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Abstract. In this paper, we show that the Chern classes ck of the de Rham bundle HdR defined
on any ‘good’ toroidal compactification �AgAg of the moduli space of Abelian varieties of dimen-

sion g are zero in the rational Chow ring of �AgAg, for g ¼ 4; 5 and k > 0.
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1. Introduction

Let X �!
p

T be a smooth projective morphism of nonsingular complex algebraic

varieties. The de Rham bundle HdR ¼ R1p�ðOX �!O1
X=TÞ is a complex vector bun-

dle on T and is equipped with a flat connection H called the Gauss–Manin connec-

tion. Suppose �TT is a smooth compactification of T such that D ¼ �TT� T is a normal

crossing divisor. Then there is a canonical extension of HdR to a vector bundle �HHdR

on �TT, and the connection H extends to a logarithmic connection �HH on �HHdR ([D]). H.

Esnault observed that the Chern classes ck of HdR in the de Rham cohomology of �TT

are expressible in terms of cycles supported in D with coefficients depending on the

residues of �HH along D ([EV], Appendix B). In particular, when there is a semi-stable

extension �XX �! �TT of the family X �!T, the residues are nilpotent and ck ¼ 0. The

following question is posed in [E], 3.6.

QUESTION: Are the Chern classes ckð �HHdRÞ ¼ 0 in the Chow groups CHkð �TT ÞQ, with

rational coefficients (resp. in CHkðT ÞQ), for k > 0 ?

This is answered affirmatively by application of Grothendieck–Riemann–Roch

theorem in the following cases:

ðaÞ (Mumford). T is the moduli spaceMg of smooth curves of genus g5 1 and �TT is

a compactification of Mg, ([M], Theorem 4.2).
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ðbÞ (van der Geer). T is the moduli space Ag, of principally polarized Abelian vari-

eties (henceforth abbreviated to p.p.a.v) of dimension g5 1, ([vdG], Theorem

2.1).

ðcÞ The variety �TT is any ‘good’ toroidal compactification �AAg, of Ag, when g4 3.

(This follows, via the Torelli isomorphism and using a).

In the above cases we actually consider fine moduli spaces (with suitable level

structures) and X is the universal family. We will consider fine moduli spaces and

their compactifications in this paper. We show

THEOREM 1.1. For g ¼ 4; 5, the Chern classes ckð �HHdRÞ ¼ 0 in CHkð �AAgÞQ; k5 1.

2. The Prym Morphism

In this paper, all the varieties are defined over the field of complex numbers and all

Chow groups considered are taken with Q-coefficients.

Let Rgþ1 be the coarse moduli space of smooth curves C
0 of genus gþ 1, together

with a connected étale double cover Z : C�!C0. A natural compactification �RRgþ1 of

Rgþ1 exists corresponding to the functor �RRgþ1: if V is a scheme, �RRgþ1ðVÞ ¼ set of

stable curves C�!V of genus 2gþ 1, together with a V-involution i : C�! C, such
that i is admissible ([FS], p. 617) on geometric fibres. Then �RRgþ1 is a compact irre-

ducible algebraic variety of dimension 3g containing Rgþ1 as a dense open subset

([DS], 1.1.2). In fact, using the construction of Beauville ([B], 6.1) and with suitable

level n structures we have ([DS], p. 32–33):

(1) There is a universal family E : ðC; iÞ �!S of stable curves of genus 2gþ 1 (here

i is an S-involution on C).
(2) A quotient family of stable curves E0 : C0 ¼ C=ðiÞ �!S of genus gþ 1.

(3) S is a complete variety of dimension 3g admitting a finite morphism S�! �RRgþ1.

Then there exists an open subvariety S0 	 S and a family P�!S0 of principally

polarized Prym varieties of dimension g which defines the Prym morphism S0�!Ag

([B], p. 177). This morphism extends to p1: S�!A�
g, where A�

g is the Satake

compactification of Ag ([FS], Proposition 1.8).

Let �AAg;n denote any ‘good’ toroidal compactification ([FC], Chapter 6) of the

nonsingular moduli space Ag;n of p.p.a.v.s with level n structure (n5 4 and even).

This means that there is a universal semi-Abelian scheme G�! �AAg;n which restricts

to the universal family X n �!Ag;n and �AAg;n �Ag;n is a normal crossing divisor.

Moreover, there is a morphism h: �AAg;n �!A�
g, hð½G�Þ ¼ A, where G is a semi-Abelian

variety: 1�!T�!G�!A�! 0.
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Consider the following fibre product:

Sn ¼ S�A�
g

�AAg;n �!
�pp �AAg;n

# f
0 # h

S !
p1 A�

g

Consider a resolution of singularities f : W�!Sn, where W is non-singular and

complete, W0 ¼ ð f 0 � f Þ�1S0 and D ¼ W�W0 is a normal crossing divisor (due to

Hironaka). The composed morphism p ¼ �pp � f : W�! �AAg;n is then a proper morph-

ism. Consider the pullback families of curves E: CW ¼ ð f 0 � f Þ�C�!W and

E0 : C 0
W ¼ ð f 0 � f Þ�C 0

�!W and denote the associated de Rham bundles by HW and

Hþ
W on W, respectively. Let HdR (resp. �HHdR) denote the de Rham bundle on Ag;n

(resp. the canonical extension on �AAg;n).

Remark 2:1: Since the de Rham bundle of a family of stable curves is canonical,

HW and Hþ
W are the canonical extensions of their restrictions to W0.

We denote by o (resp. o0) for the invertible sheaf of relative differentials on CW
(resp. on C0W). Let

o�: 0�!OCW �!
d

o�! 0 and o0�: 0�!OC0W �!
d

o�! 0

be the relative de Rham complexes.

LEMMA 2.2. If q: CW �! C0W ¼ CW=ðiÞ denotes the quotient morphism, then

q�o0 ’ o.
Proof. There is a natural morphism f : q�o0 �!o and hence we obtain a section

t: OCW �! q�o0�1 � o. Since q is étale outside the locus R of singular points of the

fibres of CW �!W ([B], p. 173), f is an isomorphism outside R. Hence, the section t

of the line bundle q�o0�1 � o is nonvanishing outside R. Since the generic fibre of E is
non-singular, R is of codimension 2. This implies that t is nonvanishing everywhere,

i.e., f is an isomorphism. &

PROPOSITION 2.3. (1) There is a vector bundle decomposition HW ¼ Hþ
W �H�

W,

where H�
W is a rank 2g-vector bundle on W.

(2) H�
W ’ p� �HHdR.

(3) The Chern classes ckðHWÞ ¼ ckðH�
WÞ ¼ 0 in CHkðWÞQ, for k5 1.

Proof. (1) Since q�OCW ¼ OC0W � t, for some rank 1, torsion free sheaf t on C0W, by
Lemma 2.2 and projection formula, q�o� ¼ o0� � ðo0� � tÞ. Here o0� � t is the com-

plex 0�!OC0W � t�!
d�1

o0 � t�! 0. Hence,
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HW ¼ R1
ðE0 � qÞ�ðo

�Þ ¼ R1E0�ðo
0�Þ � R1E0�ðo

0� � tÞ:

Since Hþ
W ¼ R1E0�ðo

0�Þ is a rank 2gþ 2 subbundle, H�
W ¼ R1E0�ðo

0� � tÞ is a rank 2g
vector bundle and HW ¼ Hþ

W �H�
W.

(2) The pullback family X ¼ ðf 0 � fÞ�P�!W0 is a family of principally polarized

Prym varieties of dimension g. By the basic construction of Prym varieties, the de

Rham bundle associated to the family X �!W0 is canonically identified with

H�
W0
. Now, the restricted morphism pW0

: W0�!Ag;n is defined by the family

X �!W0, i.e., X ’ p�W0
X n overW0 (here X n �!Ag;n is the universal family). Hence

there is an isomorphism H�
W0

’ ð p� �HHdRÞjW0
. By (1) and Remark 2.1, the

canonical extension of H�
W0

is H�
W. Now by uniqueness, there is an isomorphism

H�
W ’ p� �HHdR.

(3) Since the total Chern class is multiplicative, we obtain cðHWÞ ¼ cðHþ
WÞ:cðH�

WÞ.

By [M], Theorem 4.2, applied to the two families CW and C0W over W, we get

cðHWÞ ¼ 1 and cðHþ
WÞ ¼ 1, in CH�ðWÞQ. This gives ckðH�

WÞ ¼ 0 in CHkðWÞQ, for

all k5 1. &

Suppose g ¼ 4; 5.

PROPOSITION 2.4. There is a complete nonsingular subvariety Wo of W, such that

the restriction po of p to Wo is generically finite, proper and surjective.

Proof. When g4 5, the Prym morphism surjects onto the moduli space Ag ([B],

6.4). Since p is generically surjective and proper, the irreducibility of �AAg;n implies that

p is surjective.

Suppose g ¼ 4. Then dimðSÞ ¼ 12 and dimð �AA4Þ ¼ 10 and the morphism p is gen-

erically of relative dimension 2. SinceW is projective, choose two general hyperplane

sections H1 and H2 which have their intersection with a general fibre of p at a finite

set of points. Moreover, by Bertini’s Theorem, we may assume that the intersection

Wo ofW with H1 and H2 is a nonsingular subvariety. Then the restriction po of p to

Wo is generically finite, proper and surjective. Suppose g ¼ 5. Then

dimðSÞ ¼ dimð �AA5Þ ¼ 15 and hence Wo ¼ W. &

Proof of Theorem 1:1: Consider the isomorphism in Proposition 2.3 (2) and its

restriction H�
Wo ’ ð poÞ� �HHdR to the subvariety Wo. By Proposition 2.3 (3), it follows

that ckðð p
oÞ

� �HHdRÞ ¼ 0; k5 1 in CHkðWoÞQ. By Proposition 2.4 and projection for-

mula, ckð �HHdRÞ ¼ 0 in CHkð �AAg;nÞQ, for g ¼ 4; 5. &

Recall that the Hodge bundle E is the locally free sheaf p�ðOXn
Þ on Ag;n. Notice

that the de Rham bundle HdR fits in an exact sequence:

0�!E�!HdR�!R1p�ðOXn
Þ �! 0:

Hence the total Chern classes of the above bundles satisfy the relation

cðEÞ:cðR1p�ðOXn
ÞÞ ¼ cðHdRÞ . . . ð��Þ
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Now R1p�ðOXn
Þ ’ E�, where E� is the dual of E. Indeed, R1p�ðOXn

Þ ’ e�ðO�

X̂nXn
Þ, where

X̂ nX n denotes the dual family X̂ nX n �!Ag;n with zero section e and there is an isomor-

phism X n ’ X̂nXn given by the principal polarization on Xn. Again, consider the

canonical extension �EE of E to �AAg;n which is compatible with dual ([FC], p. 224).

Denote the Chern classes of the extension �EE by ll; 14 l4 g; in CH�ð �AAg;nÞQ.

Suppose g ¼ 4; 5. Substituting ckð �HHdRÞ ¼ 0 in ð��Þ, we obtain

COROLLARY 2.5. For g ¼ 4; 5, the cycle relation ð1þ l1 þ � � � þ lgÞ: ð1� l1þ
� � � ð�1ÞglgÞ ¼ 1 holds in CH�ð

�AAgÞQ.
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