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Discovering optimal flapping wing kinematics
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This paper focuses on the discovery of optimal flapping wing kinematics using a deep
learning surrogate model for unsteady aerodynamics and multi-objective optimisation.
First, a surrogate model of the unsteady forces experienced by a 3-D flapping wing is
built, based on deep neural networks. The model is trained on a dataset of randomly
generated kinematics simulated using direct numerical simulation (DNS). Once trained,
the neural networks can quickly predict the unsteady lift and torques experienced by
the wing, using sparse information on the kinematics. This fast surrogate model allows
multi-objective optimisation to be performed. The resulting Pareto front consists of new
kinematics that may be very different from the kinematics of the initial dataset. A few
arbitrarily chosen kinematics on the Pareto front are thus simulated using DNS and used
to enhance the database. The new dataset is used to train again the networks, and this
active deep learning/optimisation framework is performed until convergence, obtained
after only two iterations. Overall, this method reduced the cost of optimisation by 83 %.
Results reveal two distinct families of motions. Kinematics promoting high efficiency are
characterised by large stroke amplitudes and relatively low angles of attack, as observed
for fruit flies, honeybees or hawkmoths. For those, lift production is driven by quasi-steady
effects and the formation of a stable leading edge vortex. Kinematics promoting high lift
are characterised by small stroke amplitudes and high angles of attack, reminiscent of
mosquitoes. Lift production is driven by the rapid generation of vorticity at the trailing
edge.

Key words: machine learning, vortex dynamics, swimming/flying

1. Introduction

Flapping wings have attracted significant attention from both zoologists and aerospace
engineers for the past three or four decades (Shyy et al. 2010). While the former seek,

† Email address for correspondence: baptiste.corban@gmail.com

© The Author(s), 2023. Published by Cambridge University Press 974 A54-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

83
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:baptiste.corban@gmail.com
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2023.832&domain=pdf
https://doi.org/10.1017/jfm.2023.832


B. Corban, M. Bauerheim and T. Jardin

in the broad sense, to understand the evolution of natural species, the latter draw their
inspiration from nature to develop flapping wing robots.

In both cases, a detailed understanding of the physical mechanisms responsible for the
fascinating flight performance of species like dragonflies and hummingbirds is required.
In that regard, extensive experimental (e.g. Ellington 1984; Dickinson & Götz 1993;
Dickinson, Lehmann & Sane 1999; Wang, Birch & Dickinson 2004; Lentink & Dickinson
2009) and numerical (e.g. Sun & Tang 2002; Wang et al. 2004; Wu & Sun 2004; Aono,
Liang & Liu 2008; Bos et al. 2008; Jardin, Farcy & David 2012; Bhat et al. 2020) works
have helped identify the prominent mechanisms at play, among which the leading edge
vortex (LEV), wake capture, as well as rotational and added-mass effects are probably the
most widespread phenomena. There exist other mechanisms pertaining to specific species,
such as the clap-and-fling mechanism (Lighthill 1973) observed in butterflies. These
mechanisms, which have been comparatively less studied, can however be considered as
subsets of the more general mechanisms described above. Overall, these past studies have
shown that the aerodynamics of flapping wings is characterised by the complex interaction
between those key mechanisms, which renders the resulting physics highly unsteady and
nonlinear, and emphasises its dependence on flapping wing kinematics.

A direct outcome is that purely physics-based reduced-order models aimed at predicting
the aerodynamic loads experienced by a flapping wing, with relatively low cost, may fail
under certain circumstances, for example, when wake capture effects (i.e. with strong
unsteadiness and nonlinearity) are important. However, together with the significant
increase in computational resources, recent models have relied on data-driven approaches
where semi-empirical physics-based models are fitted to data from high-fidelity numerical
simulations (e.g. Nakata, Liu & Bomphrey 2015; Cai et al. 2021; Van Veen et al. 2022).
Such models have demonstrated reasonable accuracy over a relatively large range of
flapping wing kinematics. This is of interest for the development of autonomous or
semi-autonomous real-time flight controllers and can help improve the overall flight
stability of a flapping wing robot. Moreover, it is suited to the optimisation of flapping
wing kinematics, although it is not clear how the models developed in the works mentioned
above perform in this context.

On the other side of the spectrum are purely data-driven models, which have benefited
from the extensive research in machine learning over the past few years. In particular,
neural networks have attracted the attention of the fluid community, since they are able
to provide predictions at low cost but with high accuracy. For time-series predictions,
the physics community first relied on the specific networks developed for the language
processing applications, such as the long short-term memory (LSTM) networks introduced
by Hochreiter & Schmidhuber (1997). For instance, LSTM networks have been used to
propagate acoustic waves (Sorteberg et al. 2018) and predict the unsteady forces and
wake behind a sphere at various Reynolds numbers (Gupta & Jaiman 2022). However,
recurrent neural networks, such as LSTM networks, can be expensive to train and
subject to vanishing gradient problems, due to long gradient chains. Moreover, predicting
physics quantities usually needs only a short time history. As an alternative to recurrent
networks, classical multi-layer perceptrons (MLPs) and convolutional neural networks
(CNNs) have been adapted for unsteady predictions. To do so, a short history is used
as input (autoregressive model), and the network learns the shift operator to predict the
next time step. The complete time sequence is then computed by calling successively
the shift operator while updating the input history. Alguacil et al. (2021, 2022) have
used such techniques with a CNN to propagate acoustic waves in both space and time,
showing high accuracy and generalisation capabilities compared with the LSTM methods
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proposed by Sorteberg et al. (2018). Colombo, Bauerheim & Morlier (2023) developed
a similar strategy based on a graph network used as a shift operator to estimate the
unsteady aerodynamic forces and structural loading of a high-altitude long-endurance
(HALE) concept aircraft subject to incoming flow perturbations. While such an approach
has shown promising results, difficulties still exist, especially for long-time predictions.
To tackle this issue while avoiding the complexity of recurrent networks, the learning of
shift operators with short input history has been improved using long-term losses (LTLs),
first introduced by Tompson et al. (2017) and further exploited by Ajuria-Illaramendi,
Bauerheim & Cuenot (2022) and Colombo et al. (2023). The main idea is to collect during
training new data by advancing in time the current network, and compare the predictions
with the database. It works as a data augmentation technique, without backpropagation in
time, where the network learns from its temporal mistakes. Recent works have shown a
significant improvement of the quality of long-term predictions using LTL with a much
lower training cost compared with recurrent networks. Ajuria-Illaramendi et al. (2022)
also revealed that using LTL improves the robustness and generalisation capabilities of the
temporal predictions made by neural networks for operating conditions far from those used
during training. Here, we chose to use simpler MLPs with a time delay in the input, as they
are less expensive and easier to implement and train than LSTM networks or RNNs. Some
of the more complex solutions mentioned above could be useful if simple MLPs failed to
provide sufficient precision, but were not needed in this study.

Note that this generalisation capability is usually a critical issue for neural networks,
in particular when they are used for optimisation. Indeed, it would be unlikely that the
training samples generated randomly are close to the optimal solutions. Therefore, the
network is trained only on sub-optimal data: its use for optimisation necessarily suggests
that the network has to generalise, and therefore no guarantee on the accuracy of these
predictions can be made. Nevertheless, for low-dimensional spaces where dense sampling
can be achieved, standard training strategies can be sufficient. For instance, Krügener et al.
(2022) trained an MLP from Reynolds-averaged Navier–Stokes simulations to optimise
the geometry of the combustion chamber of a rocket engine on a 10-dimensional space,
showing an accurate Pareto front for this configuration. Similarly, Baqué et al. (2018)
trained a geodesic convolutional neural network (GCNN) to minimise the drag of 3-D
objects such as a sphere and a car. For more details on the various works employing
machine learning for optimisation, one may refer to Li, Du & Martins (2022). However,
to optimise flapping wings kinematics, the challenge associated with the generalisation of
the neural network is critical, and will be tackled by active learning (AL), also referred
to as optimal experimental design. It allows the training dataset to be built iteratively, by
sampling new data based on the estimated optimal solutions. This approach is similar to
Bayesian optimisation, where an acquisition function (also referred to as the infill sampling
criterion) is used to select the new query points. Numerous works have used this technique
using Gaussian processes (GPs), which was found effective when coupled to high-fidelity
computational fluid dynamics (CFD) simulations, for which query points are expensive
to compute (Roy et al. 2018; Campet et al. 2020). Active learning has been applied for
optimisation in various scientific fields, from biology (Pandi et al. 2022) to materials
science (Wang et al. 2022), including fluid mechanics to optimise turbine shapes (Wang
et al. 2022). In the present work, active learning will be used by combining the MLP
trainings with DNS to iteratively converge towards a Pareto front.

Consequently, the main objective of this paper is to train a deep neural network surrogate
model on a dataset of high-fidelity numerical simulations through active learning towards
the optimisation of three-dimensional flapping wing kinematics. The surrogate model
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is used in place of numerical simulations, which are too computationally expensive, to
provide inputs to a multi-objective evolutionary algorithm. In this particular context,
a direct optimisation without active learning has recently been applied by Gehrke &
Mulleners (2021) using experimental measurements as inputs. The authors performed a
multi-objective optimisation of a hovering rectangular wing with parameters defining the
pitch motion as variables. They showed that maximum efficiency was reached for nearly
sinusoidal pitching motion with minimum angle of attack of approximately 30◦ while
maximum lift was reached for trapezoidal motion with a minimum angle of attack of
approximately 45◦. In all cases, the flow dynamics and resulting lift were governed by the
development of an LEV whose circulation was found to scale with the root-mean-square of
the leading edge shear layer velocity. Furthermore, the maximum in LEV circulation was
always reached once the leading edge had travelled 3.9 chords, i.e. before the end of the
stroke. The evidence of non purely sinusoidal optimal pitching motions was also provided
by Lee & Lua (2018) using a multi-fidelity approach, similar in spirit to that previously
introduced by Zheng, Hedrick & Mittal (2013). The authors performed a two-stage
optimisation where the first stage consisted of testing all possible combinations using a
quasi-steady model and the second stage consisted of local optimisation using the simplex
method and Navier–Stokes simulations. Again, optimality was closely correlated to the
dynamics of the LEV. It is also informative to mention the recent work by Zheng et al.
(2020) who performed the optimisation of three-dimensional hovering flapping wings
using a self-adapted quasi-steady model. In this framework, a quasi-steady model was
empirically fitted on data from Navier–Stokes simulations and used for the optimisation.
The latter consisted of successive iterations where optimal solutions were computed using
Navier–Stokes simulations and used to refine the empirical fit. The authors only considered
purely sinusoidal motions, but investigated the role of elevation and pitching and flapping
motions on aerodynamic performance. The results consistently pointed towards the role
of LEV on optimal performance. Other data-driven models for flapping wings used GPs
(Calado et al. 2023) or probabilistic recurrent state-space models (Bayiz & Cheng 2021),
for example.

These optimisations are generally restricted to a subset of the parameter space, to reduce
the associated time and costs. A common limitation in the optimisations mentioned above
is the range of flapping amplitudes, which typically spans 60◦ to 180◦, or the phase shift
between flapping and pitching motions is constrained. Here, we use a deep neural network
(NN) in conjunction with a genetic algorithm (GA) to identify optimal flapping wing
kinematics over a large range of angles of attack and flapping amplitudes. We show that
the NN-GA framework is able to identify optimal kinematics that lie well beyond (i.e. in
the lift versus efficiency map) the dataset used for NN training. Furthermore, we identify
distinct flow physics associated with high-efficiency motions on the one hand and high-lift
motions on the other hand. High-efficiency motions are characterised by large flapping
amplitudes and predominantly rely on leading edge vortex dynamics. Interestingly, optimal
kinematics and underlying flow physics are similar to those observed in real species like
fruit flies, bumblebees and hawkmoths, for example. Conversely, high-lift motions are
characterised by low flapping amplitudes and predominantly rely on trailing edge vortex
dynamics. This is reminiscent of mosquito wings kinematics, albeit at even lower flapping
amplitudes, and shares similarities with the flow physics recently identified by Bomphrey
et al. (2017) and Liu, Du & Sun (2020) on such species.

The remainder of the paper is structured as follows. In § 2, the wing and kinematics
parameters are described, as well as the numerical set-up. Then in § 3, the active deep
learning model is built and used for multi-objective optimisation. The Pareto front
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Figure 1. Definition of stroke and pitch angles, respectively φ and ψ , used to describe the wing motion.

and optimal kinematics obtained are then closely analysed in § 4 to highlight the key
mechanisms at stake.

2. Wing model and numerical set-up

2.1. Wing model and kinematics
A rectangular wing model is commonly used to study flapping wing kinematics (Shyy
et al. 2010; Diaz-Arriba et al. 2021; Gehrke & Mulleners 2021): even though insect
wings have more complex shapes, a rectangular planform is a relevant simplified model
allowing the accurate reproduction of the main physical phenomena at stake (namely
the leading and trailing edge vortex dynamics). Thus, the wing model considered in this
study is rectangular with a NACA0012 profile, where c = 0.01 m is the chord length and
b = 0.04 m is the wingspan.

Two angles are used to describe the kinematics: the stroke, or revolution, angle φ and
the pitch, or rotation, angle ψ . The elevation, or flap, angle is kept at zero as in actual
insect motions; it has a low amplitude compared with the other two angles (Shyy et al.
2010). Figure 1 shows the angles’ definition. The pitch axis zw is attached to the wing, at
quarter-chord, and stays in the xz plane throughout the motion.

The Reynolds number Re describes the ratio between inertial and viscous forces. It is
defined as

Re = ρŪφc
μ

, (2.1)

where Ūφ = 4bfφ0 is the mean velocity at the tip of the wing during a stroke, induced only
by the revolving motion of amplitude 2φ0. In all cases throughout the paper, the Reynolds
number is fixed to 1000, so that the flapping frequency f can be deduced as

f = μRe
4ρcbφ0

. (2.2)
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This work is restricted to periodic motions of frequency f , where kinematics (ψ, φ) are
parametrised by a few Fourier coefficients (typically the f and 3f components), such as

ψ(t) = a1 cos(2πft)+ b1 sin(2πft)+ b3 sin(6πft), (2.3)

φ(t) = φ0 sin(2πft − δ), (2.4)

where δ/2πf corresponds to the time delay between the revolution and rotation motions.
The stroke motion amplitude is thus defined as 2φ0. Note that such a parametrisation
restricts the possible kinematic candidates for optimisation, yet the present definition
allows for satisfying approximations of real insect flapping kinematics, further described
in § 2.2. Additionally, the deep active learning framework proposed in § 3 can be extended
to any other kinematic parametrisation if needed.

This study focuses on the hovering regime, where the motion objective is to produce a
positive time-average lift, denoted L̄. To achieve this lift performance, the system requires
a rotation (respectively revolution) power Prot = Trotψ̇ (respectively Prev = Trevφ̇), Trot
(respectively Trev) being the rotation (respectively revolution) torque applied to the wing
root. As a consequence, the efficiency η can be defined as the ratio between the mean lift
coefficient (CL) generated and the mean total power coefficient (CP), determined as

CL = L̄
1
2ρbcŪ2

, (2.5)

CP = Prot + Prev
1
2ρbcŪ3

, (2.6)

η = CL

CP
. (2.7)

It is usual to use Ūφ as the normalisation velocity (Shyy et al. 2010; Gehrke & Mulleners
2021). Yet, the stroke amplitude is a degree of freedom in this study, and for kinematics
with low amplitude, the stroke-induced velocity does not dominate the pitch-induced
velocity. If the latter is not taken into account, a pure pitch motion would have an infinite
lift coefficient, and the reference speed would not be adequate since Ūφ = 0 in that case.
Even though the lower bound of the study is φ0 = 10◦, for such kinematics, the relevant
speed governing the unsteady aerodynamics is no longer Ūφ . As a consequence, another
normalisation velocity Ū is thus introduced, different from that used for the Reynolds
number calculation: it is defined as the time-averaged leading-edge velocity at the tip of
the wing, induced by both the stroke and pitch motions:

Ū = ‖uφ + uψ‖ = 1
T

∫ T

0

[(
bφ̇(t)︸ ︷︷ ︸

uφ

+ c
2 ψ̇(t) cos(ψ(t))

)2 + ( c
2 ψ̇(t) sin(ψ(t))

)2
]1/2

dt.

(2.8)

Note that uφ is contained in the stroke plane, while uψ is perpendicular to the wing chord,
thus the normalisation velocity Ū is not parallel to the stroke plane.

2.2. Kinematics generation
Real hovering kinematics from the hawkmoth, fruit fly and honeybee, described by Liu &
Aono (2009), are used as a basis to generate the dataset used for neural network training.
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Figure 2. Reference pitch ψ-kinematics (solid line) for (a) the fruit fly, (b) the honeybee and (c) the
hawkmoth, as well as their approximation using (a1, b1) coefficients (dotted line), (b1, b3) (dash-dotted line)
and (a1, b1, b3) coefficients (dashed line) (see (2.3)).

a1 b1 b3 φ0 δ

[−0.5, 0.2] [−1.8, −0.1] [−0.3, 0] [10, 60]◦ [0, 180]◦

Table 1. Parameter bounds for the five parameters of the kinematics described by (2.3) and (2.4), used to
generate randomly the 294 motions composing the initial dataset.

Figure 2 shows how their pitching motions are approximated using two or three Fourier
coefficients. Using at least three Fourier coefficients is necessary to capture the reference
pitching kinematics with reasonable accuracy, justifying the chosen pitching law in (2.3).
Their stroke motion is close to sinusoidal, and their corresponding amplitude 2φ0 is 120◦
for the hawkmoth, 90◦ for the fruit fly and 140◦ for the honeybee. The phase shift between
revolving and pitching motions is 90◦ for all three cases.

To provide a large variety of data for the neural network training, 294 motions are
initially created, of which 144 motions have a purely sinusoidal pitch profile (i.e. a1 =
b3 = 0) and 150 motions are composed using the three Fourier coefficients. For each
motion, a uniform law between the bounds shown in table 1 is used to randomly generate
each parameter (a1, b1, b3, φ0 and δ). The bounds were chosen to contain the parameters
of the three bio-inspired reference kinematics for a1, b1, b3 and δ. For φ0, the higher bound
is 60◦. We believe this bound does not affect significantly the findings in this study. For
amplitudes higher than 120◦, the lift production mechanisms are similar to those described
in § 4.2, but would need a mesh refined on a larger area to be simulated.

2.3. Computational set-up
DNS of the generated flapping motions is performed, and will later be used as the data for
neural network training. The CFDs solver used to compute the flow around the flapping
wing is StarCCM+. The three-dimensional Navier–Stokes equations are directly solved
using a cell-centred finite volume method. Second-order numerical schemes are employed
for spatial and temporal discretisations. The computational domain is a circular cylinder,
40c high and 30c wide, shown in figure 3. The wing moves parallel to the top and
bottom ends of the far field. It is enclosed within a 2c-wide moving overset mesh. The
displacement of the moving mesh is contained in a fixed control volume, in which the
mesh is refined to resolve the wake with sufficient accuracy. The wing is modelled by a
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Stagnation inlet

Wing surroundings

(overset mesh)

40c

30c

Pressure outlet

Slip wall

Control volume

Figure 3. Computational fluid domain with details on the refinement zones and the boundary conditions
employed.

non-slip wall, the top of the domain is a stagnation inlet boundary condition, the bottom
end is a pressure outlet and the lateral boundary conditions are treated as a slip wall.

The spatial resolution chosen is �x = 0.02c on the wing surface and �x = 0.04c
in the control volume, which yields a total number of cells of 1.9 million. The time
resolution chosen is 250 time steps per period, where the period T = 1/f corresponds
to an upstroke followed by a downstroke motion. The numerical set-up is similar to that
used by Diaz-Arriba et al. (2021), where it was shown that the results were converged
with respect to both spatial and temporal resolutions. Four periods are simulated, and only
the latest two are used in the dataset to avoid any transient effects in the data. Additional
information on the decay of initial transients and convergence with respect to spatial and
temporal resolutions is provided in the Appendix.

For flow analysis on optimal cases predicted by neural networks (in § 4), a finer mesh
will be used. The spatial discretisation for these simulations is �x = 0.005c on the wing
surface and �x = 0.01c in the control volume, leading to a total number of 36 million
cells. The time discretisation is identical to the coarser mesh, i.e. set to �t = T/250.

3. Optimisation of flapping wing motions using neural networks

3.1. Unsteady aerodynamic model using deep learning
Lift, rotation torque and revolution torque are needed to compute η and CL, and assess a
motion performance. Thus, three neural networks are trained to predict those three outputs.
The neural networks are feed-forward neural networks (FNNs), coded and trained using
Pytorch (Paszke et al. 2019). The FNN employed here is an MLP, composed of successive
layers of neurons. The output layer size of each neural network is 1, meaning each neural
network will be trained to predict a scalar output at an instant t.

3.1.1. Neural network input
Multiple architectures exist to predict temporal data, such as recurrent neural network
(RNN), LSTM or echo-state network (ESN) among many others. While being effective
for speech recognition and other tasks involving temporal sequences, their use in
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R2

m = 2

m = 3

m = 4

Figure 4. Optimal m and τ research, evaluated by the mean R2 score on the test set for lift prediction. The
final choice m = 3 and τ = 9 is indicated by dashed lines.

computational physics is still sparse, mostly because only a short time history is needed to
predict the further time steps. A typical example is CFD, where time-marching is achieved
using time integration with very few previous time samples. As a consequence, a simpler
MLP is chosen here where the input contains a few samples at previous time steps. To
make a prediction for an output at time t, each neural network takes as input a vector
X = [x(t), x(t − τ dt), . . . , x(t − (m − 1)τ dt)], with x a state vector, m and τ two integers
chosen in the following, and dt = 1/250f . Such a method has been shown sufficient to
replicate CFD results from high-order numerical codes, as for instance by Alguacil et al.
(2021, 2022) for acoustic waves propagation.

The state vector used is x = [ψ, ψ̇, ψ̈, φ̇] to provide information about the pitch and
stroke kinematics to the neural network. Its components were chosen by testing different
combinations. It appears that adding additional derivatives of the pitch angle improves the
prediction performance, while for the revolving angle, only the first derivative is sufficient,
as it follows a simpler sinusoidal law. Here, m and τ are determined by performing a partial
gridsearch. Increasing m causes an increase in neural network size, as the input is larger
and more neurons are needed to process it. It affects the training duration and prediction
times once trained, thus m should be chosen as low as possible. Figure 4 shows the m
and τ effect on the neural network performance, evaluated by the mean R2 score for lift
prediction over a test set of 45 motions. For each motion in the test dataset, the R2 score is
evaluated on both flapping periods (i.e. from t = 0 to t = 2T) and defined as

R2 = 1 −

2T∑
t=0

( y(t)− ŷ(t))2

2T∑
t=0

( y(t)− ȳ)2
, (3.1)

with ȳ the average value of the output y and ŷ the prediction from the neural network.
The chosen values are m = 3 and τ = 9. As a consequence, for a prediction at the time

step t, data are needed from 18 dt = 0.072T earlier. This is in line with the results of
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Bayiz & Cheng (2021): they demonstrated that aerodynamic states depended on the wing
motion in less than half a cycle, thanks to cross-correlation analysis of the latent states
of their model and kinematic variables. Here, 0.072T is slightly lower than the delay they
found for maximal correlation, often approximately 0.1–0.2T . The input vector is therefore
X = [x(t), x(t − 9 dt), x(t − 18 dt)]. It is sampled from the motion data and then fed to the
trained networks that produce the three needed outputs.

As detailed in § 2, a dataset of 297 simulated motions is created, containing the 294
randomly generated kinematics as well as the three reference ones from the fruit fly, the
hawkmoth and the honeybee. This dataset of motions is divided in three parts. First, 70 %
of the motions are used to train the neural network by updating the weights and biases in
each neuron. Then, 15 % for validation to check the neural network performance during
training on a set of data on which the weights are not updated. This is useful to prevent
the overfitting (i.e. the memorisation rather than learning) of the training data. The last
15 % are used to test the final network on unseen data and compare the trained models.
The three reference kinematics (figure 2) are placed in the testing dataset. Each motion,
having been assigned to a dataset, is then split in input vectors X of length 4m = 12.

3.1.2. Prediction performance
The architecture chosen is identical for the three feed-forward neural networks: three
hidden layers, with respectively 512, 1024 and 512 neurons, which correspond to a total of
approximately 1 million tunable parameters per network. Each neuron activation function
is a ReLU. The optimiser used to train the weights is Adam, with a learning rate of 10−4.
The loss is the mean square error (MSE). Each neural network is trained for 50 epochs,
with a batch size of 512.

Figure 5 shows the neural network prediction on the three outputs for the three reference
motions. The data from the CFD simulation are also displayed. The neural network
prediction generally fits the numerical data accurately.

The best predicted output is the revolution torque with a mean R2 score over the test
dataset of R2 = 0.985, then the lift with R2 = 0.983 and third the rotation torque with
R2 = 0.948. Overall, the neural networks show good performance in predicting unsteady
aerodynamics for the three reference cases and over a wide range of motions as the R2
scores show. These predictions of the unsteady aerodynamics take the order of 1 s to run
on an 8-core CPU. This makes the neural networks suitable to be used as a surrogate
model for an optimisation of the kinematics, as each evaluation of performance will be
inexpensive compared with a CFD simulation (approximately 200 core-hours needed for
each simulation in the dataset).

3.2. Multi-objective optimisation and active learning

3.2.1. NSGA II algorithm
The surrogate model is used to perform a multi-objective optimisation of the flapping
motion. To do so, the unsteady aerodynamics predicted by the networks, using the
kinematics as inputs, is coupled with a genetic algorithm for optimisation. The objectives
are the stroke-average lift coefficient CL and efficiency η defined in (2.5)–(2.7). The NSGA
II algorithm, described by Deb et al. (2002), is implemented using the pymoo library
(Blank & Deb 2020). Genetic algorithms are based on the survival of the fittest principle:
like in natural evolution, the fittest individuals live through the generations. The stochastic
nature of the genetic algorithm makes them suitable in evading local optima, which are
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Figure 5. Neural network predictions on the reference motions: (a–c) hawkmoth, (d–f ) honeybee and
(g–i) fruit fly. Predictions are performed over a period [0,T] for (a,d,g) the lift, (b,e,h) the revolution torque
and (c, f ,i) the rotation torque. The solid curve is the simulation results and the dashed line is the neural network
prediction.

typically encountered in such non-convex optimisation problems. The NSGA II algorithm
has proven to be efficient in predicting Pareto fronts in fluid mechanics, and has already
been coupled to neural networks, as proposed by Krügener et al. (2022) to optimise the
combustion chamber of a rocket engine. For each generation of the algorithm, a mating
pool is formed by selecting individuals from the previous generation population. These
individuals then go through mutation and cross-over to form offsprings. The offsprings and
the previous population are gathered and the new population is created by non-dominated
sorting, and finally by crowded distance sorting.

Each individual is composed of the five parameters [a1, b1, b3, φ0, δ]. The bounds of
the search space are defined in table 1. The population is composed of 100 individuals.
Fifty offspring are generated each generation. The algorithm usually converges after
approximately 35 generations, using the convergence speed criterion based on the
generational distance defined by Busch, Gehrke & Mulleners (2012), for a total of 1800
evaluations. This justifies the need for surrogate modelling, prior to the optimisation,
since the 1800 evaluations cannot be achieved by CFD. In the present work, the cross-over
method is the simulated binary cross-over, and the mutation method is the polynomial
mutation (further details can be obtained from Blank & Deb 2020).

3.2.2. Active learning algorithm
Neural networks are known to lose accuracy when generalising outside the training dataset.
Since the kinematics have been generated randomly, it is unlikely they correspond to
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CFD
(DNS)

Neural networks
training NSGA II optimizationDataset

Picking N motions from the Pareto front

CL

η

Figure 6. Complete framework used to discover optimal kinematics, involving the training of neural networks
through an active learning approach to provide accurate predictions of the Pareto front by the NSGA II
algorithm.

situations close to an optimum. As a consequence, the predicted Pareto front can be
inaccurate because of the poor network generalisation capabilities. To evaluate this issue,
CFD validations are performed on seven kinematics lying on the predicted Pareto front.
The efficiency and lift coefficient obtained by CFD (�) are compared with the network
predictions (◦) in figure 7 (step 1, top left). Results show that the global trend of the
Pareto front is predicted correctly by the networks, but large local errors can be also
observed, especially for cases with high lift coefficients (the differences between the CFD
and network predictions are highlighted by the dotted lines in figure 7). In fact, no training
data exist in this zone, the maximum lift coefficient of the training dataset is CL ≈ 0.9,
whereas the neural network predicts cases with coefficients up to CL ≈ 1.5.

To improve the accuracy of neural networks, and thus of the multi-objective
optimisation, an active learning approach is used. Lye et al. (2021) described an iterative
process to improve partial differential equations optimisation using surrogate modelling.
They tested it on an example of airfoil shape optimisation. One issue affecting the
performance of deep learning surrogate models is that the training dataset is generated
before the optimisation step, and the data points may be very different from the Pareto
optimal points. The iterative surrogate model optimisation (ISMO) algorithm described
by Lye et al. (2021) allows for an iterative construction of the dataset with data points
from successive optimisation steps. This process was adapted here to the gradient-free
multi-objective optimisation algorithm NSGA II, described in § 3.2.1.

In this study, an initial training dataset of 208 motions (70 % of the total dataset of
297 motions) was generated randomly to train the neural networks. The predictions from
these first trained networks were detailed in § 3.1.2, and the validation of the Pareto front
obtained with the NSGA II algorithm in figure 7 (step 1, top left). Now, N = 7 motions
from the predicted Pareto front are arbitrarily selected, and numerical simulations are
performed to check the accuracy of the surrogate model on kinematics unseen during
the training. These new data are then added to the training dataset for another step of
neural network training and multi-objective optimisation. This active learning approach is
illustrated in figure 6.

Two iterations of the active learning algorithm were needed to obtain an accurate
prediction of the Pareto front. The corresponding Pareto fronts are displayed in figure 7.
The predicted Pareto front is compared with the DNS of seven selected individuals. Step 1
corresponds to the surrogate model trained on the initial dataset. As already mentioned,
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Figure 7. In the left column, Pareto fronts from the three steps of the active learning approach. The Pareto
front predicted using the deep learning surrogate model (◦) is compared with DNS (�) on N = 7 individuals
selected on the predicted Pareto front. The difference between network and DNS results is highlighted by the
dotted lines. In the right column, the evolution of the prediction error of the model on the testing dataset in the
(η, CL) plane. Dots (•) are the DNS prediction and the lines point at the predicted position by the model.

it shows a good accuracy until CL ≈ 0.8. For higher CL, the predicted Pareto front and
DNS are further apart. Moreover, looking at the CFD simulations of the last two selected
motions, which are linked to their initial predicted performance by a dotted line, the actual
highest-CL motion is not actually the predicted one. The predicted Pareto front is not
accurate in the high-CL area, leading to a wrong hierarchy between motions.

Figure 8 displays the DNS of the Pareto fronts and the initial dataset (+). The reference
kinematics (hawkmoth, fruit fly and honeybee) used to create the dataset are shown (	).
They are located near the Pareto fronts in the high efficiency area. The initial dataset
was randomly generated, as described in § 2.2, and has no samples with CL > 0.9. This
explains why the neural network surrogate model is struggling with accuracy at Step 1.
The model behaviour on its testing set in figure 7 (step 1, top right) already hinted at a lack
of precision towards the high lift. On this plot, the dots (•) are the DNS and a line links it to
the predicted position. For CL > 0.6, errors are already clearly visible. Yet, it was able to
predict high lift motions in an area where no data were available: even if errors are made,
DNS shows that some optimal candidates have indeed a very high lift coefficient, up to
CL ≈ 1.4 when validated by DNS, while the network was predicting for this specific case
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Figure 8. Comparison between the DNS of the seven selected motions from each Pareto front and the initial
dataset (+). The reference motions used to generate the dataset are highlighted (	).

CL ≈ 1.2. As a result, the highest lift obtained by DNS at Step 1 is showing an increase
of 55 % in CL from the initial training dataset. At this point, it is thus remarkable that the
deep learning model from Step 1 was able to discover new high lift kinematics, and predict
their performance with a prediction error of 15 % on the lift coefficient. Similarly, on the
other end of the Pareto front, the most efficient motions were improved by 12 %, yet more
training samples lie in this zone, which results in less accuracy problems for the neural
networks.

Following the active learning approach, these N = 7 new motions are added to the
dataset for Step 2. The predicted Pareto front is now more accurate throughout the whole
range (figure 7b). There is a small over-estimation of the efficiency and lift coefficients
for most of the front. The best motions for each objective were not improved. Figure 8
shows that, except around CL � 0.75, the motions in Step 2 dominate those from Step 1.
Intermediate motions were thus improved, in addition to the accuracy of the model.
A third step leads to the most accurate predicted Pareto front, shown in figure 7(c): the
CFD simulations match the predictions throughout the whole Pareto front. There is also a
local improvement compared to the previous steps: in the area CL ∈ [0.55, 0.9], an increase
in efficiency is observed compared with similar-CL motions from the first two steps, as
visible in figure 8.

Overall, looking at the right column of figure 7, the accuracy over the whole testing set
was improved by the two steps of active learning. The mean error (i.e. the mean size of the
lines connecting DNS to neural net predictions on the plot) went from 0.081 for Step 1 to
0.056 for Step 3. The training dataset has been densified near the Pareto front by adding
twice seven new motions, but it also benefited for the model performance over the whole
range of motions.

The active deep learning process needed 314 CFD simulations of around 2 hours
(running on 4 CPU nodes Intel Skylake 6126, 24 cores, 96Go RAM). As mentioned
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Figure 9. Colour-coded Pareto fronts highlighting the evolution of three parameters φ0, δ and ᾱ, for both the
Step 1 and Step 3 Pareto fronts. Two regimes are identified (dashed lines) in the Step 3 Pareto front, one at high
efficiency (1) and the other at high lift coefficient (2).

in § 3.2.1, the genetic algorithm converges after 1800 evaluations of the cost function.
Using the surrogate model, each evaluation takes the order of a second. Thus, the total
cost for the active learning process and optimisation is approximately 630 h. If we were to
use CFD for the 1800 evaluations of the optimisation process, it would take approximately
3600 h. Our active deep learning model has thus allowed us to perform a two-objective
optimisation for 17 % of the CFD cost.

Figure 9 allows to compare the evolution of three parameters and the differences of their
distributions from Step 1 to Step 3: stroke amplitude 2φ0 (a), the phase shift δ (b) and the
stroke-average angle of attack ᾱ (c). The latter is defined as the average angle during a
stroke between the wing and the stroke plane xz. On the Step 1 Pareto front, there is a harsh
change in stroke amplitude 2φ0 around CL = 0.5 from 120◦ to 20◦, whereas on the Step 3
front, there is a gradual decrease, passing by motions with an intermediate amplitude. For
the phase shift, the decrease is monotonous when increasing the lift coefficient along the
Step 3 front, while for Step 1 around CL = 0.8, there is a shift in trend. Similarly, the high
values of phase shift around CL = 1.2 are attained more gradually in Step 3. The same
remarks can be made for the average angle of attack. Overall, the evolution of those three
quantities is smoother and monotonous on Step 3. The difference in trends in the Step 1
Pareto front is linked to its lack of precision, mixing the hierarchy between motions. The
active learning process thus allowed a smoother transition between high-efficiency and
high-lift motions to be found.

4. Analysis of the optimal kinematics

4.1. Pareto front analysis
To better understand what parameters drive these optimal kinematics, the evolutions of
the stroke amplitude, phase shift and average angle of attack on the Step 3 Pareto front are
observed in figure 9.
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First, the stroke amplitude colouring in figure 9(a) highlights the difference between
the motions at each end of the Pareto front. For high-efficiency motions, until CL �
0.6 (regime 1), the stroke amplitude takes values between 90 and 120◦. Then, there
is a drop in amplitude to �50◦ and a gradual decrease reaching 20◦ from CL = 0.9
onwards (regime 2). This stroke amplitude difference between high-lift and high-efficiency
motion hints at two distinct lift production mechanisms. The high-lift kinematics having
a shorter stroke amplitude compared with the high-efficiency ones is in line with the
results from Altshuler et al. (2005). They concluded that at constant wingtip velocity Uφ ,
decreasing stroke amplitude promoted lift while decreasing efficiency. The two regimes
are highlighted by the dashed lines: (1) corresponds to high-efficiency kinematics and (2)
corresponds to high-lift motions. They can be characterised by their slope in the (CL, η)
plane. For regime 1 (i.e. from CL = 0.32 to 0.61) the efficiency decreases rapidly, with a
slope �η/�CL = −2.12. This indicates that to gain a certain amount in lift coefficient,
it costs roughly twice the amount in efficiency. For regime 2 (i.e. from CL = 0.6 to 1.4),
the decline in efficiency is slower, with a typical slope �η/�CL = −0.74. A gain in lift
coefficient is not as costly in efficiency. Motions from those two regimes will be discussed
in § 4.2 for regime 1 and § 4.3 for regime 2. It is also to be noted that though the Reynolds
number based on the revolution speed Uφ is 1000 for all motions, the Reynolds number
based on the force-normalisation velocity Ū described in (2.8) varies between 400 (for
high-efficiency cases) and 1300 (high-lift cases) along the Pareto front.

Second, the phase-shift colour-coded Pareto front (figure 9b) reveals a gradual evolution
throughout the front. For efficient motions until CL � 0.65, the phase shift is between 90◦
and 110◦. That is, the wing angle passes through vertical slightly before stroke reversal.
This kinematic property is commonly referred to as ‘advanced rotation’ (e.g. Sane &
Dickinson 2001). Then for CL ∈ [0.65, 1.2], δ varies between 110◦ and 135◦. The highest
lift motions (CL > 1.2) have higher values of phase shift, from 150◦ to 170◦. Those high
values of phase shift may seem counter-intuitive at first, and imply that the trailing edge of
the wing is ahead of the leading edge during a large portion of the stroke. This relatively
uncommon flapping regime will be further studied in § 4.3.

Third, the evolution of the stroke-average angle of attack ᾱ on figure 9(c) shows an
overall smooth increase from values of 37◦ for high-η motions to 81◦ for high-lift motions.
This angle is influenced by the pitch kinematics and the phase-shift evolution. While
values of 37◦ for high-efficiency motions are in line with previous results from Sane &
Dickinson (2001), Gehrke & Mulleners (2021) and Diaz-Arriba et al. (2021), for example,
values of 81◦ appear very large. This, again, suggests different mechanisms of force
production between high-efficiency and high-lift motions. We note that the effective angle
of attack of the wing is in fact much lower than ᾱ due to the downwash induced during
previous strokes (as a result of lift production).

4.2. High-efficiency kinematics
The most efficient flapping motion is studied here, as a typical example of kinematics of
regime 1. Its parameters are a1 = 0.001, b1 = −1.34, b3 = −0.22, φ0 = 55◦ and δ = 94◦.
This motion is characterised by a high stroke amplitude of 110◦ and an overall low angle
of attack. The time evolution of the motion’s parameters are displayed in figure 10, along
with the lift and power coefficient evolution over a flapping period, obtained by DNS and
the neural network model. The neural network error on the prediction is 2.8 % for η and
1.8 % for CL. It is interesting to note that this motion highly resembles the three reference
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Figure 10. Time evolution of the (a) kinematics parameters, and (b) lift and power coefficients for the most
efficient motion, obtained from DNS (black) and neural networks (grey). Key instants are located by blue dots.

kinematics observed in nature (figure 2). The pitch profile is trapezoidal: the pitch angle
is almost constant at 65◦ during most of the stroke. This corresponds to an angle of attack
of 35◦, which was also observed in real hovering kinematics for small insects by Ellington
(1984).

The lift coefficient evolution (figure 10) also has an almost trapezoidal shape during a
single stroke (t ∈ [0, T/2]): a fast increase at the start of the stroke, then little variations in
lift during the almost constant pitch angle phase, followed by a fast decrease at the end of
the stroke. The lift seems mainly controlled by φ̇ and ψ , which suggests that quasi-steady
effects are dominant. Note that for this high-efficiency motion, the lift and the power
coefficients evolution are in phase. During the part of the stroke when lift is produced,
the power coefficient is half the value of the lift coefficient. This leads to the efficiency
value η = CL/CP = 1.79.

To further analyse the dependency of lift to φ̇ and ψ , results are compared with
predictions from the quasi-steady model by Lee et al. (2016), adapted to use our
normalisation velocity Ū defined in (2.8). The model includes effects from pure revolving
motions, combined revolving and rotating motions, as well as from added mass. The total
quasi-steady lift coefficient reads

CL = CL,rev + (CL,rot1 + CL,rot2) cosα + CL,am cosα, (4.1)

where CL,rev is the quasi-steady lift force of a wing under pure revolving motion and is
expressed as

CL,rev = ( fAR,tr)( fRo,tr)
b2CL,tr

3Ū2
φ̇2, (4.2)

where CL,tr is the quasi-steady lift coefficient resulting from a translation motion and
is equal to 1.966 − 3.94Re−0.429 sin(2α). Here, fAR,tr and fRo,tr are correction factors
associated with aspect ratio and Rossby number effects (see Lee et al. (2016) for further
details).
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Figure 11. Quasi-steady lift model (black line) from Lee et al. (2016) and its different components
(translational, rotational and added mass effects), compared with the DNS results during the the first (blue
line) and third (red line) upstrokes for the most efficient motion.

Additionally, CL,rot1 and CL,rot2 are the quasi-steady lift forces of a wing undergoing
combined rotating and revolving motion. They are derived as

CL,rot1 = ( fα)( fr)Crot
cb|φ̇|α̇

Ū2
|φ̇|α̇ (4.3)

and

CL,rot2 = 0.778
c2|α̇|α̇

Ū2
, (4.4)

where fα and fr are correction factors linked to the rotational axis position and the
instantaneous angle of attack. Here, Crot is equal to 0.842 − 0.507Re−0.1577.

Finally, the added mass coefficient is derived as

CL,am = ( fa)( fAR,a)
π

4Ū2

(
cbφ̈ sinα + c2

2
α̈

)
, (4.5)

with fa and fAR,a correction factors empirically determined.
Figure 11 compares the lift predicted by the quasi-steady model with that obtained

from the present simulations during the first and third flapping cycles. The lift
coefficients obtained with the numerical simulation, during the first flapping cycle, and
the quasi-steady model are found to match reasonably well. In particular, the lift generally
increases up to CL ≈ 0.9 slightly before T/4 and then decreases before increasing again
up to CL ≈ 0.8 around 3T/4. The quasi-steady model suggests that the first increase
is principally driven by quasi-steady effects from the revolving motion, and hence
by kinematic parameters φ̇ and ψ . Added mass and rotational effects tend to shift
the maximum lift to earlier times, when compared with that obtained from the sole
contribution of the revolving motion (which occurs at T/4). However, the occurrence of the
second peak in lift appears to be principally driven by rotational (pitch-up) effects. Overall,
we note that quasi-steady effects from the revolving motion contribute positively to lift
production throughout the whole stroke while rotational/added mass effects contribute
negatively/positively during the first half of the stroke and positively/negatively during the
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t/T = 0

t/T = 0.1

t/T = 0.2 t/T = 0.5
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t/T = 0.3
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(b)

(a)

(c)

(e)
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Figure 12. Non-dimensional Q-criterion isosurfaces obtained at different instants t/T , from 0 to 0.5, for the
most efficient motion. The grey isosurfaces correspond to a value of 1 and the blue to a value of 10.

second half, respectively. Finally, by comparing the lift obtained during the first and third
cycles, it is shown that wake effects (present during the third cycle but virtually absent
during the first cycle) contribute to reducing lift. These effects can be classified into two
contributions: one associated with the overall downwash induced by lift production during
previous strokes and another one associated with local effects of wing–vortex interactions.
The overall downwash tends to reduce the effective angle of attack of the wing and hence
can be viewed as a general offset of the lift curve towards lower values. Wing–vortex
interactions, however, may have very local effects, especially at stroke reversal where the
lift is here found to reach negative values.

The occurrence of wing–vortex interactions can be investigated by looking at the
flowfield in the vicinity of the wing. To this aim, isosurfaces of non-dimensional
Q-criterion, defined as Qc2/Uφ

2
, are displayed in figure 12 at different instants throughout

the motion for half a period (i.e. t/T from 0 to 0.5, corresponding to instants (a)–( f ) in
figure 10a). Two isosurfaces corresponding to values of 1 (grey) and 10 (blue) are shown to
visualise the evolution of the vortex structures. The video corresponding to these snapshots
is available in the supplementary movies available at https://doi.org/10.1017/jfm.2023.832.
At the start of the stroke in panel (a), the wing is at its leftmost position and pitches
clockwise. A trailing edge vortex (TEV) is visible in the vicinity of the trailing edge
as a result of the rotation of the wing between strokes. The leading-edge vortex (LEV)
generated during the previous stroke is also visible in the vicinity of the wing. In panel
(b), the wing revolves from left to right. The LEV from the previous stroke sweeps on the
lower surface, which contributes to negative lift by acting as a low-pressure region beneath
the wing. In panels (c) to (e), a new leading-edge vortex is formed. It is cone-shaped and
attached to the wing, as the velocity at the tip of the wing is higher than that near the
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wing root. It reaches a quasi-steady state, which corresponds to the observations made on
the lift in figure 10. It is known that the leading-edge vortex is key to delay stall on low
aspect ratio revolving wings and contributes to increasing the lift production throughout
the stroke, by generating a low pressure area on the upper surface of the wing (Ellington
et al. 1996; Dickinson et al. 1999; Eldredge & Jones 2019). A tip vortex (TV) is also visible.
In panels (c) and (d), the TV and LEV appear as two distinct structures. In panel (e), the
wing starts its counter-clockwise pitching motion to reverse for the next stroke. The wing
angle passes through vertical before the wing reaches its rightmost position. This (slightly
advanced) rotation mechanism increases the angle of attack and the leading-edge vortex,
initially cone-shaped in panel (d), expands chord-wise and covers most of the wing while
still being attached. In panel (e), the TV and LEV merge at the tip of the wing. Then,
in panel ( f ), the leading-edge vortex merges with the 3-D structures of the tip vortex as
the wing fully rotates for the next stroke. The decrease in revolution speed φ̇ of the wing
weakens the spanwise pressure gradient stabilising the leading-edge vortex, as described
by Medina & Jones (2016). The axial flow along the leading edge decreases as the pitch
movement dominates in this reversal part of the flapping. The leading edge vortex loses
its quasi-steady state, and this is linked to the fast and sudden drop in lift after the second
peak.

4.3. High-lift kinematics
The flapping motion generating the highest lift is investigated in this section, as a
typical example of motions in regime 2. The parameters are a1 = 0.186, b1 = −0.586,
b3 = −0.3, φ0 = 10◦ and δ = 167◦. The corresponding ψ and φ time evolutions are
displayed in figure 13, along with the lift and power coefficient evolution over a flapping
period, obtained by DNS and the neural network model. The neural network error on the
prediction is 1.9 % for η and 0.9 % for CL. The motion is very different from the most
efficient one and the three reference kinematics: it is a low revolution amplitude motion,
with a complex pitching motion during the stroke. Due to the large phase shift between
pitching and revolving motions, the pitch angle ψ changes sign very early in the stroke,
i.e. soon after t/T = 0.25, meaning that the wing is oriented backwards during a large
portion of the stroke. This is in contrast with previously studied motions (regime 1), where
ψ changed sign around stroke reversal, i.e. at t/T ≈ 0.5. Moreover, the pitching motion
during a stroke can be divided in two phases: a main pitch-up motion (t/T ∈ [0.2 − 0.4]),
and smaller pitching variations at the beginning and end of a stroke.

The lift coefficients produced in the upstroke (i.e. t/T ∈ [0, T/2]) and downstroke (i.e.
t/T ∈ [T/2, T]) are different, due to the pitching motion not being fully symmetrical. The
mean lift coefficient in the upstroke is 1.67 and is 1.19 in the downstroke. In both strokes,
there are two peaks of lift production, the first one around half of the stroke and a second
peak, smaller and flatter, towards the end of the stroke. During the upstroke, the first peak
reaches CL = 7.5, while the second one reaches CL = 0.96. For the downstroke, the peaks
reach maximum values of CL = 4.75 and 2, respectively. The maximum lift value may
change, but the overall lift evolution is similar between both strokes, thus a single stroke is
analysed to understand the underlying flow characteristics leading to this performance.

Similarly to the previous subsection, the quasi-steady model from Lee et al. (2016)
is used to estimate the main contributions to the lift peaks. Figure 14 compares the lift
predicted by the quasi-steady model with that obtained from the present simulations during
the first and third flapping cycles. First, it is observed that the quasi-steady model predicts a
lift peak slightly before t = T/4. This peak occurs at a similar instant to that obtained with
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Figure 13. Time evolution of the (a) kinematics parameters, and (b) lift and power coefficients for
highest-lift-generating motion, obtained from DNS (black) and neural networks (grey). Key instants are located
by blue dots.
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Figure 14. Quasi-steady lift model (black line) from Lee et al. (2016) and its different components
(translational, rotational and added mass effects), compared with the DNS results during the the first (blue
line) and third (red line) upstrokes for the most efficient motion.

numerical simulations but reaches lower levels. It appears to be dominated by both added
mass effects and rotational terms. The difference in peak amplitude between simulations
and the quasi-steady model suggests that a part of the lift is produced by unsteady,
vortex-induced effects. This point will be further addressed later in this subsection.
Second, the second small peak is well predicted by the quasi-steady model and seems to
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t/T = 0 LEV1 LEV2

TEV1

TEV3

TEV2

TEV4

(a)

t/T = 0.1(b)

t/T = 0.2(c)

t/T = 0.3(d)

t/T = 0.4(e)

t/T = 0.5( f )

Figure 15. Q-criterion isosurfaces obtained at different instants t/T for the highest-lift-generating motion. The
grey isosurfaces correspond to a value of 60, and the blue to a value of 200. Red arrows indicate the direction
of the pitching motion of the wing, and dashed lines track the evolution of particular vortices.

be almost exclusively driven by added mass effects. Finally, it is shown that the amplitude
of the lift peak is larger during the third flapping cycle than during the first flapping cycle.
That is, wake effects appear to promote unsteady effects responsible for lift production
near mid-stroke. However, the lift is slightly reduced before t ≈ T/6 and very slightly
increased after t ≈ T/3. It is striking that the overall downwash induced by lift production
during previous strokes does not have a detrimental influence on lift, conversely to what
has been observed for the most efficient case analysed in the previous subsection. This is
in line with the weak contribution of revolving motion-induced quasi-steady forces to the
overall lift.

Figure 15 displays non-dimensional Q-criterion isosurfaces throughout one stroke,
for values of Qc2/Uφ

2 = 60 (grey) and 200 (blue). The video corresponding to these
snapshots is available in the supplementary movies. Because of the low revolution
amplitude and the complex 3-D vortical structures, spanwise vorticity obtained in the
r = 0.75b spanwise section is also displayed at various times in figure 16 to ease the
visualisation. In the snapshot in panel (a), the wing is at its leftmost position and it initiates
revolution from left to right. Three vortices are visible, generated in the previous strokes:
one leading-edge vortex (LEV1) and two counter-rotating trailing edge vortices (TEV1 and
TEV2). The TEV positions throughout the motion are highlighted using coloured dashed
lines in figure 15. The line is pink if the vortex is created by the main pitch motion (panels
c–e), and it is green if created by variations of smaller amplitude between strokes. In panels
(a) and (b), the wing pitches clockwise and generates negative lift. LEV1 strongly interacts
with the leading edge and promotes the generation of counter-rotating vorticity which
appears to shed in panel (c). From panels (c)–(e), the wing performs a counter-clockwise
pitching motion while revolving from left to right. The angle of attack increases from 25◦
to 107◦. This pitch-up motion creates the main lift peak. The combination of the rotation
and revolution implies a high trailing edge speed where the flow separates and rolls up
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Figure 16. Spanwise vorticity contours obtained in the r = 0.75b spanwise cross-section at different instants
t/T for the highest-lift-generating motion.

into a trailing edge vortex TEV3. The fast generation of this intense TEV3 is clearly
visible from panels (c) and (d). A leading-edge vortex LEV2 is also generated during
this phase, as highlighted in panel (d). The fast formation of both leading and trailing edge
vortices from panels (c)–(e) generates a large time variation in the first moment of vorticity
which, following the impulse theory (Wu 1981), is directly related to force production.
Interestingly, this mechanism resembles that recently observed for mosquitoes (Liu et al.
2020), which flap their wings with a relatively small amplitude, i.e. typically 45◦. In panels
(c) and (e), the leading edge vortex develops close to the wing but remains small due to
the limited revolving amplitude. Lift generation is here very different to that observed in
the high-efficiency case where the LEV on its own, by acting as a low-pressure region on
the upper surface of the wing, is the main contributor to lift generation. In other words,
the ‘delayed stall’ mechanism is not relevant for this low stroke amplitude motion because
the leading-edge vortex does not have enough time to form (Wang et al. 2004; Zhu &
Sun 2017; Liu et al. 2020). In panel (e), LEV2 is wrapped by vorticity braids around the
mid-span that result from the development of 3-D spanwise instabilities. The latter may
be triggered by the relative proximity of 3-D instabilities that have already developed in
LEV1 and TEV2.

Between panels (e) and ( f ), the revolving speed decreases to zero and the wing pitches
clockwise. TEV3 and LEV2 can be viewed as a vortex dipole that generates a fluid
jet oriented towards the trailing edge. Together with the trailing edge speed induced by
the pitching motion, this jet leads to the formation of TEV4 as the flow separates past
the trailing edge. This mechanism was also observed for mosquitoes (Bomphrey et al.
2017). Again, the generation of TEV4 contributes to the time rate of change of the first
moment of vorticity, and hence aerodynamic force. This mechanism, which is favoured
by the interaction with a TEV3 and LEV2 induced jet, is found to be correlated with the
occurrence of the second small lift peak in figure 14, although it was suggested that the
latter is driven by added mass effects. At the end of the stroke, LEV2 seems to burst into
smaller scale structures with vorticity braids developing along its full span.

Then the next stroke begins, involving similar phenomena. We note from panel (g), and
similar to panel (b), that the contra-rotating vortex dipole formed by TEV2 and TEV4
rapidly advects downstream while LEV2 interacts with the leading edge of the wing.
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5. Conclusion

This paper reports on the discovery of optimal, hovering flapping wing kinematics using
deep neural networks and multi-objective optimisation.

First, a large database is produced using direct numerical simulation (DNS) of randomly
generated kinematics. Then, the database is used to train deep neural networks (NNs) that
predict the instantaneous lift and revolution and rotation torques experienced by the wing.
Using sparse information on the kinematics, these NNs have very low runtime and can
thus be used as inputs to a multi-objective optimisation that identifies the Pareto front
of optimal solutions (i.e. optimal kinematics) in the lift versus efficiency space. DNS
of a few arbitrarily selected optimal kinematics is then conducted to augment the initial
database and perform another NN training. This (iterative) active learning strategy allows
convergence towards an accurate Pareto front that is found to include solutions that lie far
away (in the lift versus efficiency space) from the initial dataset. Specifically, the best lift
reached is improved by 52 % and the best efficiency by 12 %.

The main advantage of this method is the reduced computational cost. The
multi-optimisation was performed for 17 % of what it would have costed using only CFD.
The active learning algorithm is independent of the optimisation problem or the type of
surrogate model. It also is an interesting method for surrogate modelling to use in case of
a pre-existing dataset not sampled enough near the optimal points. The iterative process
allows for a low-cost improvement of the model, instead of random sampling of the search
space.

Interestingly, the Pareto front obtained by the active learning approach reveals two
distinct regimes, associated with high-efficiency and high-lift kinematics, respectively.
The multi-objective optimisation allowed the generation of the whole range of motions
transitioning between the two regimes, enabling the study of which parameter drives the
lift production or efficiency.

On the one hand, the most efficient motion from the Pareto front is resembling the
reference bio-inspired kinematics (i.e. hawkmoth, fruit fly and honeybee), characterised
by a high stroke amplitude (110◦), a low average angle of attack (37◦), and an almost 90◦
phase shift between revolving and pitching motions. The flow is weakly unsteady, with the
formation of an attached leading-edge vortex that reaches a quasi-steady state.

On the other hand, the highest lift motion has a low stroke amplitude (20◦), with a
fast pitch-up motion during the stroke combined with a large phase shift (i.e. much larger
than 90◦) between revolving and pitching motions. The lift profile is characterised by a
first large lift peak at midstroke, followed by a second smaller peak. The first peak results
from the fast pitch-up motion of the wing and is dominated by strong added mass effects
and the fast generation of a strong trailing edge vortex, although quasi-steady effects from
both revolving and rotating motions also have important contributions. The second peak,
which occurs at the end of the stroke, is due to a reversed pitching motion. Because of the
large phase shift between revolving and pitching motions, the leading edge of the wing is
oriented backward and hence the reversed pitching motion is again a pitch-up motion and
generates lift principally through added mass effects. Here, the interaction with the wake
promotes the generation of a new counter-rotating trailing edge vortex. Both trailing edge
vortices form a counter-rotating dipole that advects downstream, which can be viewed as
the footprint of lift production. Conversely to high-efficiency cases, the kinematics and
flow physics are reminiscent of those recently observed for mosquitoes, albeit at smaller
flapping amplitudes.
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Figure 17. Cycle-averaged lift coefficient for ten flapping cycles, using three (a) spatial and (b) temporal
discretisations.

Finally, the wake capture effects are also compared between the two studied motions.
This phenomenon appears detrimental for lift production in the high-efficiency case, and
conversely, is beneficial for the high-lift case.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.832.
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Appendix

Figure 17 displays the cycle-averaged lift coefficients obtained for spatial discretisations
�x = 0.02c, 0.01c and 0.005c in panel (a) and temporal discretisations �t = T/250,
T/500 and T/1000 in panel (b). Here, �t is set to T/1000 in panel (a) and �x is set
to 0.02c in panel (b). The flapping motion considered is similar to that used in a number of
previous experimental and numerical studies by Jardin, David & Farcy (2009), Jardin et al.
(2012) and Diaz-Arriba et al. (2021). The flapping amplitude is set to 120◦. Revolving and
pitching motions are defined by fifth-order polynomials, as detailed by Diaz-Arriba et al.
(2021). The minimum angle of attack is set to 45◦ and the Reynolds number based on the
mean revolving speed at the wing tip is approximately 1000.

The figure shows that initial transients have sufficiently decayed after two flapping
cycles, in line with observations from Liu et al. (2020) and Bhat et al. (2020), for
example. Furthermore, it is found that results with lowest spatial and temporal resolutions
approximate within reasonable accuracy those obtained with highest spatial and temporal
resolutions. From the second period, the cycle-averaged lift coefficients do not deviate
from that obtained at the tenth period using the highest spatial and temporal resolutions by
more than 2.5 %. Hence, the lowest resolutions are used in the present work to generate the

974 A54-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

83
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.832
https://orcid.org/0009-0008-3412-6660
https://orcid.org/0009-0008-3412-6660
https://orcid.org/0000-0001-9704-2984
https://orcid.org/0000-0001-9704-2984
https://doi.org/10.1017/jfm.2023.832


B. Corban, M. Bauerheim and T. Jardin

initial database on which the neural networks are trained. This leads to a computational
cost that is approximately 75 times less than that with the highest resolutions.

Finally, it is worth mentioning that the numerical solver has been previously validated
on various cases at similar Reynolds numbers, including axisymmetric bluff bodies (Bury
& Jardin 2012), revolving wings (Jardin & David 2017) and perching airfoils (Jardin &
Doué 2019).
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