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Abstract
One of themajor priorities of international radio astronomy is to study the early universe through the detection of the 21 cmHI line from the
epoch of reionisation (EoR). Due to the weak nature of the 21 cm signal, an important part in the detection of the EoR is removing contam-
inating foregrounds from our observations as they are multiple orders of magnitude brighter. In order to achieve this, sky maps spanning
a wide range of frequencies and angular scales are required for calibration and foreground subtraction. Complementing the existing low-
frequency sky maps, we have constructed a Southern Sky map through spherical harmonic transit interferometry utilising the Engineering
Development Array 2 (EDA2), a Square Kilometre Array (SKA) low-frequency array prototype system. We use the m-mode formalism to
create an all-sky map at 159MHz with an angular resolution of 3 degrees, with data from the EDA2 providing information over+60 degrees
to –90 degrees in declination. We also introduce a new method for visualising and quantifying how the baseline distribution of an interfer-
ometer maps to the spherical harmonics and discuss how prior information can be used to constrain spherical harmonic components that
the interferometer is not sensitive to.
Keywords:methods: data analysis – techniques: image processing – cosmology: observations – diffuse radiation – radio continuum:
general

(Received 2 August 2021; revised 27 December 2021; accepted 11 January 2022)

1. Introduction

One of the primary focuses in radio astronomy science is under-
standing the early Universe formation history. Although the
redshift boundary where ionised gas recombined into neutral
hydrogen is well measureable through the cosmic microwave
background (CMB) (Komatsu et al. 2009), the redshift region of
the birth of the first stars, during the cosmic dawn (CD), and the
absolute redshift boundaries of the epoch of reionisation (EoR)
remain uncertain. Observing and better constraining the redshift
regions of these epochs is therefore key to gain a better under-
standing of the formation history of our Universe; as well as
early stages of cosmic structure formation, where presently almost
nothing is known. (Furlanetto, Oh, & Briggs 2006).

Much effort has been put in to attempt to constrain the bound-
aries of the EoR through directly probing the intergalactic medium
(IGM), for example, determining the anisotropies in the CMB
due to Thompson Scattering and calculating the optical depth
limit (Holder et al. 2003; Planck Collaboration XIII 2016), mea-
suring the scattering effects caused by Lyman-Alpha emitters
(Dijkstra 2016), measuring Gunn-Peterson absorption at high-
redshift quasar spectra caused by quasar damping wings (Fan,
Carilli, & Keating 2006), and probing the 21 cm spectral line
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of neutral hydrogen (Furlanetto, Sokasian, & Hernquist 2004).
Results from recent studies lead us to believe the bounds of the
EoR are somewhere between a redshift of z ∼ {5.4−10} (Kulkarni
et al. 2019; Nasir & D’Aloisio 2020; Planck Collaboration XIII
2016).

However, detecting the 21 cm line does not come without
challenges. One of the biggest challenges to detect this signal
is that it is hidden within the foregrounds. Foregrounds con-
sist of relatively compact emission from extra-galactic sources
(active galactic nuclei AGN and star-forming galaxies) and dif-
fuse polarised emission due to galactic synchrotron radiation,
which have angular scales from 10’s of arcminutes to the entire
sky. These foregrounds are generally three to five orders of mag-
nitude brighter than the signal we desire to detect (Morales &
Wyithe 2010; Vedantham, Udaya Shankar, & Subrahmanyan 2012;
Mertens, Ghosh, & Koopmans 2018; Trott et al. 2020; Ghosh et al.
2020). In order to solve for this, foreground mitigation meth-
ods have to be employed. Ideally, one would characterise these
foregrounds on a wide range of angular scales and frequencies,
through the generation of high resolution all-sky maps (Eastwood
et al. 2018) and create a model for foreground subtraction.

Generating a comprehensive EoR foreground model requires
a combination of both compact components and a diffuse com-
ponent. Compact source information can be obtained from one
of the many interferometric surveys that cover large areas of the
sky, for example, GLEAM (Wayth et al. 2015), TGSS (Intema et al.
2017), and LoTSS (Williams et al. 2019), and the source cata-
logues that result from them. However, compact source catalogues

c© The Author(s), 2022. Published by Cambridge University Press on behalf of the Astronomical Society of Australia. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the
original work is properly cited.

https://doi.org/10.1017/pasa.2022.2 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2022.2
https://orcid.org/0000-0002-5270-6908
https://orcid.org/0000-0002-6995-4131
https://orcid.org/0000-0002-1852-5214
https://orcid.org/0000-0002-4931-0494
https://orcid.org/0000-0001-6324-1766
https://doi.org/10.1017/pasa.2022.2
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/pasa.2022.2&domain=pdf
https://doi.org/10.1017/pasa.2022.2


2 M. A. Kriele et al.

do not describe diffuse emission and the galactic plane is often
excluded due to the complexity of imaging those regions with
interferometers.

Mapping the diffuse emission, simultaneously in the galactic
plane and outside it, is a challenging process. The well-known
Haslam sky map (Haslam et al. 1981, 1982) has been the most
prominent in use over the past few decades as a low frequency
sky model. However, the need for more diffuse sky maps over
a wider frequency range sparked the increase in these maps
through a multitude of sky surveys. The most prominent dif-
fuse sky maps generated since the Haslam map are the GSM (De
Oliveira-Costa et al. 2008), S-PASS 2.3 GHz Polarisation Survey
(Carretti et al. 2019), CHIPASS (Calabretta, Staveley-Smith, &
Barnes 2014), LWA-LFSS (Dowell et al. 2017), recalibrated ver-
sions of the 150MHz diffuse sky map by Landecker &Wielebinski
(1970) (Patra et al. 2015; Monsalve et al. 2021), and the 45MHz
diffuse map by Guzmán et al. (2010). Although a significant
improvement, more maps have to be generated at more areas on
the sky and at more frequencies to provide an accurate diffuse
foreground model; especially the lower frequency regime and the
southern hemisphere.

Eastwood et al. (2018) started to address these issues by
generating low-frequency high resolution (around ∼15 arcmin)
northern sky maps using the Owens Valley Radio Observatory
LongWavelength Array (OVRO-LWA) (Kassim et al. 2005) inter-
ferometer array using a whole different imaging method alto-
gether. Eastwood et al. (2018) employed a method known as
the Tikhonov-regularised m-mode formalism; an adaption to the
spherical harmonic transit interferometric imaging method sug-
gested by Shaw et al. (2014, 2015). Opposite to traditional radio
interferometry, them-mode formalism no longer utilises snapshot
visibilities to image the sky, but uses components of timescale vari-
ations within these visibilities instead. The formalism uses these
components to rebuild the sky using spherical harmonic basis
functions. Since these basis functions operate over the full celestial
sphere, tracking the time variance components across a full side-
real day allows one to reconstruct the full sky in a single imaging
step whilst maintaining exact widefield accuracy.

In this paper, we aim to complement the existing diffuse low-
frequency sky maps by generating a low-frequency southern sky
map at 159MHz using the Engineering Development Array 2
(EDA2) (Wayth et al. 2021), which is a prototype station of the
future SKA-Low (Braun et al. 2015). For the generation of this
sky map we also employ the m-mode formalism. This allows us
to take full advantage of the EDA2’s wide field of view (FoV),
allowing us to hyper-resolve the spatial scales on the sky with full
widefield accuracy. We also introduce the concept of spherical-
harmonic beam coverage, an analogy to measure for completeness
on the sky similar to the u, v-coverage in traditional interferome-
try. Additionally, an image-based spherical harmonic CLEANing
algorithm is presented, significantly reducing the number of
unique point-sources that need to be generated, whilst maintain-
ing the ability to accurately deconvolve point-spread functions
(PSFs).

2. All-sky interferometry

In radio astronomy—and interferometry imaging algorithms in
general—the goal is to determine the sky brightness temperature
Tb,ν(n̂) or sky intensity Iν(n̂) for a specific pointing n̂ on the celes-
tial sphere, with quasi-monochromatic frequency ν. However,

an interferometer cannot measure this directly; instead it sees
the correlated voltage response between two antenna elements〈
Ui

ν(t)U
j*
ν (t)

〉
. Ignoring the polarisation responses, we can define

the relation between the measured response and the brightness
temperature of the sky as (Thompson, Moran, & Swenson George
2017; Shaw et al. 2014)

V ij
ν =

∫
Bij

ν(n̂)Tν(n̂)d2n̂ , and (1)

Bij
ν(n̂)=

1√
�i�j

Ai
ν(n̂)Aj∗

ν (n̂)e2π in̂·uij . (2)

In Equation (1) Bij
ν is the transfer function that encapsulates the

system response on the sky, Ai
ν is the primary beam voltage

response of antenna element i, uij is the separation between two
antenna elements—in the u, v-plane—normalised by the wave-
length λ, and �i is the beam solid angle of antenna element i.

Although Equation (1) is a perfectly valid description of the
measured voltage response over the full celestial sphere, Eastwood
et al. (2018) has shown that directly solving for the three-
dimensional equation, due to computational cost and complexity,
is not a tangible solution. Alternatively, one could assume a flat
sky reducing the measurement equation to a two-dimensional
Fourier transform. However, this concept starts breaking down for
wide FoVs as the curvature of the sky starts playing a role, which
the 2D transform does not account for (Carozzi 2015; Presley,
Liu, & Parsons 2015; Singh et al. 2015; Thyagarajan et al. 2015a,
2015b; Thompson et al. 2017). Additionally, the flat-sky approach
restricts the capability to image the full-sky in a single imag-
ing sweep, as one cannot distinguish between points on different
hemispheres. As a result, one has to resort to making individ-
ual snapshots of the sky and, for example, mosaic them together;
restricting one to information only available in each individual
snapshot.

2.1. Spherical harmonic transit interferometry

To address the issues and complexities of all-sky interferometry,
Shaw et al. (2014) proposed spherical harmonic transit interfer-
ometry as an alternate solution. Instead of phase-tracking sources
with a narrow FoV and mosaicing/stacking the resulting images
together to create an image of the full sky, the issues of solving
Equation (1) are avoided altogether.

With transit interferometry, the element’s wide FoVs is pointed
at zenith to observe the sky in transit over a sidereal day. This
allows one to then utilise spherical harmonics to describe the inter-
action of radio waves emitted by celestial bodies on the observed
celestial sphere.

2.2. Spherical harmonics

Much similar to how the Fourier series describes how periodic
functions interact on a circle, spherical harmonics describe the rate
of change (angular frequency) of functions on a sphere. Especially
the Laplacian spherical harmonics—derived by expanding the
Laplacian in three dimensions—are of interest, as they form an
orthonormal basis. In other words, any function that acts on a
spherical surface can be expanded into a sum of these Laplacian
spherical harmonics; akin to how varying functions restricted to a
circle can be expanded into a series of circular functions—that is
sines and cosines—using a Fourier transform. An example of the
Laplacian spherical harmonics can be seen in Figure 1.
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Figure 1. Types of spherical harmonics. Left: sectoral spherical harmonic (a function of eimϕ ) withm= 4, Middle: tesseral spherical harmonic (a function of P|m|
l (cos θ) eimϕ ) with

l= 4 andm= 2, Right: zonal spherical harmonic (a function of P|m|
l (cos θ)) with l= 4 andm= 0. Angular velocity of the basis functions, with respect to right ascension (RA), are a

function of eimφ .

Spherical Harmonics can be divided into three different cat-
egories with regards to how wave forms interact on the sphere.
The zonal spherical harmonics (Figure 1, right image) only have
variation in the latitudinal direction (θ), the sectoral spherical
harmonics (Figure 1, left image) only have variation in the longitu-
dinal direction (ϕ), and the tesseral spherical harmonics (Figure 1,
middle image) have variation in both the latitudinal and longitu-
dinal direction. This is convenient, as this allows us to express any
continuous waveform into subsets of basis functions that describes
the waveform’s angular dependencies on both coordinates axes
(ϕ, θ)

Ym
l (ϕ, θ) =

√
2l+ 1
4π

(
l− |m|)!(
l+ |m|)!P|m|

l (cos θ) eimϕ . (3)

Here, Ym
l (ϕ, θ) are the complex Laplace spherical harmonics,

P|m|
l (cos θ) are the associated Legendre polynomials,a and eimϕ is

Euler’s formula with dependence on m. The components l and m
describe the degree and rank of the function respectively, where
l ∈ Z

0+ and −l ≤ m ≤ l. Simply said, the degree l describes
the number of cross-sections on the sphere, of which |m| are
longitudinal functions and l− |m| are latitudinal functions.

2.3. Them-mode formalism

In order to leverage spherical harmonics to describe functions
across the sky, we align the spherical coordinate system with the
celestial sphere. Doing so, ϕ describes the celestial plane’s right
ascension (RA) and θ describes the declination (DEC). Given that
the Earth’s rotation is periodic over a sidereal day (LST) and is
explicitly dependent on the azimuthal axis (φ), Shaw et al. (2014)

aIt should be noted that throughout this paper the Condon-Shortley phase (−1)|m| is
included in the Legendre polynomial notation and is not to be confused with the quan-
tum physical notation Pl|m| (cos θ); for which the Condon-Shortley phase still has to be
included.

concluded that one can take advantage of this Earth rotational
symmetry in plane with the sectoral spherical harmonics; using
wide FoV interferometers through transit interferometry.

The topic of spherical harmonic transit interferometry has been
extensively covered by Shaw et al. (2014); Shaw et al. (2015) and
Eastwood et al. (2018). As such, we will only briefly review the key
points concerning them-mode formalism and solving for the sky.
However, we highly recommend the interested reader to refer to
the aforementioned papers for a more complete overview.

Using zenith pointed observations and measure over a full
sidereal day would therefore make the three-dimensional mea-
surement equation a function of φ (Shaw et al. 2014):

V ij
ν (φ)=

∫
Bij

ν

(
n̂; φ

)
Tν(n̂)d2n̂ . (4)

Expanding the beam-transfer function (beam × fringe) into its
spherical harmonic coefficients provides a description of the angu-
lar and spatial coverage of the interferometer system for a spe-
cific baseline and frequency. The beam-transfer function can be
expressed as

Bij
ν

(
n̂; φ

) =
lmax∑
l=0

lmax∑
m=−lmax

bijlm,ν(φ)Y
m∗
l (n̂) , (5)

where bijlm,ν(φ) are the spherical harmonic coefficients of the
decomposed beam-transfer function. Similarly, we can decompose
the sky brightness temperature into a set of spherical harmonic
coefficients describing the full spatial coverage across the celestial
sphere

Tν(n̂)=
lmax∑
l=0

lmax∑
m=−lmax

alm,νYm
l (n̂) , (6)

where alm,ν are the spherical harmonic coefficients of the decom-
posed sky. It should be noted that in the m-mode definitions by
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Shaw et al. (2014) the spherical harmonic basis functions in the
beam transfer function and sky decomposition are conjugates of
each other to ‘simplify later notation’. As a result, due to the
fact that spherical harmonics are orthonormal functions, the basis
functions drop out of them-mode equation given that∫

Ym
l (n̂)Y

m∗
l (n̂)d2n̂= δll′δmm′ , (7)

with δll′ and δmm′ being Kronecker delta functions.
Closely observing Equation (3), it is clear that m only affects

the ϕ coordinate via the phase term eimϕ , which is a rotation in the
plane of RA. Any RA displacement in spherical harmonic space is
therefore only a function of eimϕ . As a result, the rotation (φ) of the
sky for a transit telescope only affects components of the spherical
harmonics that change with m. Shaw et al. (2014) concluded that
we can thus track components that vary across different timescales
over a sidereal day on a per-m-basis. In order to relate what we
measure on the sky to the spherical harmonics we can Fourier
transform our visibilities with respect tom, such that

vijm,ν = 1
2π

∫
V ij

ν (φ) e−imφdφ . (8)

This provides us with a formalism where we no longer use infor-
mation of individual snapshots across the sky, but rather the
Fourier components that describe the varying timescales of what
of we observe across the sky over a full sidereal day. These com-
ponents are also known as m-modes. The complete spherical
harmonic relation can therefore be defined as

vijm,ν =
lmax∑
l=0

bijlm,νalm,ν . (9)

which describes the encoded observed spatial frequency of the
whole sky observed through the physical system on an m-by-m
basis, also known as the m-mode formalism. The sky coefficients
alm,ν are then used to reconstruct the sky, acting as weightings for
the spherical harmonic basis functions. This allows for us to image
the full sky in a single imaging step, maintaining exact widefield
accuracy without the introduction of regridding artefacts, since
we no longer use individual snapshots. Equation (9) also reduces
the measurement equation into a simple linear relation, describing
how the sky maps to data obtained through the physical system
(Shaw et al. 2014)

v= Ba, (10)

where v is the column-vector describing them-mode response for
each baseline, B is a block-diagonal matrix describing the phys-
ical system, and a is the column-vector describing the spherical
harmonic sky coefficients.

Eastwood et al. (2018) described the block diagonal structure
of B. Here we note some properties of B that were not explicitly
made in Shaw et al. (2014), Eastwood et al. (2018). As per Shaw
et al. (2014), the m-mode equation described by Equation (10) is
sorted per |m|. Following Shaw et al. (2014), Eastwood et al. (2018)
we can therefore determine the shapes of the vectors and matrix as

shape v: [|m| × 1]→ [(m× 2N) × 1]
shape B: [|m| × |m|]→ [

(m× 2N) × (
m× l

)]
shape a:

[(
m× l

) × 1
]

where N is the total number of baselines. For every value for |m|
them-modes v|m| have 2N components, with N coming from +m,

andN coming from−m. Similarly, for every value of |m| in a block
on the block-diagonal, there are 2N × l spherical harmonic coeffi-
cients of the beam transfer function; an example of one such block
is shown below

B|m| =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0,1l=0,+m . . . b0,1l=lmax,+m
...

...
...

bN−1,N
l=0,+m . . . bN−1,N

l=lmax,+m

– – – – – – – – – – – – – – –

b0,1∗l=0,−m . . . b0,1∗l=lmax,−m
...

...
...

bN−1,N∗
l=0,−m . . . bN−1,N∗

l=lmax,−m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

In Equation (11) bi,jl,±m describes beam transfer coefficients for
spherical harmonic order l increasing on a per-column-basis up
to lmax, (i, j) describes the baseline indices increasing on a per-
row-basis until the maximum baseline configuration (N − 1,N)
has been reached. The matrix is split in half vertically with the
upper half populating +m and the bottom half populating −m,
where in the −m section the coefficients have been conjugated to
conform with definitions defined by Shaw et al. (2014). Lastly, the
sky coefficients a (Equation 10) are only a function of +m, as due
to the real-sky relation it satisfies that al,m = (− 1)ma∗

l,−m.
Ideally, one would solve for a through inverting Equation (10)

by estimating the sky brightness temperatures using the visibilities,
minimising ||v− Ba||2 (Shaw et al. 2014; Eastwood et al. 2018)

â= (
B†B

)−1 B†v, (12)

where â is the estimate of a; also known as the linear least-squares
solution, where † denotes the conjugate transpose.

2.4. Spatial coverage

Eastwood et al. (2018) has shown that the maximum number of
spherical harmonic orders lmax that an interferometer is sensitive
to is proportional to the array’s diameter. The maximum spherical
harmonic order is given by

lmax = 2πrij,max

λ
, (13)

where rij,max is themaximum baseline separation.We note that this
is different to the original definition of Eastwood et al. (2018) by a
factor of 2, as omitting this term causes the equation to no longer
satisfy the Nyquist sampling rate required to represent the smallest
variations across the sky measured by the longest baselines.

In standard radio interferometry the u, v-plane coverage
defines the spatial frequencies that have been measured by the
array. Since in spherical harmonic transit interferometry the u, v-
plane is omitted altogether, and a completely different coordi-
nate system is used, one cannot sample the u, v-plane to test
for completeness. Consequently, an alternative formalism has to
be employed to quantitatively describe the interferometer’s com-
pleteness of measurements in spherical harmonic l andm space.

As explained in Subsection 2.3, the spherical harmonic coef-
ficients of the beam-transfer functions can be used to visualise
the spatial coverage information of the sky on a per-baseline basis
(examples using EDA2 beam models and baselines are shown in
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Figure 2. The spherical harmonic beam coverage, with contribution per mode in percentage relative mode sensitivity, in SH-space. A homogeneous array was assumed. The
overall contribution is asymmetric inm due to the fact the beam transfer function is a complex waveform. This is a similar phenomenon one sees when plotting the u, v-coverage
in standard radio interferometrywhen the conjugate is not included. Left: x-polarisation, Right: y-polarisation. Zoomed areas show the first ten spherical harmonic beam coverage
coefficient contributions.

Appendix A). Similar to u, v-coverage, we combine the beam-
transfer function coefficients blm from all baselines together:

Blm =
N∑

n=1

|bnlm|, (14)

where Blm is the total spherical harmonic beam coverage (SHBC)
contribution in spherical-harmonic space (SH-space) from all
baselines for each l,m. This can be translated to percentage relative
mode sensitivity in SH-space as:

Blm,% = 100%× Blm

max(Blm)
. (15)

An example of how this SH-space looks like is shown in Figure 2.
Since these coefficients are weighting functions of the abso-

lute spherical harmonic basis functions that operate across the
full-sky, an equal (uniform) contribution of each SHBC mode in
the SH-space coefficient plane would therefore result in a system
that is ‘equisensitive’ to all spatial frequencies and phase com-
ponents across the whole sky; that is the interferometer would
measure the true sky. Such a uniform coverage would be equiv-
alent to a complete u, v-coverage for conventional interferometry.
The SHBC can therefore be considered a powerful tool to visu-
alise the interferometer’s coverage spherical harmonic coefficient
space.

2.5. Tikhonov-regularisedm-modes

In the general case telescopes cannot see some parts of the sky. As
a result the square matrix B†B is not full-rank and Equation (12)
cannot be solved as B†B cannot be inverted.

One way resolve this is to use either the Moore-Penrose
pseudo-inverse or linear least squares (LLS) instead (Shaw et al.
2014; Eastwood et al. 2018). However, if the measurement data
(v) is noise dominated or has too many unknowns, due to
missing information on the sky, to fit the data properly, these
methods might put emphasis on modes that vary on shorter

timescales across the sky; suppressing the modes that vary on
longer timescales instead (Eastwood et al. 2018). This is because
the conditions on which the pseudo-inverse and LLS satisfies the
minimisation of the error and the estimated solution is only based
on known information.

Conversely, Eastwood et al. (2018) proposed one could bias the
known data by slightly increasing the initial error, but ultimately
reducing the variance on what is being fit. This is also known as
Tikhonov regularisation

â= (
B†B+ εI

)−1 B†v , (16)

where ε ≥ 0 is the ridge-parameter and I is the identity matrix;
forcing ε to 0 would again yield Equation (12). Equation (16) is
also known as Tikhonov-regularised m-mode analysis (Eastwood
et al. 2018).

2.6. Optimal ridge-parameter (ε) selection

Tikhonov regularisation regularises the data by forcing the matrix
to be full rank by positively biasing B on the diagonals enforc-
ing preference for a solution where both ||v− Ba||2 and ||â||2 are
jointly at their lowest possible norm (Eastwood et al. 2018). In
order to find a solution where both the 2-norm of the solution and
the error are both at their minimum, an optimal value for ε has
to be selected. To achieve this, Eastwood et al. (2018) suggested
the use of L-curves as a graphical tool for determining the opti-
mal solution for ε. In this case a graph plotting the norm of the
solution against the norm of the residual error provides a charac-
teristic L-shape with the minimum of both norms at the ‘elbow’ or
‘knee’ (Figure 3). Contrary to (Eastwood et al. 2018), however, we
decided to follow the definition by Hansen (2001) instead. Here
the L-curve is defined as a log-log graph with the axes inverted rel-
ative to Eastwood et al. (2018). This allows for steeper transitions
outside the optimum region and a better distinction of the ‘knee’.
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Figure 3. Example of an L-curve measurement plot in log-log space, the ‘knee’ indi-
cates the optimal ridge regression value.

2.7. Prior knowledge to constrain the ridge parameter

In case one has prior knowledge of the sky, Eastwood et al. (2018)
has shown that coefficients of a prior map can be used to better
minimise for the estimated sky coefficients â, such that ||â− aprior||
is used instead and the solution is estimated by

â= (
B†B+ εI

)−1 B† (
v− Baprior

) + aprior. (17)

However, this assumption is only valid if the prior coefficients have
similar magnitudes to the coefficients of the measured sky. In our
experience having a too large difference between themeasured and
model monopole component a00 resulted in instability of the sys-
tem and in improper constraints on the a00 mode. Because of this
we’ve opted to constrain our measured modes with a prior where
a00 is subtracted. The global component can then be re-inserted
after the regression step, such that

â= (
B†B+ εI

)−1 B† (
v− B

[
aprior − a00

]) + aprior. (18)

To determine the system’s insensitivity to specific modes in SH-
space, the SHBC should be inspected. We note that this issue
is a weakness of this form of regularisation as it disproportion-
ately affects the cost function underlying the regularisation process
for coefficients with large relative magnitude, for example, the
monopole and dipole components for a low-frequency all-sky
map.

3. Methods and data

In order to observe the Southern sky at low frequencies with the
m-mode formalism, the EDA2 has been used.

3.1. The engineering development array 2

The EDA2, located at the Murchison Radio-astronomy
Observatory (MRO) in Western Australia and a successor to
the Engineering Development Array (EDA) (Wayth et al. 2017), is
a 256-element dipole interferometer array (Wayth et al. 2021). The
antenna elements are identical to the bow-tie dipole elements used
in the Murchison Widefield Array (MWA) (Tingay et al. 2013),
but distributed in a pseudo-random configuration spanning 35
m in diameter; much similar to what a station of the future SKA
will look like. Each antenna is a dual-polarised antenna, allowing
the EDA2 to measure a total of 512 signal paths. The EDA2 has
a frequency range in accordance with the SKA-low specification

of 50–350MHz. Different to both the MWA and EDA, the EDA2
is not beamformed in analog domain, but instead digitised on a
per-antenna basis. This allows the EDA2 to be run as a station
beamformer, or as a small 256-element interferometer, which is
the mode used for this paper.

3.2. Data and calibration

For this paper, we use two data sets spanning each between
25–28 h continuous zenith-pointed drift-scan observations. These
two observations were separated by 7 months to have enough
spatial separation of the sun between both observations for
easier removal. The first observation was performed from
September 2019 16-05:35:19 until September 2019 17-09:37:10
in Coordinated Universal Time (UTC), the second observation
was performed from April 2020 10-11:30:10 until April 2020
11-12:17:36 in UTC.

The integration time for these observations was 1.98181 s. The
observations were then averaged four times into a time-resolution
of 7.92724 s and stored in sets of 12, containing 95.1269 s per file.
To fulfil the sidereal day periodicity discussed in Section 2.3, 906
consecutive data files were selected to encompass a full sidereal
day per observation. For this paper a single 0.926MHz band at
159.375MHz (centre band) was selected to generate a Southern
sky image, since this band has very little interference.

The EDA2 is phase stable for days, so a single calibration is
applied for each dataset. We use the Sun as a strong compact radio
source with known flux density. The quiet sun has well measured
radio flux density over a large frequency range (Benz 2009), and we
use this to define the flux density of the quiet sun to be 56 195 Jy
for these observations at 159.375MHz. The data were taken during
solar minimum, hence the quiet sunmodel is appropriate. The cal-
ibration method used in this work has already been demonstrated
by Sokolowski et al. (2021), Wayth et al. (2021) for science and
system verification purposes.

Phase and amplitude calibration was performed during a
10-min interval centred on solar transit for each dataset, using an
arbitrarily chosen antenna in the array as a reference, and discard-
ing baselines shorter than 5λ to avoid bias from Galactic emission.
The X and Y polarisations were independently calibrated. The
solutions were transferred to the entire dataset.

The flux scale was corrected for the Sun’s location in the
FEKOb-generated dipole radiation power pattern (Ung 2019),c
which is different for X (Figure 4) and Y (Figure 5) and is different
for the two datasets because the Sun was at different declinations.
The apparent flux density of the sun is reduced away from the peak
directivity of the antenna (zenith in this case), hence we scale the
data by factors of 0.856 and 0.624 for the X and Y dipoles respec-
tively in September, and 0.780 and 0.481 for the X and Y dipoles
respectively in April. Although the m-mode method can in prin-
ciple embed different beam patterns for the elements in the array,
the EDA2 patterns are very similar. Jones & Wayth (2021) have
shown that a single element beam model for the whole array is
sufficient for better than 1% accuracy. As such, all elements are
assumed to have the same beam patterns for their correspond-
ing polarisations and have been normalised to be unity at their
maxima.

bhttps://www.altair.com/feko.
cBeam patterns have been derived from accurate method-of-moments modelling of the

antennas over an infinite ground plane.
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Figure 4. Normalised x-polarisation FEKO-simulated single-element beam pattern of
the EDA2; orthographic projection on a hemisphere.

Figure 5. Normalised y-polarisation FEKO-simulated single-element beam pattern of
the EDA2; orthographic projection on a hemisphere.

During commissioning work for EDA2, an additional
temperature-dependent gain amplitude variation was found as
described in Wayth et al. (2021). This effect modulates the gain
amplitude by approximately +/– 10% over a solar day. We use
an identical procedure to model and correct for this variation as
described in Wayth et al. (2021).

Figure 6. EDA2 array 256 element layout in local (North-South, East-West)
coordinates.

To ensure we do not include bad data in our imaging phase, we
flag timestamps where anomalies occur. In order to ascertain we
do not void the periodicity assumption in Subsection 2.3, we flag
the full 24-h observation for a baseline if flagging results in gaps
in the observations spanning more than our angular resolution on
the sky (in our case 12 min). If antennas consistently misbehave
we remove all observations using this antenna from our imaging
process. During the observations, 42 and 56 antennas were offline
or flagged in the September and April data respectively, and are
depicted in Figure 6.

3.3. Spherical harmonic beam coverage

The SHBC in SH-space has been generated for both the
X-polarisation and Y-polarisation and are depicted in Figure 2.
From the beam coverage plots three observations can be made.

Firstly, due to our array diameter being limited to 35 m, we
lack sensitivity in the higher l-modes. As can be seen, sensitivity is
limited to a maximum of l≈ 117 and the drop-off from our higher
modes to zero is quite steep.

Secondly, when looking at the coefficient contribution across
the first 10 spherical harmonic orders l, it can be seen that we have
partial sensitivity at the lower orders, with 19% coverage on the
l= 0mode. This is significant as this shows them-mode formalism
allows recovery on scales we would not be sensitive to with tra-
ditional snapshot imaging methods. Besides avoiding regridding
artefacts in our imaging step, this is one of the primary advantages
of spherical harmonic transit interferometry over the traditional
method when it comes to diffuse all-sky imaging.

In contrast, with traditional interferometric snapshot imaging
we expect to be limited to scales corresponding 1λ, or approxi-
mately 60◦ in angular resolution, which is equivalent to a lowest
mode sensitivity of l= 5 in spherical harmonic imaging. We ver-
ified this by calculating lmin for a single snapshot of the sky,
which is achieved by substituting rij,max with rij,min (in our case
approximately 1.5m) in Equation (13).
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Thirdly, the overall contribution is asymmetric in m. This is
due to the fact the beam transfer function is a complex waveform
that interacts with the conjugated complex spherical harmonic
basis functions. During decomposition (depending on baseline
vector orientation) the coefficients will shift either to positive
or negative rank m in baselines that have East-West contribu-
tions. The same asymmetry is also encoded into the m-modes
and will resolve itself when generating the coefficients of the
real-valued sky, which are a product of |m|. This is a similar phe-
nomenon one sees when plotting the u, v-coverage in standard
radio interferometry when the conjugate is not included.

3.4. Ionosphere

In the operating bandwidth of the EDA2 (50–350MHz) the spatial
offsets caused by ionospheric effects is measured to be in the order
of arcminutes (Jordan et al. 2017). Since the angular resolution of
the EDA2 at 159MHz is approximately 3◦, ionospheric offsets are
negligible.

3.5. Scintillation and refraction

Eastwood et al. (2018) has shown that scintillation and refrac-
tion offsets decrease when frequency increases, where these effects
reduced to <5% at 73.152MHz. Since we observe the sky at
159MHz we assume these effects negligible and therefore do not
consider them in our sky map imaging process. In addition, no
scintillation was observed in snapshot images made from our data.

3.6. Coordinate system and pixel grid

For our coordinate system, we have opted to format all sky
maps in the Hierarchical Equal Area isoLatitude Pixelation of a
sphere (HEALPix)d (Gorski et al. 2005), as this is an equal-area
representation and naturally works with spherical harmonics.

Although HEALPix is convenient for correctly depicting dis-
cretely sampled functions on a sphere, it should be taken into
account that the resolution of a HEALPix grid is dictated by its
Nside (i.e., the number of times a base pixel is divided along its
sides) which operates in a power of 2 fashion. Ideally, based on
our physical system dimensions our Nside would be defined as

Nside = lmax + 1
3

, (19)

which in our case with a maximum diameter of 35m and a fre-
quency of 159MHz would result in an Nside of 39. However, since
this is not a power of 2, our real Nside needs to be increased to the
nearest power of 2; which is Nside = 64; resulting in a pixel area of
∼ 0.84 square degrees.

3.7. Sky coefficients

In order to retrieve the spherical harmonic sky coefficients (a) to
generate images of the Southern sky, we have to solve for Equation
(16). The beam function B is generated bymultiplying the individ-
ual x-pol and y-pol beammodels with the respective fringes on the
sky for each baseline. The fringes are calculated by solving for the
exponent in Equation (1) on the whole sky.

Instead of inverting B as block-diagonal matrix, B is split in
blocks of independent m’s (Bm), where each block is defined as

dhttps://healpix.jpl.nasa.gov.

in Equation (11); to reduce size of matrices required in computer
memory. Since them-modes are grouped on anm-by-m basis, we
can invert each m-mode and Bm matrix independently to solve
for each individual âm. However, given that our shortest baseline
separation (1.5m) at 159MHz is not much shorter than our wave-
length (λ = 1.89 m), we are no longer fully sensitive to the lowest
spherical harmonic orders and global signal component (â0,0); as
shown in Figure 2. Therefore, we need a prior model to better fit
for the solutions of â.

3.7.1. Prior model

In order to properly regularise for diffuse emission in the sky map,
Equation (17) will be used instead. The model used as prior infor-
mation is the desourced, destriped Haslam map from Remazeilles
et al. (2015). Since the Haslam map itself is at 408MHz, the map
has been rescaled to match the correct brightness temperature
using pyGDSM (Price 2016), a python interface for diffuse global
sky models spectral indices (SI) for downscaling to 159MHz are
embedded in the package and, for the Haslammap, extracted from
Mozdzen et al. (2016). We’ve selected Haslam as our prior as it
is still the most prevalent in use; furthermore, in most sky map
papers it’s a common approach to compute SI between a single sky
map frequency and the 408MHz Haslam map. This should pro-
vide others a reference frame to compare their maps to our prior
constrained map and map without prior.

The map is also downscaled to the correct HEALPix Nside
in order to match our measurements and angular resolu-
tion. Additionally, we employed a Gaussian smoothing kernel
at the full-width half-maximum (FWHM) of our synthesised
beam. This is achieved by applying HEALPix’s ud_grade() and
smoothing() functions respectively; in the case of changing pixel
scale, HEALPix sets the rescaled superpixel to be the mean of the
children pixels. The resulting model map is shown in Figure 7.
We also need to account for the brightness of the sun in both the
September and April observations, the model map is used to cre-
ate two prior maps for Equation (18) with a model of the sun at the
correct location in the sky for both observations. We opted only to
remove the global component as the discrepancy between a00 on
the prior and the measured sky was too large. This mode has later
been reinserted to assure a global sky component is present in the
maps. These model map coefficients are calculated in accordance
to Equation (6).

3.7.2. Ridge parameter selection

In order to properly constrain the inversion of the m-modes to
solve for the sky â, we need to determine the proper value for ε

given themeasured data. Since we have two 24h observations, each
with two polarisations, four ridge parameters have to be selected.
Since solving for ε requires us to solve for the norms of the error
and the solution multiple times to determine the optimal value.

To select the ε to best fit our data, ideally one would like
to sample for as many values for ε as possible; preferably infi-
nite. However, due to the computational complexity of solving
for Equation (18), choosing for an increasingly large sample of ε

quickly becomes a non-feasible endeavour; a clear trade-off exists
between time spent to constrain ε and the accuracy that we gain
from it. To reduce the time spent, but still maintain accuracy,
we propose an alternate method to constrain ε instead; a two-
stage constraining scenario has been created to ease computational
strain and time-constraints. Finely sampling for a reduced subset
of a full array, yet with still sufficient SHBC in SH-space, provides
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Figure 7. 159MHz diffuse model map, log-scaling (Nside = 64). Generated from the 2014 desourced and destriped reprocessed 408MHz Haslammap (Remazeilles et al. 2015).

us a rough estimation where the optimum must lie for the full
array. Coarsely recalculating ε across this sample-space for the full
array will give us a close estimate for the best overall fit. Tweaking
the recalculated ε around this close estimate should therefore yield
us our optimal solution.

For the EDA2 array subset, to make sure we still maintain a
proper baseline distribution, only the outer rings of elements have
been selected for the first stage (Figure 8). To determine the rough
optimal range of ε for this subset, a fine-scale inversion process
of Equation (17) is ran 2 000 times for each observation and each
polarisation, minimising for ||v− Bâ|| and ||â− aprior|| each time.
The resulting L-curves are shown in Figure 9, which represent the
L-curve from the ‘knee’ down. The optimal ε values resulting from
the L-curves are ε32 = 0.006 for the 32-element data.

In order to then better constrain ε for the 256-element array,
in the second stage the norms are recalculated for 20 ε data points
equidistantly spaced on the linear regime in the L-curves (between
approximately 70 and 200 on the horizontal axis). For the lowest-
norm outcomes in each polarisation, the ε are then tweaked to
assure the lowest norms possible providing the best fit for the solu-
tions of the data. The final ε values obtained were the same for all
polarisations and are ε256 = 0.1.

3.8. Deconvolution of compact sources

Since we have a finite array that physically limits the angular res-
olution and has incomplete sampling of the sky, much similar
to holes in the u, v-sampling space in traditional interferome-
try, we expect our sky sources to be convolved with a PSF. In
order to counteract a PSF we can try to minimise their contri-
bution through deconvolution, traditionally done via the CLEAN
algorithm in radio astronomy (Thompson et al. 2017).

Originally, CLEAN (Högbom 1974) was designed to work with
Fourier-synthesis imaging methods. In spherical harmonic tran-
sit interferometry, we instead work in spherical harmonic domain
and cannot directly apply standard CLEAN algorithms. Eastwood

Figure 8. EDA2 array 32 element outer ring layout in local (North-South, East-West)
coordinates.

et al. (2018) showed how to directly relate the PSFs in spherical
harmonic coefficient space:

âPSF(θ)=
(
B†B+ εI

)−1 B†Baps(θ), (20)

where âPSF are the spherical harmonic coefficients of the PSF, and
aps is the spherical harmonic decomposition of a single point on
the sky.

As part of the proposed CLEANing algorithm by Eastwood
et al. (2018), it was noted the PSFs are shift invariant in RA, that is,
PSFs only have to be generated on a per-declination basis. Unlike
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(a) (b)

(c) (d)

Figure 9. L-curves computed for the EDA2 data for both September and April observations; and X and Y polarisations. The data was generated by first trialing 2 000 samples of ε
for a 32-element subset array (ε32) and then fit for the full array by coarsely re-sampling at 20 evenly spaced points within the linear regime in the 32-element L-curve. The final ε
is then obtained tough tweaking around the best coarse fit for an optimum 256 element solution (ε256). The data is represented following Figure 3, where the 2 000 sample points
generated an L-curve from the ‘knee’ down; that is, the bottom half of Figure 3 is therefore only shown in this representation.

Eastwood et al. (2018), instead of pre-identifying CLEAN com-
ponents and precalcuting the PSFs for each of those components,
we simply store a PSF image for each possible declination on the
sky and do all deconvolution in image space. To deconvolve the
‘dirty images’, bright compact sources are selected and windowed
in image space to determine the brightest pixel. For each bright
pixel a PSF is selected based on declination and rotated to the
correct longitude. We tested that each PSF generated via rotation
was consistent with its equivalent PSF, generated via spherical har-
monics for a point source, at that location. Residuals and imaging
artefacts propagated by imaging the rotated PSFs are < 0.01% and
therefore considered negligible. Examples of these residuals are
shown in Figure 10.

After deconvolving the PSFs, the identified pixels used to
model the PSFs are then convolved with a restoring Gaussian
(which is an identical Gaussian fit to the PSF central region to
preserve the flux) and reinserted into the residual image to create

the CLEANed sky map. It should be noted that this image-based
CLEANing method closely follows the CLEAN steps outlined by
Eastwood et al. (2018), however, deviates at the stages where PSFs
selection and deconvolution occurs. The complete step-by-step
selective image-based CLEANing process we employed is outlined
below:

Selective Image-based Spherical
Harmonic CLEANing process

1. Identify bright compact sources in image.
2. Mask these sources and isolate in separate map to determine

the brightest pixels to be used as model.
3. Extract the model pixel’s coordinates (ϕ, θ).
4. For each model pixel:
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Figure 10. EDA2 array point-spread functions (PSFs) Left column: PSFs generated at an (RA) (ϕ) of 0 degrees, Middle left column: PSFs of the left column rotated in coefficient
space to a specific RA, Middle right column: PSFs generated at an offset RA (ϕ), Right column: difference between the rotated and the offset PSFs. Top row: PSFs generated at a
declination (DEC) (ϑ) of 0 degrees, Middle row: PSFs generated at a DEC (ϑ) of 12 degrees, Bottom row: PSFs generated at a DEC (ϑ) of –40 degrees.

4.1. Select PSF image at correct declination and convert to
normalised PSF sky map.

4.2. Rotate the PSF sky map to the correct longitude (ϕ)
using rotate_alm().e

4.3. For selected model pixel, set subtraction threshold.
4.4. Until threshold is met:

4.4.1. Subtract PSF × maximum pixel brightness × γ

from the source in the ‘dirty image’.
4.4.2. Append subtracted source pixel value to a model

sky map.
4.5 Convolve total model pixel inmodelmapwith restoring

beam
5. Add model map with restored beam back to residual sky

map.

3.9. Source removal

3.9.1. The sun

The Sun in our images is very strong and slightly smeared out,
meaning we cannot perfectly deconvolve the PSF from our images,

eSee HEALPix rotator functions documentation.

leaving residual ripples into our sky maps. This has been the main
motivation to image the sky during two different months (April
and September) where the sun manifests at different locations
on the sky. This gives us the opportunity to combine the two
epochs such that the sun no longer is present. We achieve this
by averaging the two sky maps together, after CLEANing, accord-
ing to Figure 11. The blue region contains the September data,
the red region contains the April data, and the green region is a
linear-gradient weighted average of both maps; the green region
closer to the red region contains more contribution from the April
observations and vice versa. This action is performed on both
x-polarisation and y-polarisation.

3.9.2. Field of view edge

Regions at the sky near the northern horizon are poorly sampled
and passed through a low-sensitivity part of the beam. Although
these regions of the sky do appear in our output images they are
not trustworthy. Instead of truncating the sky at an arbitrary DEC,
we apply difference weighting between the intensity map we gen-
erate using our observations, and the prior model (for the prior
fit map) or global (a00) emission (for the non-fit map) to pro-
vide a smoother transition towards the region of the sky no longer
observable to the system. This has a small trade-off of sacrificing a
small region of our measurable sky to better constrain the edges of
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Figure 11. Contourmap for combining the April and September data. Cyan: April data,
Green: linearly-weighted combination of April and September data, Red: September
data. Overlaid with the model map from Figure 7 as a reference for overlap of
regions.

Figure 12. Contourmap for combining the intensitymap andmodel data. Cyan:model
data, Green: linearly-weighted combination of intensity map and model data, Red:
intensity map. Overlaid with the model map from Figure 7 as a reference for overlap
of regions.

our FoV. These regions are depicted in Figure 12, in the red region
the intensity map is 100% represented, the green region is again a
linear-gradient weighted average of both the intensity map and the
model maps (Haslam/diffuse) between +50◦ and +60◦; the green
region closer to red denotes a higher contribution of the inten-
sity map, whereas the green region near the cyan region has more
weight on the model. The cyan region has solely contribution of
the model map depicted in Figure 7 or the a00 diffuse mode map.

4. Results

The resulting EDA2 sky maps are presented in Figures 13 and 14.
Two versions of sky maps are made, one without prior fitting
(Figure 13) and one with the updated desourced and destriped
Haslam map (Remazeilles et al. 2015) used as a prior (Figure 14).
Both sky maps have been presented in equatorial coordinates as
that is the coordinate system we measured the sky in. Versions
of the sky maps in their default HEALPix representation, with
coordinate grid, can be found in Appendix B. These maps have
been created by combining two 24-h observations in different
epochs (September and April) to be able to remove the Sun using
Figure 11. Both maps have a resolution of approximately 3.1◦,
supersampled to a 0.916◦ (0.84 square degrees) pixel scale. The
FWHM of the synthesised beam at δ = −40◦, δ = 0◦, and δ =
12◦ are 3.10◦ × 3.01◦, 3.30◦ × 3.06◦, and 3.71◦ × 3.05◦ respectively
(major×minor axis). These maps have been corrected for system-
atic and regression bias (Subsection 4.3) and common-mode noise
has been removed (Subsection 4.1.1). The 159 MHz sky maps as

well as a noise map and an SI map are accessible and available for
download at PASA datastoref and LAMBDAg.

4.1. Difference visibility dataset

We create a difference visibility dataset by averaging the subtracted
odd and even non-averaged samples from each other within each
one minute averaged visibility sample following Equation (21).


σij =
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Here, Smax is the maximum number of samples within a one
minute averaged visibility sample (in our case eight), V ij,even

s,
V and
V ij,odd
s,
V describe the odd and even time samples for each 1min aver-

age for sample point s at baseline (i, j) respectively, and 
σij is the
average visibility noise within average sample. Each difference vis-
ibility noise sample is then averaged together to within the same
one-minute average bin. We use this dataset to estimate the noise
in our sky maps as well as correct for any common-mode noise
that occurs.

4.1.1. Noise correction

Eastwood et al. (2018) has shown that radio frequency interfer-
ence (RFI) from sources that do not follow the rotation of the sky,
or that common-mode pickup between interferometer elements
can generate unwanted contribution to the visibilities. This will
smear out across RA in image space, manifesting as concentric
rings at various declinations across the sky. To see these effects
in the EDA2 sky maps we used the difference visibility dataset.

To get an image representation of the noise, the noise samples
are inserted in our m-mode imaging pipeline with equal settings
as to imaging the measured sky. This operation is performed for
both X and Y polarisations for the April and September data. The
resulting noise images are shown in Figure 15. It is evident that
similar to Eastwood et al. (2018) we also have concentric rings
at varying DEC, that correspond to modes of m≤ 1. For noise to
smear out like this on the sky the source has to be common across
all elements or stationary in nature relative to the array, likely this
is therefore a product of terrestrial noise or common-mode pickup
interfering with our 24 h observation’s signal path. These noise
artefacts range from −7.7 to 2.6 K and hence are small relative to
our sky signal.

To correct for these artefacts, Eastwood et al. (2018) removed
all the m≤ 1 modes and l> 100 spherical harmonic coefficients
from their sky maps. However, doing so has the risk of also throw-
ing away actual sky information. Instead, we decomposed all noise
maps and subtracted their actual contributions in m= 0 and m=
1 from our spherical harmonic sky coefficients in both the prior
and non-prior fit September and April data; before generating the
total intensity map. We do not lose actual sky information, but
purely subtract what is present in modes of m≤ 1 in the noise
maps. After generating the total intensity map we subtract the
noise-subtracted intensity maps from the same combined inten-
sity maps where we’ve omitted the noise subtraction. The residual
is shown in Figure 16, it can be seen no additional artefacts have
been introduced.

fhttps://dx.doi.org/10.26185/620ee2ae9d8b7.
ghttps://lambda.gsfc.nasa.gov/product/foreground/fg_eda2_info.cfm.
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Figure 13. 159MHz diffuse EDA2map (equatorial view), log-scale. Generated without the use of a prior model, the global sky component is reinserted.

Figure 14. 159MHz diffuse EDA2 map (equatorial view), log-scale. Generated with the use of a prior model to constrain the beam-inverse, the Northern hemisphere is therefore
equivalent to the diffuse reprocessed Haslammap depicted in Figure 7.

4.1.2. Thermal noise

We expect the maps to be confusion limited because many
hours of data goes into each pixel on the sky. To verify this we
have extracted the visibility noise of our two observations, using
the m> 1 modes of our imaged difference visibility data set of
Subsection 4.1.1. Wemeasured the root mean square (RMS) of the
noise in a 10◦ region independently in the September and April
data; at 49.8◦ RA, −13◦ DEC and 204.7◦ RA, −13◦ DEC respec-
tively (which is well away from the galactic plane and other strong
sources). This resulted in a noise estimate of 0.024K for September
and 0.037K for April. The magnitude of the noise measurements
for X and Y were virtually identical. We compared these values to

the standard deviations we extracted from the final sky map in the
same regions; which are 10.06 and 14.8 K respectively.

A total intensity noise map with m≤ 1 subtracted is shown
in Figure 17. This map is bias corrected on the X and Y polari-
sations for both September and April data and is then weighted
averaged together, identical to as is performed on the final sky
maps. The total map RMS is measured to be 0.073K. However, a
clear systematic residual, albeit small in overall scale, is present in
our September noise data between and RA of 19 and 21 h. We’ve
measured the RMS of this systematic to be 0.103K. Furthermore,
there is a bright streak around −26.7◦ in declination (zenith),
which is likely a source of interference. The RMS of this streak
is 0.24K.
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(a) (b)

(c) (d)

Figure 15. Equatorial projection of noise separated from measured visibilities after passing through the m-mode pipeline. A clear concentric ringing at multiple declinations is
present clearly indicating a form of terrestial RFI or stationary noise. These noise-modes manifest in spherical harmonic modesm≤ 1.

Figure 16. Map of the total systematic noise we removed from our final intensity
maps in Kelvin. This map was generated by calculating the difference between a
noise-corrected version of our final maps and an uncorrected version.

4.2. Effects of incorporating the prior

To show where the prior imposes constraints on the sky, a relative
fraction difference map has beenmade between the unconstrained
map and themapwith the prior.We calculated this differencemap
by subtracting our non-prior map from our prior constrainedmap
and then dividing by our non-prior map. It should be noted that in
the unconstrained map a global sky component has been inserted
to properly subtract the maps from each other, a sky temperature
of 247K has been selected in accordance to global sky measure-
ments in McKinley et al. (2020). The resulting difference map is
depicted in Figure 18, here it can be seen that both of our non-
prior and prior fit skymaps seem to be in agreement on the galactic
plane and most diffuse regions with up to 5% difference. The prior

Figure 17. Noise intensity map in Kelvin, generated after removing the m≤ 1 modes
from the noise maps in Figure 15, then applying bias correction and weighted averag-
ing as is performed on the sky maps.

does seem to impose constraints on the diffuse emissions around
the galactic plane, increasing temperatures between 15%–25% rel-
ative to the non-prior fit map. The bright area at the top is likely to
be an artefact of our weighting scheme shown in Figure 11 where
we down-weigh the sky towards the global sky component in the
non-prior fit map, which has added diffuse galactic plane emis-
sions in the prior fit map; resulting in a temperature discrepancy.

4.3. Bias correction

The process of regularisation inevitably introduces bias when
minimising the overall cost function. To calculate the bias
introduced, we simulated visibilities with a known input map
and compared the resulting output which we constrained with a
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Figure 18. Relative difference between our prior-fit and unconstrained map (in %,
equatorial projection). Large scale diffuse emission matches between maps within
5%, the galactic plane is in agreement too. Primarily the diffuse emission around the
galactic plane is upscaled by the prior with 15%–30%more contribution.

desourced version of the input. For the known map, we used the
Haslam map by Remazeilles et al. (2015), which we reprojected
to equatorial coordinates and rescaled to our HEALPix pixel
grid; similar to how we created the prior for the EDA2 map, but
excluding the Gaussian smoothing. We subsequently generated
two sets of images of the sky, separated by 1 min of LST, whilst
embedding the EDA2 X and Y polarisation beam patterns; this to
cover a full sidereal day. Using these beam-weighted sky models,
we employed Miriad (Sault, Teuben, & Wright 1995) using the
EDA2’s layout to generate 24 h worth of visibilities which were
provided to ourm-mode pipeline as input to image the sky. Given
the input model map is at the same frequency and angular scales
as the EDA2 159MHz sky map, we do not expect the Tikhonov
factor to deviate and kept ε = 0.1 for the imaging process.

The resulting output X-polarisation and Y-polarisation maps
we used to calculate the percentage fractional difference relative
to the known input map. This sets all correct values on the sky
to zero and any bias shows up as a percentage offset. These bias
maps are shown in Figure 19. From Figure 19 it is evident a dipole-
like structure is present overestimating the one side of the image
and underestimating the other. This can be clearly attributed to
improper constraints on the l= 1 spherical harmonic coefficients;
smaller angular scales on the sky match the input on the sky and
therefore do not appear in the bias. These offsets range from+10%
at its peak to –10% at its lowest for the X-polarisation, similar for
the Y-polarisation with a small negative region of –20% offset.

Since we divided out the true sky, that is, our known input,
we can correct for the bias as the bias map only represents rel-
ative over- and under-estimations. We apply these correction
through employing the bias maps as weighting schemes on our
noise-corrected X-polarisation and Y-polarisation maps before
generating our weighted intensity maps. The weighting scheme is
defined by

Icorrected = Isky ×
(
1− Ibias

100

)
. (22)

This allows us to down weigh the overestimated regions on the sky
and upscale the underestimated ones.

5. Analysis

In this section we compare how the non-prior map and prior con-
strained EDA2 159MHz map compares to existing sky models.

We compare the maps to the frequently used global sky model
(GSM) both the reprocessed version from 2016 (Zheng et al.
2017) and the 2008 version (De Oliveira-Costa et al. 2008), the
reprocessed desourced Haslam map (Remazeilles et al. 2015), and
the Long Wavelength Array (LWA)1 lowfrequency sky survey
(LFSS) (Dowell et al. 2017). For all these sky models we use
pyGDSM (Price 2016) to rescale the maps to 159MHz to which
we then applied NSIDE rescaling and smoothing to the EDA2
angular resolution; prior to comparing the data. We compare the
EDA2 159MHz maps to the sky models by calculating the relative
fractional difference between the two maps. This is defined by

Idiff,% = 100%×
(
IEDA2
IModel

− 1
)
, (23)

Positive values indicate the EDA2 maps are brighter, negative
values indicate the sky model maps are brighter.

5.1. 2008 global sky model

The difference maps between our EDA2 maps and the 2008 GSM
(De Oliveira-Costa et al. 2008) are shown in Figures 20 and 21, we
compare the non-prior vs the sky model and the prior vs the sky
model respectively. Since the pyGDSM rescaled 2008 GSMmap is
desourced we mask off any bright sources in our EDA2 map, as
well as the region in the sky we do not observe in our map that
has not been constrained by a prior. Figure 20 shows that gener-
ally we are 12% higher in temperature compared to the GSM off
the Galactic Centre. Near the Galactic Centre, we notice we are on
average 18% lower in diffuse emission. Dowell et al. (2017) noticed
a similar effect in their comparison to the GSM. The difference is
likely a cause of improper constraints on the free-free emission in
the higher frequency maps that primarily make up the sky model.
There is also a clear striping artefact present in the fractional dif-
ference maps between an RA of approximately 5 and 12 h, which
is an imaging artefact in the GSM, likely caused when combining
the individual maps to make up the model.

Comparing ourHaslam prior constrained EDA2 skymap to the
2008 GSM at 159MHz shows that the prior constrains the diffuse
emission around the Galactic Centre and more closely matches
the diffuse emissions from the GSM with between 0% to 10% dif-
ference. However, anywhere else our prior constraint increased
our relative brightness compared to the GSM to 25% difference
on average. It should be noted that for both the non-prior and
prior constrained EDA2 sky maps we have 25%more contribution
around the southern celestial pole.

5.2. 2016 global sky model

We also generated the fractional differences between the EDA2
non-prior and prior constrained map and the 159MHz 2016 GSM
of Zheng et al. (2017). The differencemaps are shown in Figures 22
and 23. Figure 22 shows that in the no-prior map we are 17%
brighter on average, with regions of 25% difference under the
galactic plane. The reprocessed GSM, however, is more in agree-
ment with our maps in the diffuse emission around the Galactic
Centre, with an average of 12% difference. Imaging artefacts from
the 2008 GSM, although less prevalent, are still present.

The prior constrained EDA2 skymap closermatches the diffuse
emission around the Galactic Centre, up to a few percent differ-
ence. However, the constrained map is on average 25% brighter
than the 2016 GSM. The south celestial poles for both EDA2 sky
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(a) (b)

Figure 19. Average bias between our known Haslam input map and our prior fit output maps (in %, equatorial projection). Left: X-polarisation bias, Right: Y-polarisation bias.
A clear dipole effect is presents with 10% deviation.

Figure 20. Comparison between our non-prior EDA2 159MHz sky map and the 2008
GSM of De Oliveira-Costa et al. (2008) rescaled to 159MHz; in percentage and equa-
torial coordinates. The comparison is made by dividing our sky map by the GSM at
159MHz and is then offset by 1 to put zero difference on regions that agree. Contours
have been overlaid to show a difference in scales across themap. Our map shows 18%
less contribution in the diffuse emission around the Galactic Centre, but is generally
approximately 12% brighter.

Figure 21. Comparison between our Haslam prior constrained EDA2 159MHz sky map
and the 2008 GSM of De Oliveira-Costa et al. (2008) rescaled to 159MHz; in percent-
age and equatorial coordinates. The comparison is done using the same method as
in to Figure 20. With the prior-fit map, the diffuse emission around the galactic plane
matches better; ranging from 0% to 10% difference. However, in general, our prior-fit
sky map is approximately 25% brighter.

Figure 22. Comparison between non-prior EDA2 159MHz sky map and the 2016 GSM
of Zheng et al. (2017) rescaled to 159MHz; in percentage and equatorial coordinates.
In general, our map is on average 17%–25% brighter, but our maps closer resembles
the diffuse emission around the Galactic Centre, with an average of 12% difference,
compared to the 2008 GSM

Figure 23. Comparison between our Haslam prior constrained EDA2 159MHz sky map
and the 2016 GSM of Zheng et al. (2017) rescaled to 159MHz; in percentage and equa-
torial coordinates. We have a consistent offset of 25%, however aremore in agreement
with the galactic plane with 3% difference on average.
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Figure 24. Comparison between non-prior EDA2 159MHz sky map and the desourced
2014 reprocessed Haslam map (Remazeilles et al. 2015) rescaled to 159MHz; in per-
centage and equatorial coordinates. In general we are better in agreement compared
to both GSMs and are on average –3%–6% different. However, the Haslam also shows
excess (25%) in galactic diffuse emission near the Galactic Centre compared to the
EDA2

maps show up to 25%–50% difference compared to the 2016 GSM.
Comparing this to GSM comparisons with the LWA sky maps by
Dowell et al. (2017), we see differences of similar magnitudes in
the diffuse emission regions.

5.3. 2014 Reprocessed Haslammap

Since we constrain our map with the desourced reprocessed 2014
Haslam map by Remazeilles et al. (2015), we compare our EDA2
skymaps to the Haslammap tomake sure we do not force ourmap
to be identical to Haslam. In Figure 24 we compare our non-prior
EDA2 map with the Haslam map. We are 3%–6% less bright on
average and 6% brighter at declinations higher than 30◦. However,
the Haslam map is up to 25% brighter in the diffuse emission
around the Galactic Centre.

For our prior constrainedmap (Figure 25) we are in overall bet-
ter agreement. This is expected since we use the Haslam map as a
prior to constrain our coefficients. However, there are still differ-
ences. In most regions above the southern celestial pole and below
30◦ declination we are on average 3%–6% brighter than Haslam.
The overall contribution of EDA2 increases up to 12%–25% above
30◦ declination. We also match the galactic plane closely with
3% difference. The diffuse emissions around the Galactic Centre
more closely matches the Haslam map, where we are 7% less
bright on average. The Southern celestial pole still shows similar
contribution of 10%–25% brighter compared to Haslam.

Similar to the 2008 and 2016 GSM we see similar striping
between PicA and VirA in the Haslam map; albeit more subtle.

5.4. LWA1 low-frequency sky survey

To see how the EDA2 sky maps compares to sky maps made
at lower frequencies, we compare the EDA2 maps to the LWA1
LFSS by Dowell et al. (2017). For our non-prior map comparison
(Figure 26) we are in good agreement with the LFSS with differ-
ences between 0% to 10%; except for near the galactic plane. In the
galactic plane we have 25% more contribution compared to the
LFSS, we expect this due to HII regions in the galactic plane. We
do not see any of the imaging artefacts we identified in the Haslam
and GSMmaps.

Figure 25. Comparison between our Haslam prior constrained EDA2 159MHz sky map
and the desourced 2014 reprocessed Haslammap (Remazeilles et al. 2015) rescaled to
159MHz; in percentage and equatorial coordinates. We have better overall agreement
with 3%–6% difference, which is expected as we use the same map to fit the prior. We
also closelymatch the galactic plane with an average of 3% in excess. However, we see
excess emissions in our map up to 12%–25% at declinations≥ 30◦.

Figure 26. Comparison between our non-prior EDA2 159MHz sky map and the LFSS
(Dowell et al. 2017) rescaled to 159MHz; in percentage and equatorial coordinates. We
are lesser in agreement around the galactic plane, where we are 25% less in contri-
bution. This is likely caused do to the fact the LFSS is more diffuse compared to the
EDA2map. Furthermore, the LFSS has on average 25%more contribution in the diffuse
emissions around the galactic plane compared to the non-prior fit map. However, in
all other regions on the skywe seem in overall better agreement than compared to any
other sky model where we have between 0%–10% difference on average.

The prior constrained EDA2 sky map is in much better
agreement with the LFSS in general. In Figure 27 we closely follow
the LFSS up to declinations of 45◦ and have on average –4%–4%
difference. we have on average 7% less contribution in diffuse
emission around the Galactic Centre, however still see up to 25%
in excess on the galactic plane. The 50% difference at Vela is likely
a product of SI between the Haslam prior and the LFSS; since we
do not see it in our map that is not prior constrained. It should be
noted that compared to the LFSS the EDA2 sky maps also show
more contributions at the south celestial pole, which are again
10%–25% brighter.

5.5. A comment on systematics

To determine whether the relative fractional differences are in the
same order of magnitude compared to the differences between
the sky models we compare to, we calculated the mean temper-
atures in a 10 degree radius in the diffuse region at 1 h in RA and
−26.7◦ in DEC (zenith). These temperatures range from 202K for
the 2016 GSM (Zheng et al. 2017) to 247K for the LFSS (Dowell
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Figure 27. Comparison between the prior fit EDA2 159MHz sky map and the LFSS
(Dowell et al. 2017) rescaled to 159MHz; in percentage and equatorial coordinates. We
havemuch better agreement compared to all other skymodels, bar the galactic plane.
In general we seem to closely match the diffuse emissions up to 40◦ in declination,
where we have –4%–4% difference.

et al. 2017), resulting in an approximate 18% fractional difference.
For our maps, calculate the mean temperatures in the same region.
In this region, our no-prior map has a mean temperature of 215K
and our prior constrained map has a mean temperature of 253K.
These values fall into the same approximate range of temperatures
found when comparing the individual sky models, explaining the
difference in fractional difference we see between our maps and
the sky models.

When comparing EDA2 with all aforementioned sky mod-
els, we note that the EDA2 non-prior and prior-constrained sky
maps both have a consistent relative offset in temperature most
prominent at declinations between 50◦ and 60◦; which is an appar-
ent systematic bias in our maps. We reiterate that the sky above
40◦ in DEC is poorly measured by our system, as shown in
Figures 4 and 5 the y-polarisation dipole gain falls more quickly
with increasing declination; it reaches 10% at +32◦ in DEC and
5% at +40◦. We do not expect this to be due to other causes as we
did not identify this systematic in our bias maps, as is evident in
Section 4.3.

We also note that the morphology of the fractional differences
in all of the comparison maps, for example, where our map is less
bright around the galactic plane, is similar. This morphology does
not match the morphology of the biases seen in Figure 19. We
therefore interpret these to be genuine differences in the local SIs
of these maps, rather than being due to a systematic effect of the
m-mode imaging.

5.6. Spectral index map

Figure 28 shows the spectral index derived from our EDA2 map
when rescaled to the 408MHz Haslammap which has been repro-
jected to equatorial coordinates and smoothed to the same angular
resolution of 3.1 degrees. The Haslam map has been extracted
from pyGDSM (Price 2016) which is assumed to have a flat SI of
2.6 across the sky. We see the largest difference in our maps at
the galactic plane, where we measure an SI of 2.4–2.45 more in
accordance to the SIs derived by Dowell et al. (2017). The diffuse
emission around the Galactic Centre we calculated to have an SI of
2.5 on average. The remaining diffuse emission ranges from 2.6–
2.7 in SI. SIs calculated above 40◦ in declination we do not deem
trustworthy due to the systematic bias we discussed in Subsection

Figure 28. Spectral index map calculated between our prior-constrained EDA2 map
and the desourced Haslam map of Remazeilles et al. (2015). We overlaid the abso-
lute difference in SI between our map and the Haslammap as labeled contours. Bright
sources have beenmasked off.

5.5. The reason we see the major difference around the galactic
plane is likely due to the fact a single-power law assumption start
breaking down when having significant discrepancy in frequency,
as HII regions become more prevalent due to thermal absorption
(Dowell et al. 2017; Kassim 1989). To properly define SIs for the
EDA2 observed sky, more comparisons and observations across
multiple frequencies have to bemade. However, this is out of scope
for this paper and we will address this in future work.

6. Conclusions

We present two EDA2 159MHz all-sky maps generated using
the novel imaging method known as the m-mode formalism. We
have shown how prior-fitting the Tikhonov regularisation, first
suggested by Eastwood et al. (2018), puts constraints on the dif-
fuse emissions on the sky for modes we are not, or less, sensitive
to. Furthermore, we have shown how we can remove systematic
bias from our sky maps implemented as a weighting scheme, and
how we can correct for terrestrial noise by down weighting those
specific modes in coefficient space; without compromising actual
information on the sky. To generate these maps, two observations
have been performed, separated by a 7 month interval, in order
to remove the sun. For both observations 24 h of data have been
used. The maps are created with a maximum angular resolution
of 3.1◦, within the time-frame of a single day. These maps have
< 0.5 K measured thermal noise and are super sampled on a 0.91
degree pixel grid.

Between declination range of −70◦ and +40◦ our maps on
average have approximately 10% relative difference compared to
the reprocessedHaslammap (Remazeilles et al. 2015) and the LFSS
(Dowell et al. 2017); and 25% difference of the GSMs (De Oliveira-
Costa et al. 2008; Zheng et al. 2017). At higher declinations above
40◦ our maps are not well measured. We also show a consistent
10%–25% higher temperature around the southern celestial pole.

We also generated an all-sky thermal noise intensity map with
an average RMS of 0.073K across the observed sky. In this map,
there is some systematic/interference between RA of 19 and 21 h
and at −26.7◦ in declination (zenith), with a maximum RMS of
0.24K. However, compared to the temperature variations on quiet
regions on the sky (approximately 10–14K), the thermal noise
(including the systematics) is roughly 2 orders ofmagnitude lower.
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Because our maps are confusion limited they would form one part
of a complete foreground model for EoR sciences, but can be used
as-is for single-antenna total power measurements. Byrne et al.
(2021) have shown that the angular scale at which power of dif-
fuse emissions and point sources are equal is in the order of several
degrees, therefore diffuse sky maps such as these will be required
for complete calibration models in the future.

Furthermore, we introduced a variation to the image decon-
volution algorithm of Eastwood et al. (2018). This algorithm
operates in image space by taking advantage of the fact the PSF
is shift-invariant in right ascension.

Finally, we introduced a formalism to inspect the interferome-
ter’s sensitivity in spherical harmonic coefficient space, analogous
to the u, v-plane coverage in traditional interferometry; showing
the m-mode formalism allows for sensitivity to diffuse emission
much larger in angular scales than traditional snapshot imag-
ing provides. We also show how the spherical harmonic beam
coverage can aid in better constraining a prior.

Acknowledgements. We thank Daniel Ung for aiding in generating and
providing the FEKO-generated EDA2 beam models. Additionally, we would
like to thank Marcin Sokolowski and Ravi Subrahmanyan for their assis-
tance and feedback on the EDA2 gain calibration methods. Furthermore, we
thank Jaiden Cook for providing assistance and insights on Gaussian fitting
algorithms. We would also like to thank the anonymous reviewer for their
valuable comments, resulting in an overall improvement of this manuscript.
This research was supported by the Australian Research Council Centre
of Excellence for All Sky Astrophysics in Three Dimensions (ASTRO3D),
through project number CE170100013. This scientific work makes use of
the Murchison Radio-astronomy Observatory (MRO), operated by CSIRO.
We acknowledge the Wajarri Yamatji People as the traditional owners of the
observatory site. We acknowledge the Pawsey Supercomputing Centre which
is supported by the Western Australian and Australian Governments. We
acknowledge the use of the Legacy Archive for Microwave Background Data
Analysis (LAMBDA), part of the High Energy Astrophysics Science Archive
Center (HEASARC). HEASARC/LAMBDA is a service of the Astrophysics
Science Division at the NASA Goddard Space Flight Center. We acknowledge
the work and the support of the developers of the following Python pack-
ages: pyGDSM (Price 2016), Numpy (Harris et al. 2020), Astropy (Astropy
Collaboration et al. 2013, 2018), Healpy (Zonca et al. 2019), Scipy (Virtanen
et al. 2020), andMatplotlib (Hunter 2007). We acknowledge the work and sup-
port of the developers of the HEALPix software (Gorski et al. 2005) andMiriad
software (Sault et al. 1995).

References

Astropy Collaboration, et al. 2013, A&A, 558, A33
Astropy Collaboration, et al. 2018, AJ, 156, 123
Benz, A. O. 2009, LanB, 4B, 103
Braun, R., Bourke, T., Green, J. A., Keane, E., & Wagg, J. 2015, in Advancing

Astrophysics with the Square Kilometre Array (AASKA14), 174
Byrne, R., Morales, M. F., Hazelton, B., Sullivan, I., Barry, N., Lynch, C., Line,

J. L. B., & Jacobs, D. C. 2021, MNRAS
Calabretta, M. R., Staveley-Smith, L., & Barnes, D. G. 2014, PASA, 31, e007
Carozzi, T. D. 2015, MNRASL, 451, L6
Carretti, E., et al. 2019, MNRAS, 489, 2330
De Oliveira-Costa, A., et al. 2008, MNRAS, 388, 247
Dijkstra, M. 2016, ApSSL, 145
Dowell, J., et al. 2017, MNRAS, 469, 4537
Eastwood, M. W., et al. 2018, AJ, 156, 32
Fan, X., Carilli, C., & Keating, B. 2006, ARA&A, 44, 415
Furlanetto, S. R., Oh, S. P., & Briggs, F. H. 2006, PhyRv, 433, 181
Furlanetto, S. R., Sokasian, A., & Hernquist, L. 2004, MNRAS, 347, 187
Ghosh, A., et al. 2020, MNRAS, 495, 2813

Gorski, K. M., Hivon, E., Banday, A. J., Wandelt, B. D., Hansen, F. K.,
Reinecke, M., & Bartelmann, M. 2005, ApJ, 622, 759

Guzmán, A. E., May, J., Alvarez, H., & Maeda, K. 2010, A&A, 525, A138
Hansen, P. 2001, The L-Curve and Its Use in the Numerical Treatment of

Inverse Problems (WIT Press), 119
Harris, C. R., et al. 2020, Natur, 585, 357
Haslam, C. G. T., et al. 1981, A&A, 100, 209
Haslam, C. G. T., Salter, C. J., Stoffel, H., & Wilson, W. E. 1982, A&AS, 47, 1
Högbom, J. A. 1974, A&AS, 15, 417
Holder, G. P., Haiman, Z., Kaplinghat, M., & Knox, L. 2003, ApJ, 595, 13
Hunter, J. D. 2007, CSE, 9, 90
Intema, H. T., Jagannathan, P., Mooley, K. P., & Frail, D. A. 2017, A&A,

598, 28
Jones, J. L., & Wayth, R. B. 2021, MNRAS, 505, 1485
Jordan, C. H., et al. 2017, MNRAS, 471, 3974
Kassim, N. E. 1989, ApJ, 347, 915
Kassim, N. E., et al. 2005, The Long Wavelength Array. ASP, 392
Komatsu, E., et al. 2009, ApJSS, 180, 330
Kulkarni, G., Keating, L. C., Haehnelt, M. G., Bosman, S. E. I., Puchwein, E.,

Chardin, J., & Aubert, D. 2019, MNRASL, 485, L24
Landecker, T. L., & Wielebinski, R. 1970, AuJPAS, 16, 1
McKinley, B., Trott, C. M., Sokolowski, M., Wayth, R. B., Sutinjo, A., Patra, N.,

Nambissan, T. J., & Ung, D. C. X. 2020, MNRAS, 499, 52
Mertens, F. G., Ghosh, A., & Koopmans, L. V. E. 2018, MNRAS, 478, 3640
Monsalve, R. A., et al. 2021, ApJ, 908, 145
Morales, M. F., & Wyithe, J. S. B. 2010, ARA&A, 48, 127
Mozdzen, T. J., Bowman, J. D., Monsalve, R. A., & Rogers, A. E. E. 2016,

MNRAS, 464, 4995
Nasir, F., & D’Aloisio, A. 2020, MNRAS, 494, 3080
Patra, N., Subrahmanyan, R., Sethi, S., Udaya Shankar, N., & Raghunathan, A.

2015, ApJ, 801, 138
Planck Collaboration XIII, P. 2016, A&A, 13
Presley, M. E., Liu, A., & Parsons, A. R. 2015, ApJ, 809, 18
Price, D. C. 2016, PyGSM: Python interface to the Global Sky Model

(ascl:1603.013)
Remazeilles, M., Dickinson, C., Banday, A. J., Bigot-Sazy, M. A., & Ghosh, T.

2015, MNRAS, 451, 4311
Sault, R. J., Teuben, P. J., & Wright, M. C. H. 1995, in Astronomical Society

of the Pacific Conference Series, Vol. 77, Astronomical Data Analysis
Software and Systems IV, ed. R. A. Shaw, H. E. Payne, & J. J. E. Hayes, 433
(arXiv:astro-ph/0612759)

Shaw, J. R., Sigurdson, K., Pen, U.-L., Stebbins, A., & Sitwell, M. 2014, ApJ,
781, 57

Shaw, J. R., Sigurdson, K., Sitwell, M., Stebbins, A., & Pen, U.-L. 2015, PhRvD,
91, 083514

Singh, S., Subrahmanyan, R., Udaya Shankar, N., & Raghunathan, A. 2015,
ApJ, 815, 88

Sokolowski, M., et al. 2021, PASA, 38, e023
Thompson, A. R., Moran, J. M., & Swenson George, W. J. 2017,

Interferometry and Synthesis in Radio Astronomy (3rd edn.; Cham:
Springer) 10.1007/978-3-319-44431-4

Thyagarajan, N., et al. 2015a, ApJ, 804, 14
Thyagarajan, N., et al. 2015b, ApJ, 807, L28
Tingay, S. J., et al. 2013, PASA, 30, 21
Trott, C. M., et al. 2020, MNRAS, 493, 4711
Ung, D. 2019, Determination of Noise Temperature and BeamModelling of an

Antenna Array with Example Application using MWA
Vedantham, H., Udaya Shankar, N., & Subrahmanyan, R. 2012, ApJ, 745, 176
Virtanen, P., et al. 2020, NatM, 17, 261
Wayth, R. B., et al. 2015, PASA, 32, 12
Wayth, R., et al. 2017, PASA, 34, e034
Wayth, R., et al. 2021, The Engineering Development Array 2: design, perfor-

mance and lessons from an SKA-Low prototype station (arXiv:2112.00908)
Williams, W. L., et al. 2019, A&A, 622, 21
Zheng, H., et al. 2017, MNRAS, 464, 3486
Zonca, A., Singer, L., Lenz, D., Reinecke, M., Rosset, C., Hivon, E., & Gorski,

K. 2019, JOSS, 4, 1298

https://doi.org/10.1017/pasa.2022.2 Published online by Cambridge University Press

http://dx.doi.org/10.1051/0004-6361/201322068
http://adsabs.harvard.edu/abs/2013A%\gdef &{%}\gdef no{no}\gdef yes{yes}26A...558A.33A
http://dx.doi.org/10.3847/1538-3881/aabc4f
https://ui.adsabs.harvard.edu/abs/2018AJ....156.123A
http://dx.doi.org/10.1007/978-3-540-88055-4_5
https://ui.adsabs.harvard.edu/abs/2009LanB...4B.103B
http://dx.doi.org/10.1093/mnras/stab3276
http://dx.doi.org/10.1017/pasa.2013.36
http://dx.doi.org/10.1093/mnrasl/slv052
http://dx.doi.org/10.1093/mnras/stz806
http://dx.doi.org/10.1111/j.1365-2966.2008.13376.x
https://ui.adsabs.harvard.edu/abs/2008MNRAS.388.247D
http://dx.doi.org/10.1007/978-3-319-21957-8_5
http://dx.doi.org/10.1093/mnras/stx1136
https://ui.adsabs.harvard.edu/abs/2017MNRAS.469.4537D
http://dx.doi.org/10.3847/1538-3881/aac721
https://ui.adsabs.harvard.edu/abs/2018AJ....156...32E
http://dx.doi.org/10.1146/annurev.astro.44.051905.092514
http://dx.doi.org/10.1016/j.physrep.2006.08.002
https://ui.adsabs.harvard.edu/abs/2006PhR...433.181F
http://dx.doi.org/10.1111/j.1365-2966.2004.07187.x
http://dx.doi.org/10.1093/mnras/staa1331
https://ui.adsabs.harvard.edu/abs/2020MNRAS.495.2813G
http://dx.doi.org/10.1086/427976
http://dx.doi.org/10.1051/0004-6361/200913628
http://dx.doi.org/10.1038/s41586-020-2649-2
htpps://ui.adsabs.harvard.edu/abs/1981A&A...100.209H
htpps://ui.adsabs.harvard.edu/abs/1982A&AS...47....1H
https://ui.adsabs.harvard.edu/abs/1974A&AS...15.417H
http://dx.doi.org/10.1086/377338
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1051/0004-6361/201628536
https://ui.adsabs.harvard.edu/abs/2017A&A...598A.78I
http://dx.doi.org/10.1093/mnras/stab1420
http://dx.doi.org/10.1093/mnras/stx1797
http://dx.doi.org/10.1086/168183
https://ui.adsabs.harvard.edu/abs/1989ApJ...347.915K
http://dx.doi.org/10.1088/0067-0049/180/2/330
http://dx.doi.org/10.1093/mnrasl/slz025
https://ui.adsabs.harvard.edu/abs/1970AuJPA.16....1L
http://dx.doi.org/10.1093/mnras/staa2804
http://dx.doi.org/10.1093/mnras/sty1207
http://dx.doi.org/10.3847/1538-4357/abd558
https://ui.adsabs.harvard.edu/abs/2021ApJ...908.145M
http://dx.doi.org/10.1146/annurev-astro-081309-130936
https://ui.adsabs.harvard.edu/abs/2010ARA&A.48.127M
http://dx.doi.org/10.1093/mnras/stw2696
http://dx.doi.org/10.1093/mnras/staa894
http://dx.doi.org/10.1088/0004-637X/801/2/138
https://ui.adsabs.harvard.edu/abs/2015ApJ...801.138P
http://dx.doi.org/10.1051/0004-6361/201525830
http://dx.doi.org/10.1088/0004-637x/809/1/18
http://dx.doi.org/10.1093/mnras/stv1274
http://dx.doi.org/10.1088/0004-637X/781/2/57
https://ui.adsabs.harvard.edu/abs/2014ApJ...781...57S
http://dx.doi.org/10.1103/PhysRevD.91.083514
https://ui.adsabs.harvard.edu/abs/2015PhRvD.91h3514S
http://dx.doi.org/10.1088/0004-637X/815/2/88
https://ui.adsabs.harvard.edu/abs/2015ApJ...815...88S
http://dx.doi.org/10.1017/pasa.2021.16
http://dx.doi.org/10.1007/978-3-319-44431-4
http://dx.doi.org/10.1088/0004-637x/804/1/14
http://dx.doi.org/10.1088/2041-8205/807/2/l28
http://dx.doi.org/10.1017/pasa.2012.007
https://ui.adsabs.harvard.edu/abs/2013PASA...30....7T
http://dx.doi.org/10.1093/mnras/staa414
http://dx.doi.org/10.1088/0004-637X/745/2/176
https://ui.adsabs.harvard.edu/abs/2012ApJ...745.176V
http://dx.doi.org/10.1038/s41592-019-0686-2
https://rdcu.be/b08Wh
http://dx.doi.org/10.1017/pasa.2015.26
https://ui.adsabs.harvard.edu/abs/2015PASA...32...25W
http://dx.doi.org/10.1017/pasa.2017.27
https://ui.adsabs.harvard.edu/abs/2017PASA...34...34W
http://dx.doi.org/10.1051/0004-6361/201833564
https://ui.adsabs.harvard.edu/abs/2019A&A...622A...2W
http://dx.doi.org/10.1093/mnras/stw2525
https://ui.adsabs.harvard.edu/abs/2017MNRAS.464.3486Z
http://dx.doi.org/10.21105/joss.01298
https://doi.org/10.1017/pasa.2022.2


20 M. A. Kriele et al.

A. Examples of beam-coefficient space

Figure A.1. Example of spherical harmonic beam coefficients for a short East-West baseline (contribution is low on spatial coefficients l and is primarilym dependant).

Figure A.2. Example of spherical harmonic beam coefficients for a long East-West baseline (contribution is high on spatial coefficients l and is primarilym dependant).

Figure A.3. Example of spherical harmonic beam coefficients for a North-South baseline (contribution is symmetric aroundm= 0).
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Figure A.4. Example of spherical harmonic beam coefficients for a diagonal baseline pointing North-West (contribution moves to the negativem-modes).

Figure A.5. Example of spherical harmonic beam coefficients for a diagonal baseline pointing North-East (contribution moves to the positivem-modes).

B. Sky maps in HEALPix representation

Figure B.1. 159MHz diffuse EDA2 map (equatorial view, HEALPix RING ordering scheme), log-scale. Generated without the use of a prior model, the global sky component is
reinserted.
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Figure B.2. 159MHz diffuse EDA2 map (equatorial view, HEALPix RING ordering scheme), log-scale. Generated with the use of the reprocessed desourced Haslammap as a prior
model to constrain the largest scales. Since we cannot observe at declinations> 60◦, the northern hemisphere is equivalent to the diffuse Haslammap depicted in Figure 7.
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