w. If Player I does not
win a run of G(ID), then Player II wins the run. A similar game can be used to
characterize the o -distributivity of Boolean algebras (see [7]).

PROPOSITION 3.7. Given a directed set D = (D, <p), the following statements
are equivalent.
(1) Player I wins every run of G(ID).
(2) If A € [D]™, then there is a q € D with p <y q for every p € A. O
If these equivalent statements hold, then we say that D is o-directed. In the
following, we are interested in a weakening of this property that is defined using
the notion of winning strategies.
DEFINITION 3.8. Let D = (D, <p) be a directed set.

(1) A function s : <D —> D is a strategy for Player II in the game G(D) if
P2 <p S({po, - .., p)) holds foralli < wand p,, ..., py € D.

(2) A strategy s for Player II in the game G (D) is a winning strategy if Player
II wins every run (p;); -, of G(D) that is played according to s, in the sense
that S((po, ey pg,’)) = P2i+1 holds for all i < w.

Clearly, if D is o -directed, then there is no winning strategy for Player II in the
game G(D).

PROPOSITION 3.9. Let D = (D, <p) be a directed set, and let n : D — w be
a function with n(p) < n(q) for all p, q € D with p <p q. If Player Il has no
winning strategy in the game G(D), then there is a p € D with n(p) = n(q) for
all g € D with p <p q.
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Proof. Assume, towards a contradiction, that, for every p € D, thereisag € D
with p <p g and n(p) < n(q). Then there is a strategy s : <*D — D for Player
I in the game G (D) with n(py) < n(s({po, ..., px))) foralli < w and py, ...,
P2 € D. By our assumption, s is not a winning strategy, and there is a run (p;); <,
of G(D) played according to s that is won by Player I. This gives us a p € D with
pi <p p for all i < w. Then there is an i < w with n(p;) > n(p), which is a
contradiction. O

We are now ready to show that the map up defined in (6) can be an
isomorphism witnessing that the group F (Aj) is an inverse limit of I .

THEOREM 3.10. Let F : Set — Grp be a functor that induces a free
construction, and let 1 be an inverse system of sets over a directed set D. If
Player II has no winning strategy in the game G(D), then the induced map
urr : F(Ay) — Gu, is an isomorphism, and F (Ay) is an inverse limit of 1.

Proof. LetD = (D, <p) and I = ((A, | p € D), (fpq | P <p gq)). Given sets
A C Aand p,g € D with p <p ¢, we define 154 = F(iz4), G, = F(A,)
and h,, = F(f,,).If# C A C A, then 1 , has a left inverse. In combination
with our assumptions, this shows that all homomorphisms of the form ¢z , are
injective.

By Lemma 3.6, it suffices to show that u; r is surjective. Fix an element (g,) pep
of Gy,. Given p € D, let A, denote the unique minimal finite subset of A, with
8p € ran(l;, 4,), and set G, = F(A,). By the above remarks, there is a unique

g, € G, withi; 4 (8,) = g,. Let n(p) denote the cardinality of A,,.

CLAM 1. If p <p q, then n(p) < n(q), and the set Ap is contained in the image
of A, under f, ,.

Proof of the Claim. We let A denote the image of A under f,,, and define
f= frg 1A :Aq —> A. Then we have that quozA Ay =lA,ApOf and
this implies that

8 =hpq(8)) = (hpqoti, 4)@) = (ia, o F(F)QG,).

This shows that g, € ran(iz 4,), Ap C A, and n(p) = |A | < |A] < |Agl =
n(q). O

By Proposition 3.9 and Claim 1, our assumptions imply that there is a p, € D
withn(q) = n(p,) forallg € D w1th P« <p ¢q. Given q,r€D with p, <p g <p
r, Claim 1 shows that Aq is equal to the image of A, under fq.r» the resulting

https://doi.org/10.1017/fms.2014.9 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2014.9

P. Liicke and S. Shelah 14

function }_Fq,, = for | A A — Aq is a bijection, and the map ﬁq,, = F(fq,,) :
G, —> G, is an isomorphism of groups.

CLAM 2. Ifg,r € D with p, <p q <p I, then Eq,,(g,) = g,
Proof of the Claim. Since p, <p q, r, we know that /{q is equal to the image of

A, under f), ;, and this implies that f, , o iz A, =144, © fq,- We can conclude
that

LAq,Aq (gq) =8¢ = hq,r(gr) = (hq,r o LA,.,A,)(gr) = (tA,,,Aq o }_lq,r)(gr)7

and the injectivity of ¢; 4, yields the statement of the claim. O

CLAaM 3. Ifq,ry, r1 € D withq, p, <p ro, I'1, then
1 =

Jaro © LAy Ary © I paro Jan o LA, Ay © Tpar-

P_roof of Zhe Claém. Pick r € D with ry, r <pr a_md i < 2. Then we have that
fpor = Fpor; © fri.r» and this implies that f,' = f,. . o f, .. This shows that

fon 0id a0 Fo = fam 0z . 0 Frov o Fols = furoia a0
holds for all i < 2. O
By the above claim, there is a unique function f, : A », —> Ar such that
Py o fu=forois.a o f,, (N
holds whenever ¢, r € D with p,,q <pr.Seth, = F(f,) : Gp* —> F(A)p).
CLAM 4. (g,)pep = (urr 0 hy)(8)p,) € ran(uy r).

Proof of the Claim. Pick g € D. Then there is an r € D such that p,, g <p r and
(7) holds. By Claim 2, we have that

(gourr 0 h)(8p,) = F(Pg 0 f2)(8p) = F(fyr 0z a 0 f, (&)
= (hq,r Ola, A © ]/_l[_;:,r)(gp*) = (hq,r o LA,,A,)(gr) = hq,r(gr) =44

These computations show that (ug r o h.)(8,.) = (8p) peD- ]

The above claim completes the proof of the theorem. O
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4. Good inverse systems

In this section, we complete the proofs of the results listed in Section 1 by the
construction of suitable inverse systems of sets from the assumptions appearing
in the statements of those results. The next definition makes the notion of suitable
inverse system precise.

DEFINITION 4.1. Let A and v be infinite cardinals. We say that an inverse system
I={A,| peD),{frq| P <pq)) of sets over a directed set D = (D, <p) is
(A, v)-good if the following statements hold.

(1) Player II has no winning strategy in the game G (D).
(2) ID| < Aand|A,| < Aforall p e D.
3) Al =v.

The following corollary summarizes the results of the previous sections.

COROLLARY 4.2. Let F : Set — Grp be a functor that induces a free
construction with |F (A)| < |A| 4+ 8 for every set A. If there exists a (1, v)-good
inverse system, then the group F (v) is the automorphism group of a A-structure.

Proof. Let I denote the corresponding system of groups defined in (5). By
our assumptions, we have that |FF(A,)| < A for every p € D. In this situation,
Theorem 2.4 shows that the inverse limit Gy, of I is the automorphism group of
a A-structure. By Theorem 3.10, the groups Gy, and F(Aj) are isomorphic. Since
our assumptions imply that the groups F(A) and F(v) are also isomorphic, this
shows that the group F(v) is the automorphism group of a A-structure. O

In order to prove Theorem 1.4, we now construct a (A, 2*)-good inverse system
from the assumption that A = A™.

LEMMA 4.3. If A is a cardinal with A = A™, then the inverse system of sets I,
defined in (1) is (A, 2*)-good.

Proof. By our assumption, we have that |[[A]¥| < A and |“2| < A forall u € [A]™.
Since the function b defined in (2) is a bijection, we have that | Ay, | = 2*. Finally,
the directed set ([A]™, C) is o-directed, and an application of Proposition 3.7
shows that Player I has no winning strategy in the corresponding game. O

The statement of Theorem 1.4 now follows directly from a combination of
Corollary 4.2 and Lemma 4.3.
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Proof of Theorem 1.4. Define Fr : Set —> Grp to be the functor that sends a
set A to the free group with basis A. Then Fr induces a free construction, and
|Fr(A)| < |A| + R holds for every set A. Let A be a cardinal with A = A™. By
Lemma 4.3, there exists a (A, 2*)-good inverse system of sets. In this situation,
Corollary 4.2 shows that the group Fr(2*) is the automorphism group of a
A-structure. O

Next, we show that Corollary 1.5 is a direct consequence of Theorem 1.4 and
the results presented in the first two sections.

Proof of Corollary 1.5. Assume that the Continuum Hypothesis and the Singular
Cardinal Hypothesis hold. Let A be an infinite cardinal.

If cof(X) > w, then our assumptions and [8, Theorem 5.22.(ii).(b)] imply that
A =A™, and in this situation Theorem 1.4 shows that the free group of rank 2* is
the automorphism group of a A-structure.

Next, assume that cof(L) = w and that there is a cardinal ¥ < A with 2 > A.
Then we can find a regular uncountable cardinal « with these properties, and the
above argument shows that the free group of rank 2* is the automorphism group of
a r-structure. Hence this group is also the automorphism group of a A-structure.

Finally, assume that cof(A) = w and 2“ < X holds for all « < A. Then either
A = R or A is a singular strong limit cardinal of countable cofinality. In this
situation, Theorem 1.2 and Theorem 1.3 imply that there is no free group of rank
greater than A that is the automorphism group of a A-structure. O

Next, we prove Theorem 1.6. The following notion was introduced by Hamkins
(see [5]).

DEFINITION 4.4. Let M be an inner model of ZFC. We say that M has the
wy-cover property if every countable set of ordinals in V is a subset of a set that
is an element of M and countable in M.

LEMMA 4.5. Let M be an inner model of ZFC with the w,-cover property. If A is
an infinite cardinal such that . = (A\™)™ and (2*)™ is a cardinal in V, then there
is a (A, v)-good inverse system of sets for some cardinal v > (2*)M.

Proof. Let I = I be the inverse system of sets defined by (1) in M, and let
v be the cardinality of A; in V. Since every element of (*2)M gives rise to a
distinct element of Ay and (2")™ is a cardinal in V, we have that v > (2*)M.
By Proposition 3.7, our assumption implies that the directed set (([A]™)¥, C) is
o-directed in V, and hence Player II has no winning strategy in the corresponding
game. We can conclude that the inverse system I is (A, v)-good in V. O
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Proof of Theorem 1.6. Let A be a cardinal with A = A™, and let G be Add(w, k)-
generic over the ground model V for some cardinal «. Since Add(w, «) satisfies
the countable chain condition, the ground model V has the w,-cover property in
V[G], and (2*)V is still a cardinal in V[G]. Now, the statement of the theorem
directly follows from Corollary 4.2 and Lemma 4.5. O

Finally, the results of the last two section also allow us to prove Theorem 1.7.

Proof of Theorem 1.7. Let A be a cardinal of uncountable cofinality, and let T be
a tree of cardinality and height A with the property that the set [T] of branches
through T of order-type A has infinite cardinality v > . By Proposition 3.7, the
assumption that cof(A) > w implies that the directed set (A, <) is o-directed, and
hence Player II has no winning strategy in the corresponding game. Since the
computations in Example 3.3 show that the inverse limit of the inverse system I
defined in (3) also has cardinality v, we can conclude that It is (A, v)-good, and
Corollary 4.2 yields the statement of the theorem. O

5. Open questions
We close this paper with questions raised by the above results.

QUESTION 5.1. Is it consistent with the axioms of ZFC that there is a cardinal A
of uncountable cofinality with the property that the free group of rank 2* is not
the automorphism group of a A-structure?

QUESTION 5.2. Is it consistent with the axioms of ZFC that there is a cardinal A
of uncountable cofinality with the property that every free group of rank greater
than A is not the automorphism group of a A-structure?

QUESTION 5.3. Is it consistent with the axioms of ZFC that there is a singular
cardinal A of uncountable cofinality with the property that there is no tree of
cardinality and height A with more than A-many branches of order-type A?
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