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REMARKS ON THE SEMIVARIATION OF VECTOR MEASURES
WITH RESPECT TO BANACH SPACES.

OsCAR BLAscoO

Suppose that Lq(u)éwy = L(v,Y) and X@APLP(#) = LP(u,X). It is shown
that any LP(u)-valued measure has finite L2(v)-semivariation with respect to the
tensor norm Lz(u)gApI}’(p) for 1 € p < oo and finite LI(v)-semivariation with
respect to the tensor norm Lq(u)Q%LP(;‘) whenever either ¢ = 2and 1 < p < 2
or ¢ > max{p,2}. However there exist measures with infinite L9-semivariation with
respect to the tensor norm L"(V)@,Yq LP(y) for any 1 € ¢ < 2. It is also shown that
the measure m(A) = x4 has infinite L9-semivariation with respect to the tensor norm

L), LP(w) if g < p.

1. INTRODUCTION

Let Z be a Banach space and let m : ¥ — Z be a vector measure defined on a
o-algebra ¥ of subsets of 2. We write |m| for the variation of the measure

k
|m|(A) = sup{Z”m(A,- N A)|| : A; pairwise disjoints ,k € N}
j=1
and denote, for 1 < p < oo, the p-variation of the measure
k
Imll, = sup{(Z”m(Aj)”p)l/" : A; pairwise disjoints , k € N}.
ij=1

We also write ||m|| = sup AeE”m(A)”, which is equivalent to the semivariation of the
vector measure m, that is

lmll & sup{ | (2*, m)|(2) = lo*l| = 1}.

Suppose that X,Y is a Banach spaces and let 7 be a norm on X ® Y such that
lz@yll- < Cllz|lllyl| for z € X,y € Y and denote X@,Y the completion under such a
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norm. Given a vector measure m : £ — Y defined on a o-algebra ¥ of subsets of 2, R.
Bartle (see (2, 7]) introduced the notion of X-semivariation of m in X ®, Y given by

J

for every A € T where the supremum is taken over ||z;]| < 1, A; pairwise disjoints sets
in £ and k € N. We shall denote

k
ij ® m(AN Aj)

=1

Bx(m,r,Y)(A) = sup{

Bx(m,T,Y) = sup Bx(m,r,Y)(A).
Aex

It is clear that
lm|] < Bx(m,7,Y) < [Iml];.

If X @EY and X @WY stand for the injective and projective tensor norms respec-
tively, then one always has

Imll < Bx(m,e,Y) < Bx(m,7,Y) < Bx(m,m,Y) < [Imx.

It is well-known and easy to see that actually Bx(m,e,Y) = ||m]||.

In [7] Jefferies and Okada developed a theory of integration of X-valued functions
with respect to Y-valued measures of bounded X-semivariation in the case of completely
separated tensor norms.

We shall be concerned with some interesting examples of norms coming from the
theory of vector-valued functions: Throughout the paper (£, Z;, ) and (2, X2, v) are
finite measure spaces, 1 < p,q < oo and the Banach spaces will be either Y = L?(u) or
X = L%v). We define v, and A, the norms on Lv) ® Y and X ® LP(u) identified as
subspace of L(v,Y) and LP(u, X), that is to say

Lq(u)é: Y=L(Y), X@Z LP(p) = LP(u, X).

In the case p = ¢ the LP(v)-semivariation of L”(u)-valued measures with respect to the
topology 7, such that L”(u)@,ﬂl}’(u) becomes LP(u x v) for the product measure was
studied in [8, 9). ‘

In particular, if both X = L9(v) and Y = L?(u) then L(»)®, LP(4) and
L"(u)@,,qL”(u) coincide with the spaces of measurable functions f : @; x 2, —» R

such that ola \p
([ ([ 1renram) we) <o

( /n ( /n llf (z, y)l"du(z))mdu(z)) 7
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In this paper we shall try to understand better the difference between the classical
semivariation or variation of a L?(yu)-valued measure m and the L9(v)-semivariation with
respect to the norms A,, 7, and 7.

Let us establish the main results of the paper. Our first result establishes the fol-
lowing descriptions of the L?-semivariation of LP-valued measures with respect to the
projective tensor norm, where we denote L? = L?([0,1]) for 1 < p < oo.

THEOREM 1.1. Let1 < p,g < oo and let m : & — LP([0,1]) be a vector
measure. Then

i) BwlmmI)~|mli 1<p<oo.
(i) Brz(m,m, LP) = ||m|;, l1<p<oo.
(ii)) Ba(m,m, L) ~ [Im].

This result shows that L2-valued measures are of finite L2-semivariation on L2 ), L?
if and only if they are of finite variation.

It was noticed in 8] that any L?-valued measure is of bounded L?-semivariation with
respect to L?([0, 1])@,2[/2([0, 1]), in other words Br2(m, A,, L?) ~ [|m)||.

On the other hand Br«(m,n, L') = Br«(m,A;, L*). Hence Theorem 1.1 shows that
Bra(m, &y, L) = ||m]).

Let us just point out that this implies

(1) Bra(m, Bp, IP) = |mfl,1 < p< 2
due to the simple observation

(2) Braw) (m, AV /. (#)) < CBra) (m, A,,,,L”’(p.)) 7 < Ppa.

We shall present another alternative proof that cover all the cases and gives an alternative
proof of the known case p = ¢ = 2 and extend (1) as follows.

THEOREM 1.2. Letl<p<ooandletm:X — LP([O, 1]) be a vector measure.
Then
Bra(m, Ay, LP) = [|m]|.

The question which now arises is whether or not there exist LP-valued measures
with Bre)(m, Ap, LP(1)) = oo if ¢ # 2. In [7] examples of LP([0, 1])-valued measures
of infinite L”([0, 1])-semivariation in L? ([0, 1])®T’L"([O, 1]) were obtained for the values
p # 2. For 1 € p < 2 the approach was much simpler than for p > 2 and the example in
this case relies on the existence of a non absolutely summing operator from £! — ¢ for
p > 2 (see (8, 9]).

We shall use the relationship between the tensor norms v, and A, to get other
examples. Recall that Minkowski’s inequality gives L?(u, LI(v)) € L(v, LP (1)) forp< ¢
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and LI(v, LP(u)) C L?(p, L9(v)) for g < p. Hence

) Brawy(m, ve, LP (1)) < Buagy(m, B, LP(p)), P <4,
(4) Braw)(m, Bp, LP (1)) < Brogy(m, g, LP(1)), ¢ < p.

Also using general techniques, similar to those used in [8] one can show that
for 1 < p € oo and 1 € ¢ < 2 there exist LP(u)-valued measures m such that
Brew) (m, 'yq,L"(u)) = o0o. This, in particular, using the estimate (3), shows the exis-

tence of measures for which Brew)(m, Ay, LP(s)) = 0 if 1 € ¢ < 2,p < g, completing
and extending the case p = q.

THEOREM 1.3. Let1< p<ooandletm:E — LP([0,1]) be a vector measure.
Then

(i) Bp(m,y, LP)=|m|, 1<p<2.
(i) Bre(m,7, LP) = |ml, max{p,2} <q.

This gives that any measure has fq«(m,~,, L?) < oo for ¢ > p > 2. However in
the last section it is shown that the L?([0,1])-valued measure m,(A4) = x4 has infinite

L9([0, 1))-semivariation in L?([0, 1))®,, ?([0, 1]) for ¢ < p.

2. BOUNDED X-SEMIVARIATION

We start by the following characterisation of the bounded X-semivariation.

Taking into account that X @,Y cX @TY, then (X @TY)‘ can be regarded as a
subspace of the space of bounded operators £(Y, X*). Moreover |u] <

el xg,v)- for
any u € (X @,Y) , where the duality is given by

k

<u, izj ® y,~> = (u(y)), z;).

j=1 j=1

THEOREM 2.1. Letm:X — Y bea vector measure. Then
Bx(m,7,Y) = sup{llu oml;:u € L(Y,X"), ""”(X@,Y)' < 1}.

PROOF: Let (z;) be a bounded sequence in X and (A;) be a sequence of pairwise
k

disjoint sets in X. Consider, for k£ € N, the X-valued simple function ¢ = ) r;x,, and
denote =

k
¢®Tm(A) = ]Z—;xj®m(AﬂA,-) €EXQY.
Clearly this defines a new X @,Y—valued measure and one can rewrite

Bx(m,7,¥) = sup{||¢ @), m|| : 6 € S(X), Iglloo < 1}.
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We now write the semivariation of ¢ @), m using duality, that is to say

”¢®T m“ ~ sup{l(u,¢®m)|(ﬂ) : ”u”(xéjy)- < 1}

k
= sup{ZI(u ) m(A,-),:r:J-)l : (A;) pairwise disjoint, II“"(X@Y)' < 1},

=1

which, taking supremum over ||z;|| < 1, gives

k
Bx(m,7,Y) ~ sup{znu o m(4;)|| : (4;)pairwise disjoint, lull xg, v < 1}

i=1

~ sup{|luom|l : u € L(Y, X"), ||u||(X§'Y), <1}

Let us see the formulation of Theorem 2.1 in the case 7 = Ap or 7 = 7,.
It is well known that for 1 < p,g < oo and 1/p'+1/p=1,1/g+ 1/¢ =1 and for
X,Y such that X* and Y* have the Radon-Nikodym property (see [6]) then

(L"(u)@ Y) =LY, ¥
(xR, rw) =x®, .

Now for each f € L”(u, X*) we can define the operators u; : L?(u) — X* and
v X — L (u) given by

and

(ur(@).2) = [ (10, )o(0)dutt)
and
vs(z) = (f,2).

Of course (vy)* = uy and (uy)* = vy if X is reflexive.

THEOREM 2.2. Letl<p,q<oo, X=LWv)andY =LP(u). If m: L = LP(u)
is a vector measure then
(5) Brogy(m, By, (1)) = sup{llus omlly : | fllLw urewyy < 1},
(6) ﬂL‘l(v) (m’ Yqr Lp(/'l’)) = sup{””ﬂ ° mlll : ”g”Lq'(v,LP’(u)) < 1}

PROOF: In the case Y = LP(p) and X = L"(V) for 1 < ¢q,p < oo the elements
u: LP(u) — L7 (v) such that u € (L"(V R4, ? ) can be seen as u = uy for some
f € L7 (u,L(v)), that is u : LP(u) — L%(v) is given by

wP)w) = /n f(z,9)6(z)du(z).
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Then (6) follows from Theorem 2.1 in this case.
Similarly the elements u : LP(u) — LY(v) such that u € (L"(u)@,hl}’(p)) can be
seen as u = v, for some g € LY (v, rr (1)) and now

w(¥)(w) = (9,9) = /n oy, <)b(z)du(z).

Again (6) follows from Theorem 2.1. 0

3. PROOF OF THE MAIN THEOREMS

We use first the characterisation in Theorem 2.1 to get the following corollaries.
COROLLARY 3.1. Letm:X — Y be a vector measure and X a Banach space.
Then
Bx(m,m,Y) ~ sup{|luoml|,:u € LY, X") |Iu|] 1}.
We use the notation IT,(X,Y’) for the space of p-summing operators from X into Y

and write mp(u) for the p-summing norm. The reader is referred to [5] for the basics in
the theory of summing operators.

COROLLARY 3.2. LetY be a Grothendieck space, that is, I1;,(Y, H) = L(Y, H)
for any Hilbert space H. Then

(7) .Bﬂ(m’ va) ~ ”m"

PROOF: Note that }_ m(A,) is an unconditionally convergent series in Y for any
sequence of pairwise disjoint sets A;. Now for any operator from v : ¥ — H one
has E”u(m(Aj))” < Kg ||uf| }im]], where K¢ is the Grothendieck constant. Now use
Corollary 3.1. 0

PROOF OF THEOREM 1.1: (i) LetY = L” and X = L then choosing u = Id :
LP — (L*')*, one concludes that |ju o m||; = ||m|);. This shows 8, (m,, L?) = ||m||,

(ii) follows from the following observation: If X* is isomorphic to a complemented
subspace of Y then Bx(m,m,Y) = |jm|,.

Indeed, assume id : Y — Y factors through X* as ¢d = u; o up where uy : ¥ = X*
and u; : X* =Y are bounded operators. Now observe that ||m||; < [lu1|| [|uz o m||, and
use Corollary 3.1.

Now use that the space Rad is complemented in L*([0, 1)) and isomorphic to £* (see
[5, Theorem 1.12]) and therefore to L?, to conclude that

(8) Bua (m,w,L’([O, 1])) ~ |Imli,1 < p < oo.

(iii) follows from Corollary 3.2. 0
We now recall a lemma that we shall need in the sequel.
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LEMMA 3.3. (i) Supposethatl < q < oo and letY be a Banach space such that
. : 7 2. 7Y -
Y* € RNP. Ifu:Y — L9(v) belongs to (L{(0)®,,Y ) then 7q(u) < lell oy, vr-
(ii) Letl < p < oo and let X be a Banach space such that X* € RNP. If

u: LP(u) = X* belongs to (X®A’L’(u)) then my(u*) < IIU'“(x§A,L’(u))..

ProOF: (i) It is well known (see [5, Example 2.11]) that if g € L% (v,Y*) then
v 1 Y = L7(v) given by v,(y) = (9,y) is ¢-summing and 7 (v,) < gl v,y Now
use that, under the assumptions, (L"(u)@,h}’)‘ = L9(v,Y*) and u = v, for certain
geLI(v,Y?).

(ii) Note that u = uy for some f € L¥ (u, X*). Hence vy = u* : X** — LP(p) is
p'-summing and 7y (u*) < |fll 1o x+) = ||u||(L,,(u)§ny)_. 1]

PROOF OF THEOREM 1.2: The case p =1 is included in (iii) Theorem 1.1.

Assume now 1 < p < oo and let m : ¥ — L? be a vector measure. Given u : LP
— L? withu € (L2®APU’). we can use (ii) in Lemma 3.3 to conclude that there exist
f € L7 ([0,1], L?) such that vy : L> - L given by ¢ — fol #(y) f(z,y)dy is p'-summing
and u = uy = (vy)*. Hence, using [5, Theorem 2.21], one has that (v;)* = u: L? — L?
is 1-summing. Therefore

lug omlly < Cllusllmll < Clfllo o, Il 0

Let us mention another useful lemma.

LEmMMa 3.4. ([1, Proposition 6]) Suppose that Y is a Banach space of finite
cotype r and let Zj y; be an unconditionally convergent series in Y .

(i) If r = 2 then there exist (a;) € £ and a sequence in (y;) C Y such that
Y = ajy; and

Z,- lo[? < Sup EJ. 1w, 9™
sup Zjl(y},y‘) ’< "s?lzjl(yj,y*ﬂ.
y*ll=

llyell=1

(ii) Ifr > 2 then for any q > r there exist (o;) € ¢? and a sequence in (y;) C Y
such that y; = a;y; and

(%, 1it) " (II:‘lIllgl 2w "
( sup >, 1t65:v7) ¢)1/0’ < ( S“Plzﬂ(yhy') )W.

llylI=1 llyli=
ProoF: (i) Let T :c¢o — Y such that T'(e;) = y;. Note that L(cy,Y) = IT5(co, Y)
for any cotype 2 space Y. Now apply [5, Lemma 2.23] to the sequence (e;) which satisfies
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sup{zjl(e,-,z)l zlle = 1} to conclude that T'(e;) = y; = oyy; with the desired

properties.
(ii) Repeat the proof using now L(cy,Y) = I (co, V) for any g > r (see [5, Theorem
11.14)). : 0

ProOOF OF THEOREM 1.3: Note that Theorem 1.2 and (4) give
9 Bra(m, v, P) = |ml, 1<p<g2

To obtain (ii) we simply use the following more general result.
THEOREM 3.5. IfY bhas cotype r < oo and Y* has the RNP then

(10) Braw)(m, v, Y) = ||m|, r=2.
(11) Bragy(m, 1, Y) = |Im|l, ¢>r>2.

PROOF: We only prove (11). The other is exactly the same.

Suppose that (A;) is a sequence of pairwise disjoint sets. Since m(A;) is uncondi-
tionally convergent in Y, Lemma 3.4 implies that there exist (a;) € £ and a sequence in
(yj) € Y with m(4;) = a;y; and

(5, )" < (s
) 1/¢

(IISITI 1Z s 0" )|q’) ( su;: z
On the other hand if u € (L9(v)®Y)*, using (i) in Lemma 3.3, one has u € (Y, LY).
Therefore

Zj||U(m(Aj)) ” = E, Lo |u(y) |
< (3, lesl?) " (X, Iutwa 7)™
< e @) (3, lesl?) " (sup 37, w0

< Cllullzawysy)- Imll.

4. MEASURES OF INFINITE X-SEMIVARIATION

‘We shall present now some necessary conditions to have bounded X-semivariation.

ProPOSITION 4.1. (i) Assume that X@TY is of finite cotype q. If m : T
— Y be a vector measure then

”m"q s CqﬂX(ms T, Y)
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for some constant C, independent of m.

In particular, if X has finite cotype q and 1 < p < oo then

”m”max(q,2,p} CﬁX (m Ap, L (l"’))

(ii)) Let 1 £ ¢ < o0, let v be a finite measure for which there exists a sequence of
pairwise disjoint sets with v(B;) > 0 and let m : £ — Y be a vector measure. Then

Imlly < CoBrapy)(m, 74, Y)

PROOF: (i) Suppose that (z;) is a sequence in the unit ball of X and a sequence
of pairwise disjoint sets A;. Hence, for 0 < ¢t € 1, one has

< ﬂX (m’ T, Y)

r

ZTJ zk ® m(
=1

where r; stands for the Rademacher sequence. Now integrate over [0,1] and use the
cotype estimate to get

k 1/q
(S tadismtapl) ” < Cietm 1.
j=1
Taking the sup over (z;) and (A,) one obtains the desired result.
Note that LP(u, X) has cotype equals ma.x{p, q,2}.

(i) Take z; = (x5,)/(v(B;)/9), ¢ = Z TjXa; for some sequence of pairwise dis-
J—
joint sets in ¥ and notice that, for any A € X,

k /q
6@ My = (Slimcan 40l)

=1
This gives the result. 0

COROLLARY 4.2. LetY be infinite dimensional Banach space, 1 € q < 2 and
v be a finite measure for which there exists a sequence of pairwise disjoint sets with
v(E,) > 0.
(i) There exist Y-valued measure such that Brq)(m,v,,Y) = oo
(ii) If LP(y) is infinite dimensional then there exist LP(u)-valued measures m
such that Brew)(m, Ay, LP(n)) = co for 1 < ¢ <2 and g >
PRrooF: (i) Select an unconditionally convergent series (y,) with Zk [lyell? = o0
(this can be done for 1 < ¢ < 2, see, for instance [5]).
Now we define the measure over N given by m({k}) = yx. Clearly ||m||; = oo and
therefore Bre(w)(m, g, Y) = oo from (ii) in Proposition 4.1.
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(ii) follows from (i) and the estimate (3). 0

A very important example to analyse is my, : £ — LP(u) given by my(A) = x4. We
shall see that these measures are enough to produce examples with £zq(,) (m, Yo (1))
= oo for ¢ < p.

THEOREM 4.3. Let u()) < 00, ¥(§22) < 00, X = L4(v) and Y = LP(u). Then
the LP(u)-valued measure my,(A) = x4 has finite L9(v)-semivariation in L9 (u)®,’ql}’(u)
if and only if L7 (v, L¥ (u)) € L*(p, LY (v)).

ProoF: Let g : ) x 23 — R be such that

, 71 ¢
ol ar .07 Gy = ( /n ( /ﬂ 196, 2)| du(x)) du(y)) < oo,
2 1

Note that the operator v, : LP(1) — L7 (v) becomes

v (%) (¥) = fn 0y, 2)(2)du(z),

hence, we have v, o my(A4) = [, g(y, r)du(z) for all A € £,. This shows that v, o m, is
the L7 (v)-valued measure with Radon-Nikodym derivative g(y,.). Therefore

log 0 mglly = / | ( / 2|g(y,z)l"du(y))l/'fdu(z).

Now Theorem 2.2 shows that m,, is of bounded L?(v)-semivariation in L"(V)@,hl}’(u)
if and only if there exists C' > 0 such that

/m( n,lg(y’z)lwu(y))Wd#(y) < C</n,( nl'g(y’$)|#dﬂ(z))mldu(y))W,

That is to say LY (v, L” (u)) € L*(u, L7 (v)). 0

COROLLARY 4.4. Letl < p < oo and my,: X — LP(u) given by my(A) = xa.
Then Braw)(myp, ¥e, LP(1)) < 00 for p < g.

PROOF: Note that for p < ¢ one obviously has
L7 (v, ¥ () C L (v, L7 () = LY (s, LY (v)) € L* (s, L7 (v)).
Apply now Theorem 4.3. 0
Actually the previous result is also a consequence of the following general fact.

PROPOSITION 4.5. Letl < p<oo, X a Banach space and let m : ¥ — LP(u)
be a positive vector measure, that is m(A) 2> 0 for all A€ £. Then

Bx (m) ApaLp(l‘)) = ”m”
In particular, if m is positive and p < q then

Braw) (M, v, LP (1)) = [Iml.
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PROOF: It is well-known that (LP(k, X))* = (LP(#)®X)" can be identified with the
space of X*-valued measures in V7 (u, X*) (see [4]). In particular, if u € (LP(u)®X)*
C L(LP(u),X*) (see for instance [3]) there exists ¢ € L”(u) such that |¢|ly
< llullzo(u)ax)- and satisfies that

s < / B(0)0(H)du(t)

for any positive function ¢ € L?(u). Therefore, if [|ul|(1o(,x)- = 1 then
k
le(®)l
m(4;))| < ll4ll A;j)(t)dp(t)
> Jutmian)]| < et | Z ol
< sup{2|<¢',m(A,-)>l 1l =1}
j=1

Hence ||us o mll; < ||m||. Apply now Theorem 2.2.
In the case X = L?(v) and p < ¢ (4) allows us to conclude the proof. 1]

We shall now see that the range of values in Theorem 4.3 is sharp.

LEMMA 4.6. Ifp > q then there exists f : [0,1]2 — R* such that

/01(/0l flz, y)"dy)p/qdz < o0
/01 (/01 fz, y)”d:c) l/pdy = o0.

Proor: Denoting 8 = p/q > 1 and g(z,y) = f(z,y)? it suffices to find g : [0,1]2

— R* such that . . 5
f ( / 9(z, y)dy) dz < 00
0o \Jo

/0 1 ( /0 1 9(z, y)"dx) l/pdy = oo,

Recall that the Hardy operator T(¢)(z) = (1/z) f; ¢(y)dy is bounded on L#({0,1}) for
B > 1 and define

and

g9(z, y)= %X[o,z](y)fﬁ(y)

for a function ¢ € L#([0,1]) to be chosen later.
Clearly

1 1 B 5 P
[ ([ s@as) as = jr@ < il
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On the other hand

/0 l ( /0 1 9(z, y)"dz) 1/de = /o l o(y)P/® ( /,, 1 g%) l/pdy

1 1
>C fo S0 G
_ 1 ¢(y) Blp
=c([ (&%) &

1 B/p
#(y)
>o( [ gire)

Now select ¢(y) = 1/(y'/#)log(1/y) to have ¢ € L#([0,1]) and

' o(y) _/‘ dy
0

vlog(lfy) 0

0 yl/ﬁ'dy_

COROLLARY 4.7. For q < p the L*([0,1])-valued measure m,(4) = x4 has

infinite L%([0, 1))-semivariation in L([0, 1))@, L*([0,1]).

(1]

(2]
(3]

(4]
(8]
(6]
(7]
(8]
(9]
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